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Abstract

An optimization-based method is proposed for the design of high-performance separable wavelet filter

banks for image coding. This method yields linear-phase perfect-reconstruction systems with high coding

gain, good frequency selectivity, and certain prescribed vanishing-moment properties. Several filter banks

designed with the proposed method are presented and shown to work extremely well for image coding,

outperforming the well-known 9/7 filter bank from JPEG 2000 in most cases.With the proposed design

method, the coding gain can be maximized with respect to the separable or isotropic image model, or

jointly with respect to both models. The joint case, which is shown to be equivalent to the isotropic case,

is experimentally demonstrated to lead to filter banks with better average coding performance than the

separable case.

During the development of the proposed design method, filter banks from acertain popular separable

2D wavelet class (to which our optimal designs belong) were observed to always have a higher coding gain

with respect to the separable image model than with respect to the isotropic one. This behavior is examined

in detail, leading to the conclusion that, for filter banks belonging to the above class, it is highly improbable

(if not impossible) for the isotropic coding gain to exceed the separable coding gain.

Key words: optimal wavelet filter-bank design, image coding, coding gain, separable/isotropic image

models

1. Introduction

Separable two-dimensional (2D) wavelet filter banks have proven to be an extremely valuable tool

for image coding applications [1, 2, 3]. In order to be effective in such applications, however, a filter
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bank must typically have a number of desirable characteristics such as perfect reconstruction (PR), linear

phase, high coding gain [4], good frequency selectivity, and certain vanishing-moment properties. To date,

a great many optimization-based design methods for wavelet filter banks have been proposed, some of

which include [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. One distinguishing characteristic of a design method

is the type of filter-bank parameterization that it employs. Lattice [15] and lifting[16] parameterizations

have proven to be quite popular, with [6, 10] using the former and [9, 11,13, 12, 14] using the latter.

Another distinguishing trait of a design method is the set of filter-bank characteristics that it considers

(e.g., PR, linear phase, and so on). Although many of the previously-proposed design methods consider a

subset of the desirable characteristics for image coding mentioned above,few (if any) consider all of these

characteristics simultaneously. For example, the method outlined in [7] considers coding gain, PR, linear

phase, and imposes one dual vanishing moment, but does not explicitly consider frequency selectivity. The

schemes proposed in [12, 13, 14] consider PR, linear phase, and vanishing-moment properties, but not

coding gain, and are also restricted to a lifting parameterization with only two or three lifting filters.

To design filter banks having all of the desirable characteristics mentioned above is a challenging task.

In this manuscript, we propose a new design method that yields high-performance separable wavelet filter

banks with all of these characteristics. This method employs optimization and is based on ideas from [17].

During the course of our work, the filter banks obtained both at the intermediate and final stages of our

design method were observed to always have higher coding gain with respect to the separable image model

than with respect to the isotropic one. In this manuscript, we also study this phenomenon in detail and

explain the reason for it. The work presented herein has been, in part, described in our conference pa-

pers [18, 19].

The remainder of the manuscript is structured as follows. Section 2 introduces some of the notational

conventions used herein, and Section 3 provides some background information on filter banks and coding

gain. Our proposed design method is presented in Section 4. In Section 5, our method is used to design

several filter banks and these filter banks are shown to perform very well for image coding. Section 6 studies

in detail the relationship between the coding gains for the separable and isotropic models and presents a

number of interesting results in this regard. Finally, Section 7 concludes ourwork with a summary of our

key results.
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2. Notation and Terminology

Before proceeding further, we introduce some of the notation employed herein. The sets of integers

and real numbers are denoted asZ andR, respectively. Forx ∈ R, the notation⌊x⌋ denotes the largest

integer not greater thanx (i.e., the floor function). Forx,y ∈ Z, we define the functions div(x,y) = ⌊x/y⌋
and mod(x,y) = x− y⌊x/y⌋ (i.e., x divided by y yields the quotient div(x,y) and remainder mod(x,y)).

Matrices and vectors are typically denoted by uppercase and lowercaseboldface letters, respectively. The

transpose of the matrix/vectorAAA is denoted asAAAT . The symbolsIII , 000, and 111 denote an identity matrix, a

vector of all zeros, and a vector of all ones, respectively, the size ofwhich should be clear from the context.

The square root of a positive semi-definite matrixAAA (e.g., as defined in [20]) is denoted asAAA1/2. For

matrix multiplication, we define the product notation as∏N
k=M AAAk , AAANAAAN−1 . . .AAAM+1AAAM, whereN ≥ M.

The element of the 2D sequencef with index nnn = (n0,n1) ∈ Z
2 is denoted as eitherf [n0,n1] or f [nnn],

whichever is more convenient. A similar notational convention is also employed for 2D functions. The

Fourier transform of a sequence/functionf is denoted aŝf . The symbols∗ and⋆ denote convolution and

correlation, respectively. Thep-norm of the vectorxxx = [ x1 x2 ... xd ]T , denoted‖xxx‖p, is defined as‖xxx‖p =
(
∑d

i=1 |xi |p
)1/p

for p ∈ {1,2}. The symbol∇ is used to denote the gradient operator, which is defined

to always produce a column vector. In a context where it may be unclear with respect to what quantity

a gradient is taken, a subscript on∇ is used to indicate this quantity (e.g.,∇xxx denotes the gradient with

respect toxxx). For a one-dimensional (1D) sequencef satisfying f [n] = s f[2c− n] for all n ∈ Z, where

c ∈ 1
2Z ands∈ {−1,1}, f is said to be symmetric ifs = 1 and antisymmetric ifs = −1, and f is also

said to have symmetry aboutc. The polynomialF(z) is said to be symmetric or antisymmetric about (the

term)zc if the sequenceZ−1F is symmetric or antisymmetric about−c, respectively, whereZ denotes the

z transform (e.g., 1+2z−1+1z−2 is symmetric aboutz−1 and 3−3z−1 is antisymmetric aboutz−1/2). A 2D

function/sequencef is said to have quadrantal symmetry iff (t0, t1) = f (−t0, t1) = f (t0,−t1) = f (−t0,−t1)

for all t0, t1 in the domain off . For a filterH, we denote its transfer function and impulse response asH and

h, respectively. The sans-serif letters “h” and “v” are used to denote the horizontal and vertical components

of separable functions/sequences/operators. For example, the horizontal and vertical components of the the

separable 2D sequencef would be denoted asfh and fv, respectively (i.e.,f [n0,n1] = fh[n0] fv[n1]). For a

signal withPbits per sample, the peak-signal-to-noise ratio (PSNR) is defined asPSNR = 20log10

(
2P−1√
MSE

)
,

whereMSE denotes the mean-squared error. The relative differenced of two quantities is simply defined as

d = (n− r)/r, wheren andr denote the non-reference and reference quantities, respectively.
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Figure 1: The canonical form of a 1D two-channel filter bank. (a) Analysis and (b) synthesis sides.

+

+

+

+↓2

↓2

z

· · ·

· · ·

· · ·P0(z)

x[n]

P1(z) P2λ−2(z) P2λ−1(z)

y1[n]

y0[n]

(a)

+

+

+

+

↑2

z−1

+

↑2

· · ·

· · ·

· · · P0(z)P2λ−2(z) P1(z)

y[n]

y1[n]

y0[n]

P2λ−1(z)

− −

−−

(b)

Figure 2: The lifting realization of a 1D two-channel filter bank. (a) Analysis and (b) synthesis sides.

3. Background

A 1D two-channel filter bank has the canonical form shown in Fig. 1. Sucha filter bank consists of

analysis filters{H0,H1}, and synthesis filters{F0,F1} (whereH0 andF0 are lowpass), as well as downsam-

plers and upsamplers. A filter bank can also be represented in terms of a lifting realization [16]. The lifting

realization of a 1D two-channel filter bank is shown in Fig. 2, and consists of 2λ lifting filters {Pk}2λ−1
k=0 .

Without loss of generality, we assume that onlyP0(z) and/orP2λ−1(z) may be identically zero. The analysis

and synthesis filters{H0,H1} and{F0,F1} of the canonical form can be readily determined from the filters

{Pk}2λ−1
k=0 of the lifting parameterization using the following relationships:

H0(z) = H0,0(z
2)+zH0,1(z

2), H1(z) = H1,0(z
2)+zH1,1(z

2), where (1)

HHHp(z) =



H0,0(z) H0,1(z)

H1,0(z) H1,1(z)



 =
λ−1

∏
k=0







1 P2k+1(z)

0 1







 1 0

P2k(z) 1







 , and

F0(z) = −z−1H1(−z), and F1(z) = z−1H0(−z). (2)

Since images are 2D signals, their processing requires multidimensional systems. To construct a 2D fil-

ter bank from a 1D two-channel filter bank, we simply apply the 1D filter bankin each of the two dimensions

of the signal in succession. This results in a separable four-channel 2D filter bank. Furthermore, in practice,

we usually apply the 2D filter bank in anL-level tree structure, decomposing the lowest-frequency subband

signal at each level in the tree. The resultingL-level tree-structured filter bank can be equivalently expressed

in the form of anM-channel nonuniform filter bank, whereM = 3L + 1. This equivalentM-channel filter
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bank has the general form shown in Fig. 3, consisting of analysis filters{H ′
k}M−1

k=0 , synthesis filters{F ′
k}M−1

k=0 ,

and downsamplers/upsamplers, where thekth downsampler/upsampler (associated with sampling matrix

ΛΛΛk) has the horizontal and vertical sampling factors ofMk,h andMk,v, respectively. Due to the separable

nature of the filters, the subbands have four possible orientations: horizontally-and-vertically lowpass (LL),

horizontally highpass and vertically lowpass (LH), horizontally lowpass and vertically highpass (HL), and

horizontally-and-vertically highpass (HH).

As a matter of notation, the level in the analysis filter-bank tree associated with channelk is denoted

as level(k), where level(k) ∈ {0,1, . . . ,L−1} with the value of zero corresponding to the tree root; and the

orientation of channelk is denoted as orient(k), where orient(k) ∈ {0,1,2,3} with the values of 0, 1, 2, and

3 corresponding to theLL, LH, HL, andHH orientations, respectively. For thel th level in the tree,LLl , LHl ,

HLl , andHHl denote the subbands withLL, LH, HL, andHH orientations, respectively. The mapping between

the channel indexk and subband level/orientation is given by

level(k) =






L−1 for k = 3L

div(k,3) otherwise
and orient(k) =






0 for k = 3L

3−mod(k,3) otherwise.
(3)

For convenience, we have numbered the channels such that larger values ofk correspond to a deeper descent

into the analysis filter-bank tree. Note that this numbering convention is backwards from what is typically

used. That is, the lowest frequency (LL) band is always associated with the largest channel index 3L (in-

stead of the smallest one 0). With our convention, decompositions withL andL′ levels have an identical

numbering scheme for their common filters/subbands. This allows for a much more concise presentation of

some of our later results. The correspondence between channels and frequency bands is further illustrated

in Fig. 4, with the analysis filter associated with each subband being shown in parentheses. In order to avoid

an overly complicated diagram, only the first quadrant of the frequency plane is shown, with the remainder

following from (quadrantal) symmetry.

Given the 1D analysis filters{H0,H1}, the analysis filters{H ′
k}M−1

k=0 of the 2D nonuniform filter bank

can be computed as

H ′
k(z0,z1) = H ′

k,h(z0)H
′
k,v(z1), (4)

whereH ′
k,h(z) = Hmod(orient(k),2)(z

2level(k)
)HΠ(z), H ′

k,v(z) = Hdiv(orient(k),2)(z
2level(k)

)HΠ(z), and HΠ(z) = 1 if

level(k) = 0, andHΠ(z) = ∏level(k)−1
ℓ=0 H0(z2ℓ

) otherwise. The synthesis filters{F ′
k}M−1

k=0 of the 2D nonuni-

form filter bank are determined in a similar way from the 1D synthesis filters{F0,F1} (i.e., simply replace
5



H ′
0(zzz) ↓ΛΛΛ0

y0[nnn]x[nnn]

↓ΛΛΛM−1

↓ΛΛΛ1

y1[nnn]
H ′

1(zzz)

H ′
M−1(zzz)

yM−1[nnn]

...
...

...
...

(a)

+

+

↑ΛΛΛ0

y0[nnn]
F ′

0(zzz)
y[nnn]

↑ΛΛΛ1 F ′
1(zzz)

↑ΛΛΛM−1 F ′
M−1(zzz)

...
...

...
...

yM−1[nnn]

y1[nnn]

(b)

Figure 3: The equivalentM-channel nonuniform filter bank associated with theL-level tree-structured filter bank (whereM =

3L+1).
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Figure 4: Subband tiling of the first quadrant of the frequency plane.

theHs byFs in the preceding equation).

In the context of image coding, we are often interested in the energy-compacting ability of a filter bank,

which is typically quantified using a measure known as the coding gain. For a filter bank of the form shown

in Fig. 3, the coding gainG is given by [4]

G =
M−1

∏
k=0

(
αk

AkBk

)αk

, where (5)

Ak = ∑
lll∈Z2

∑
ppp∈Z2

h′k[lll ]h
′
k[ppp]r[ppp− lll ] = ∑

m∈Z

h′k,h[m] ∑
n∈Z

h′k,v[n] ∑
p∈Z

h′k,h[p] ∑
q∈Z

h′k,v[q]r[m− p,n−q],

Bk = αk ∑
lll∈Z2

f ′2k [lll ] = αk ∑
m∈Z

f ′2k,h[m] ∑
n∈Z

f ′2k,v[n], αk = (Mk,hMk,v)
−1,

andr is the normalized autocorrelation sequence of the source image model. The twomost common choices
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for r are given by the separable and isotropic models, which are, respectively,

rsep[nnn] = ρ‖nnn‖1 and r iso[nnn] = ρ‖nnn‖2, (6)

whereρ is a correlation coefficient satisfyingρ ∈ [0,1]. Since numerous quantities used herein depend on

the image model (e.g.,G, {Ak}M−1
k=0 ), we use the qualifiers “sep” and “iso” to denote these quantities in the

separable and isotropic cases, respectively. For example,Ak,sep denotes the quantityAk given by (5) with

r = rsep andGiso denotes the coding gainG given by (5) withr = r iso.

4. Design Method

In our design method, rather than representing a filter bank in its canonicalform as shown in Fig. 1,

we instead use the lifting framework as depicted in Fig. 2. The use of the lifting framework has a number

of advantages over the canonical form. The key benefit, however, is that the PR condition is automatically

satisfied. Additionally, the linear phase requirement can be easily met by choosing the lifting filters{Pk}2λ−1
k=0

to have certain symmetry properties, as we shall see shortly. Since the PR and linear-phase conditions can

be imposed via the lifting framework, there is no need for explicit optimization constraints to ensure that

these conditions are satisfied. This greatly reduces the complexity of the subsequent optimization problem.

The lifting framework is also advantageous as it trivially allows for the construction of reversible integer-

to-integer mappings [21]. Such mappings are extremely useful for image coding applications, especially in

situations where lossless coding may be desired. In fact, the image coders used to obtain the coding results

presented later in this manuscript all employ reversible integer-to-integer wavelet transforms.

As suggested above, the linear-phase condition can be easily imposed through a clever choice of the

lifting filters {Pk}2λ−1
k=0 . In what follows, letLk denote the length of the lifting filterPk. It can be shown [22]

that if the{Pk}2λ−1
k=0 are chosen to be of either of the following two forms, then the resulting filter bank will

have linear phase:

Pk(z) =






∑(Lk−2)/2
i=0 pk,i(z−i +zi+1) for evenk

∑(Lk−2)/2
i=0 pk,i(z−i−1 +zi) for oddk, or

(7a)

Pk(z) =






−1 for k = 0

1
2 + P̃1(z) for k = 1

P̃k(z) for k≥ 2

and P̃k(z) =
(Lk−1)/2

∑
i=1

p̃k,i(z
−i +zi), (7b)
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where, in (7a),Lk is even fork ∈ {0,1, . . . ,2λ−1} (i.e., Pk(z) is symmetric aboutz1/2 andz−1/2 for even

and oddk, respectively) and, in (7b),Lk is odd fork∈ {1,2, . . . ,2λ−1} (i.e., P̃k(z) is antisymmetric about

z0). In the case of parameterization (7a),h0 is symmetric about 0 andh1 is symmetric about−1, while in

the case of parameterization (7b),h0 is symmetric about−1
2 andh1 is antisymmetric about−1

2.

In the case of parameterization (7a), the symmetry properties of the analysisfilter impulse responsesh0

andh1 can be deduced as follows. To begin, one can show by induction that the analysis polyphase matrix

HHHp(z) given by (1) is such that: 1)H0,0(z) andH1,1(z) are symmetric aboutz0; 2) H0,1(z) is symmetric

aboutz−1/2; and 3)H1,0(z) is symmetric aboutz1/2. From properties 1 and 2,H0,0(z2) andzH0,1(z2) are

both symmetric aboutz0, and consequently, their sumH0(z) (as given by (1)) is also symmetric aboutz0.

From properties 1 and 3,H1,0(z2) andzH1,1(z2) are both symmetric aboutz1, and consequently, their sum

H1(z) (as given by (1)) is symmetric aboutz1. Thus, the stated symmetry properties hold forh0 andh1.

In the case of parameterization (7b), a proof of the stated symmetry properties forh0 andh1 can be found

in [22, Section VII and Appendices A and B] and in more verbose form in [23, pp. 74–77].

It is worth noting that (7a) completely parametrizes (up to a trivial normalization) all PR linear-phase

FIR filter banks with odd-length analysis/synthesis filters, while (7b) parametrizes (up to a normalization)

only a subset of all PR linear-phase FIR filter banks with even-length analysis/synthesis filters. For this

reason, one might suspect parameterization (7a) to have greater potential to yield good filter banks than

parameterization (7b). In fact, this suspicion turns out to be correct, as later confirmed by our experimental

results in Section 5.

With the lifting framework, the synthesis filters are completely determined by the analysis filters as

given by (2). Therefore, we focus primarily on the design of the analysis side of the filter bank in what

follows. Since we have elected to use a lifting parameterization in our design method, we need to relate

the various filter-bank properties of interest (i.e., the analysis-filter frequency responses, vanishing-moment

properties, and coding gain) to the lifting-filter coefficients. In the case ofthe moment properties of the pri-

mal and dual wavelet coefficient sequences and the frequency responses, these relationships can be derived

in a straightforward manner using (1), (2), and (7). The analysis-filterfrequency responses and the expres-

sions for the moments of the primal/dual wavelet coefficient sequences arepolynomials in the lifting-filter

coefficients, where the polynomial order depends on which of the two parameterizations (7a) and (7b) is

employed as well as the number of lifting filters. For example, for filter banks from parameterization (7a)

with four lifting filters, the lowpass analysis-filter frequency response, highpass analysis-filter frequency
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response, primal-moment expression, and dual-moment expression are polynomials in the lifting-filter co-

efficients having orders of 4, 3, 4, and 3, respectively. The coding gain can be expressed in terms of the

lifting-filter coefficients by combining (5), (4), (1), (2), and (7). The resulting expression is highly nonlinear,

due mainly to the form of (5).

4.1. Abstract Optimization Problem

As indicated earlier, we seek to design filter banks having numerous desirable characteristics, namely,

PR, linear phase, high coding gain, good frequency selectivity, and certain prescribed vanishing-moment

properties. Since the PR and linear-phase properties are structurally imposed via the lifting framework, we

need not consider them further. Thus, the design problem at hand reduces to one explicitly involving only

coding gain, frequency selectivity, and vanishing-moment properties.

Now, let us consider the formulation of the design problem as an optimization to be performed with

respect to the lifting-filter coefficients (i.e., the{pk,i} from (7a) or the{p̃k,i} from (7b)). Letxxx denote

the vector of (independent) lifting-filter coefficients, where the coefficients are lexicographically ordered by

their first and then second index (e.g., in the case of (7a), we have the orderingp0,0, p0,1, . . . , p0,(L0−2)/2, p1,0,

p1,1, . . . , p1,(L1−2)/2, . . . , p2λ−1,0, p2λ−1,1, . . . , p2λ−1,(L2λ−1−2)/2). We chooseG, a measure related to coding

gain, as the function to maximize. LetGsep andGiso denote the coding gain (in dB) obtained from (5) using

the separable and isotropic models, respectively. In our work, we consider three possible choices forG as

given by

G(xxx) =






Gsep(xxx) separable only

Giso(xxx) isotropic only

min{Gsep(xxx),Giso(xxx)} joint.

(8)

That is, we consider the maximization of each of the separable and isotropic coding gains individually as

well as the joint maximization of both coding gains. The joint case in (8) is motivated by the observation

that many images are nonstationary, exhibiting both separable and isotropic behaviors in different regions.

Thus, we might suspect that there is an advantage to having both coding gains high.

The remaining filter bank properties are handled as constraints. To quantify the frequency selectivity of

the analysis filters, we employ a stopband-energy measure. In particular,we define the stopband energy of

the analysis filterHk as

bk(xxx) ,

Z

Sk

|ĥk(ω,xxx)|2dω, k∈ {0,1}, (9)
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whereS0 = [π−ωb,π], S1 = [0,ωb], andωb denotes the stopband width of the analysis filters. The reason for

using only a stopband constraint is twofold. First, limiting the stopband-energy leakage alone can be quite

effective in avoiding aliasing. Second, for filter banks with relatively short filters, the number of degrees of

freedom in the design process is limited. Consequently, if a passband constraint were also employed, the

feasible region for the optimization may be overly restricted, leading to poorerdesigns.

To facilitate the introduction of moment constraints, we define the moment-constraint functions

ck(xxx) , ‖mmmk(xxx)‖2 , k∈ {1,2, . . . ,η}, (10)

wheremmmk is a νk-dimensional vector function with its elements corresponding to the moments of interest

(i.e., moments that are to be constrained). Eachmmmk may contain only one moment (i.e.,νk = 1) or a group

of moments (i.e.,νk ≥ 2). In this way, moments can be controlled either individually or jointly.

Combining (8), (9), and (10), we obtain the following abstract optimization problem to be solved:

maximize G(xxx) (11a)

subject to: bk(xxx) ≤ εk, k∈ {0,1} and (11b)

ck(xxx) ≤ γk, k∈ {1,2, . . . ,η}, (11c)

where the{ε0,ε1} and{γk}η
k=1 are strictly positive tolerances for the stopband-energy and moment con-

straints, respectively. Since the{γk}η
k=1 are chosen to be strictly positive, we do not attempt to satisfy the

vanishing-moment conditions exactly. Instead, we only ensure that the moments of interest are very nearly

vanishing (e.g., typically on the order of 10−5 or less in some of our later design examples). In a practical

sense, there is no significant disadvantage to allowing the moments to deviate slightly from zero, as exact

vanishing moments are usually lost during implementation anyhow, due to finite-precision effects. In fact,

this relaxed form of moment constraint is actually quite beneficial, as it allows increased design flexibility,

which in most cases leads to better designs. In passing, we note that parameterization (7b) structurally

imposes vanishing zeroth primal and dual moments [22]. So, when this parameterization is employed, the

vanishing moment conditions for the zeroth moments will always be satisfied exactly.

In the abstract optimization problem (11), there are three cases for the objective function (8). The joint

case is associated with a max-min problem, which is somewhat difficult to solve directly. For this reason,
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we convert the joint case into the following equivalent problem, which can be more easily solved:

maximize t (12a)

subject to: Gsep(xxx) ≥ t, (12b)

Giso(xxx) ≥ t, (12c)

bk(xxx) ≤ εk, k∈ {0,1}, and (12d)

ck(xxx) ≤ γk, k∈ {1,2, . . . ,η}, (12e)

wheret is an auxiliary variable.

4.2. Solution of the Abstract Optimization Problem

As introduced above, the abstract optimization problem for our filter-bankdesign scheme is given

in (11), with the joint case reformulated as in (12). Unfortunately, these problems are highly nonlinear

and somewhat difficult to solve directly. For this reason, we adopt a strategy based on the iterative solution

of reduced-order problems. The algorithm for this approach has the following general form:

STEP 1 (INITIALIZATION ). Set the iteration numberi to zero. Choose the stopping tolerancesτ1 andτ2.

Select an initial operating pointxxx0 somewhere in the feasible region. Select a nominal maximum step size

β0 for use in step 3.

STEP 2 (ORDER REDUCTION). Represent each of the functionsGsep(xxx) and/orGiso(xxx), {b0,b1}, and

{ck}η
k=1 with a Taylor-series approximation about the current operating pointxxxi . In particular, each function

f is represented using a linear approximation as given byf (xxxi +δδδi) ≈ f (xxxi)+∇T f (xxxi)δδδi .

STEP 3 (OPTIMIZATION ). (a) Let β = β0 (i.e., set the maximum step sizeβ to the nominal maximum

step sizeβ0). (b) Solve the reduced-order optimization problem in the variableδδδi . Let δδδ∗i denote the

corresponding optimal solution. Since the Taylor-series approximations obtained in step 2 are accurate only

whenδδδi is small, the additional constraint‖δδδi‖2 ≤ β is imposed in the reduced-order optimization problem

to ensure a solution in the vicinity of the operating pointxxxi . (c) The pointδδδ∗i will always be in the feasible

region of the reduced-order problem, butxxxi +δδδ∗i may not be in the feasible region of the original (i.e.,

non-reduced order) problem if the reduced-order approximation is not sufficiently accurate. Therefore, if

xxxi +δδδ∗i is not in the feasible region of the original problem, setβ = β/1.6 and go to step 3(b) (i.e., restart the

reduced-order optimization with a smaller step sizeβ in order to improve the reduced-order approximation

accuracy). Otherwise, continue to step 4.
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STEP 4 (OPERATING-POINT UPDATE). Set the new operating pointxxxi+1 to xxxi +δδδ∗i .

STEP 5 (STOPPING-CRITERIA CHECK). If |G(xxxi+1)−G(xxxi)| ≤ τ1 or ‖δδδ∗i ‖2 ≤ τ2, then output the solution

xxx∗ = xxxi+1 and stop. Otherwise, incrementi by one and go to step 2.

Essentially, the above algorithm finds a reduced-order approximation of the original problem about

the current operating point, solves the reduced-order problem, adjuststhe operating point accordingly, and

iterates. In what follows, we now explain in more detail how the preceding algorithm can be used to solve

our design problem.

In step 2, since it is extremely difficult to derive closed-form expressions for the derivatives ofGsep(xxx)

and/orGiso(xxx), these quantities are computed numerically. In the case of the less nonlinear functions{b0,b1}
and{ck}η

k=1, closed-form expressions are used for the derivatives. Due to space constraints, we do not pro-

vide these expressions here (as they are quite long and messy), but theycan be derived in a straightforward

manner.

In step 3, we considered the use of several different optimization methods, namely linear programming,

convex quadratic programming, sequential quadratic programming, and second-order cone programming

(SOCP) [24, 25]. Each of these methods requires Taylor series of particular orders to be used in step 2

in order to approximate the various functions of interest. In the interest of brevity, we will only present a

SOCP-based approach in what follows. The interested reader, however, can find details regarding the other

approaches in [26, pp. 32-37]. As an aside, we note that numerous software packages exist for the solution

of SOCP problems (e.g., SeDuMi [27], CVX [28], and YALMIP [29]), with our work having used SeDuMi.

To formulate step 3 as a SOCP problem, we choose (in step 2) to represent each of the functionsGsep

and/orGiso, {b0,b1}, and{ck}η
k=1 using a linear approximation. For the separable and isotropic cases

of (11), it can then be shown that the optimization in step 3 can be expressedin terms of the following

SOCP problem (with optimization being performed with respect toδδδ):

maximize ∇TG(xxxi)δδδ (13a)

subject to:
∥∥∥QQQ1/2

k (xxxi)δδδ+qqqk(xxxi)
∥∥∥

2
≤ εk−bk(xxxi)+qqqT

k (xxxi)qqqk(xxxi), k∈ {0,1}, (13b)

∥∥∇Tmmmk(xixixi)δδδ+mmmk(xxxi)
∥∥

2 ≤ γk, k∈ {1,2, . . . ,η}, and (13c)

‖δδδ‖2 ≤ β, (13d)

whereQQQk(xxx) =
R

Sk
[∇xxxĥk(ω,xxx)]∇T

xxx ĥk(ω,xxx)dω, qqqk(xxx) = QQQ−1/2
k (xxx)

R

Sk
ĥk(ω,xxx)∇T

xxx ĥk(ω,xxx)dω, Sk is as defined

in (9), andδδδ is a perturbation from the operating pointxxxi . For the joint case of (11) as reformulated in (12),
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the optimization in step 3 can be expressed in terms of the following SOCP problem,with the optimization

being performed with respect to the augmented vector variableδ̃δδ , [t δδδ]T :

maximize [1 000]δ̃δδ (14a)

subject to: [0 ∇TGiso(xixixi)]δ̃δδ+Giso(xxxi)− [1 000]δ̃δδ ≥ 0, (14b)

[0 ∇TGsep(xixixi)]δ̃δδ+Gsep(xxxi)− [1 000]δ̃δδ ≥ 0, (14c)
∥∥∥Q̃QQk(xxxi)δ̃δδ+ q̃qqk(xxxi)

∥∥∥
2
≤ εk−bk(xxxi)+qqqT

k (xxxi)qqqk(xxxi), k∈ {0,1}, (14d)
∥∥∥∇Tm̃mmk(xixixi)δ̃δδ+m̃mmk(xxxi)

∥∥∥
2
≤ γk, k∈ {1,2, . . . ,η}, and (14e)

∥∥∥[000 III ]δ̃δδ
∥∥∥

2
≤ β, (14f)

whereQ̃QQk(xxx) = [000 QQQ1/2
k (xxx) ], q̃qqk(xxx) = [0 qqqk(xxx) ]

T , m̃mmk(xxx) = [0 mmmk(xxx) ]
T , QQQk(xxx) =

R

Sk
[∇xxxĥk(ω,xxx)]∇T

xxx ĥk(ω,xxx)dω,

qqqk(xxx) = QQQ−1/2
k (xxx)

R

Sk
ĥk(ω,xxx)∇T

xxx ĥk(ω,xxx)dω, andSk is as defined in (9). Note that, as far as step 3 is con-

cerned, the output of the preceding optimization process is simply theδδδ part of the augmented vectorδ̃δδ

(namely,δδδ = [000 III ]δ̃δδ).

In step 4 of the above algorithm, we update our operating point. As the solutionin step 3 is limited to the

neighborhood of the current operating point, we repeat the process insteps 2 to 5 until one of the stopping

criteria is satisfied. This permits solutions farther away from the current operating point to be found.

4.3. Design-Parameter Selection

Having introduced our design method, we now briefly comment on the selectionof numerous design

parameters. For the frequency-selectivity constraints given by (13b)and (14d), an appropriate choice of

tolerances{ε0,ε1} is critical to achieving good designs. Based on our experiments, for a stopband width of

ωb = 3π
8 , a choice ofεk ∈ [0.02,0.14] is typically quite effective. The stopping tolerancesτ1 andτ2 (used in

step 5) might reasonably be chosen to be on the orders of 10−4 to 10−5 and 10−5 to 10−6, respectively. Also,

we must selectL (i.e., the number of decomposition levels) which is used in the coding gain formula. In

this regard, we found that choosingL ∈ {3,4,5} makes a good tradeoff between computational complexity

(which increases withL) and design quality. In step 1, we must choose the nominal maximum step sizeβ0

whereβ0 > τ2. In practice, the choice ofβ0 = 2×10−3 was found to work quite well.

In (13c) and (14e), the moment constraints{mmmk}η
k=1 must be chosen along with appropriate tolerances

{γk}η
k=1. This choice is also key to obtaining good designs. Letµk denote thekth moment associated

with the primal or dual wavelet coefficient sequence of the filter bank. Inthe case of filter banks from
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parameterization (7a), the highpass analysis/synthesis filter is symmetric. Consequently, for evenk, if

µ0 = µ1 = . . . = µk−1 = 0, thenµk = 0 implies thatµk+1 = 0 (i.e., the odd-indexed moments automatically

vanish). For a proof, see Theorem 1 (symmetric case) in Appendix A. Thus, we need only consider

constraints on the{µk} for evenk. Similarly, in the case of filter banks from parameterization (7b), the

highpass analysis/synthesis filter is antisymmetric. Consequently,µ0 = 0, and for oddk, if µ0 = µ1 = . . . =

µk−1 = 0, thenµk = 0 implies thatµk+1 = 0 (i.e., the even-indexed moments automatically vanish). Again,

see Theorem 1 (antisymmetric case) in Appendix A for a proof. Thus, we need only consider constraints on

the{µk} for oddk. Based on our experiments, good designs from the parameterization (7a)can be obtained

by constraining the zeroth moments of the primal and dual wavelet coefficient sequences. More specifically,

we found it to be quite effective to place these two moments in a single moment constraint functionmmm1 and

choose a corresponding tolerance ofγ1 = 2×10−5.

Due to the highly nonlinear nature of the abstract optimization problem (11), the solution found by our

method will most likely not be globally optimal. The particular solution obtained depends on the choice

of the initial pointxxx0. Therefore, the quality of the design can be improved by finding multiple (locally

optimal) solutions and then selecting the best one. As a practical matter, we found that an effective strategy

in this regard is to consider many initial points with lifting-filter coefficients of magnitude 2 or less, as the

best designs typically have coefficients in this range.

5. Design Results

Having introduced our design method, we are now ready to present some examples of filter banks gener-

ated with our method as well as some coding results obtained with these designs.Before proceeding further,

however, we first introduce some important details about the methodology employed in our experiments.

For all of our filter-bank designs, we selected the various design parameters as described in Section 4.3.

The correlation coefficientρ in (5) was chosen as 0.95, and five decomposition levels were used in the

coding gain computation (i.e.,L = 5). In our experiments, various image coding results were collected. For

test data, we employed the twenty-six reasonably-sized grayscale images from the JPEG-2000 test set [30].

Often, we focus our attention on the results associated with three of these images, namely thegold , sar2 ,

and target images. These three images were deliberately chosen, due to their significantly differing sta-

tistical properties. In particular, the autocorrelation sequence of thegold andsar2 images most closely

follow the separable and isotropic models, respectively, while the autocorrelation sequence of thetarget
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image follows neither the separable nor isotropic model. For coding images, our implementations of the

EZW [1], SPIHT [2], and MIC [31] coders were employed, all of whichutilize reversible integer-to-integer

transforms. Since similar results were obtained with all three coders, we present only results for the MIC

coder. In all of our coding experiments, a six-level wavelet decomposition was employed.

For convenience, in what follows, we use the notationl0/l1 to indicate that a filter bank has lowpass

and highpass analysis filters of lengthsl0 and l1, respectively. Also, for a lifting realization, we refer to

the number and lengths of its lifting filters as its lifting configuration. As a matter of notation, the lifting

configuration of a filter bank is denoted as{L0,L1, . . .}, whereLk is the length of thekth lifting filter.

Recall that the{Lk} are all odd for filter banks from parameterization (7a) and all even for filter banks

from parameterization (7b). So, the parameterization being used can be trivially determined from the lifting

configuration.

5.1. Choice of Objective Function

As indicated earlier, our design method allows for three possible objective functions as given in (8). We

also suggested that, of these possibilities, the joint case might be the most desirable. Now, we study the

impact of the choice of objective function in more detail.

To begin, for each of several different lifting configurations, we used our design method to construct

three filter banks, one for each of the three choices of objective function in (8). In so doing, we were able to

make an interesting observation. Namely, in all of our tests, optimizing with respect to each of the isotropic

and joint coding gains always led to the same optimal designs. This is due to the fact that, for filter banks

with reasonable analysis-filter frequency responses (i.e., at least onedual vanishing moment), the condition

Gsep > Giso always seems to be satisfied. Since the reason that this condition holds is notat all obvious, we

provide a detailed analysis later in Section 6 that explains whyGsep > Giso. Due to the preceding behavior,

maximizing the joint coding gain is equivalent, in a practical sense, to maximizing theisotropic coding

gain alone. With the above observation in mind, we combine the isotropic and jointcases of (8) in the

remainder of this discussion. After having designed each set of optimal filter banks as described above, we

then compared the coding performance of the filter banks within each set.

Although several sets of optimal filter banks were considered in our work, we present results for only a

representative subset herein. In particular, we consider two sets of optimal designs, one with analysis-filter

lengths of 9/7 corresponding to the lifting configuration{2,2,2,2}, and one with analysis-filter lengths of

6/14 corresponding to the lifting configuration{1,3,5}. The characteristics of these filter banks are shown

15



Table 1: Characteristics of the filter banks designed using different objective functions.

Transform G‡
sep G‡

iso b†
0 b†

1 Dual VM∗ Primal VM∗

9/7-sep 14.973512.17810.06280.03472, 5.79E-5 2, 8.31E-5

9/7-iso/jnt 14.932612.18090.05700.0351 2, 0.0041 2, 0.1250

6/14-sep 15.091211.92850.02520.0131 1, 0.0483 1, 0.6209

6/14-iso/jnt14.976612.07380.02120.0229 1, 0.0643 1, 0.1471
∗index and magnitude of the first moment of dual/primal wavelet coefficient
sequence with magnitude greater than 2×10−5; ‡coding gain (in dB) for a
six-level decomposition;†stopband energy as defined by (9)

in Table 1, where the transform-name suffixes “sep”, “iso”, and “jnt” designate the optimal designs obtained

using the separable, isotropic, and joint objective functions of (8), respectively.

Having produced several sets of filter banks as described above, wethen proceeded to compare the

coding performance of the filter banks within each set. For each set, we chose to measure the performance

of the optimal designs within the set relative to another previously-proposed filter bank having the same

lifting configuration and also known to be effective for image coding. In particular, the reference filter

banks used in the 9/7 and 6/14 cases are the 9/7 filter bank from JPEG 2000[3] and the 6/14 filter bank

from [32]. For each of the filter banks in each set, we compressed all twenty-six test images in a lossy

manner at several bit rates, and in each case, we measured the relativedifference in the distortions (in

PSNR) obtained with our design and the corresponding reference filter bank. The results are summarized in

statistical form in Table 2(a). In particular, we provide the mean and median relative differences in PSNR

distortion (with positive values corresponding to our designs outperforming the reference filter bank). As

well, we indicate the percentage of cases in which our filter bank outperforms the reference filter bank. From

Table 2(a), we can see that, in both the 9/7 and 6/14 cases, designs basedon the joint objective function

(designated by the suffix “jnt”) have better coding performance than those based on the separable objective

function. For example, in the 9/7 case, the joint design (i.e., 9/7-jnt) is able to outperform the reference

filter bank about 87% of the time, while the separable design (i.e., 9/7-sep) can only beat the reference filter

bank approximately 46% of the time. Similarly, in the 6/14 case, the joint design (i.e.,6/14-jnt) is able

to outperform the reference in about 61% of the cases, while the separable design is only able to beat the

reference in approximately 20% of the cases. In Table 2(b), we providethe actual distortions obtained for

three representative images, with the best result in each case being highlighted. Here, we can see that the

filter banks with the jointly-highest coding gains (i.e., the “jnt” case) performbetter overall for all three

images, in spite of the images having significantly different statistical properties. The above results clearly
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Table 2: Lossy compression results for the filter banks designed using different objective functions. (a) Summary statistical results

over all twenty-six test images and five bit rates. (b) Specific results forthree images.

(a)

Transform Mean (%)Median (%)Outperform (%)

9/7-sep -0.0049 -0.0001 46.15

9/7-iso/jnt 0.1488 0.1070 87.69

6/14-sep -0.5848 -0.5112 20.77

6/14-iso/jnt 0.0331 0.0279 61.54

(b)

Image gold target sar2

Comp. Ratio 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

9/7-sep 36.76 33.77 31.26 29.15 27.33 41.48 33.55 27.08 22.70 19.13 30.33 26.61 24.69 23.55 22.73

PSNR 9/7-iso/jnt 36.88 33.84 31.27 29.15 27.32 41.59 33.55 27.19 22.84 19.14 30.35 26.62 24.70 23.55 22.73

(dB) 6/14-sep 36.77 33.50 31.07 28.82 27.06 40.94 32.79 27.37 22.39 18.49 30.24 26.49 24.64 23.48 22.59

6/14-iso/jnt 36.96 33.78 31.15 28.83 27.26 41.68 32.91 27.00 22.43 18.26 30.39 26.49 24.78 23.46 22.68

demonstrate that there is a benefit to taking the isotropic coding gain into consideration during the design

process (as is done in the joint and isotropic cases above).

5.2. Design Examples and Coding Results

To demonstrate the effectiveness of our design method, we now presentsome examples of filter banks

generated by our method and evaluate their performance for image coding.In particular, five filter banks

constructed with our method are considered. For all of these optimal designs, the joint objective function

in (8) was employed, as this was shown earlier to be the most effective choice (i.e., better than the separable

case). For comparison purposes, we also consider the well-known 9/7 filter bank from JPEG 2000 [3],

which we refer to in this section by the name 9/7-J in order to distinguish it from another filter bank having

the same analysis-filter lengths. Several characteristics of our optimal designs as well as the 9/7-J filter bank

are shown in Table 3. Due to space constraints, the lifting-filter coefficientsfor our optimal designs are not

presented here, but this information can be obtained from [26, p. 47].

For the reasons discussed earlier in Section 4.1, in the case of our optimal designs, the moments of

interest only nearly (but not exactly) vanish. To be more precise, for the purposes of this discussion, we

deem any moment with magnitude less than 2× 10−5 to be nearly vanishing. Although the 9/7-J filter

bank has four primal and four dual (exactly) vanishing moments (as indicated in Table 3), this assumes

an implementation in exact arithmetic without quantization of the lifting-filter coefficients. In practice,
17



Table 3: Characteristics of the various filter banks

Transform {Lk} G‡
sep G‡

iso b†
0 b†

1 Dual VM∗ Primal VM∗ ĥ0(0) ĥ0(π) ĥ1(0) ĥ1(π)

9/7 {2,2,2,2} 14.93312.1810.057 0.035 2, 0.004 2, 0.125 1.25 2.1E-6 -9.1E-6 1.60

9/11 {4,2,2} 14.92812.1120.111 0.043 2, 0.276 2, 0.858 1.24 -5.6E-6 -9.4E-6 1.61

13/11 {4,2,2,2} 15.04112.2060.030 0.027 2, 0.068 2, 0.743 1.20 2.2E-5 -1.9E-5 1.67

17/11 {2,2,4,4} 15.11712.2180.031 0.028 2, 0.337 2, 0.572 1.19 9.9E-6 4.9E-6 1.69

13/15 {6,2,2} 14.64112.0740.094 0.035 2, 0.169 2, 0.566 1.35 -5.4E-6 -9.4E-6 1.49

9/7-J {2,2,2,2} 14.97312.1780.063 0.035 4, 9.560 4, 16.47 1.23 2.3E-9 3.9E-9 1.63
∗index and magnitude of the first moment of dual/primal wavelet coefficient sequence with magnitude
greater than 2×10−5; ‡coding gain (in dB) for a six-level decomposition;†stopband energy as defined
by (9)
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Figure 5: Synthesis scaling and wavelet functions. (a) Scaling and (b) wavelet functions for the 9/7 design; and (c) Scaling and (d)

wavelet functions for the 13/11 design.

however, arithmetic is not exact and these coefficients must also be quantized (since they are irrational).

Consequently, in any practical implementation of the 9/7-J filter bank, the moments that are supposed to

exactly vanish, only nearly vanish. To provide the reader with more insightinto these quantization effects,

instead of giving the theoretical values forĥ0(π) andĥ1(0) for the 9/7-J filter bank in Table 3 (which are

exactly zero), we give the actual ones in our implementation. Also, one might wonder to what extent the

smoothness of the basis functions associated with the filter bank are impacted by allowing moments to only

nearly vanish (instead of exactly vanish). In short, for all practical purposes, the smoothness is unaffected.

To demonstrate this, plots of the underlying synthesis scaling and wavelet functions for two of our optimal

designs are provided in Fig. 5. Observe that the functions in these plots are visibly quite smooth. That is to

say, for all practical purposes, the filter banks behave as if their momentsexactly vanished.

Now, we consider the lossy and lossless coding performance of the five filter banks constructed using

our method. To evaluate lossy coding performance, each filter bank was used to compress all twenty-six

test images at several bit rates. Then, we measured the relative difference between the distortions (in PSNR)

obtained with each of our optimal designs and the reference 9/7-J filter bank. The results are summarized
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Table 4: Lossy compression results for the various filter banks. (a) Summary statistical results over all twenty-six test images and

five bit rates. (b) Specific results for three images.
(a)

Transform Mean (%)Median (%)Outperform (%)

9/7 0.1488 0.1070 87.69

9/11 0.5371 0.0554 59.23

13/11 0.1863 0.0872 74.62

17/11 0.5804 0.2422 77.69

13/15 0.5936 0.1633 68.46

(b)

Image gold target sar2

Comp. Ratio 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

9/7 36.88 33.84 31.27 29.15 27.32 41.59 33.55 27.19 22.84 19.14 30.35 26.62 24.70 23.55 22.73

9/11 37.34 34.00 31.35 29.24 27.39 42.92 33.47 26.65 22.35 18.86 30.30 26.59 24.65 23.52 22.70

PSNR13/11 36.85 33.76 31.24 29.17 27.37 42.12 33.83 27.84 23.11 19.35 30.33 26.60 24.69 23.54 22.74

(dB) 17/11 37.17 33.91 31.32 29.17 27.35 42.81 34.00 27.88 23.19 19.46 30.33 26.62 24.69 23.53 22.74

13/15 37.39 33.95 31.27 29.25 27.34 43.11 33.45 26.84 22.42 18.94 30.37 26.57 24.70 23.54 22.67

9/7-J 36.75 33.75 31.23 29.16 27.32 41.46 33.54 27.07 22.70 19.16 30.32 26.61 24.69 23.55 22.73

in statistical form in Table 4(a). In particular, we provide the mean and medianrelative differences in

distortion (with positive values corresponding to our designs outperforming the 9/7-J filter bank). We also

indicate the percentage of cases in which our optimal design outperforms the9/7-J filter bank. From these

results, it is clear that all of our optimal designs outperform the 9/7-J filter bank in the majority of cases.

For example, our 9/7 optimal design outperforms the 9/7-J filter bank 87.69% of the time. Our four other

designs outperform the 9/7-J filter bank by margins ranging from about 59 to 78%. The above results

are extremely encouraging, given that the 9/7-J filter bank is well known for its exceptional lossy coding

performance. In Table 4(b), we provide the actual PSNR results obtained for a representative subset of the

test images, where the best result for each bit rate is highlighted. From thistable, we can see that, even for

images with different statistical properties (such as the three images considered here), our optimal designs

outperform the 9/7-J filter bank, sometimes by as much as 1.65 dB. Lastly, we would like to note that our

optimal designs also lead to good subjective image quality, comparable to that ofthe 9/7-J filter bank. In

Figure 6, we provide an example of the lossy image reconstructions obtainedwith the various filter banks.

From this figure, we can see that the quality of the image reconstructions produced by our optimal designs

is comparable to that obtained with the 9/7-J filter bank.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Parts of the lossy reconstructions obtained after coding thegold image at a compression ratio of 32:1 using the (a) 9/7,

(b) 9/11, (c) 13/11, (d) 17/11, (e) 13/15, and (f) 9/7-J filter banks.

As can be seen from Table 3, our 9/7 design and the 9/7-J filter bank havethe same lifting configuration.

While the 9/7-J filter bank has four dual and four primal (exactly) vanishing moments, our 9/7 design has

only two dual and two primal nearly-vanishing moments and slightly higher isotropic coding gain as well.

With our design approach, by reducing the number of constrained moments and relaxing the requirement

that moments be exactly zero, we are able to gain additional freedom, which ultimately allows a higher-

performance filter bank to be constructed.

It is also interesting to note that, amongst all of the filter banks that we designed from parameteriza-

tion (7b), we were not able to find any that outperforms the 9/7-J filter bankfor lossy coding. This is likely

due to the fact that (7b) is an incomplete parameterization of all PR linear-phase FIR 1D two-channel filter

banks with even-length analysis/synthesis filters, while (7a) is a complete parameterization of all PR linear-

phase FIR 1D two-channel filter banks with odd-length analysis/synthesisfilters (up to a normalization).

In our work, we also evaluated the lossless coding performance of the various filter banks. Each of the

filter banks was used to losslessly compress all twenty-six test images. The results are shown in Table 5.

In particular, we provide the normalized bit rate (i.e., the reciprocal of compression ratio) for three images

as well as the mean taken over all twenty-six test images. Evidently, all of ourfilter banks perform better

overall than the 9/7-J filter bank for lossless coding, with the 9/11 design yielding the best results.
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Table 5: Lossless compression results for the various filter banks

Normalized Bit Rate

Image 9/7 9/11 13/11 17/11 13/15 9/7-J

gold 0.56660.5630 0.56520.56570.56440.5673

target 0.30860.2949 0.29640.31300.29750.3173

sar2 0.63510.6349 0.63530.63530.63520.6350

Mean† 0.48740.4771 0.47870.48700.48280.4880
†mean taken over all twenty-six test images

5.3. Robustness of the Design Method

Since our proposed design method involves a rather complex optimization, a few comments are worth-

while regarding the robustness of the method. In our work, we have run hundreds of design test cases, using

many combinations of lifting configurations (i.e., number of lifting filters and lifting-filter lengths), design

parameters (i.e., frequency-response and vanishing-moment constraint parameters) and initial points for op-

timization, and never once has our method been observed to fail to converge to a solution. Furthermore,

the solution obtained has always been both feasible and optimal. Additional experimentation has shown

that small perturbations in the initial point either have no effect on the final (locally) optimal solution or

serve only to displace it to a nearby (locally) optimum point, with the first of these two scenarios being

far more likely. Therefore, from a practical point of view, our method has been demonstrated to be quite

robust/stable. This said, there is some theoretical justification for this good behavior. In each reduced-order

problem, we use a linear Taylor-series approximation of numerous functions about the current operating

point. Since these functions are sufficiently smooth that their first-order partial derivatives always exist,

the Taylor approximations are always well defined. To ensure the validity of the solution obtained to each

reduced-order problem, the solution is restricted to a small region in which theTaylor approximations are

accurate. This restriction is imposed by theβ0 parameter of our design method. As long asβ0 is chosen

sufficiently small (e.g., using the value we suggested earlier), the Taylor approximations should always be

sufficiently accurate to ensure the validity of the intermediate/final results produced by our method as well

as guarantee its convergence.

6. Analysis of the Coding Gain

As was noted earlier in Section 5.1, during the development of our proposed design method, we observed

that the filter banks obtained both at the intermediate and final stages of our method always seem to have
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higher coding gain with respect to the separable model than with respect to the isotropic one, regardless of

which of the three objective functions in (8) is employed. In what follows, we study this behavior in detail

and explain the reason for it. Since the results of our subsequent analysis have application beyond the class

of filter banks associated with our design method, we consider a supersetof this class. In particular, we

consider the class of wavelet filter banks constructed from 1D two-channel PR real-coefficient filter banks

with at least one dual vanishing moment. This class of filter banks includes most (if not all) separable filter

banks that are commonly used in practical image-coding systems.

To begin, let us examine the coding gain formula given by (5). First, we makea few observations

regarding the quantities{Ak}M−1
k=0 and{Bk}M−1

k=0 in this formula. Since each of the{Ak}M−1
k=0 is the ratio

between two variances (which are nonnegative real numbers) andAk = 0 implies thathk is the zero sequence

(which would preclude PR), we have thatAk > 0. For similar reasons, each of the{Bk}M−1
k=0 satisfiesBk > 0.

Next, we make a comment concerning the correlation coefficientρ appearing in (6). In the remainder of our

analysis, we exclude the possibility thatρ ∈ {0,1}, since these cases are of no practical value and would

only serve to complicate the subsequent analysis. Since in practiceρ is typically chosen asρ ∈ [0.90,0.95],

we emphasize this range of values in our analysis. This said, however, our results are not strictly limited to

ρ in this range. So long asρ is not too far outside this range, all of our results should still hold. Let us now

consider how the coding gain is affected by the choice of image model. From (5), we observe that the only

dependence that the coding gainG has on the image model embodied byr is in the value of the{Ak}M−1
k=0 .

Sinceαk > 0, G increases as the elements of{Ak}M−1
k=0 decrease. With this in mind, we would like to more

carefully consider how the{Ak}M−1
k=0 are affected by the choice of image model.

Before proceeding further, we need to define several new quantities that will be used throughout the

remainder of our analysis. Thekth factor in the productG from (5) is denoted asGk (i.e., Gk = ( αk
AkBk

)αk).

Hence,G = ∏M−1
k=0 Gk. Let Gk,sep andGk,iso denote the quantityGk in the separable and isotropic cases,

respectively. Define the quantities:∆Ak = Ak,iso −Ak,sep, ∆r = r iso − rsep, andG̃k = Gk,iso/Gk,sep.

Consider the expression for{Ak}M−1
k=0 given by (5). Through a change of variable, we can rewrite this

expression in a more convenient form asAk = ∑ppp∈Z2 r[ppp]ck[ppp], whereck = h′k ⋆h′k (i.e., the autocorrelation

of h′k). Using the fact that the Fourier transform preserves inner productsandĉk =
∣∣∣ĥ′k

∣∣∣
2

(sinceh′k is real),

the preceding equation can be rewritten as

Ak = 1
4π2

Z

[−π,π)2
r̂(ωωω)ĉk(ωωω)dωωω = 1

4π2

Z

[−π,π)2
r̂(ωωω)

∣∣∣ĥ′k(ωωω)
∣∣∣
2
dωωω. (15)

Now, we make some observations regarding ˆr and ĉk =
∣∣∣ĥ′k

∣∣∣
2
. One can easily verify that the sequencer
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has 8-fold symmetry in both the separable (i.e.,r = rsep) and isotropic (i.e.,r = r iso) cases. That is,r has

quadrantal symmetry while additionally satisfyingr[n0,n1] = r[n1,n0]. Thus, it follows that ˆr has quadrantal

symmetry in both the separable and isotropic cases. Moreover, since all ofthe filters{h′k}M−1
k=0 are separable,

their autocorrelation sequences{ck}M−1
k=0 are also separable. Due to the separability ofh′k, the sequenceck

has quadrantal symmetry, which in turn implies that ˆck has quadrantal symmetry. Due to the quadrantal

symmetry of ˆr andĉk =
∣∣∣ĥ′k

∣∣∣
2
, we can rewrite (15) as

Ak = 1
π2

Z

[0,π)2
r̂(ωωω)

∣∣∣ĥ′k(ωωω)
∣∣∣
2
dωωω. (16)

Thus, we have that

∆Ak = 1
π2

Z

[0,π)2
∆̂r(ωωω)

∣∣∣ĥ′k(ωωω)
∣∣∣
2
dωωω, (17)

where∆̂r = r̂ iso − r̂sep.

Now, we seek to determine a formula for the quantity ˆr in (16) and (17) for the separable and isotropic

cases. The 1D sequence from whichrsep is composed isrsep,1d[n] = ρ|n|, which has the Fourier transform

r̂sep,1d(ω) = 1−ρ2

1−2ρcosω+ρ2 . Thus, the Fourier transform ofrsep is simply

r̂sep(ω0,ω1) = (1−ρ2)2

(1−2ρcosω0+ρ2)(1−2ρcosω1+ρ2)
. (18)

Now, we consider the Fourier transform ofr iso. Using the 8-fold symmetry ofr iso, we can show that

r̂ iso(ω0,ω1) = 1+θ(ω0,ρ)+θ(ω1,ρ)+θ(ω0 +ω1,ρ
√

2)+θ(ω1−ω0,ρ
√

2)

+4
∞

∑
i=2

i−1

∑
k=1

ρ
√

i2+k2[
cos(iω0)cos(kω1)+cos(kω0)cos(iω1)

]
, (19)

whereθ(ω,α) = 2αcosω−2α2

1−2αcosω+α2 .

In passing, we would like to briefly make note of an alternative scheme for computing ˆr iso. By observing

that the Fourier transform of the functionf (ttt) = ρ‖ttt‖2 is f̂ (ωωω) = −2π(ln2 ρ +‖ωωω‖2
2)

−3/2 lnρ [33, Eqn. (3)]

and r iso is a sampled version off , we can conclude ˆr iso(ωωω) = −2π(lnρ)∑kkk∈Z2[ln2 ρ + ‖ωωω−2πkkk‖2
2]
−3/2.

Experimentally, however, this formula for ˆr iso has been observed to converge more slowly than (19), and is

therefore less useful for computational purposes.

For future reference, ˆrsep and ˆr iso are plotted in Figs. 7 and 8 forρ = 0.95. In each case, only the first

quadrant is shown as the remainder of the plot can be trivially deduced from quadrantal symmetry. For each

of r̂sep and ˆr iso, the general shape of the plot remains the same for allρ ∈ [0.90,0.95], but the decay rate
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increases with increasingρ. Also, ∆̂r is plotted forρ = 0.95 in Fig. 9. The gray-shaded region in the contour

plot corresponds to where the plotted function is negative. Asρ increases, the decay rate of̂∆r increases,

and there is a larger region wherê∆r is positive. In all of the above plots, the scale of the horizontal and

vertical axes have been normalized so that a value of one correspondsto the Nyquist frequency.

Now, we will use the expressions forAk and∆Ak in (16) and (17) in order to gain some additional insight

into the behavior of the coding gain. In what follows, we employ the definitionsintroduced in Section 3

(e.g.,L, M = 3L+1, level, orient, etc.) andk is used to denote the channel index, wherek∈ {0,1,2, . . . ,3L}.

For three filter banks, we have computed the various coding-gain-relatedquantities forL ∈ {1,2,3,4}
with ρ = 0.95, the results of which can be found in Table 6. (Note that the coding gainsin this table are

stated as unitless quantities, and not in dB.) The first filter bank is an orthonormal system with ideal filters.

This corresponds to a system with 1D prototype filters each having a gain of
√

2 and 0 in their passbands

and stopbands, respectively. (Thus, we have thath′k has passband and stopband gains of 2level(k)+1 and 0,

respectively.) The other two filter banks are the well-known Haar and 9/7 [3] systems, and were chosen for

comparison purposes as examples of systems with nonideal filters. The nonideal filter banks are normalized

such that their 1D prototype filters have DC/Nyquist gains of
√

2, as this facilitates more direct comparisons

with the ideal filter bank under consideration. Note that there is no loss of generality in considering only

this particular normalization, as the coding gain for PR filter banks is invariantto scaling and translation of

the analysis/synthesis filter impulse responses. We will refer to the results in the above table in some of the

discussion that follows.

Now, we more carefully examine the formula for the coding gainG in (5). As k increases (which

corresponds to level(k) increasing),αk decays exponentially to zero (i.e.,αk = 4− level(k)−1). This implies

thatGk rapidly approaches one ask increases. Thus (sinceG= ∏M−1
k=0 Gk), the most significant contributions

to the coding gainG come fromGk associated with smallk, especially thosek associated with the 0th level

(i.e., k ∈ {0,1,2} or k ∈ {0,1,2,3} for L ≥ 2 andL = 1, respectively). Ask increases, the numerator and

denominator ofG̃k =
Gk,iso

Gk,sep
each rapidly approach one. Consequently,G̃k also rapidly approaches one. Thus

(sinceGiso/Gsep = ∏M−1
k=0 G̃k), any difference in the separable and isotropic coding gains is most strongly

influenced byG̃k for smallk. Furthermore, simple algebraic manipulation shows that

G̃k =
(

Ak,sep

Ak,sep+∆Ak

)αk
=

(
1+ ∆Ak

Ak,sep

)−αk
. (20)

Consequently,Gk,sep andGk,iso differ most when|∆Ak| is large relative toAk,sep (i.e., |∆Ak|
Ak,sep

is large), with

Gk,sep > Gk,iso (i.e., Gsep favored) if∆Ak > 0 andGk,sep < Gk,iso (i.e., Giso favored) if∆Ak < 0. All of the
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above observations can be seen to be consistent with the data in Table 6.

In what follows, it is instructive to consider the ideal filter bank introducedabove. In this case, from (16)

and (17),Ak and∆Ak are simply (up to scale) the integrals of ˆr and∆̂r over the first-quadrant portion of the

passband of the ideal filterh′k. In particular, we haveAk =
β2

k
π2

R

Pk
r̂(ωωω)dωωω and∆Ak =

β2
k

π2

R

Pk
∆̂r(ωωω)dωωω, where

Pk is the first-quadrant portion of the passband ofh′k, andβk is the passband gain ofh′k. To envision what the

result of such integrations will be, it is helpful to imagine the frequency-plane tiling of Fig. 4 superimposed

on the plots of ˆrsep, r̂ iso, and∆̂r in Figs. 7, 8, and 9.

Considerk = 0 (i.e., theHH0 band) in the case of the ideal filter bank. Forωωω in the (HH0) passband,

r̂sep(ωωω) and ˆr iso(ωωω) are both very small but their differencê∆r(ωωω) is relatively large (compared to ˆrsep(ωωω) and

r̂ iso(ωωω)). So, in (20),Ak,sep is small and ∆Ak
Ak,sep

is large in magnitude and positive. Consequently, from (20),

G̃k is significantly less than one, meaning thatGsep is very strongly favored overGiso. A similar argument

also applies to the otherHH bands, but the influence on the coding gainG is less significant in these cases

sinceG̃k rapidly approaches one ask increases. Now consider what happens in the case of nonideal filters.

Even in this case, it is very difficult for the above qualitative behavior to change. To obtain significantly

different behavior,̂h′k would have to be very large along the axes where∆̂r is most negative (and therefore

most favorable to higherGiso). Due to the presence of at least one dual vanishing moment, however,ĥ′k must

be zero along both axes. So, even in case of nonideal filters,Gsep is still likely to be strongly favored by the

HH bands.

In the case of theLH andHL bands, due to the presence of at least one dual vanishing moment,ĥ′k(ω0,ω1)

must be zero along exactly one ofω0 = 0 or ω1 = 0. We observe that̂∆r (shown in Fig. 9) is largest in

magnitude along the axes, with large positive values near the origin and largenegative values elsewhere

on the axes. Thus, in the calculation of∆Ak, the large positive values near the origin in̂∆r are effectively

cancelled sinceh′k is zero along one axis, and we are left with large negative values along theother axis.

This leads to∆Ak < 0 so thatG̃k > 1 and theLH andHL bands favorGiso overGsep. Lastly, we note that

theLH andHL subbands do not have as much impact on the coding gainG as theHH bands. This is due to

that factAk,sep is larger for theLH andHL subbands, making it more difficult for|∆Ak| to be large relative

to Ak,sep.

An examination of the data for the filter banks in Table 6 shows that all of observations made above are

consistent with this data. For example, the coding gain is most strongly influenced by theHH bands, with

HH0 figuring most prominently. TheLL andHH bands favorGsep (i.e.,G̃k < 1), while theLH andHL bands
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Figure 7: Contour plot of ˆrsep for ρ =

0.95.
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Figure 8: Contour plot of ˆr iso for ρ =

0.95.
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Figure 9: Contour plot of̂∆r for ρ =

0.95.

favorGiso (i.e.,G̃k > 1).

6.1. Additional Commentary

In addition to the three filter banks for which results are presented (in Table6), we have also considered

quite a number of other filter banks, some of which were considered for adoption in the JPEG 2000 Part-1

standard [3], while others were produced at various stages of our optimal design method. Similar trends (to

those described above) were also found in the case of these other filter banks. Moreover, we were not able

to find any filter bank (belonging to the class of filter banks under consideration here) for whichGiso > Gsep.

Based on our analysis, there is good reason to believe that such filter banks probably do not exist.

As an aside, we note that, for the class of filter banks being considered here, if the constraint of having at

least one dual vanishing moment is dropped, it is possible forGiso = Gsep. For example, this result is trivially

obtained by the PR system with the 1D prototype analysis filtersH0(z) = 1 andH1(z) = z. So, obviously,

for filter banks outside the class being considered here, the conditionGsep > Giso may be violated.

7. Conclusions

In this manuscript, we have proposed a novel optimization-based method forthe design of wavelet

filter banks for image coding. Our method yields linear-phase PR systems with high coding gain, good

frequency selectivity, and certain prescribed vanishing-moment properties. Several examples of filter banks

constructed using our method were presented and shown to be highly effective for image coding. In particu-

lar, our optimal designs outperformed the well-known 9/7 filter bank from theJPEG-2000 standard for both

lossy and lossless compression, an impressive feat given that this filter bank is known for its exceptional
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Table 6: Intermediate coding gain quantities withρ = 0.95 for the (a) ideal (b) Haar, and (c) 9/7 filter banks; and the final coding

gains for the (d) ideal, (e) Haar, and (f) 9/7 filter banks.
(a)

k Band Ak,sep Ak,iso ∆Ak
∆Ak

Ak,sep

1
αk

Gk,sep Gk,iso G̃k

0 HH0 0.001 0.025 0.024 22.85 4 5.53 2.50 0.45

1 HL0 0.064 0.039 -0.024 -0.378 4 1.98 2.23 1.12

2 LH0 0.064 0.039 -0.024 -0.378 4 1.98 2.23 1.12

3 LL0 3.870 3.894 0.024 0.006 4 0.71 0.71 0.99

3 HH1 0.004 0.050 0.046 10.95 16 1.40 1.20 0.85

4 HL1 0.250 0.132 -0.117 -0.470 16 1.09 1.13 1.04

5 LH1 0.250 0.132 -0.117 -0.470 16 1.09 1.13 1.04

6 LL1 14.76 15.07 0.307 0.020 16 0.84 0.84 0.99

6 HH2 0.052 0.306 0.254 4.866 64 1.04 1.01 0.97

7 HL2 1.680 0.958 -0.721 -0.429 64 0.99 1.00 1.00

8 LH2 1.680 0.958 -0.721 -0.429 64 0.99 1.00 1.00

9 LL2 53.98 56.54 2.557 0.047 64 0.93 0.93 0.99

9 HH3 0.752 2.333 1.581 2.103 256 1.00 0.99 0.99

10 HL3 11.62 7.325 -4.300 -0.369 256 0.99 0.99 1.00

11 LH3 11.62 7.325 -4.300 -0.369 256 0.99 0.99 1.00

12 LL3 179.7 197.4 17.71 0.098 256 0.97 0.97 0.99

(b)

k Band Ak,sep Ak,iso ∆Ak
∆Ak

Ak,sep

1
αk

Gk,sep Gk,iso G̃k

0 HH0 0.002 0.030 0.027 11.01 4 4.47 2.40 0.53

1 HL0 0.097 0.069 -0.027 -0.282 4 1.78 1.94 1.08

2 LH0 0.097 0.069 -0.027 -0.282 4 1.78 1.94 1.08

3 LL0 3.802 3.830 0.027 0.007 4 0.71 0.71 0.99

3 HH1 0.020 0.100 0.079 3.862 16 1.27 1.15 0.90

4 HL1 0.540 0.383 -0.156 -0.289 16 1.03 1.06 1.02

5 LH1 0.540 0.383 -0.156 -0.289 16 1.03 1.06 1.02

6 LL1 14.10 14.45 0.343 0.024 16 0.84 0.84 0.99

6 HH2 0.237 0.622 0.384 1.618 64 1.02 1.00 0.98

7 HL2 3.424 2.579 -0.844 -0.246 64 0.98 0.98 1.00

8 LH2 3.424 2.579 -0.844 -0.246 64 0.98 0.98 1.00

9 LL2 49.34 52.02 2.679 0.054 64 0.94 0.94 0.99

9 HH3 2.702 4.508 1.806 0.668 256 0.99 0.99 0.99

10 HL3 20.39 16.57 -3.814 -0.187 256 0.98 0.98 1.00

11 LH3 20.39 16.57 -3.814 -0.187 256 0.98 0.98 1.00

12 LL3 153.9 170.4 16.53 0.107 256 0.98 0.98 0.99

(c)

k Band Ak,sep Ak,iso ∆Ak
∆Ak

Ak,sep

1
αk

Gk,sep Gk,iso G̃k

0 HH0 0.001 0.024 0.023 21.81 4 5.40 2.47 0.45

1 HL0 0.064 0.040 -0.023 -0.360 4 1.97 2.20 1.11

2 LH0 0.064 0.040 -0.023 -0.360 4 1.97 2.20 1.11

3 LL0 3.811 3.834 0.023 0.006 4 0.72 0.72 0.99

3 HH1 0.008 0.090 0.081 9.265 16 1.35 1.16 0.86

4 HL1 0.352 0.199 -0.153 -0.434 16 1.06 1.10 1.03

5 LH1 0.352 0.199 -0.153 -0.434 16 1.06 1.10 1.03

6 LL1 14.12 14.44 0.314 0.022 16 0.84 0.84 0.99

6 HH2 0.098 0.511 0.412 4.176 64 1.03 1.00 0.97

7 HL2 2.213 1.343 -0.869 -0.392 64 0.98 0.99 1.00

8 LH2 2.213 1.343 -0.869 -0.392 64 0.98 0.99 1.00

9 LL2 49.61 52.10 2.496 0.050 64 0.93 0.93 0.99

9 HH3 1.325 3.652 2.327 1.755 256 0.99 0.99 0.99

10 HL3 14.44 9.829 -4.615 -0.319 256 0.98 0.99 1.00

11 LH3 14.44 9.829 -4.615 -0.319 256 0.98 0.99 1.00

12 LL3 157.4 173.2 15.84 0.100 256 0.97 0.97 0.99

(d)

L Gsep Giso

1 21.84 12.54

2 36.54 19.45

3 37.64 19.83

4 36.23 19.07

(e)

L Gsep Giso

1 10.25 6.49

2 16.70 10.00

3 18.25 10.86

4 18.50 11.01

(f)

L Gsep Giso

1 15.25 8.71

2 27.44 14.56

3 30.76 16.16

4 31.34 16.46
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lossy coding performance. Our design method supports the maximization of thecoding gain with respect

to the separable or isotropic image model, or jointly with respect to both models. Through experimental

results, we have demonstrated that the joint maximization of both coding gains leads to filter banks with

improved coding performance on average, relative to simply maximizing the separable coding gain as is

typically done.

Also, in this manuscript, we have studied the coding gain of separable 2D wavelet filter banks derived

from 1D two-channel real-coefficient PR filter banks with at least one dual vanishing moment. We have

explained why, for such filter banks, it is extremely difficult (if not impossible) for the isotropic coding

gain to exceed the separable coding gain. The new insight provided by our analysis may prove helpful

in the design of improved filter banks for image coding. For example, if one is trying to simultaneously

maximize the minimum ofGsep andGiso as in the case of our work, our analysis shows that this is practically

equivalent to optimizingGiso alone.
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A. Proofs

Theorem 1. Consider a symmetric/antisymmetric sequence h defined onZ of the form h[n] = sh[2c−n],

where c∈ 1
2Z is the center of symmetry and s∈ {−1,1} (i.e., s= 1 and s= −1 correspond the symmetric

and antisymmetric cases, respectively). Let mk denote the kth moment of h. For s= 1: if mk = 0 for

k ∈ {0,1, . . . ,2N}, then m2N+1 = 0. For s= −1: m0 = 0 and if mk = 0 for k ∈ {1,2, . . . ,2N + 1}, then

m2N+2 = 0.

Proof. Suppose thats= 1. Due to the symmetry properties ofh, we have that̂h(ω)= ∑n∈Z h[n]e− jcω cos([n−
c]ω). Taking theℓth derivative ofĥ (via the Leibniz rule) and using the fact thatmℓ = jℓĥ(ℓ)(0), we obtain

mℓ = ∑
k∈{0,1,...,⌊ℓ/2⌋}

αℓ,k(c) fk(c), (21)

whereαℓ,k(c) = (−1)ℓ
(

ℓ
2k

)
(−c)ℓ−2k and fk(c) = ∑n∈Z h[n](n− c)2k. Thus, from the preceding equation

we havem0 = α0,0(c) f0(c), m1 = α1,0(c) f0(c), m2 = α2,0(c) f0(c) + α2,1(c) f1(c), m3 = α3,0(c) f0(c) +

α3,1(c) f1(c), . . ., andm2L = ∑L
k=0 α2L,k(c) fk(c). From this, we can deduce (by induction) that

mℓ = 0 for ℓ ∈ {0,1, . . . ,2L} implies fℓ(c) = 0 for ℓ ∈ {0,1, . . . ,L}. (22)
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Suppose now thatmℓ = 0 for ℓ ∈ {0,1, . . . ,2L} so that (22) applies. Since (22) applies, we have from (21)

that m2L+1 = ∑k∈{0,1,...,⌊(2L+1)/2⌋} α2L+1,k(c) fk(c) = ∑L
k=0 α2L+1,k(c) fk(c) = 0. Thus, we have proven the

desired result fors= 1.

Suppose thats= −1. Trivially, m0 = 0, asĥ(0) = 0 (due to the antisymmetry ofh). The remainder of

the proof is obtained in a manner similar to thes= 1 case above.
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