An Improved Multiscale Normal-Mesh-Based Image Coder

Di Xu and Michael D. Adams
Dept. of Elec. and Comp. Engineering, University of Victoria, Victoria, BC, Canada
dixu@ece.uvic.ca and mdadams@ece.uvic.ca

Abstract— Three modifications to the normal-mesh-based image coder of
Jansen, Baraniuk, and Lavu are proposed, namely, the use of a data-dependent
base mesh, an alternative representation for normal/vertical offsets, and a dif-
ferent scan-conversion scheme based on bicubic interpolation. Experimental
results show that our proposed changes lead to improved coding performance
in terms of both objective and subjective image quality measures.

Keywords— image coding, normal mesh, multiresolution.

I. INTRODUCTION

Many of today’s best image coders are based on wavelet trans-
forms. Unfortunately, such coders cannot efficiently represent the
geometric features inherent in images (i.e., edges). This has led to an
interest in coders that employ geometric representations of images,
such as normal (triangle) meshes. Unlike wavelets, meshes are well
suited to efficiently capturing the geometric information in images.
Recently, an image coder based on normal meshes was proposed
by Jansen, Baraniuk, and Lavu [1], which we henceforth refer to as
the JBL coder. In this paper, we propose three modifications to the
JBL coder and demonstrate through experimental results that these
changes lead to improved coding performance.

The remainder of this paper is structured as follows. Section II
introduces the JBL coder, with some details regarding our imple-
mentation of this coder given in Section III. Section IV proposes
three modifications to the JBL coder. Section V evaluates the perfor-
mance gains achieved by our proposed changes. Finally, Section VI
concludes the paper with a summary of our work and some closing
remarks.

II. JBL CODER

A grayscale image is a function f of two variables x and y, where
z and y correspond to position, and z = f(z,y) corresponds to
image intensity. In this way, an image can be viewed as a surface
parameterized over the xy plane. Thus, mesh-based techniques for
representing surfaces can be used for images. In the case of the JBL
coder, a normal (triangle) mesh is employed to represent images.

For our purposes here, a normal mesh [2] is a multiresolution
surface representation that consists of a nested sequence of meshes,
generated by repeated refinement of a base mesh. The base mesh
consists of a small number of points from the true surface. The
refinement process then generates a finer mesh by adding new points
from the true surface to a coarser mesh. This is done in such a
way that each new vertex on the finer mesh can be expressed as a
displacement from a base point on the coarser mesh in the direction
of the base point’s surface normal. In other words, the new vertices
added during refinement are located where surface normals from base
points on the coarser mesh pierce the true surface (i.e., new vertices
are located at so-called piercing points). Since each base point and
its corresponding normal direction are completely determined by the
coarser mesh, only a single scalar value (i.e., a normal offset) is

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada.

needed to identify the location of each new vertex on the finer mesh.
Thus, a normal mesh can be completely characterized by its base
mesh and a set of normal offsets.

As mentioned previously, an image can be represented as a surface
parameterized over the xy plane. In what follows, we refer to this
plane as the parameter plane. Since some aspects of the JBL coder
are more easily explained in terms of the (2D) parameter plane
rather than explicit 3D geometry, we will largely adopt a parameter-
plane perspective in our description of this coder. In essence, the
JBL coder creates a partitioning of the parameter plane using a
triangulation, and then forms an interpolant over each of the resulting
triangles in order to construct a surface in 3D (i.e., the image surface).
(Unless otherwise noted, in what follows, the term “vertex” will
always refer to a vertex in the parameter-plane triangulation.) Vertices
are associated with height (i.e., z coordinate) values. In this way,
each vertex/height-value pair corresponds to a point in 3D. With the
JBL coder, the three 3D points associated with the vertices of each
triangle are used to form a planar interpolant. By combining these
interpolants, an image surface in 3D is formed.

To represent discontinuities, the JBL coder models edges explicitly
using the so-called horizon model. As a matter of terminology, a
contour in the parameter plane that corresponds to a discontinuity
contour (i.e., image edge) is called a horizon. A vertex that is
on a horizon is said to be a horizon vertex, and an edge (in the
triangulation) with both of its endpoints being horizon vertices is
said to be a horizon edge. The number of height values associated
with a particular vertex, depends on whether the vertex is a horizon
vertex. A nonhorizon vertex is associated with only one height value,
while a horizon vertex is associated with two, in order to represent
the height of the image surface on both sides of the horizon. To
distinguish between these two cases, each vertex is associated with a
bit, called a horizon bit, indicating if the vertex is a horizon vertex.

Although the JBL coder employs a normal mesh, the base mesh and
its subsequent refinement are more easily described in terms of the
parameter-plane triangulation (introduced above) rather than directly
in terms of the 3D mesh itself. First, the refinement process requires
the notion of a true surface. Since images are essentially assumed
to be piecewise constant in [1], the true surface is constructed using
piecewise constant interpolation of the original image sample data.
The base mesh is associated with a particular base (i.e., initial)
triangulation of the parameter plane. In the JBL scheme, the base
triangulation is chosen to have four vertices, corresponding to the four
corner points of the image bounding box. The refinement of the mesh
then corresponds to a refinement of the parameter-plane triangulation
through the addition of new vertices. In particular, refinement of the
triangulation is performed by quaternary subdivision, whereby a new
vertex is added for each edge in the triangulation (resulting in each
triangle being split into four new triangles). The location of the new
vertex for each edge is determined in one of two ways, depending on
whether the edge is a horizon edge. To simplify the explanation that
follows, we neglect a few exceptional cases. In the case of a horizon



edge, we define the base point as the midpoint of the edge. Then, the
new vertex is added where the normal to the edge through its base
point pierces the horizon. In the case of a nonhorizon edge, the base
point is defined as the midpoint of the 3D line segment joining the
3D points associated with the vertices at the endpoints of the edge.
The new point is added where the normal to the 3D line segment,
through its base point and in the vertical plane containing the line
segment, pierces the true image surface. Due to the manner in which
refinement of the parameter-plane triangulation is performed (using
numerous normal directions), this entire process can be viewed as
the refinement of a normal mesh.

As suggested earlier, some exceptional cases can occur in the above
refinement process. This is because it is not always possible to find
a valid piercing point in a normal direction in the manner described
above. For example, during the refinement involving a horizon edge,
it is possible that the new piercing point does not lead to a valid
triangulation (due to non-disjoint triangles). To avoid this and other
problems, we must, in some exceptional circumstances, include a
distance in the vertical direction, in lieu of or in addition to the
normal direction. Therefore, an additional value, called the direction
value, is required for each offset to remember which combination of
normal/vertical directions it employs.

The mesh-based representation of the JBL coder described above
is completely characterized by the base mesh, normal/vertical off-
sets, horizon bits, and direction values. Using this information, the
corresponding surface can be reconstructed.

Having introduced the JBL coder, we now take a moment to briefly
introduce a greatly simplified version of this coder that is implicitly
suggested in [1] (in the context of natural images). We refer to
this simplified version of the coder as JBL-S herein. In the JBL-
S coder, the true image surface is constructed using piecewise planar
interpolation rather than piecewise constant interpolation. Due to the
use of a piecewise planar interpolant, no discontinuities exist in the
true image surface, and hence no horizons exist either. Thus, the JBL-
S coder is essentially the JBL coder without the horizon model. In
the case of the JBL-S coder, the mesh-based image representation is
completely characterized by only the base mesh and normal/vertical
offsets. Unlike in the JBL case, horizon bits and direction values are
not used.

III. OUR JBL CODER IMPLEMENTATION

Before proceeding further, we briefly describe our implementation
of the JBL coder, which was used as the basis for our work herein.
Generally, our implementation is written in MATLAB. The encoder
uses a Canny edge detector [3] to determine horizons. Then, a
normal-mesh representation is constructed, and the corresponding
normal/vertical offsets are then quantized and coded.

The normal/vertical offsets are scalar quantized with a separate
quantizer being used for the offsets of each subdivision level. Rather
than specifying all of the quantizer step sizes individually, all step
sizes are computed from a single encoder parameter g. In particular,
the step size Ay for the offsets of the kth subdivision level (where
k = 0 corresponds to the base mesh) is chosen as Ay = ¢2F. This
choice results in offsets from coarser levels being weighted more
heavily than those from finer levels. Such is desirable, since in a
normal mesh, errors in the coarser-level offsets introduce considerably
more distortion than errors in the finer-level offsets.

In [1], Jansen et al. do not make any attempt to estimate the bit
rate required to code the data of the mesh-based representation. In

our work, however, this rate is estimated using the data’s entropy. To
be brief, a Laplacian distribution is used to model the normal/vertical
offsets, while a simple first-order entropy is used for the horizon-bit
and direction-value data. The parameters of the associated probability
distributions are encoded as side information. The base mesh data is
not assumed to be entropy coded, however.

IV. PROPOSED MODIFICATIONS TO JBL CODER

Having introduced the JBL coder, we now propose three modifi-
cations to it. As we will later show, each of these changes leads to
improved coding performance.

The data-independent base mesh used in the JBL coder takes many
levels of subdivision to satisfy the fast convergence condition given
in [1]. This motivates our first proposed modification to the JBL
coder, which is to employ a data-dependent base mesh. In so doing,
we can satisfy the above fast convergence condition with the base
mesh. In our scheme, we locate the horizons using a Canny edge de-
tector, and then estimate their curvature by the method of [4]. In order
to help satisfy the fast convergence condition, vertices are selected
from horizon points based on the preceding curvature estimates.
The base triangulation in the parameter plane is achieved through
a constrained conforming Delaunay triangulation with the Triangle
software [5] and some additional code to ensure the uniqueness of
the triangulation. Through the appropriate choice of constraints for
the triangulation, we are able to ensure the correct connectivity of
the horizon vertices, which also contributes to satisfying the fast
convergence condition.

Our second modification to the JBL coder involves the representa-
tion of normal/vertical offsets. Since integers can be more efficiently
coded than real numbers, we propose to use an integer offset instead
of a real offset for locating each piercing point. Recall that an offset
is a real value measuring the distance between a 3D point on an
3D line segment and its corresponding 3D piercing point. Due to
the piecewise constant interpolation process used to generate the
true image surface, we observe that at least one of the z, y, or 2
coordinates of each piercing point must be integer. Therefore, along
the normal/vertical search line through the 3D base point, all potential
piercing points can be identified, by finding all intersections of the
search line and the planes that are parallel to xy, yz, and xz planes
with integer 2z, x, and y coordinates, respectively. These potential
piercing points can then be enumerated using an integer index, and
this index can be used to specify which of the potential piercing
points is the actual piercing point.

Our third proposed modification to the JBL coder involves the
scheme employed for scan-conversion. Ideally, we desire a scan-
conversion scheme that both preserves smooth regions in an image
as well as the sharp intensity changes present along horizons.
Bicubic interpolation offers a higher degree of smoothness than planar
interpolation, which can often be desirable with respect to subjective
image quality. Since we would like to preserve sharp image edges,
however, we must apply bicubic interpolation carefully so as to avoid
blurring of image edges. In our scheme, when determining the bicubic
interpolant for a particular triangle, we only use vertices/height-values
from the same side of the horizon as the triangle under consideration.
This allows us to avoid unnecessarily smoothing the sharp intensity
changes across horizons.



V. EXPERIMENTAL RESULTS

Earlier, we suggested that our proposed modifications to the JBL
coder improve its performance. In this section, we support our claim
through experimental evidence. Although numerous test images were
employed in our work, we focus our attention on the results for
two representative images herein, namely, the paw and peppers
images. The paw and peppers images are both 8-bit grayscale and
have dimensions of 1024x1024 and 512x512, respectively. Since
we are primarily interested in low bit rates in our work, when we
subsequently use qualifiers like “low” or “high” for the bit rate, these
qualifiers should be understood in relative terms (i.e., relative to the
range of bit rates under consideration in our study). In what follows,
we now consider each of the three proposed coder modifications in
turn.

To begin, we consider our proposed modification to the JBL coder
of employing a data-dependent base mesh. In what follows, we refer
to the JBL coder with this change by the name “XA”. To assess the
value of our proposed change, numerous test images were compressed
at various bit rates with both the JBL and XA methods and the
results examined. In what follows, we provide a representative subset
of these results for the paw and peppers images. For reference
purposes, we also include results obtained from the JBL-S and (in
some cases) JPEG2000 [6] coders. To maintain a fair comparison for
the mesh-based methods, the number of subdivision levels for each
method was chosen so that the final-mesh vertex counts would be as
close to one another as possible (without giving an unfair advantage
to our XA method). Since these counts can only be controlled very
coarsely, it is only possible to have them match to within a factor
of about three. More specifically, for the paw image, the JBL and
JBL-S coders use six levels of subdivision, resulting in 4225 vertices,
while the XA coder uses two levels of subdivision, resulting in 3308
vertices. For the peppers image, the JBL and JBL-S coders use
seven levels of subdivision, resulting in 16641 vertices, and the XA
coder uses two levels of subdivision, resulting in 6543 vertices. Now,
we examine the results obtained in detail.

The rate-distortion plots obtained for the paw and peppers
images using the various methods are shown in Fig. 1. From these
results, we can see that, at high rates, the XA coder outperforms
the JBL and JBL-S coders, and the XA coder even outperforms the
JPEG2000 coder in the case of the (synthetic) paw image. At low bit
rates, however, the XA coder can sometimes perform more poorly
than the other three methods due to the rate overhead associated
with the base mesh (which is not entropy coded in our scheme).
Clever schemes for coding the base mesh, however, could reduce
this overhead, and significantly improve the coding efficiency of the
XA method at low bit rates. From the coding results, we can also see
that, at low bit rates, the JBL coder performs worse than the JBL-S
coder, while at high bit rates, the JBL coder performs better than
or comparable to the JBL-S coder. The superior performance of the
JBL coder at high rates can be attributed to the higher efficiency of
the horizon model, while the inferior performance at low rates can
be attributed to the overhead of encoding horizon bits and direction
values.

Now, we consider the subjective performance of the various
methods. For the case of the paw and peppers images, examples
of the obtained reconstructed images are shown in Figs. 2 and 3,
respectively. In the first case, the final mesh employed by each
method is shown superimposed on the original image with the horizon

-=-JBL-S
--JBL
—XA
——JPEG2000

- «-JBL-S
— --JBL

—XA o
——JPEG2000

3.5 0 0.01 0.02 0.03 0.04 0.05

1 1.5 2 2.5 .
Normalized Bit Rate x10° Normalized Bit Rate
(a) (b)

Fig. 1. Coding performance for the (a) paw and (b) peppers images using
the JBL-S, JBL, XA, and JPEG2000 methods.

A
AR
)

X

ORI
AN

Zaar
e

>

(Y7 78IAVaY
Witz Wi

LA
iy
oA

(e)

Fig. 2. Coding example for the paw image. Lossy reconstructions obtained at
about 400:1 compression using the (a) JBL-S, (c) JBL, and (e) XA methods.
The corresponding final meshes employed by the (b) JBL-S, (d) JBL, and
(f) XA methods.

vertices denoted by circles. Examining the results for the paw image
in Fig. 2, we can see that very significant edge distortions occur
in the case of the JBL and JBL-S methods, while the XA scheme
has little noticeable distortion. Clearly, the XA method approximates



(© (@

Fig. 3. Coding example for the peppers image. Portions of the (a) original
image and the lossy reconstructions obtained at about 29:1 compression using
the (b) JBL-S, (c) JBL, and (d) XA methods.

horizons much better than the JBL and JBL-S methods. Examining
the reconstructions of the peppers image in Fig. 3, we can see that
the results obtained with the XA method are comparable to those
obtained with the JBL and JBL-S coders, in spite of the fact that
the JBL and JBL-S methods have meshes with about 2.5 times more
vertices than the XA case. On this basis, it is reasonable to conclude
that the XA scheme is superior to the JBL and JBL-S schemes.

Let us again consider the subjective results for the paw image,
including the final meshes produced by the various methods, as
shown in Fig. 2. By examining the final meshes, we can see why
the XA method is able to outperform the JBL and JBL-S methods.
The mesh for the JBL-S method has some larger-area triangles that
straddle horizons. This leads to very visually disturbing artifacts
such as those near the rightmost pad of the paw in Fig. 2(a). By
explicitly modelling horizons, the JBL and XA methods are able to
locate horizon vertices faster, and reduce distortions in large regions.
Furthermore, the XA method, with a data-dependent base mesh,
locates horizon vertices faster and approximates horizons better than
the JBL and JBL-S schemes. As an aside, we note that the small
triangular teeth occurring in the reconstructed image for the XA coder
can be attributed to inaccuracies in the estimation of the location and
curvature of horizons.

Let us now consider our second proposed change to the JBL
coder, which is to use an integer value rather than a real value to
represent a normal/vertical offset. To demonstrate the effectiveness of
our proposed change, we compare the coding performance obtained
with real and integer offsets. Fig. 4 shows the coding performance
achieved when each method is employed in the XA coder (using
two levels of subdivision) for the paw image. From the graphs, we

PSNR

27 ! ---real
v,' —integer|

~—-planar
— bicubic|
3 0.014 0.016 0.018 0.02 0.022 0.024 0.026
3 Normalized Bit Rate

15 2 25
Normalized Bit Rate x10™

Fig. 5. Coding performance for
the peppers image using planar
and bicubic interpolation.

Fig. 4. Coding performance for
the paw image using real and in-
teger offsets.

can see that, at low to medium bit rates, integer offsets yield better
results than real offsets, with the difference being more pronounced at
medium rates, while in the high bit rate case, comparable results are
obtained with integer and real offsets. It is worth noting that similar
results as above also hold in terms of subjective image quality (i.e.,
integer offsets are better than or as good as real offsets).

Lastly, we consider our proposed change to the scan conversion
scheme, which is to use bicubic instead of planar interpolation. To
evaluate the value of the change, both planar and bicubic interpolation
were employed in the XA coder to compress the peppers image
at various bit rates (using two levels of subdivision). The results ob-
tained are shown in Fig. 5. From these results, we can see that bicubic
interpolation outperforms planar interpolation, especially at higher
bit rates. In terms of subjective image quality, bicubic interpolation
also leads to superior results, as it tends to better preserve smoother
regions in images, without destroying sharp intensity changes at
horizons.

VI. CONCLUSIONS

In this paper, we proposed three modifications to the JBL coder
and demonstrated through experimental results that these changes
lead to improved coding performance. For example, we showed
that good data-dependent base meshes can help to locate horizons
faster and preserve edges better. Also, we showed that using a
normal/vertical-offset representation based on integers (instead of real
numbers) yields superior performance. Finally, we demonstrated that,
by exploiting horizon information, bicubic interpolation can be made
to provide smoother reconstructed images while still maintaining
sharp edges. Through our work, we have helped to advance the state
of the art in mesh-based image coders.

REFERENCES

[1] M. Jansen, R. Baraniuk, and S. Lavu, “Multiscale approximation of
piecewise smooth two-dimensional functions using normal triangulated
meshes,” Applied and Computational Harmonic Analysis, vol. 19, pp.
92-130, 2005.

1. Guskov, K. Vidimce, W. Sweldens, and P. Schroder, “Normal meshes,”
in Computer Graphics Proceedings, 2000, pp. 95-102.

J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679-698, Nov. 1986.

M. Marji and P. Siy, “A new algorithm for dominant points detection and
polygonization of digital curves,” Pattern Recognition, vol. 36, no. 10,
pp. 2239-2251, Oct. 2003.

[5] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh
generation,” Computational Geometry: Theory and Applications, vol. 22,
no. 1-3, pp. 21-74, May 2002.

ISO/IEC 15444-1: Information technology—JPEG 2000 image coding
system—Part 1: Core coding system, 2000.

[2

—

3

—

[4

—

[6

—_



