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Abstract

An optimization-based method is proposed for the design of high-perfaens@parable wavelet filter
banks for image coding. This method yields linear-phase perfect-reaotisn systems with high coding
gain, good frequency selectivity, and certain prescribed vanishingenbproperties. Several filter banks
designed with the proposed method are presented and shown to wonkelytwell for image coding,
outperforming the well-known 9/7 filter bank from JPEG 2000 in most cagéth the proposed design
method, the coding gain can be maximized with respect to the separable opiisdtnage model, or
jointly with respect to both models. The joint case, which is shown to be dguivip the isotropic case,
is experimentally demonstrated to lead to filter banks with better average coelifayrpance than the
separable case.

During the development of the proposed design method, filter banks freert@n popular separable
2D wavelet class (to which our optimal designs belong) were observégagshave a higher coding gain
with respect to the separable image model than with respect to the isotropitlaadehavior is examined
in detail, leading to the conclusion that, for filter banks belonging to the aldass, Gt is highly improbable
(if not impossible) for the isotropic coding gain to exceed the separablaggdin.

Key words: optimal wavelet filter-bank design, image coding, coding gain, separaiitefiéc image

models

1. Introduction

Separable two-dimensional (2D) wavelet filter banks have proven tanbextaemely valuable tool

for image coding applications [1, 2, 3]. In order to be effective in sygplieations, however, a filter
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bank must typically have a number of desirable characteristics suchfastpeconstruction (PR), linear
phase, high coding gain [4], good frequency selectivity, and certaiiskiing-moment properties. To date,
a great many optimization-based design methods for wavelet filter banksbie®n proposed, some of
which include [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. One distinguishingattaristic of a design method
is the type of filter-bank parameterization that it employs. Lattice [15] and liftl&j parameterizations
have proven to be quite popular, with [6, 10] using the former and [9,181,12, 14] using the latter.
Another distinguishing trait of a design method is the set of filter-bank cteratics that it considers
(e.g., PR, linear phase, and so on). Although many of the previouspoepea design methods consider a
subset of the desirable characteristics for image coding mentioned dbavg, any) consider all of these
characteristics simultaneously. For example, the method outlined in [7] considéing gain, PR, linear
phase, and imposes one dual vanishing moment, but does not explicitigeomequency selectivity. The
schemes proposed in [12, 13, 14] consider PR, linear phase, amshiv@gamoment properties, but not
coding gain, and are also restricted to a lifting parameterization with only twoee ttiting filters.

To design filter banks having all of the desirable characteristics mentidrea & a challenging task.
In this manuscript, we propose a new design method that yields high-penfice separable wavelet filter
banks with all of these characteristics. This method employs optimization angdad ba ideas from [17].
During the course of our work, the filter banks obtained both at the inteateednd final stages of our
design method were observed to always have higher coding gain witkctasghe separable image model
than with respect to the isotropic one. In this manuscript, we also study thioptemon in detail and
explain the reason for it. The work presented herein has been, in padtiled in our conference pa-
pers [18, 19].

The remainder of the manuscript is structured as follows. Section 2 intreciecee of the notational
conventions used herein, and Section 3 provides some backgrounahatimn on filter banks and coding
gain. Our proposed design method is presented in Section 4. In Sectioin Hethod is used to design
several filter banks and these filter banks are shown to perform \altjovimage coding. Section 6 studies
in detail the relationship between the coding gains for the separable anmpisatnodels and presents a
number of interesting results in this regard. Finally, Section 7 concludesarwith a summary of our

key results.



2. Notation and Terminology

Before proceeding further, we introduce some of the notation employ@ihheThe sets of integers
and real numbers are denotedZasndR, respectively. Fox € R, the notation| x| denotes the largest
integer not greater thax(i.e., the floor function). Fog,y € Z, we define the functions dix,y) = [X/y|
and modx,y) = x—y|[x/y| (i.e., x divided byy yields the quotient diix,y) and remainder mad.,y)).
Matrices and vectors are typically denoted by uppercase and lowdyolace letters, respectively. The
transpose of the matrix/vectd is denoted ad". The symbold, 0, andlLdenote an identity matrix, a
vector of all zeros, and a vector of all ones, respectively, the simdnimh should be clear from the context.
The square root of a positive semi-definite ma#ixe.qg., as defined in [20]) is denoted A¥2. For
matrix multiplication, we define the product notation HQZMAk 2 ANAN-1. .. Ay 1AM, WhereN > M.
The element of the 2D sequenéewith indexn = (np,ny) € Z? is denoted as eithef[ng,n;] or fn],
whichever is more convenient. A similar notational convention is also emplaye®d functions. The
Fourier transform of a sequence/functibris denoted ag. The symbols: andx denote convolution and
correlation, respectively. Thp-norm of the vectox = [x1 % .. xa]", denoted|x||,, is defined ag|x||, =
(zid:l\xi\p)l/p for p € {1,2}. The symbolO is used to denote the gradient operator, which is defined
to always produce a column vector. In a context where it may be uncligarespect to what quantity
a gradient is taken, a subscript @his used to indicate this quantity (e.dglx denotes the gradient with
respect tax). For a one-dimensional (1D) sequenteatisfying f[n] = sf[2c — n] for all n € Z, where
ce %Z ands e {—1,1}, f is said to be symmetric i§ = 1 and antisymmetric iE= —1, andf is also
said to have symmetry aboat The polynomialF (z) is said to be symmetric or antisymmetric about (the
term) Z if the sequences1F is symmetric or antisymmetric aboutc, respectively, where denotes the
z transform (e.g., & 2z 14 1z 2 is symmetric about  and 3— 3z 1 is antisymmetric about 1/2). A 2D
function/sequencé is said to have quadrantal symmetryf {to,t1) = f(—to,t1) = f(to, —t1) = f(—to, —t1)
for all tp,t1 in the domain off. For a filterH, we denote its transfer function and impulse respons¢ asd
h, respectively. The sans-serif lettets ‘and “v” are used to denote the horizontal and vertical components
of separable functions/sequences/operators. For example, therttakrizod vertical components of the the

separable 2D sequendevould be denoted a§, and f,, respectively (i.e.f[no,n1] = fn[no] fy[N1]). For a

signal withP bits per sample, the peak-signal-to-noise ratio (PSNR) is definefiidR = 201og; (%) ,
whereMSE denotes the mean-squared error. The relative differdrddwo quantities is simply defined as

d = (n—r)/r, wheren andr denote the non-reference and reference quantities, respectively.
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Figure 1: The canonical form of a 1D two-channel filter bank. (a)lfsia and (b) synthesis sides.
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Figure 2: The lifting realization of a 1D two-channel filter bank. (a) Analygsd (b) synthesis sides.
3. Background

A 1D two-channel filter bank has the canonical form shown in Fig. 1. Sufiter bank consists of
analysis filters{Ho, H1 }, and synthesis filterF, F1 } (whereHp andFy are lowpass), as well as downsam-
plers and upsamplers. A filter bank can also be represented in terms ofgriglization [16]. The lifting
realization of a 1D two-channel filter bank is shown in Fig. 2, and consfs2a difting filters {P}2,*.
Without loss of generality, we assume that oRlyz) and/orP,, _1(z) may be identically zero. The analysis
and synthesis filter§Ho,H1 } and{Fo,F;} of the canonical form can be readily determined from the filters

{Pk}ﬁ);gl of the lifting parameterization using the following relationships:

HO(Z) = H070(22) +Z|‘b71(22), Hl(Z) = Hl_ro(Zz) —I—ZH171(ZZ)7 where (1)
H (Z) _ Hop(Z) Ho71(Z) _ A1 1 P2k+1(Z) 1 0 and
’ Hio(2) Hii(2) e Px(z) 1|/
Fo(z) = =z 'Hi(—2), and Fi(2) =z Ho(-2). 2

Since images are 2D signals, their processing requires multidimensionahsydie construct a 2D fil-
ter bank from a 1D two-channel filter bank, we simply apply the 1D filter harlach of the two dimensions
of the signal in succession. This results in a separable four-chabDrféle€ bank. Furthermore, in practice,
we usually apply the 2D filter bank in drlevel tree structure, decomposing the lowest-frequency subband
signal at each level in the tree. The resultintgvel tree-structured filter bank can be equivalently expressed

in the form of anM-channel nonuniform filter bank, whel = 3L 4+ 1. This equivalenM-channel filter
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bank has the general form shown in Fig. 3, consisting of analysis f{IH{{}#ﬁ' o synthesis fllter:{Fk}k 0
and downsamplers/upsamplers, where ktiredownsampler/upsampler (associated with sampling matrix
Ay) has the horizontal and vertical sampling factorsviyf, and My, respectively. Due to the separable
nature of the filters, the subbands have four possible orientationsohtaily-and-vertically lowpasg.(),
horizontally highpass and vertically lowpadsi§, horizontally lowpass and vertically highpas4_}, and
horizontally-and-vertically highpassi).

As a matter of notation, the level in the analysis filter-bank tree associated ldtinelk is denoted
as levelk), where levelk) € {0,1,...,L — 1} with the value of zero corresponding to the tree root; and the
orientation of channét is denoted as orie(k), where orientk) € {0, 1,2, 3} with the values of 0, 1, 2, and
3 corresponding to theL, LH, HL, andHH orientations, respectively. For thtn level in the treelL;, LH,,
HL;, andHH, denote the subbands with, LH, HL, andHH orientations, respectively. The mapping between
the channel indek and subband level/orientation is given by

L-1 fork=3L 0 fork=3L
level(k) = and orientk) = (3)

div(k,3) otherwise 3—modk,3) otherwise

For convenience, we have numbered the channels such that larges vétworrespond to a deeper descent
into the analysis filter-bank tree. Note that this numbering convention is tzadkvirom what is typically
used. That is, the lowest frequenayL) band is always associated with the largest channel intlefin3
stead of the smallest one 0). With our convention, decompositionslwaiid L’ levels have an identical
numbering scheme for their common filters/subbands. This allows for a muehaoiocise presentation of
some of our later results. The correspondence between channelegudricy bands is further illustrated
in Fig. 4, with the analysis filter associated with each subband being shownentpeses. In order to avoid
an overly complicated diagram, only the first quadrant of the frequelatyeps shown, with the remainder
following from (quadrantal) symmetry.

Given the 1D analysis filter§Ho, H1}, the analysis fllters{Hk} L of the 2D nonuniform filter bank

can be computed as

Hi(20,21) = Hy,(20)Hi o (21), (4)

level(k) level(k)
) )

where H|27h(Z) = Hmod(orienl(k) )(22 Hn( ) Hliv( ) = Hdiv(orient(k) )(Z2 H|‘|( ), and Hp (Z) =11if
level(k) = 0, andHn (2) = [1=e ™ Ho(2) otherwise. The synthesis filte{&;/}M ;- of the 2D nonuni-

form filter bank are determined in a similar way from the 1D synthesis fI{tEijSFl} (i.e., simply replace
5
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Figure 3: The equivaleri¥l-channel nonuniform filter bank associated with théevel tree-structured filter bank (wheké =
3L+1).
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Figure 4: Subband tiling of the first quadrant of the frequency plane.

theHs byFs in the preceding equation).
In the context of image coding, we are often interested in the energy-abimgability of a filter bank,
which is typically quantified using a measure known as the coding gain. Hterbtank of the form shown

in Fig. 3, the coding gais is given by [4]

o= (<), wh 5
— I!:L (AkBk> ., where (5)
Ac= 5 5 hllihfplrip—11= % he[m S b [n] > hicnlpl S b [dlr[m—p.n—d],
€72 peZ2 mezZ neZ PEZ g€z
Be=ax 5 fell=ax Y fGm S &,  ak=(McaMcy) ™,
lez? meZ neZ

andr is the normalized autocorrelation sequence of the source image model. Tim@stvoommon choices



for r are given by the separable and isotropic models, which are, respgctive
reepl] =PI and riofn] = pllz, ©

wherep is a correlation coefficient satisfyinge [0,1]. Since numerous quantities used herein depend on
the image model (e.gG, {Ak}l'l":‘ol), we use the qualifierssép” and “iso” to denote these quantities in the
separable and isotropic cases, respectively. For examplg, denotes the quantity given by (5) with

I = I'sep andGs, denotes the coding gafd given by (5) withr = rig,.

4. Design Method

In our design method, rather than representing a filter bank in its candaioalas shown in Fig. 1,
we instead use the lifting framework as depicted in Fig. 2. The use of the lifamdwork has a number
of advantages over the canonical form. The key benefit, howeveatishth PR condition is automatically
satisfied. Additionally, the linear phase requirement can be easily met bgicigahe lifting filters{ &}@Bl
to have certain symmetry properties, as we shall see shortly. Since thedRiResar-phase conditions can
be imposed via the lifting framework, there is no need for explicit optimizatiorsttaimts to ensure that
these conditions are satisfied. This greatly reduces the complexity of tecgient optimization problem.
The lifting framework is also advantageous as it trivially allows for the coecsitn of reversible integer-
to-integer mappings [21]. Such mappings are extremely useful for imatiegcapplications, especially in
situations where lossless coding may be desired. In fact, the image csddrowbtain the coding results
presented later in this manuscript all employ reversible integer-to-integ@ietaransforms.

As suggested above, the linear-phase condition can be easily imposeghtaalever choice of the
lifting filters {F’k}ﬁgl. In what follows, letLk denote the length of the lifting filtd®. It can be shown [22]
that if the {R}2 ,* are chosen to be of either of the following two forms, then the resulting filtek bl
have linear phase:

zi(iko_z)/z pei(z'+2Z+1)  for evenk

P(2) = _ _ (7a)
sbed/2 (2114 7) foroddk, or

-1 fork=0
o wenz
(@ =q1+P(z) fork=1 and R(2) = ZI Pi(z' +2), (7b)

P(2) fork>2



where, in (7a)L is even fork € {0,1,...,2\ — 1} (i.e., P(2) is symmetric about/? andz /2 for even
and oddk, respectively) and, in (7bl is odd fork € {1,2,...,2\ — 1} (i.e., P(2) is antisymmetric about
2. In the case of parameterization (7B),is symmetric about 0 anlk is symmetric about-1, while in
the case of parameterization (7hy,is symmetric abou%% andh; is antisymmetric abou%%.

In the case of parameterization (7a), the symmetry properties of the arfalgsisnpulse responsdg
andh; can be deduced as follows. To begin, one can show by induction thatdheses polyphase matrix
H,(2) given by (1) is such that: 1jloo(2) andHy 1(2) are symmetric abowt; 2) Ho1(2) is symmetric
aboutz 1/2; and 3)Hy 0(2) is symmetric about*/?. From properties 1 and oo(Z%) andzH1(Z) are
both symmetric about®, and consequently, their suRy(z) (as given by (1)) is also symmetric abaft
From properties 1 and 311,0(22) andzHlal(zz) are both symmetric abouat, and consequently, their sum
Hi(2) (as given by (1)) is symmetric abomt. Thus, the stated symmetry properties hold ligrand h;.

In the case of parameterization (7b), a proof of the stated symmetry fisgpier hyp andh; can be found
in [22, Section VII and Appendices A and B] and in more verbose forl@® pp. 74-77].

It is worth noting that (7a) completely parametrizes (up to a trivial normalizaafriPR linear-phase
FIR filter banks with odd-length analysis/synthesis filters, while (7b) patrézes (up to a normalization)
only a subset of all PR linear-phase FIR filter banks with even-lengtlysis&synthesis filters. For this
reason, one might suspect parameterization (7a) to have greater pdtegteld good filter banks than
parameterization (7b). In fact, this suspicion turns out to be correctteaasianfirmed by our experimental
results in Section 5.

With the lifting framework, the synthesis filters are completely determined by thkysis filters as
given by (2). Therefore, we focus primarily on the design of the amabige of the filter bank in what
follows. Since we have elected to use a lifting parameterization in our desigrodpetie need to relate
the various filter-bank properties of interest (i.e., the analysis-filteu&eqy responses, vanishing-moment
properties, and coding gain) to the lifting-filter coefficients. In the casbemoment properties of the pri-
mal and dual wavelet coefficient sequences and the frequenan®sg these relationships can be derived
in a straightforward manner using (1), (2), and (7). The analysis-fiitguency responses and the expres-
sions for the moments of the primal/dual wavelet coefficient sequence®igremials in the lifting-filter
coefficients, where the polynomial order depends on which of the twanpeterizations (7a) and (7b) is
employed as well as the number of lifting filters. For example, for filter bartks parameterization (7a)

with four lifting filters, the lowpass analysis-filter frequency respongghpass analysis-filter frequency



response, primal-moment expression, and dual-moment expressioolyaremials in the lifting-filter co-
efficients having orders of 4, 3, 4, and 3, respectively. The codaig can be expressed in terms of the
lifting-filter coefficients by combining (5), (4), (1), (2), and (7). Thesulting expression is highly nonlinear,

due mainly to the form of (5).

4.1. Abstract Optimization Problem

As indicated earlier, we seek to design filter banks having numerous llesitzaracteristics, namely,
PR, linear phase, high coding gain, good frequency selectivity, atdicg@rescribed vanishing-moment
properties. Since the PR and linear-phase properties are structurallyachpia the lifting framework, we
need not consider them further. Thus, the design problem at hande®tb one explicitly involving only
coding gain, frequency selectivity, and vanishing-moment properties.

Now, let us consider the formulation of the design problem as an optimizatioa petiormed with
respect to the lifting-filter coefficients (i.e., tHey;} from (7a) or the{fx;} from (7b)). Letx denote
the vector of (independent) lifting-filter coefficients, where the coeffisiare lexicographically ordered by
their first and then second index (e.g., in the case of (7a), we haved&er@po o, Po.1, - - - ; Po,(Ly—2) /2 P10;
PL1s- - PL(L1—2)/25 - -+ s P2A=1,0, P2A-1,1, - - - s PoA—1,(L, ,—2)/2)- We chooseG, a measure related to coding
gain, as the function to maximize. L&te, andG;s, denote the coding gain (in dB) obtained from (5) using
the separable and isotropic models, respectively. In our work, wadmrhree possible choices f@&as
given by

Gsep(X) separable only

G(X) = { Gigo(X) isotropic only (8)

Min{Gsep(X), Giso(X)} jOINt.
That is, we consider the maximization of each of the separable and isotapitgcgains individually as
well as the joint maximization of both coding gains. The joint case in (8) is motvayethe observation
that many images are nonstationary, exhibiting both separable and isotebgicitwrs in different regions.
Thus, we might suspect that there is an advantage to having both codnschggh.
The remaining filter bank properties are handled as constraints. To quidnatiirequency selectivity of
the analysis filters, we employ a stopband-energy measure. In partigaldefine the stopband energy of

the analysis filteHy as

bi(x) £ /& Ic(02,%)[2dw, k€ {0,1}, ©)
9



whereS = [11— wy, 1, S; = [0, wy], andwy, denotes the stopband width of the analysis filters. The reason for
using only a stopband constraint is twofold. First, limiting the stopband-greagage alone can be quite
effective in avoiding aliasing. Second, for filter banks with relativelyrsfitbers, the number of degrees of
freedom in the design process is limited. Consequently, if a passbanuaioneere also employed, the
feasible region for the optimization may be overly restricted, leading to pdesgns.

To facilitate the introduction of moment constraints, we define the moment-com$tnactions
() = [mX)[l,, ke{1.2,...,n}, (10)

wheremy is avg-dimensional vector function with its elements corresponding to the moments msnte
(i.e., moments that are to be constrained). Baglmay contain only one moment (i.ey = 1) or a group
of moments (i.e.yx > 2). In this way, moments can be controlled either individually or jointly.

Combining (8), (9), and (10), we obtain the following abstract optimizatiablem to be solved:

maximize G(X) (11a)
subject to: bx(x) <&, ke {0,1} and (11b)
(X)) <V, ke {1,2,...,n}, (11c)

where the{ggp, €1} and {yk}rk‘:1 are strictly positive tolerances for the stopband-energy and moment con-
straints, respectively. Since tlf{s;k}ﬂzl are chosen to be strictly positive, we do not attempt to satisfy the
vanishing-moment conditions exactly. Instead, we only ensure that the n®ofenterest are very nearly
vanishing (e.qg., typically on the order of 1Dor less in some of our later design examples). In a practical
sense, there is no significant disadvantage to allowing the moments to devihtly $tigm zero, as exact
vanishing moments are usually lost during implementation anyhow, due to fieitésiom effects. In fact,
this relaxed form of moment constraint is actually quite beneficial, as it allogveased design flexibility,
which in most cases leads to better designs. In passing, we note that paizatien (7b) structurally
imposes vanishing zeroth primal and dual moments [22]. So, when this parazagon is employed, the
vanishing moment conditions for the zeroth moments will always be satisfiethyexa

In the abstract optimization problem (11), there are three cases for jnatiob function (8). The joint

case is associated with a max-min problem, which is somewhat difficult to soketlgirFor this reason,

10



we convert the joint case into the following equivalent problem, which eambre easily solved:

maximize t (12a)
subject to: Ggep(X) > t, (12b)
Giso(X) 2 t, (12¢)
bk(x) < &, ke {0,1}, and (12d)
(X)) <vk, ke {1,2,...,n}, (12e)

wheret is an auxiliary variable.

4.2. Solution of the Abstract Optimization Problem

As introduced above, the abstract optimization problem for our filter-twhrgign scheme is given
in (11), with the joint case reformulated as in (12). Unfortunately, thesbl@ms are highly nonlinear
and somewhat difficult to solve directly. For this reason, we adopt agyratesed on the iterative solution
of reduced-order problems. The algorithm for this approach has llegviiog general form:

STEP 1 (INITIALIZATION ). Set the iteration numbérto zero. Choose the stopping tolerantesndTs.
Select an initial operating poixt somewhere in the feasible region. Select a nominal maximum step size
[Bo for use in step 3.

STEP 2 (ORDER REDUCTION). Represent each of the functio@&ep(X) and/orGiso(X), {bo,b1}, and
{ck}E:1 with a Taylor-series approximation about the current operating poiirt particular, each function

f is represented using a linear approximation as giveh(ly+ &) ~ f(x;) + 07 f (x)&;.

STeEP 3 (OPTIMIZATION). (a) LetP = o (i.e., set the maximum step sifeto the nominal maximum
step sizefp). (b) Solve the reduced-order optimization problem in the varidhleLet & denote the
corresponding optimal solution. Since the Taylor-series approximatidagel in step 2 are accurate only
whend; is small, the additional constraifid;||2 < B is imposed in the reduced-order optimization problem
to ensure a solution in the vicinity of the operating point(c) The poin®’ will always be in the feasible
region of the reduced-order problem, byt 8" may not be in the feasible region of the original (i.e.,
non-reduced order) problem if the reduced-order approximationtisufficiently accurate. Therefore, if
X + & is not in the feasible region of the original problem, 8et 3/1.6 and go to step 3(b) (i.e., restart the
reduced-order optimization with a smaller step $82e order to improve the reduced-order approximation

accuracy). Otherwise, continue to step 4.

11



STEP 4 (OPERATING-POINT UPDATE). Set the new operating poiRt, 1 to X; + &
STEP 5 (STOPPING CRITERIA CHECK). If |G(Xi+1) —G(X;)| < T1 or ||&||2 < T2, then output the solution
X* =X, 1 and stop. Otherwise, incremdry one and go to step 2.

Essentially, the above algorithm finds a reduced-order approximationeadriginal problem about
the current operating point, solves the reduced-order problem, atliestperating point accordingly, and
iterates. In what follows, we now explain in more detail how the precedinyigtign can be used to solve
our design problem.

In step 2, since it is extremely difficult to derive closed-form expressfonthe derivatives 0Bsep(X)
and/orGis, (X), these quantities are computed numerically. In the case of the less nonlineohs{ by, by }
and{ck}Ezl, closed-form expressions are used for the derivatives. Due te gjpastraints, we do not pro-
vide these expressions here (as they are quite long and messy), baathieg derived in a straightforward
manner.

In step 3, we considered the use of several different optimization methaaiely linear programming,
convex quadratic programming, sequential quadratic programming, anddserder cone programming
(SOCP) [24, 25]. Each of these methods requires Taylor series ti€ydar orders to be used in step 2
in order to approximate the various functions of interest. In the interestevftis, we will only present a
SOCP-based approach in what follows. The interested reader, Bgwamw find details regarding the other
approaches in [26, pp. 32-37]. As an aside, we note that numertiussmpackages exist for the solution
of SOCP problems (e.g., SeDuMi [27], CVX [28], and YALMIP [29)])itlvour work having used SeDuM.i.

To formulate step 3 as a SOCP problem, we choose (in step 2) to reprasarifeéhe function$sse,

and/or Giso, {bo,b1}, and {ck}E:1 using a linear approximation. For the separable and isotropic cases

of (11), it can then be shown that the optimization in step 3 can be expresseins of the following

SOCP problem (with optimization being performed with respe®to

maximize 07 G(x)8 (13a)
subject to: HQﬁ/ 2(>q)5+qk(xi)H2 < &— be(%) +a (%)ak(%), ke {0,1}, (13b)
0T m()3+m(%) ||, < Ve, ke {L,2,...,n}, and (13c)
6], <B, (13d)

whereQi(X) = J5 [Oxhi(2,%)]0F Fie(,X)de, Q(X) = Q /*(X) J, Pic(w.X) T} Pic(, X)dw, S is as defined
in (9), andd is a perturbation from the operating poxt For the joint case of (11) as reformulated in (12),
12



the optimization in step 3 can be expressed in terms of the following SOCP probignthe optimization

being performed with respect to the augmented vector varﬁaﬁi@ o

maximize [1 0] (14a)
subjectto: [0 O7Gieo(%)]8+ Giso(X) —[1 0]3 > O, (14b)
0 07 Geep(%)]8+ Gsep(%) —[1 O[3 >0, (14c)
Q)3+ ()| < e i)+ (x)ak(x), ke {01}, (14)
|8+ )| < v ke {1,2,...,n}, and (14e)
[0 13| <8, (14)

where Qu(X) = [0Q2x)], 8(X) = [0ax]", ik(X) = [om]", Qu(X) = g [Oxhi(w,X)] 0% ie(w, X)dew,
Qk(X) = lel/z(x) Js hie(w,%) OF Ay (w,X)dw, andS is as defined in (9). Note that, as far as step 3 is con-
cerned, the output of the preceding optimization process is simpl$ ffeet of the augmented vectér
(namelyd=[0 1]3).

In step 4 of the above algorithm, we update our operating point. As the solntstep 3 is limited to the
neighborhood of the current operating point, we repeat the procassga 2 to 5 until one of the stopping

criteria is satisfied. This permits solutions farther away from the curresratipg point to be found.

4.3. Design-Parameter Selection

Having introduced our design method, we now briefly comment on the selasftimmerous design
parameters. For the frequency-selectivity constraints given by @h)X14d), an appropriate choice of
toleranceq gp, €1} is critical to achieving good designs. Based on our experiments, for bastdwidth of
Wy = %", a choice ofy € [0.02,0.14] is typically quite effective. The stopping toleranagsindt, (used in
step 5) might reasonably be chosen to be on the orders 6ftd@.0° and 10°° to 10, respectively. Also,
we must selectk (i.e., the number of decomposition levels) which is used in the coding gain forrula
this regard, we found that choosihge {3,4,5} makes a good tradeoff between computational complexity
(which increases with) and design quality. In step 1, we must choose the nominal maximum steffpsize
wherefo > T». In practice, the choice @ = 2 x 102 was found to work quite well.

In (13c) and (14e), the moment constrai{i&}[}zl must be chosen along with appropriate tolerances
{yk}'kLl. This choice is also key to obtaining good designs. [wetlenote thekth moment associated

with the primal or dual wavelet coefficient sequence of the filter bankthéncase of filter banks from
13



parameterization (7a), the highpass analysis/synthesis filter is symmetricsedqimmtly, for everk, if
Ho=HM =...= W1 =0, theny = 0 implies thatu., = O (i.e., the odd-indexed moments automatically
vanish). For a proof, see Theorem 1 (symmetric case) in Appendix Aus,Tlwe need only consider
constraints on the} for evenk. Similarly, in the case of filter banks from parameterization (7b), the
highpass analysis/synthesis filter is antisymmetric. Consequgaty0Q, and for odd, if lo = = ... =
M_1 = 0, thenpk = 0 implies thatu, 1 = O (i.e., the even-indexed moments automatically vanish). Again,
see Theorem 1 (antisymmetric case) in Appendix A for a proof. Thusgeed anly consider constraints on
the { |} for oddk. Based on our experiments, good designs from the parameterizatiara(vbg obtained
by constraining the zeroth moments of the primal and dual wavelet coeffsggnences. More specifically,
we found it to be quite effective to place these two moments in a single momeitainh&inctionm, and
choose a corresponding toleranceypf= 2 x 1075,

Due to the highly nonlinear nature of the abstract optimization problem (l& dlution found by our
method will most likely not be globally optimal. The particular solution obtained dép®n the choice
of the initial pointxg. Therefore, the quality of the design can be improved by finding multiple I[joca
optimal) solutions and then selecting the best one. As a practical matter, mebtftat an effective strategy
in this regard is to consider many initial points with lifting-filter coefficients of niagte 2 or less, as the

best designs typically have coefficients in this range.

5. Design Results

Having introduced our design method, we are now ready to present sam@les of filter banks gener-
ated with our method as well as some coding results obtained with these d&sfme proceeding further,
however, we first introduce some important details about the methodologhpysdpn our experiments.

For all of our filter-bank designs, we selected the various design péeesres described in Section 4.3.
The correlation coefficienp in (5) was chosen as 0.95, and five decomposition levels were used in the
coding gain computation (i.eL,= 5). In our experiments, various image coding results were collected. For
test data, we employed the twenty-six reasonably-sized grayscale imagethé JPEG-2000 test set [30].
Often, we focus our attention on the results associated with three of thesesimageely thejold , sar2 ,
andtarget images. These three images were deliberately chosen, due to their sighyifiiering sta-
tistical properties. In particular, the autocorrelation sequence ajdide andsar2 images most closely

follow the separable and isotropic models, respectively, while the autdation sequence of therget
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image follows neither the separable nor isotropic model. For coding imagesnplementations of the
EZW [1], SPIHT [2], and MIC [31] coders were employed, all of whidfilize reversible integer-to-integer
transforms. Since similar results were obtained with all three coders, wergrenly results for the MIC
coder. In all of our coding experiments, a six-level wavelet decompasites employed.

For convenience, in what follows, we use the notatigth, to indicate that a filter bank has lowpass
and highpass analysis filters of lenglgsandl;, respectively. Also, for a lifting realization, we refer to
the number and lengths of its lifting filters as its lifting configuration. As a mattewotdtion, the lifting
configuration of a filter bank is denoted &ko,L1,...}, whereLy is the length of thekth lifting filter.
Recall that the{Ly} are all odd for filter banks from parameterization (7a) and all even lter fhanks
from parameterization (7b). So, the parameterization being used canibiytdetermined from the lifting

configuration.

5.1. Choice of Objective Function

As indicated earlier, our design method allows for three possible objeatiations as given in (8). We
also suggested that, of these possibilities, the joint case might be the moablesMow, we study the
impact of the choice of objective function in more detail.

To begin, for each of several different lifting configurations, wedusar design method to construct
three filter banks, one for each of the three choices of objective fumicti(8). In so doing, we were able to
make an interesting observation. Namely, in all of our tests, optimizing witheegpeach of the isotropic
and joint coding gains always led to the same optimal designs. This is due tactitedt, for filter banks
with reasonable analysis-filter frequency responses (i.e., at leadtiaheanishing moment), the condition
Gsep > Giso always seems to be satisfied. Since the reason that this condition holdsisafi@tbvious, we
provide a detailed analysis later in Section 6 that explains @y > Gis,. Due to the preceding behavior,
maximizing the joint coding gain is equivalent, in a practical sense, to maximizingat®pic coding
gain alone. With the above observation in mind, we combine the isotropic andcpgses of (8) in the
remainder of this discussion. After having designed each set of optimabiiltks as described above, we
then compared the coding performance of the filter banks within each set.

Although several sets of optimal filter banks were considered in our,warlpresent results for only a
representative subset herein. In particular, we consider two sefgiofad designs, one with analysis-filter
lengths of 9/7 corresponding to the lifting configuratigh 2,2, 2}, and one with analysis-filter lengths of

6/14 corresponding to the lifting configuratig¢f, 3,5}. The characteristics of these filter banks are shown
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Table 1: Characteristics of the filter banks designed using differenttlgdunctions.
Transform G;‘ep G bg bI Dual VM*|Primal VM*

ISO
9/7-sep [14.973512.17810.06280.03472, 5.79E-5 2, 8.31E-5
9/7-iso/jnt|14.932612.18090.05700.0351 2, 0.0041| 2,0.1250
6/14-sep |15.091211.92850.02520.0131 1, 0.0483| 1, 0.6209
6/14-is0/jn114.976612.07380.02120.0229 1, 0.0643 1,0.1471
*index and magnitude of the first moment of dual/primal wavetefficient

sequence with magnitude greater than 20-°; *coding gain (in dB) for a
six-level decomposition'stopband energy as defined by (9)

in Table 1, where the transform-name suffixes “sep”, “iso”, and “jn8igeate the optimal designs obtained
using the separable, isotropic, and joint objective functions of (8)ecti/ely.

Having produced several sets of filter banks as described abovtheneproceeded to compare the
coding performance of the filter banks within each set. For each set,@ge ¢b measure the performance
of the optimal designs within the set relative to another previously-prapfilser bank having the same
lifting configuration and also known to be effective for image coding. Irtipalar, the reference filter
banks used in the 9/7 and 6/14 cases are the 9/7 filter bank from JPEG3XG0Q the 6/14 filter bank
from [32]. For each of the filter banks in each set, we compressed atityvgix test images in a lossy
manner at several bit rates, and in each case, we measured the mif¢irence in the distortions (in
PSNR) obtained with our design and the corresponding reference éltér Bhe results are summarized in
statistical form in Table 2(a). In particular, we provide the mean and medilative differences in PSNR
distortion (with positive values corresponding to our designs outperfgrhia reference filter bank). As
well, we indicate the percentage of cases in which our filter bank outpesfibre reference filter bank. From
Table 2(a), we can see that, in both the 9/7 and 6/14 cases, designohabedjoint objective function
(designated by the suffix “jnt”) have better coding performance tharethased on the separable objective
function. For example, in the 9/7 case, the joint design (i.e., 9/7-jnt) is abletpeidorm the reference
filter bank about 87% of the time, while the separable design (i.e., 9/7-sepntabeat the reference filter
bank approximately 46% of the time. Similarly, in the 6/14 case, the joint designgilel;jnt) is able
to outperform the reference in about 61% of the cases, while the &épalesign is only able to beat the
reference in approximately 20% of the cases. In Table 2(b), we prélhélactual distortions obtained for
three representative images, with the best result in each case beingltigdhlitHere, we can see that the
filter banks with the jointly-highest coding gains (i.e., the “jnt” case) perfoetier overall for all three
images, in spite of the images having significantly different statistical propefftee above results clearly
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Table 2: Lossy compression results for the filter banks designed uiiegedt objective functions. (a) Summary statistical results

over all twenty-six test images and five bit rates. (b) Specific resulthfee images.

(@)

Transform||Mean (%) Median (%) Outperform (%
9/7-sep || -0.0049 | -0.0001 46.15
9/7-iso/jnt|| 0.1488 | 0.1070 87.69
6/14-sep || -0.5848 | -0.5112 20.77
6/14-iso/jnt| 0.0331 | 0.0279 61.54
(b)
Image gold target sar2

Comp. Ratio 8 16 | 32 | 64 | 128 | 8 16 | 32 | 64 | 128 | 8 16 | 32 | 64 | 128
9/7-sep ||36.7633.77/31.2629.1527.33||41.4833.5527.0822.7019.13|30.33 26.61 24.69 23.5522.73
PSNR 9/7-isoljnt| 36.88|33.84|31.27|29.15|27.32)|41.59|33.55|27.19|22.84|19.14/ 30.35| 26.62| 24.70| 23.55| 22.73
(dB) | 6/14-sep ||36.7733.5031.07/28.8227.06|40.9432.7927.37|22.3918.49||30.2426.49|24.64/23.48|22.59
6/14-iso/jnt| 36.96|33.78|31.15|28.83|27.26||41.68| 32.91|27.0022.43|18.26| 30.39|26.49 24.78|23.46 22.68

demonstrate that there is a benefit to taking the isotropic coding gain into ecetsieh during the design

process (as is done in the joint and isotropic cases above).

5.2. Design Examples and Coding Results

To demonstrate the effectiveness of our design method, we now psesaatexamples of filter banks
generated by our method and evaluate their performance for image cadipgrticular, five filter banks
constructed with our method are considered. For all of these optimal designjoint objective function
in (8) was employed, as this was shown earlier to be the most effectiveechi@is better than the separable
case). For comparison purposes, we also consider the well-knownlt@f7bfink from JPEG 2000 [3],
which we refer to in this section by the name 9/7-J in order to distinguish it frosther filter bank having
the same analysis-filter lengths. Several characteristics of our optimghdes well as the 9/7-J filter bank
are shown in Table 3. Due to space constraints, the lifting-filter coefficientsur optimal designs are not
presented here, but this information can be obtained from [26, p. 47].

For the reasons discussed earlier in Section 4.1, in the case of our opésighs, the moments of
interest only nearly (but not exactly) vanish. To be more precise, ®pthposes of this discussion, we
deem any moment with magnitude less thar 20~° to be nearly vanishing. Although the 9/7-J filter
bank has four primal and four dual (exactly) vanishing moments (as itedida Table 3), this assumes

an implementation in exact arithmetic without quantization of the lifting-filter coefftsie In practice,
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Table 3: Characteristics of the various filter banks
Transform| {L} | Gkp | Gi, | by | bl |Dual VM*|Primal VM* [ho(0)| ho(Tt) | h1(0) |hy(m)
9/7 {2,2,2,2114.93312.1810.057/0.035 2,0.004 | 2,0.125 |1.25| 2.1E-6/-9.1E-§ 1.60
9/11 {4,2,2} |14.92812.1120.1110.043 2,0.276 | 2,0.858 | 1.24|-5.6E-6-9.4E-6 1.61
13/11 ||{4,2,2,2|15.04112.2060.0300.027 2,0.068 | 2,0.743 | 1.20| 2.2E-5-1.9E-5 1.67
17/11 ||{2,2,4,4|15.117112.2180.031,0.028 2,0.337 | 2,0.572 |1.19| 9.9E-6 4.9E-6 1.69
13/15 || {6,2,2} |14.64112.0740.0940.035 2,0.169| 2,0.566 | 1.35|-5.4E-6-9.4E-§ 1.49

9/7-3 ||{2,2,2,2]14.97312.1780.0630.035 4,9.560| 4,16.47 |1.23| 2.3E-9 3.9E-9 1.63
*index and magnitude of the first moment of dual/primal wavetefficient sequence with magnitude
greater than % 10-°; *coding gain (in dB) for a six-level decompositiofstopband energy as defined

by (9)

(a) (b) (€) (d)
Figure 5: Synthesis scaling and wavelet functions. (a) Scaling andai®let functions for the 9/7 design; and (c) Scaling and (d)

wavelet functions for the 13/11 design.

however, arithmetic is not exact and these coefficients must also be cuh(dince they are irrational).
Consequently, in any practical implementation of the 9/7-J filter bank, the momentaréhsupposed to
exactly vanish, only nearly vanish. To provide the reader with more ingighthese quantization effects,
instead of giving the theoretical values fay() andhy (0) for the 9/7-J filter bank in Table 3 (which are
exactly zero), we give the actual ones in our implementation. Also, one mighdev to what extent the
smoothness of the basis functions associated with the filter bank are impgetkbalding moments to only
nearly vanish (instead of exactly vanish). In short, for all practicgbpses, the smoothness is unaffected.
To demonstrate this, plots of the underlying synthesis scaling and wavettidius for two of our optimal
designs are provided in Fig. 5. Observe that the functions in these péotssibly quite smooth. That is to
say, for all practical purposes, the filter banks behave as if their moraeatsly vanished.

Now, we consider the lossy and lossless coding performance of theltfiarebfainks constructed using
our method. To evaluate lossy coding performance, each filter bank sealsto compress all twenty-six
testimages at several bit rates. Then, we measured the relativertitfidretween the distortions (in PSNR)

obtained with each of our optimal designs and the reference 9/7-J filtkr béwe results are summarized
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Table 4: Lossy compression results for the various filter banks. (@n&uy statistical results over all twenty-six test images and

five bit rates. (b) Specific results for three images.

(@)

Transform|Mean (%) Median (%) Outperform (%
9/7 0.1488 | 0.1070 87.69
9/11 0.5371 | 0.0554 59.23
13/11 0.1863 | 0.0872 74.62
17/11 0.5804 | 0.2422 77.69
13/15 0.5936 | 0.1633 68.46
(b)
Image gold target sar2

Comp. Ratig 8 16 | 32 | 64 | 128| 8 16 | 32 | 64 | 128| 8 16 | 32 | 64 | 128
9/7 ||36.8833.8431.2729.1527.32|41.5933.5527.1922.8419.14|30.3526.6224.70|23.55|22.73
9/11/37.3434.00|31.35|29.24 27.39||42.92 33.47/26.6522.3518.86|30.30 26.5924.6523.5222.7Q
PSNR13/1136.8533.7631.2429.1727.37|42.1233.8327.84/23.11/19.35|30.3326.6024.6923.54 22.74
(dB) |17/11|37.1733.9131.3229.1727.35|42.8134.00|27.88| 23.19|19.46|30.33 26.62| 24.69 23.53 22.74
13/1537.39|33.9531.27/29.25/27.34|43.11|33.4526.8422.4218.94|30.37|26.5724.70 23.54 22.67
9/7-J||36.7533.7531.2329.1627.32|41.4633.54 27.07/22.7019.16|30.32 26.61{ 24.69 23.55 22.73

in statistical form in Table 4(a). In particular, we provide the mean and mediative differences in
distortion (with positive values corresponding to our designs outperfgythie 9/7-J filter bank). We also
indicate the percentage of cases in which our optimal design outperforrasrtidilter bank. From these
results, it is clear that all of our optimal designs outperform the 9/7-J fidaklin the majority of cases.
For example, our 9/7 optimal design outperforms the 9/7-J filter bank 87.6%98& ¢ime. Our four other
designs outperform the 9/7-J filter bank by margins ranging from ab®ub ¥8%. The above results
are extremely encouraging, given that the 9/7-J filter bank is well knawitd exceptional lossy coding
performance. In Table 4(b), we provide the actual PSNR results obtéana representative subset of the
test images, where the best result for each bit rate is highlighted. Fromalbhés we can see that, even for
images with different statistical properties (such as the three images causltre), our optimal designs
outperform the 9/7-J filter bank, sometimes by as much as 1.65 dB. Lastlypuld Vike to note that our
optimal designs also lead to good subjective image quality, comparable to tiet @97-J filter bank. In
Figure 6, we provide an example of the lossy image reconstructions obtaitiethe various filter banks.
From this figure, we can see that the quality of the image reconstructiodsqa by our optimal designs

is comparable to that obtained with the 9/7-J filter bank.
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(d)
Figure 6: Parts of the lossy reconstructions obtained after codingpliheimage at a compression ratio of 32:1 using the (a) 9/7,
(b) 9/11, (c) 13/11, (d) 17/11, (e) 13/15, and (f) 9/7-J filter banks.

As can be seen from Table 3, our 9/7 design and the 9/7-J filter bankitesame lifting configuration.
While the 9/7-J filter bank has four dual and four primal (exactly) vanghitoments, our 9/7 design has
only two dual and two primal nearly-vanishing moments and slightly higher igistiamding gain as well.
With our design approach, by reducing the number of constrained monmehtelaxing the requirement
that moments be exactly zero, we are able to gain additional freedom, whichtelgimaiows a higher-
performance filter bank to be constructed.

It is also interesting to note that, amongst all of the filter banks that we dekigm@a parameteriza-
tion (7b), we were not able to find any that outperforms the 9/7-J filter Barikssy coding. This is likely
due to the fact that (7b) is an incomplete parameterization of all PR lineae & 1D two-channel filter
banks with even-length analysis/synthesis filters, while (7a) is a completmptarization of all PR linear-
phase FIR 1D two-channel filter banks with odd-length analysis/syntfiksis (up to a normalization).

In our work, we also evaluated the lossless coding performance of timaisdilter banks. Each of the
filter banks was used to losslessly compress all twenty-six test imageseSiilesrare shown in Table 5.
In particular, we provide the normalized bit rate (i.e., the reciprocal of cesgion ratio) for three images
as well as the mean taken over all twenty-six test images. Evidently, all dfl@urbanks perform better

overall than the 9/7-J filter bank for lossless coding, with the 9/11 desidphirygethe best results.
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Table 5: Lossless compression results for the various filter banks
Normalized Bit Rate

Image|| 9/7 | 9/11 | 13/11|17/11| 13/15| 9/7-J
gold ||0.56660.5630({0.56520.56570.56440.5673
target |/0.30860.2949/0.29640.31300.29750.3173
sar2 |0.63510.6349|0.63530.63530.63520.6350
Mear ||0.48740.4771|0.47870.48700.48280.4880Q
Tmean taken over all twenty-six test images

5.3. Robustness of the Design Method

Since our proposed design method involves a rather complex optimizatiom,cdfements are worth-
while regarding the robustness of the method. In our work, we haveudrbds of design test cases, using
many combinations of lifting configurations (i.e., number of lifting filters and liftfiliger lengths), design
parameters (i.e., frequency-response and vanishing-moment consar@meters) and initial points for op-
timization, and never once has our method been observed to fail to cerneeggsolution. Furthermore,
the solution obtained has always been both feasible and optimal. Additiopatieentation has shown
that small perturbations in the initial point either have no effect on the floahlly) optimal solution or
serve only to displace it to a nearby (locally) optimum point, with the first ofdte® scenarios being
far more likely. Therefore, from a practical point of view, our method haen demonstrated to be quite
robust/stable. This said, there is some theoretical justification for this gdaioe. In each reduced-order
problem, we use a linear Taylor-series approximation of numerous fusciibout the current operating
point. Since these functions are sufficiently smooth that their first-ordiiapderivatives always exist,
the Taylor approximations are always well defined. To ensure the valitittyecsolution obtained to each
reduced-order problem, the solution is restricted to a small region in whichatfler approximations are
accurate. This restriction is imposed by feparameter of our design method. As longPass chosen
sufficiently small (e.g., using the value we suggested earlier), the Tayooximations should always be
sufficiently accurate to ensure the validity of the intermediate/final resultiipeal by our method as well

as guarantee its convergence.

6. Analysisof the Coding Gain

As was noted earlier in Section 5.1, during the development of our prdpleségn method, we observed

that the filter banks obtained both at the intermediate and final stages of twdaways seem to have
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higher coding gain with respect to the separable model than with respeetisbthopic one, regardless of
which of the three objective functions in (8) is employed. In what follows study this behavior in detail
and explain the reason for it. Since the results of our subsequentigr@ys application beyond the class
of filter banks associated with our design method, we consider a supéitbet class. In particular, we
consider the class of wavelet filter banks constructed from 1D tworehdR real-coefficient filter banks
with at least one dual vanishing moment. This class of filter banks include(ifost all) separable filter
banks that are commonly used in practical image-coding systems.

To begin, let us examine the coding gain formula given by (5). First, we raalesv observations
regarding the quantitie§A} M ot and {Bc}r " in this formula. Since each of theA M ! is the ratio
between two variances (which are nonnegative real number#aad implies that is the zero sequence
(which would preclude PR), we have tht> 0. For similar reasons, each of tth}l'l":}Jl satisfiedBy > 0.
Next, we make a comment concerning the correlation coeffipi@ppearing in (6). In the remainder of our
analysis, we exclude the possibility that {0,1}, since these cases are of no practical value and would
only serve to complicate the subsequent analysis. Since in pradsdgpically chosen ap € [0.90,0.95),
we emphasize this range of values in our analysis. This said, howevegsults are not strictly limited to
p in this range. So long gsis not too far outside this range, all of our results should still hold. Letows n
consider how the coding gain is affected by the choice of image model. Fxpnvé observe that the only
dependence that the coding g&@rhas on the image model embodiedrbig in the value of the{Ak}ﬁ":‘ol.
Sinceay > 0, G increases as the eIements{fm‘k}'ll":‘o1 decrease. With this in mind, we would like to more
carefully consider how theAk}{:":})l are affected by the choice of image model.

Before proceeding further, we need to define several new quantiaesvith be used throughout the
remainder of our analysis. Theh factor in the product from (5) is denoted a& (i.e., Gk = (%)O‘k).
Hence,G = H&A:Bl Gk. Let Gsep and Gy jso denote the quantityy in the separable and isotropic cases,
respectively. Define the quantitieAA = Axiso — Ak seps A = Tiso — I'seps andGy = Gk iso/ Gk sep-

Consider the expression fQAk}',:":‘Ol given by (5). Through a change of variable, we can rewrite this
expression in a more convenient formAs= ¥ ez [pIck[p], whereck = hi xh (i.e., the autocorrelation
v

2
of hy). Using the fact that the Fourier transform preserves inner prodncts, = (sinceh is real),

the preceding equation can be rewritten as

_ 1 (o) _ 1 teol R
A=k /[m)zr(w)ck((o)dw L /[m)zr(w) ()| deo. (15)

2

Now, we make some observations regardirgnd ¢x = ﬁ{( . One can easily verify that the sequence
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has 8-fold symmetry in both the separable (ites rsep) and isotropic (i.e.r = riso) cases. That ig;, has
quadrantal symmetry while additionally satisfyirigo, n1] = r[n1, no]. Thus, it follows that has quadrantal
symmetry in both the separable and isotropic cases. Moreover, sincemélfdjfers{h{(}'ll":‘ol are separable,
their autocorrelation sequencﬁs(}f(":gl are also separable. Due to the separabilithjofthe sequence,

has quadrantal symmetry, which in turn implies thatés quadrantal symmetry. Due to the quadrantal
2

symmetry ofr"andcy = hAl’( , We can rewrite (15) as
_ i/ P r?(w)(zdm (16)
™ Jiony? X '
Thus, we have that
1 W] 2
=1 / Br () | ()| oo, (17)
(0,2

whereAr = fiso — Fsep-
Now, we seek to determine a formula for the quantity (16) and (17) for the separable and isotropic
cases. The 1D sequence from whigk, is composed i$sep,14[N| = p|”‘, which has the Fourier transform

~ e 2 - - -
Fep1a(W) = m. Thus, the Fourier transform of,,, is simply

Fsep (0o, 1) = (L p*)? (18)
sep e (1-2pcoswp+p?)(1-2pcosw +p?2) °

Now, we consider the Fourier transformrgf,. Using the 8-fold symmetry afs,, we can show that

Fiso (W0, 031) = 14 8(o, ) + 6(w1, p) + B(wo + w1, V) + 6wy — o, pV2)

+4 i iil PV cogicp) cog kwy) + cog kay) cosie)] (19)
==

where8(w,a) = %

In passing, we would like to briefly make note of an alternative scheme fopatingris,. By observing
that the Fourier transform of the functidiit) = pltl is f(w) = —2n(In?p+ ||w||3)~¥/2Inp [33, Eqn. (3)]
andr;s, is @ sampled version of, we can concludeiss(w) = —21(INp) Syez2[IN?p + || — 271k||3] ~3/2.
Experimentally, however, this formula fog, has been observed to converge more slowly than (19), and is
therefore less useful for computational purposes.

For future referencese, andri, are plotted in Figs. 7 and 8 far= 0.95. In each case, only the first
quadrant is shown as the remainder of the plot can be trivially dedueeddquadrantal symmetry. For each

of fsep andris,, the general shape of the plot remains the same fqu al[0.90,0.95], but the decay rate
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increases with increasiny Also, Ar is plotted forp = 0.95 in Fig. 9. The gray-shaded region in the contour
plot corresponds to where the plotted function is negativep Axreases, the decay ratef increases,
and there is a larger region whehe is positive. In all of the above plots, the scale of the horizontal and
vertical axes have been normalized so that a value of one corresioatiesNyquist frequency.

Now, we will use the expressions fAg andAAg in (16) and (17) in order to gain some additional insight
into the behavior of the coding gain. In what follows, we employ the definitinotteduced in Section 3
(e.g.,L,M =3L+1, level, orient, etc.) anklis used to denote the channel index, wheee{0,1,2,...,3L}.

For three filter banks, we have computed the various coding-gain-rejatedities forl € {1,2,3,4}
with p = 0.95, the results of which can be found in Table 6. (Note that the coding gathss table are
stated as unitless quantities, and not in dB.) The first filter bank is an ortlhaheystem with ideal filters.
This corresponds to a system with 1D prototype filters each having a gai2 @ind 0 in their passbands
and stopbands, respectively. (Thus, we have lthdtas passband and stopband gains'¥f®)+* and 0,
respectively.) The other two filter banks are the well-known Haar and3&ygtems, and were chosen for
comparison purposes as examples of systems with nonideal filters. Tidealdiiter banks are normalized
such that their 1D prototype filters have DC/Nyquist gaing/af as this facilitates more direct comparisons
with the ideal filter bank under consideration. Note that there is no lossnafrglty in considering only
this particular normalization, as the coding gain for PR filter banks is invaigestaling and translation of
the analysis/synthesis filter impulse responses. We will refer to the resules @ébtve table in some of the
discussion that follows.

Now, we more carefully examine the formula for the coding gaiim (5). As k increases (which
corresponds to levgl) increasing) ok decays exponentially to zero (i.ey = 4~'¢v®0-1) This implies
thatGi rapidly approaches one Rincreases. Thus (sin€e= |‘||’;":‘0l Gx), the most significant contributions
to the coding gairc come fromGy associated with smal, especially thos& associated with the Oth level
(,e., ke {0,1,2} ork € {0,1,2,3} for L > 2 andL = 1, respectively). Ak increases, the numerator and

denominator of5, = G"'S"

each rapidly approach one. Consequer@lyalso rapidly approaches one. Thus
(sinceGiso/Gsep = Hk:Ol Gy), any difference in the separable and isotropic coding gains is mosgktron

influenced byGy for smallk. Furthermore, simple algebraic manipulation shows that

=~ A se Ok o AA —0Ok
G (Aksep+pAAk) - <1+ Ak,sep) : (20)

ConsequentlyGy sep and Gy jso differ most when|AA,| is large relative toA sep (i.e 'AA” is large), with

Gy sep > Gkiso (i.€., Gsep favored) ifAA, > 0 andGy sep < Gy iso (i.€., Giso favored) |fAA;< < 0. All of the
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above observations can be seen to be consistent with the data in Table 6.

In what follows, it is instructive to consider the ideal filter bank introduakdve. In this case, from (16)
and (17),A« andAAy are simply (up to scale) the integralsrosﬁﬁdﬁ over the first-quadrant portion of the
passband of the ideal filtéx. In particular, we havéy = %ﬁfpk f(w)dw andAA = %ﬁfﬂﬁ?(w)dw, where
R is the first-quadrant portion of the passbanéigfandpy is the passband gain bf. To envision what the
result of such integrations will be, it is helpful to imagine the frequencyliing of Fig. 4 superimposed
on the plots of ¢y, fiso, andAr in Figs. 7, 8, and 9.

Considerk = 0 (i.e., theHHp band) in the case of the ideal filter bank. Foin the (HHo) passband,
Fsep (W) andrisy (W) are both very small but their diﬁeren@(w) is relatively large (compared tge, (w) and
fiso()). SO, in (20),Ax sep is small and% is large in magnitude and positive. Consequently, from (20),
Gy is significantly less than one, meaning t&at, is very strongly favored oveBis,. A similar argument
also applies to the othétH bands, but the influence on the coding g@&iiis less significant in these cases
sinceGy rapidly approaches one ksncreases. Now consider what happens in the case of nonideal filters.
Even in this case, it is very difficult for the above qualitative behavior @ngle. To obtain significantly
different behaviorﬁl’( would have to be very large along the axes whirés most negative (and therefore
most favorable to highdgis,). Due to the presence of at least one dual vanishing moment, hoﬁ@maust
be zero along both axes. So, even in case of nonideal fitggs s still likely to be strongly favored by the
HH bands.

In the case of theH andHL bands, due to the presence of at least one dual vanishing md?’l((em.,wl)
must be zero along exactly one @f = 0 or w; = 0. We observe thahr (shown in Fig. 9) is largest in
magnitude along the axes, with large positive values near the origin andriegg¢ive values elsewhere
on the axes. Thus, in the calculation®, the large positive values near the originZi?\ are effectively
cancelled sincéy is zero along one axis, and we are left with large negative values alorghbeaxis.
This leads taAA, < 0 so thatGy > 1 and theLH andHL bands favoiG,, over Gsep. Lastly, we note that
the LH andHL subbands do not have as much impact on the coding@aistheHH bands. This is due to
that factAy s¢p is larger for theLH andHL subbands, making it more difficult faAA| to be large relative
t0 A sep-

An examination of the data for the filter banks in Table 6 shows that all ofreéisens made above are
consistent with this data. For example, the coding gain is most strongly infddnctheHH bands, with

HHo figuring most prominently. TheL andHH bands favoiGse, (i.e., Gk < 1), while theLH andHL bands
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favor G, (i.e., Gy > 1).

6.1. Additional Commentary

In addition to the three filter banks for which results are presented (in Babhee have also considered
quite a number of other filter banks, some of which were considered &gtiad in the JPEG 2000 Part-1
standard [3], while others were produced at various stages of ¢dinmallesign method. Similar trends (to
those described above) were also found in the case of these otherdiites. iVioreover, we were not able
to find any filter bank (belonging to the class of filter banks under coretiderhere) for whiclGis, > Geep.
Based on our analysis, there is good reason to believe that such filter jpaipably do not exist.

As an aside, we note that, for the class of filter banks being consideredftiee constraint of having at
least one dual vanishing moment is dropped, it is possibl&fgr= Gscp. For example, this result s trivially
obtained by the PR system with the 1D prototype analysis filig(g) = 1 andH;(z) = z. So, obviously,

for filter banks outside the class being considered here, the con@ifign> G5, may be violated.

7. Conclusions

In this manuscript, we have proposed a novel optimization-based methaldefatesign of wavelet
filter banks for image coding. Our method yields linear-phase PR systems igittcbding gain, good
frequency selectivity, and certain prescribed vanishing-moment grepeSeveral examples of filter banks
constructed using our method were presented and shown to be higleijveffer image coding. In particu-
lar, our optimal designs outperformed the well-known 9/7 filter bank frondBeG-2000 standard for both

lossy and lossless compression, an impressive feat given that this &ittkriso known for its exceptional
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Table 6: Intermediate coding gain quantities with- 0.95 for the (a) ideal (b) Haar, and (c) 9/7 filter banks; and the finaingpd

gains for the (d) ideal, (e) Haar, and (f) 9/7 filter banks.
(a) (b)

Band Asep | Aciso| DA AAQ; (%k Gusep |Griso| G Band Aysep | Axjso| DA« AA::; Ole Gsep |Gkiso | Gk
HHp [0.0010.025 0.024 22.85 4| 5.53 2.50/0.45 HHp [0.0020.030 0.027 11.01 4| 4.47) 2.400.53
HLp [0.0640.039-0.024-0.378 4| 1.98 2.231.12 HLp [0.0970.069-0.027/-0.2820 4| 1.78 1.94/1.08
LHy [0.0640.039-0.024-0.378 4| 1.98 2.23/1.12 LHy [0.097/0.069-0.027-0.282 4| 1.78 1.94/1.08
LLo [3.8703.894 0.024 0.006 4| 0.71] 0.71)0.99 LLo [3.8023.830 0.027 0.007 4| 0.71] 0.710.99

HH; [0.0040.050 0.046 10.95 16| 1.40| 1.20/0.85
HL; [0.2500.132-0.117-0.470 16| 1.09 1.13/1.04

k

0

1

2

3

3 HH; |0.0200.100 0.079 3.862 16| 1.27| 1.150.90
4

5/LH; [0.2500.132-0.117-0.470 16| 1.09 1.131.04
6

6

7

8

9

9

HL; [0.5400.383-0.156-0.289 16| 1.03| 1.06/1.02
LH; |0.5400.383-0.156-0.289 16| 1.03| 1.06/1.02
LL; [14.1014.45 0.343 0.024 16| 0.84] 0.84/0.99
HH, [0.237/0.622 0.384 1.618 64| 1.02| 1.000.98
HL, |3.4242.579-0.844-0.246 64| 0.98 0.981.00
LHy [3.4242.579-0.844-0.246 64| 0.98/ 0.98/1.00
LL, |49.3452.02 2.679 0.054 64| 0.94] 0.94/0.99
HH3 |2.7024.508 1.806 0.668256| 0.99| 0.990.99
HLz |20.3916.57-3.814/-0.187/256| 0.98| 0.981.00
LHs |20.3916.57-3.814/-0.187/256| 0.98| 0.981.00
LLz |153.9170.4 16.53 0.107/256| 0.98 0.980.99

LL; [14.7615.07 0.307 0.020 16| 0.84) 0.84/0.99
HH, [0.0520.306 0.254 4.86G6 64| 1.04 1.01/0.97
HL, |1.6800.958-0.721]-0.429 64| 0.99 1.00/1.00
LH, [1.6800.958-0.721-0.429 64| 0.99 1.00/1.00
LL, |53.9856.54 2.557| 0.047 64| 0.93 0.930.99
HH3 |0.7522.333 1.581] 2.103256| 1.00 0.990.99
10{HLz [11.62/7.325-4.300-0.369256 0.99 0.99/1.00
11|LH; [11.62/7.325-4.300-0.369256/ 0.99 0.99/1.00
12|LLs (179.7197.4 17.71 0.098256| 0.97| 0.97/0.99

(©)

©Cl O 0 N O o b W|IW N » O X

[
N P O

LHy |2.2131.343-0.869-0.392 64| 0.98 0.991.00
LL, |49.6152.10 2.496 0.050 64| 0.93 0.930.99
HH3 [1.3253.652 2.327 1.755256| 0.99 0.99/0.99
HLs |14.449.829-4.615-0.319256| 0.98 0.991.00
LHz [14.449.829-4.615-0.319256 0.98 0.99/1.00
LLz |157.4173.2 15.84 0.100256| 0.97| 0.97/0.99

k|Band Acsep | Aiso| DA« 22| | Grsep | Giiso| G

O|HHp |0.0010.024 0.023 21.81f 4| 5.40 2.47/0.45

1|HLy |0.0640.040-0.023-0.360 4| 1.97| 2.20/1.11

2|LHp |0.0640.040-0.023-0.360 4| 1.97] 2.201.11

3|LLy [3.8113.834 0.023 0.006 4| 0.72 0.72/0.99

3|HH; |0.0080.090 0.081) 9.265 16| 1.35 1.16/0.86 (d) (e) 0)
4/HL; |0.3520.199-0.153-0.434 16| 1.06 1.10/1.03 L| Gsep| Giso L| Gsep| Giso L| Gsep| Giso
5/LH; [0.3520.199-0.153-0.434 16| 1.06 1.101.03 1/21.8412.54 |1]10.25 6.49] |1|15.25 8.71
6|LL; |14.1214.44 0.314 0.022 16| 0.84| 0.840.99 2(36.5419.45 |2(|16.7010.00 |2|27.4414.56
6|HH, |0.0980.511 0.412 4.176 64| 1.03 1.00/0.97 3/37.6419.83 |3|18.2510.86 |3|30.76/16.16
7|HL, |2.2131.343-0.869-0.392 64| 0.98 0.991.00 4136.2319.07 |4|18.5011.01 |4(31.3416.46
8

9

9

[
(=)

[EnY
N
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lossy coding performance. Our design method supports the maximization cddivey gain with respect
to the separable or isotropic image model, or jointly with respect to both modelsudiexperimental
results, we have demonstrated that the joint maximization of both coding gadsstteéilter banks with

improved coding performance on average, relative to simply maximizing trega@p coding gain as is
typically done.

Also, in this manuscript, we have studied the coding gain of separable 2Bletditer banks derived
from 1D two-channel real-coefficient PR filter banks with at least amed danishing moment. We have
explained why, for such filter banks, it is extremely difficult (if not impo&sjfor the isotropic coding
gain to exceed the separable coding gain. The new insight providedrignalysis may prove helpful
in the design of improved filter banks for image coding. For example, if ongiisgtto simultaneously
maximize the minimum o6, andGs, as in the case of our work, our analysis shows that this is practically

equivalent to optimizingsis, alone.
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A. Proofs

Theorem 1. Consider a symmetric/antisymmetric sequence h defined afithe form tin] = shji2c — n|,
where ce %Z is the center of symmetry andss{—1,1} (i.e., s= 1 and s= —1 correspond the symmetric
and antisymmetric cases, respectively). Lgtdanote the kth moment of h. Forsl: if my = O for
ke {0,1,...,2N}, then myn;1 =0. Fors=—-1 mp=0and if m=0for ke {1,2,...,2N + 1}, then
Mpn2 = 0.

Proof. Suppose that= 1. Due to the symmetry propertiestpfwe have thaﬁl(oo) = S ez hnje" @ cog[n—
c]w). Taking the/th derivative ofh (via the Leibniz rule) and using the fact that = j‘h(“) (0), we obtain
m, = > ask(c)fk(c), (21)
ke{0,1,-,[¢/2]}
whereax(c) = (—1)¢(4) (—¢)" "% and fi(c) = Tz h[nl(n—c)*. Thus, from the preceding equation
we havemy = dop(c)fo(C), M = ay0(c) fo(c), M = azo(c)fo(c) + az1(c) f1(c), Mz = azp(c)fo(c) +

az1(c)fi(c), ..., andmy = zkzocxg_’k(c) fc(c). From this, we can deduce (by induction) that

my=0for/ e {0,1,...,2L} implies f,(c) =0for¢ € {0,1,...,L}. (22)
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Suppose now thaty =0 for ¢ € {0,1,...,2L} so that (22) applies. Since (22) applies, we have from (21)

thatmpL 11 = Skeqo1,... |(2L+1)/2)} O2L+1k(C) fk(C) = zk:OO(ZLJFLk(C) fc(c) = 0. Thus, we have proven the

desired result fos= 1.
Suppose that = —1. Trivially, mp =0, asﬁ(O) = 0 (due to the antisymmetry &i). The remainder of

the proof is obtained in a manner similar to e 1 case above. O
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