Image Morphing with the Beier-Neely Method

Feng Zhu

University of Victoria

fengzhu®uvic.ca

October 29, 2015

Feng Zhu (UVic)

Image Morphing

October 29, 2015

1/

29

@ Introduction to Image Morphing

© Beier-Neely Image Morphing Algorithm
© Software Implementation

@ Result

© Analysis

@ Conclusion

Feng Zhu (UVic) Image Morphing October 29, 2015 2/29

Image Morphing

o Image Morphing is an image processing technique to turn one image
into another through a smooth transition.

@ Source image is where the morphing starts.
@ Target Image is where the morphing ends.
@ Intermediate frames are the morphed images.

(c)

Figure 1.1 : Image morphing

Feng Zhu (UVic) Image Morphing October 29, 2015 3/29

Application: Movie Special Effects

@ First movies with morphing

» Willow, 1988
» Indiana Jones and the Last Crusade, 1989

@ First music video with morphing
» Black or White, Michael Jackson, 1991

@ Disney animations with speeding production
» Mickey Mouse
» SpongeBob SquarePants
» Gopher Broke

Feng Zhu (UVic) Image Morphing October 29, 2015 4 /29

Morphing Techniques

@ Wolberg, Mesh-Based Image Morphing, 1990.

Relates image features with meshes; Interpolate between mesh nodes
to generate frames in the transformation.

@ Beier and Neely, Feature-Based Image Morphing, 1992.
Relates image features with directed line segments; Interpolate between
line segments to generate frames.

@ Wolberg, Thin-Plate Spline Interpolation Method, 1998.

Apply surface interpolation over scattered data; Find a “minimally
bended” smooth surface passing through all given points.

Feng Zhu (UVic) Image Morphing October 29, 2015 5/29

Image Blending

@ Pixel-by-pixel color interpolation

@ Produce cross-dissolving visual effect

Figure 2.1 : Image cross-dissolving

o artificial, non-physical, with “double image” effect

e apply image warping to align object features in both images

Feng Zhu (UVic) Image Morphing October 29, 2015 6 /29

Image Warping

@ Warping performs coordinate transformations to distort spacial
configuration of images.

@ Warping maps each pixel from one position to another.

Figure 2.2 : Image warping

Feng Zhu (UVic) Image Morphing October 29, 2015

Image Morphing in General

@ Image Morphing = Image warping + Image blending

¥ W7

Warp ® _ L
~ & 3
Lo .
Source Target

Morphed Image

Feng Zhu (UVic) Image Morphing October 29, 2015 8 /29

Image Morphing in General

Algorithm 1 General image morphing algorithm
Input: source image S, target image D
Output: a sequence of morphed images {/t}%zo
for each intermediate frame at stage t € [0,1] do
Warp image S: Ws = warp(S, t)
Warp image D: Wp = warp(D, t)
Blend Ws and Wp: I; = blend(Ws, Wp, t)
endfor

Since image blending is the same for all morphing algorithms, the
difference lies in the image warping process.

Feng Zhu (UVic) Image Morphing October 29, 2015

Beier-Neely Image Morphing

Feature-based image morphing technique:
@ Performs warping by using object features
o Features are user-specified directed line segments

@ One-to-one correspondence between features

Eerfrcsfanjrvos A0 BerTnasBan vt wo

Figure 2.4 : Feature line segments

Feng Zhu (UVic) Image Morphing October 29, 2015

Liner Line-Segment Interpolation

@ Morphing result consists of a sequence of intermediate frames
@ Each frame is computed with its corresponding feature line segments

@ Interpolate between feature line segments in source and target images

Feng Zhu (UVic) Image Morphing October 29, 2015 11 /29

Warp with One Line-Segment Pair

@ v: the perpendicular distance from X to line PQ
@ \: the distance from P to the projection of X
Q MI[PQIl = XN/|IP'Ql

Feng Zhu (UVic) Image Morphing October 29, 2015 12 /29

Warp with One Line-Segment Pair

LL

|

IF

Figure 2.5 : One line-segment pair example

Feng Zhu (UVic) Image Morphing October 29, 2015 13 /29

Warp with Multiple Line-Segment Pairs

@ Each feature line segment is
associated with a weight

determining the influence
. length?

o weight= | ————

& a + distance

@ a, b, and p control the
influence of distance, weight,
and length

Original Image Warped Image

Figure 2.6 : Transform with multiple features

Feng Zhu (UVic) Image Morphing October 29, 2015 14 /29

Warp with Multiple Line-Segment Pairs

Figure 2.7 : Multiple line-segment pair example

Feng Zhu (UVic) Image Morphing October 29, 2015 15 /29

Select features <7Input images ;

images The software consists of three
Features progra ms:
Morph images @ select_features

@ morph_images
Frames

@ frames_to_video

Produce Video

Figure 3.1 : Software structure

Feng Zhu (UVic) Image Morphing October 29, 2015 16 / 29

Tools and Libraries

@ Linux system with C++ a compiler that supports C++ 11
@ Libraries such as SPL, CGAL, OpenGL, GLUT, and STL
@ Free software FFmpeg

@ Versions of tools verified to work:

GCC 4.8.2

SPL 1.1.15

CGAL 4.5.2

OpenGL/GLUT 3.0
FFmpeg 2.5.3

Feng Zhu (UVic) Image Morphing October 29, 2015 17 /29

select_features Program

o Graphical User Interface (GUI): Manually select feature line segments
o Input: image files, names of corresponding feature data files

@ Output: data files with feature line segments

Feng Zhu (UVic) Image Morphing October 29, 2015 18 /29

Feature Data File

L] manl.dat
o]

132 333 171 356
183 358 262 331
325 337 396 340
404 340 424 311
298 326 298 216

218 144 287 147
7031 147 II5 144

Figure 3.2 : Feature data file

@ Entry indicates the number of features in the file

@ Each line contains the endpoints of a feature line segment

Feng Zhu (UVic) Image Morphing October 29, 2015 19 /29

morph_images & frames_to_video Programs

morph_images:
o Input: image files, corresponding feature data files
@ Output: a sequence of intermediate frames (e.g., morphed images)
@ Options: number of frames, basename, warping parameters, ...
frames_to_video:
@ Input: intermediate frames

@ Qutput: a video displaying the morphing result

Feng Zhu (UVic) Image Morphing October 29, 2015 20 /29

Morphing Result

Feng Zhu (UVic) Image Morphing October 29, 2015

@ Achieve satisfactory morphing visual effect
@ Performance with 720x486 size, 100 features

e 2 min/frame on SGI 4D25 (CPU 20MHz, Memory 64 MB)
e 2 secs/frame on ASUS X455L (CPU 3.1GHz, Memory 8GB)

o Advantages and Disadvantages:
o Expressive: Only the user-specified features affect the morphing, and
others are blended smoothly
o Efficient: Drawing line segments VS placing dozens of mesh points
e Speed: Global computation, all the line segments need to be referenced
for every pixel, slows down the speed

Feng Zhu (UVic) Image Morphing October 29, 2015 22 /29

Conclusion

o Summary

o Beier-Neely morphing algorithm produces reasonable results

e Our software has implemented the Beier-Neely method effectively
@ Future Work

o Automatic feature detection to reduce the amount of work

o Combine points, curves, and line segments

Feng Zhu (UVic) Image Morphing October 29, 2015 23 /29

References

[@ T.Beier and S. Neely (1992)
Feature-Based Image Metamorphosis
ACM SIGGRAPH Computer Graphics 26(2), 35-42

[§ G. Wolberg (1998)
Image morphing: a survey
The visual computer 14(8), 360-372

[@ A. V. Feciorescu (1020)
Image morphing techniques
Journal of Industrial Design and Engineering Graphics 6(1), 25-28

Feng Zhu (UVic) Image Morphing October 29, 2015

Linear Line-Segment Interpolation

Q Qi
]
P Q
*—»
P Pi ¢
Source Image Intermediate Frame i Target Image

Figure 6.1 : Linear interpolation

Calculate feature line segments for each intermediate frame
Given PQ and P'Q’, generate {P,-Q,-},{V:1 by interpolation
Incremental step AP: AP =(P—P')/N, AQ =(Q — Q")/N
For P;Q;: Pi=P+ APi,and Q; = Q + AQi

Feng Zhu (UVic) Image Morphing October 29, 2015 25/

Calculations

v - perpendicular(Q’ — P')

X/:P/+ . I—PI + ’ !
u-(Q) Q= P[] @
where A
= 2
TP ¥
(X — P) - perpendicular(Q — P) (3)
vV = bl
1Q — PJ|
(X -P)-(Q—P)
A=) *
1@ — P|| x

Feng Zhu (UVic) Image Morphing October 29, 2015

Parameters a, b, p

b
lengthP
weight = (eng)) (5)

a + distance

@ a determines the smoothness and precision of the user’'s control over
the warping. A lower value of a implies a tighter control but less
smooth warping effect. The bigger the a is, the less effect of distance
is. (a>0)

@ b determines how the influence of different feature line segments
decays with distance. A large b means a pixel will only be affected by
the closest feature line segment, and a zero value implies every
feature line segment has the same relative influence. (b €[0.5, 2])

@ p determines how the length of a feature line segment influences the
weight. A zero value means length has no influence and a higher
value means weight is affected more by length. (p €[0, 1])

Feng Zhu (UVic) Image Morphing October 29, 2015 27 /29

Detailed Algorithm

Algorithm 2 Algorithm for transformation with multiple feature line-
segment pairs

Input: source image S, feature line-segment set P1Q1, P2 Qo, ..., PnQn
Output: destination image D

1: for each pixel with position X do
Dsum = (070): |/Vsum =0
for each P;Q; do
calculate u and v for X based on P;Q;
find X’ with the u and v
calculate displacement d; = X' — X
calculate the weight weight = (length? /(a + distance))®
Dsym = diw + Dsym
Wsum = w + Weym
10: endfor
11: X' = X + Deym/Wsum
12: copy the value of the pixel at X’ to that of the pixel at X: D(X) =

»

© o N g W

Feng Zhu (UVic) Image Morphing October 29, 2015 28 /29

Special Cases

Algorithm 3 Special cases

1: if X’ falls outside the image domain then
2. find the pixel coordinate X{ closest to X’ on the boundary of the
source image

3: update X": X' =X

4. endif

5: if X’ contains non-integer coordinate then

6: find the pixel coordinate X] by interpolating the neighbours of X" and
rounding the interpolation result

7. update X': X' =X

8: endif

Feng Zhu (UVic) Image Morphing October 29, 2015 29 /29

	Introduction to Image Morphing
	Beier-Neely Image Morphing Algorithm
	Software Implementation
	Result
	Analysis
	Conclusion

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:

