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Abstract

Based on the greedy-point removal (GPR) scheme of Demadeliska, a simple yet highly-effective
framework for constructing triangle-mesh representatioiimages, called GPRFS, is proposed. By using
this framework and ideas from the error diffusion (ED) sckeffor mesh-generation) of Yang et al.,
a highly effective mesh-generation method, called GPRBES& derived and presented. Since the ED
scheme plays a crucial role in our work, factors affectirg plerformance of this scheme are also studied
in detail. Through experimental results, our GPRFS-ED wetis shown to be capable of generating
meshes of quality comparable to, and in many cases bettey ttia state-of-the-art GPR scheme, while
requiring very substantially less computation and memeuythermore, with our GPRFS-ED method, one
can easily tradeoff between mesh quality and computatimeahory complexity. A reduced complexity
version of the GPRFS-ED method (called GPRFS-MED) is alsmduced to further demonstrate the

computational/memory-complexity scalability of our GRFRED method.

Index Terms

Image representations, triangle meshes, mesh genergtieey point removal, error diffusion.

. INTRODUCTION

In the last several years, image representations based aptiad (i.e., irregular) sampling have
been receiving an increasing amount of attention from tilseah community [1]-[8]. This is largely

due to the fact that, in many situations, such represenmtitave numerous advantages over those
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based on regular (e.g., truncated-lattice) sampling,uttioj greater compactness and the ability to
facilitate methods that yield higher quality results or §ame cases) have lower overall complexity.
Some applications that can benefit from image representabased on adaptive sampling include
filtering [9], feature detection [10], restoration [7], tographic reconstruction [5], computer vision [11],
pattern recognition [12], and image/video compression [[23]-[18], to name but a few.

Amongst the many classes of image representations basedaptive sampling (e.g., [1], [19]-[26]),
triangle meshes have received considerable attentioh,thwise utilizing Delaunay triangulations proving
to be particularly effective (e.g., [3], [6], [27]). Since @ages are usually sampled on a truncated lattice, if
a triangle mesh is to be used to represent an image, a meaesdsdfor choosing a good subset of the
original sample points from which to form a mesh approximatiThis is the so-called mesh-generation
problem. Due to the necessity for solutions to this problerash-generation methods are of fundamental
importance.

Two highly effective mesh-generation methods proposedate dre theyreedy point-removal (GPR)
scheme of Demaret and Iske [4] (called “adaptive thinnimg[4]) and theerror-diffusion (ED) scheme
of Yang et al. [28]. The GPR method is state of the art in termssadilbility to produce very high quality
meshes, but has extremely high computational and memomyireegents. For example, in the recent
paper [1, Figs. 4 and 5], the GPR scheme (called “adaptiveitigitherein) was shown to yield meshes
of vastly superior quality in comparison to all of the otheethods considered. On the other hand, the
ED method produces much lower quality meshes than the GPR scHmemis still generally considered
to be quite effective due to its extremely low computatiosadl memory complexities. In this paper, we
introduce a flexible new mesh-generation framework caB&R from subset (GPRFS) based on the
GPR scheme. Then, using this framework, we propose two mestraf@n methods known &BPRFS
with ED (GPRFS-ED) and GPRFS via modified ED (GPRFS-MED) Both of these methods exploit
ideas from the ED scheme in order to achieve much lower cortipotd and memory complexities
than the GPR scheme, but make different tradeoffs betweeh oneglity and computational/memory
complexity. The GPRFS-ED method produces meshes of quality aaplpao (or better than) the GPR
scheme, at a greatly reduced cost in terms of computatiowahreemory complexities. The GPRFS-MED
method, which is effectively a reduced complexity versidnhe GPRFS-ED scheme and also can be
viewed as a modified version of the ED scheme, makes furthetasulzd reductions in complexity at
the cost of lower mesh quality. In passing, we note that ourkvaescribed herein has been partially
presented in our conference paper [29].

The remainder of this paper is organized as follows. To begéction Il provides some background
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information on triangle meshes for image representatiorenThhe focus shifts to mesh-generation
schemes. In Section Ill, the ED method is introduced and dudiedetail, with an emphasis on
factors affecting the method’s performance, and in Sectigrtie GPR method is presented along with
its shortcomings. In Section V, our newly proposed mesh-ggiom framework, GPRFS, and mesh-
generation methods, GPRFS-ED and GPRFS-MED, are presented. Secgwaldates our GPRFS-ED
and GPRFS-MED methods in relation to other schemes. Through imqreal results, our methods
are shown to produce excellent quality meshes when coniquoddimemory cost is considered. Finally,
Section VII concludes the paper with a summary of our key tesarhd some closing remarks.

Before proceeding further, a brief comment is appropriagarding some of the notation employed
in this paper. The set of integers is denofedThe cardinality of a sef is denoted|S|. Lastly, when

presenting algorithms, the symbol “:=" is used to denoteaide assignment.

Il. TRIANGLE-MESH-BASED IMAGE REPRESENTATIONS

Consider an imag¢ defined on the domaih = [0, W — 1] x [0, H — 1] that has been sampled at the
points in the set\ = I N Z?2 (i.e., f has been sampled on a truncated two-dimensional integeselat
of width W and heightH). Conceptually, the process of generating a triangle-naggimoximation off
consists of the following steps:

1) Select a subsef = {(z;,v;)} of the setA of the original sample points, wherg must contain
the (four) extreme convex hull points df (i.e., the four corners of the image bounding box) so
that the triangulation of' covers the entire image domain

2) Construct a triangulation dof.

3) For each face of the triangulation, form an interpolargrawe face.

4) Combine the interpolants for all of the faces from step primduce a single interpolarft defined
over the entire image domaih

In the context of our work, in step 3, a planar interpolant ispeoyed. That is, given a face of the
triangulation with verticesx;, v;), (x;,v;), and (xx,yx), and the corresponding sample valugs=
f(xi,v), 25 = f(x4,y;), andz, = f(xk, yx), we form the unique planar interpolant passing through the
points(z;, i, zi), (x,Y;, %), and(zk, vk, 2&). In step 2, the Delaunay triangulation [30] is employed, due
largely to its good properties for approximation. In manylagations, it is desirable that the triangulation
of S be uniquely determined by alone, as this avoids the need for additional side inforomatiuring

the triangulation process. Unfortunately, the Delaun#@ntulation is only guaranteed to be unique if

no four points inS are cocircular, and this condition is unlikely to be satisfiedpractice, sinceS
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TABLE |

TEST IMAGES

Name Size Depth | Description

bul | 1024 x 768 | 8 computer-generated bull
ct 512 x 512 12 tomography [34]

gl asses | 1024 x 768 | 8 raytraced glasses

| ena 512 x 512 8 woman [33]

peppers | 512 x 512 8 numerous peppers [33]

us 512 x 448 8 ultrasound [34]

wheel 512x 512 | 8 antialiased color wheel

is a subset of the latticE2. Therefore, to eliminate this potential nonuniqueness lpropwe use the
preferred-directions scheme of Dyken and Floater [31] tquelly select a single triangulation from the
set of all possible Delaunay triangulations ©f

In practice, the difficult part of the above mesh-generatimtess is step 1. In this step, for a given
desired numbelN of sample points, we must choose a sulisef A such thaf.S| = N and the resulting
mesh approximation error is as small as possible—ideallylohdal minimum. This is the part of the
mesh-generation problem that we address in this paper. frwotk, the squared error is used as the
error metric and is expressed in terms of the peak-signabise ratio (PSNR), which is defined as
PSNR = 20log,o(M/d), whered = [|A|™" S;cq [F(6) — f())]V/2, M = 2¢ — 1, andp is the sample
precision in bits/sample. As a matter of terminology, weerdb the quantity|S| /|A| as thesampling
density. Since problems like the one above are known to be NP-hard fi&®gloping effective mesh-
generation methods (i.e., methods that produce high{guakshes at a reasonable computational/memory
cost) is a challenging task.

Before proceeding further, a brief digression is in ordgrarding the (grayscale) test images used in
our work. Although many images were employed for evaludtémting purposes, the results presented
herein focus primarily on the small representative subéteages listed in Table I, which consists of
photographic, medical, and computer-generated imageginating from various sources, including the
USC image database [33] and JPEG-2000 test set [34].

1. ERRORDIFFUSION (ED) METHOD

Before presenting our new approach, we first introduce tweratblated mesh-generation methods in
detail. The first of these methods is teeor-diffusion (ED) method proposed by Yang et al. [28]. For a

given imagef (which is defined ol and sampled at the points it) and a desired numbée¥ of sample
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points, the ED method uses Floyd-Steinberg error diffusion {8generate a se of N sample points,
distributed such that the local density of sample pointsaghepoint(z,y) € A is proportional to the
largest magnitude second-order directional derivativef @ft (x,y). More specifically, the ED method
consists of the following steps:

1) Fromf, compute the sample-point density functibdefined onA given byd(z,y) = J(x, y)/dmax,
wheredmax = max(, ea d(z,y) andd(z, y) is the maximum magnitude second-order directional
derivative of f at (z,y).

2) Set the threshold to use for Floyd-Steinberg error diffusion to bg= ﬁ P @yer Az, y).

3) Convertd to a binary-valued functioh using nonleaky Floyd-Steinberg error diffusion as described
in [28] with the thresholdr.

4) SetS to the set of all point§x,y) for which b(x,y) # 0. Then, letS := S U H, whereH is the
set of the (four) extreme convex hull points bf

5) If |S| is close enough taV, stop; otherwise, adjust appropriately (i.e., if S| > N, increaser; if
|S| < N, decrease) and go to step 3.

In step 1,d is computed as given by [28, Corollary 1 and Equation (12)]

d(z,y) = max{|a(z,y) + B(z,y)], |a(z,y) — B(z,y)|}, (1)
wherea(z, y) = 3125 (2, y)+ £ f (2, y)] andB(z, y) = /[ F (@, y) — g f (2, 9] + [ F (2, 9)]
The partial-derivative operators in the preceding equatite formed from the tensor product of one-

dimensional derivative operators, where the discrete-tapproximations of the one-dimensional first-
and second-order derivative operators are computed usandjliters with transfer function%z — %z_l
andz — 2+ 2z~ 1, respectively.

It is important to note that the above method does engtlicitly construct a mesh. That is, although
a choice is made foiS, the above method does not triangulateto form an explicit mesh, nor is
any interpolant explicitly generated. The method tacitlgueses that, when an explicit mesh is later
constructed, a Delaunay triangulation will be used to tidate S, and then, from this triangulation,
an interpolant is formed using the approach describedegarli Section Il. (Note that, although [28]
considers both interpolating and non-interpolating mestets, we only consider the interpolating case
herein.)

Since the expression farin (1) involves partial derivatives, which are to be deteredi by convolution,
two questions naturally arise. First, since derivative afiens are sensitive to noise, exactly how much
benefit can be realized by including a smoothing operator énctinvolution kernels used for derivative

computation, and which smoothing operator might be the rafisttive for this purpose? Second, how
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should the image boundaries be handled when computing kaiors? Unfortunately, in [28], Yang
et al. did not clearly specify how to treat image boundariesngd) convolution, nor did they provide a
detailed quantitative analysis of the impact of differehbices of smoothing operator. For this reason,
we consider both of these issues in more detail in what falow

Although many choices of smoothing operators could be mageelected to consider binomial
filters [36] herein. The one-dimensionaih-order binomial (lowpass) filter (with zero-phase and wnit
DC gain) has the transfer functidiy,(z) = z*=1/2(1 + 1271)*~1 wherek is odd. Binomial filters are
attractive, since they have reasonably-good frequengoreses with very simple filter coefficients. For
convenience, in what follows, we henceforth refer to smmgtlusing the (two-dimensional) smoothing
operator obtained from the tensor product of two one-dinoeas kth-order binomial filters as3 (k)
smoothing. Note that, sincH;(z) = 1, B(k) smoothing degenerates into the case of no smoothing when
k = 1. Thus, for convenience, we often use the notatié{1)” as a synonym for no smoothing.

BOUNDARY-HANDLING STRATEGY . To begin, let us focus our attention on the choice of the baonrd
handling strategy to be used during convolution. Since oapagable filters are employed, we need only
concern ourselves with boundary handling in one dimengiour work, we considered three common
boundary-handling strategies: 1) zero extension (i.e.sitpnal is padded with zeros); 2) constant extension
(i.e., the first and last samples of the signal are repeated)3a symmetric extension (i.e., the signal is
mirrored about its first and last sample points). For numenmages, sampling densities, and smoothing
operators (including the degenerate case of no smoottanglesh was generated using the ED method
in conjunction with each of the boundary-handling strateginder consideration. In each case, the mesh
quality (in terms of PSNR) was measured. A representativeesudfsthe results is shown in Table I,
covering both the cases of smoothing and no smoothing, Wighbest result highlighted in each case.
From these results, we observe that regardless of whetheastsimg is employed, zero extension yields
the highest quality meshes. In particular, zero extensigpesforms constant and symmetric extension
by about 0.6 to 2.3 dB in the no-smoothing case and 1.3 to 2.;hdBe B(3) smoothing case. More
generally, considering our comprehensive set of resuftd (@t just the subset presented here), we found
zero extension to fairly consistently perform best, refgessl of the image and sampling density.

A closer analysis shows that the relatively poor perforneaotcconstant and symmetric extension is
due to their inability to place a sufficient number of samplénfmalong the boundary of an image,
which leads to very high distortion in the vicinity of imageundaries. This behavior is illustrated in
Fig. 1. In this figure, for one of the test cases from Table I, Wwevs the location of the sample points

obtained using each of the boundary-handling strategiesapgaring the results for zero extension (in
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TABLE Il

COMPARISON OF BOUNDARYHANDLING STRATEGIES IN THEED METHOD FOR THEpepper s IMAGE

PSNR (dB)
Samp. No Smoothing B(3) Smoothing

Density || Zero | Const.| Sym. || Zero | Const.| Sym.
(%) Ext. Ext. Ext. Ext. Ext. Ext.

1 19.00 | 18.10 | 17.94 || 21.35| 19.10 | 19.23

2 23.08 | 21.52 | 21.51 || 26.09 | 24.37 | 24.75

4 27.69| 25.42 | 25.83 || 29.85| 27.58 | 27.73

8 31.11| 29.46 | 30.49 || 32.11| 30.65 | 30.13

(a) (b) ()

Fig. 1. Selected sample points obtained for fiepper s image at a sampling density of 2% usiti§y(3) smoothing in

conjunction with (a) zero extension, (b) constant extension, and (ojn&fric extension.

Fig. 1(a)) to those for constant and symmetric extension @s.FL(b) and (c)), we observe that there is
a significant difference in the number of sample points plaaedg the image boundary. In particular,
in the case of constant and symmetric extension, noticef@aher points are placed along the bottom
and right boundaries of the image. Since zero extensionlgleatperforms the other two boundary-
handling strategies, zero extension is always used for thenteihod in the remainder of this paper,
unless otherwise noted.

SMOOTHING OPERATOR . Having examined various boundary-handling strategiesnae turn our
attention to the choice of smoothing operator. In particuee consider the use aB(k) smoothing
for k € {1,3,5,7,9} with £ = 1 corresponding to the degenerate case of no smoothing. |(Rlkeat
the quantityk in B(k) denotes the order of the smoothing filter.) For numerous isagel sampling

densities, a mesh was generated using the ED method in céiojumdth each of the smoothing operators
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under consideration (including the degenerate case of mmiimg). In each case, the mesh quality (in
terms of PSNR) was measured. A representative subset of thksrés shown in Table Ill, with the
best result in each case being highlighted. From these sesudt can make a number of observations.
First, there is a general tendency for higher-order smogtfiiters to perform better at lower sampling
densities, while lower-order smoothing filters (such/@) and B(3)) fare better at higher sampling
densities. The preceding behavior is most clearly seen incises of thebul | , gl asses, | ena,
and pepper s images. In the case of images having nonnegligible noige, (ehotographic imagery),
B(k) smoothing withk > 3 generally performs much better than no smoothing, wBif3) smoothing
typically faring the best at sufficiently-high sampling digies. This behavior is clearly demonstrated by
thel ena andpepper s images, where3(3), B(5), B(7), and B(9) smoothing consistently outperform
no smoothing for all of the sampling densities consideredinstances where images have negligible
noise and a significant amount of sharp edges, no smoothieg pirforms best, especially at higher
sampling densities. This behavior is observed in the cas®eaft andus images. (As an aside, we note
that although parts of thet andus images are relatively smooth, these images still have afisignt
amount of sharp edges, due to factors such as an imagedtpa&igon being superimposed on a larger
rectangular background or the addition of text annotatibnes, and other markings.) In passing, we note
that, in the above results, the subjective quality of imagas generally found to correlate reasonably
well with PSNR.

The above results show that, at sufficiently high sampling itleas(which typically correspond to
image reconstructions of high enough quality to be praltyioaseful), either B(3) or no smoothing
tends to perform best. Since no smoothing performs very paorhe case of images with noisg,(3)
smoothing arguably has the best overall performance athesbroadest range of image types. For this
reason, we recommend the use Bf3) smoothing. Furthermore, in the remainder of this paper, we
always employB(3) smoothing for the ED method, unless otherwise noted.

Having observed several trends in the above experimergaltse we now seek to explain the reason
behind these trends. As was observed above, in images witbnaegligible amount of noise (such
as photographic imagery like tHeena and pepper s images), not using smoothing tends to lead to
poorer results. A more careful analysis shows that not eypimgjosmoothing in the presence of noise
tends to lead to sample points with a somewhat more unifoend@m) distribution, due to phantom
large-magnitude derivatives resulting from noise. Thisavédr is illustrated in Fig. 2. In this figure,
for one of our test cases, we show the location of the samplggpohosen using no smoothing and

B(3) smoothing. Clearly, the points in Fig. 2(b), which were obéal with smoothing, better reflect the
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TABLE 1l

COMPARISON OF SMOOTHING OPERATORS IN THED METHOD

PSNR (dB)
Samp. Smoothing
Density || None
Image (%) (B(1)) | B(3) | B(5) | B(7) | B(9)
bul | 0.5 27.06 | 25.88| 26.99 | 27.06 | 25.71
1.0 31.30 | 33.33| 32.53| 32.55| 31.79
2.0 37.63 | 37.56| 38.41| 37.59 | 37.24
3.0 39.97 | 40.36 | 39.65 | 39.83 | 39.58
ct 0.5 23.30 | 21.61| 22.41| 21.81| 20.74
1.0 31.96 | 29.45| 25.60| 25.57 | 25.18
2.0 37.34 | 35.62| 35.76 | 32.43 | 32.32
3.0 40.13 | 39.40| 38.30| 37.23| 34.11
gl asses | 1.0 1959 | 21.30| 21.85| 22.45| 22.81
2.0 23,52 | 25.19| 25.62 | 26.03 | 25.67
3.0 26.01 | 2759 | 27.80| 27.41| 27.56
4.0 28.82 | 29.44 | 29.25| 28.46 | 28.31
| ena 1.0 20.12 | 21.13 | 22.08 | 22.87 | 23.21
2.0 23.71 | 25.83 | 26.56 | 26.58 | 26.66
3.0 26.23 | 28.05| 28.36 | 28.14 | 28.01
4.0 27.85 | 29.58 | 29.34 | 29.33 | 28.89
peppers | 1.0 18.99 | 21.35| 22.15| 22.71 | 22.96
2.0 23.07 | 26.08 | 26.24 | 26.53 | 26.47
3.0 25.88 | 28.16 | 27.83 | 27.75| 27.65
4.0 27.68 | 29.84 | 29.19| 28.47 | 28.49
us 3.0 19.29 | 17.62| 21.11| 20.49| 20.39
4.0 2239 | 21.84| 21.69| 21.10| 18.75
5.0 2417 | 22.32| 22.30| 21.99 | 22.00
6.0 26.10 | 24.05| 22.82 | 22.76 | 22.68

underlying structure of the image (especially fine detailhsas

which were obtained without smoothing.

To explain some of the other results from above, it is indivedo consider a simple example. For the
wheel image shown in Fig. 3(a), we generated a mesh ughg) smoothing fork € {1, 3,9}, with
the degenerate case bf= 1 corresponding to no smoothing. In each case, for the smetamgular
region highlighted in Fig. 3(a), shown enlarged in Fig. 3(bg, pvesent the resulting sample-point density

functiond (in Figs. 3(c) to (e)), image-domain triangulation (in Figé) 8 (h)), and image approximation

March 7, 2011

image edges) than those in Fig. 2(a),
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(a) (b)
Fig. 2. Selected sample points obtained for gepper s image at a sampling density of 2% using (a) no smoothing and
(b) B(3) smoothing.

(in Figs. 3(i) to (k). As is evident in Figs. 3(c) to (e), the gaepoint density function generally has a
double response to image edges. As one would expect witigteanesh approximations of images (and
which is also demonstrated by Figs. 3(i) to (k)), the pred@mirtype of artifact is the triangle tooth, which
is caused by a triangulation edge crosscutting an image. élgen the crosscutting triangulation edge
is short, a small tooth results (such as the numerous snedli te Fig. 3(k)), and when the crosscutting
edge is long, a large tooth is obtained (such as the one in E)). 3

Examining the results of Fig. 3 more closely, we observe thattha order of the smoothing filter
increases: 1) The sample-point density functibipecomes more blurred and the double response to each
image edge widens, with the peaks in the response beingadegpislightly farther away from the image
edge. 2) In the image-domain triangulation, the sampletpaire spread more widely about image edges.
3) In the image reconstruction, the greater spread in thgkapoints about image edges leads to an
increase in the number of smaller-teeth artifacts and aedserin the number of larger-teeth artifacts.
So, all other things being equal, higher-order smoothingrdiltend to favor many smaller-teeth artifacts
over a few larger-teeth artifacts (such as in Fig. 3(k)), whera lower-order smoothing filter tends to
favor a few larger-teeth artifacts over many smaller-testifacts (such as in Fig. 3(i)). Earlier, when
examining the results of Table Ill, we observed a generad@éany for higher-order smoothing filters
to perform better at lower sampling densities, with lowstes smoothing filters becoming increasingly
favored as the sampling density increases. We are now in gigmo$o explain the reason for this
behavior. At lower sampling densities, triangle edges tenoe longer and the mesh approximation error

is most strongly influenced by large-teeth artifacts. Sincegadr-order smoothing filter tends to trade
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) (b)

(f) (9) (h)

(i) 1) (k)
Fig. 3. The effect of smoothing on the generated mesh. (a) Full insdgsying a rectangular region of interest. (b) Region of
interest under magnification. The density function used for errorsidfuwith (c) B(1) (i.e., no) smoothing, (dj3(3) smoothing,
and (e)B(9) smoothing; the corresponding image-domain triangulation foB3(f)), (g) B(3), and (h) B(9) smoothing; and
the corresponding image approximation for Y1), (j) B(3), and (k) B(9) smoothing.
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larger teeth for smaller ones, it has a mitigating effect toa érror. Thus, higher-order smoothing filters
tend to lead to better results at lower sampling densitiesth® sampling density increases, however,
large teeth are eliminated and small teeth become the maitilmator to error. Consequently, at higher
sampling densities, the approximation error is most stsoimgluenced by small teeth. Since higher-order
smoothing filters encourage the creation of small teeth, filiehs exacerbate the error incurred by small
teeth, resulting in lower-order smoothing filters tendingogsform better.

ERROR-DIFFUSION SCAN ORDER. In our analysis of the ED method, we also studied the effedt tha
the scan order used for error diffusion has on mesh qualityeMpecifically, we considered the Hilbert
scan order from [37] (where all error is diffused into the npaint in the scan) as well as the raster and
serpentine scan orders from [28]. For numerous test imagésampling densities, the ED method was
employed to generate a mesh using each of the precedingstteaeorders, and the resulting mesh quality
measured (in terms of PSNR). A representative subset of thétgds shown in Table V. Generally,
the serpentine scan order was found to fairly consistenilperform the raster scan order, regardless
of the smoothing operator and particular image. So, in theaneder of this comparison, we focus our
attention on the serpentine and Hilbert scan orders. TheeHilican order was sometimes found to
perform better than the serpentine scan order at lower sagndensities. Although the Hilbert scan
order can have an advantage at lower sampling densitiesgetipentine scan order generally tends to be
superior at higher sampling densities. This behavior is sgptan the results of Table IV. In particular,
for each of the four images, the serpentine scan order dendis performs best at the highest sampling
density. In practice, however, the sampling density is mucie likely to be chosen near the higher end
of the ranges considered in the table, since the lower samplénsities often correspond to relatively
poor quality image reconstructions. Lastly, it was also olex#that in some instances where the Hilbert
scan order produced the best PSNR result, the correspondijectue image quality was sometimes
clearly not the best. Taking all of the above observations @gonsideration along with the fact that the
serpentine scan order has much lower complexity than theeHikscan order (and essentially the same
complexity as the raster scan order), we conclude that thpestne scan order strikes the best overall
balance between mesh quality and complexity. Consequeh#lyserpentine scan order is always used
for the ED method in the remainder of this paper, unless otiserwoted.

For the reader’s benefit, we note that the tendency of the Hilman order to sometimes outperform
the serpentine scan order at lower rates can be largelpwdd to a startup effect that exists in error
diffusion. In particular, if the sample-point density fuion d is quite small relative to the error-diffusion

thresholdr in the region first processed by error diffusion, error wilcaulate very slowly, resulting

March 7, 2011 DRAFT



13

= P FR VAR B, Ay
SO SERRRIRR NS,
V"\Q’k‘\?«"""« "1&\/
AV

4“«7}; S X
NV s VA N R AV

(!

I~

Vi
W2 >

YN JK>)
%f;v%v’,‘ S !&‘ﬁ\gi\b
5 \’

< )qu

S
X

N
%
’

H

TEN
N
SERAK

X

TR
e

!

<N

N

7

AN

TR
5

Y
X
S

S
7
N
Vi
A=

By

TN
/]
il
N

,,
%)

N
o
&
i)

VAW
NN
AN

{ A
\\w‘vﬂé‘!‘ml‘”“%

= —

I

N/
Nt
o
a
¥

Va

s

W
|

WS

V\
Y71
T
g
<

SEs!

(b)
Fig. 4. Triangulations obtained for tHeena image at a sampling density of 1% using the ED method with error diffusion
employing the (a) serpentine and (b) Hilbert scan orders.

in very few (or no) sample points being selected in this negiBince the raster and serpentine scan
orders process the image row-by-row starting from the bottd the image, the entire bottom part of
the image can potentially be affected by this startup bemakor example, at low sampling densities,
can become so large relative dahat it becomes either very unlikely or even impossible fay aample
points to be placed in the first rows processed during error diffusion, wheréncreases with-. Since
we process images starting from the bottom and proceedimgnals, this results in very few sample
points in the bottom part of the image (except the two bott@mer points which are always forced to
be selected). In contrast, the Hilbert scan order does nmmresnce such a strong startup effect, due to
the highly winding path that it employs. The above startupnoineenon is illustrated in Fig. 4. In this
figure, for one of our test cases involving thena image, we show the triangulations of the sample
points chosen using each of the serpentine and Hilbert sa#er Notice that, in the serpentine case
(i.e., Fig. 4(a)), the number of sample points in the bottom phthe image (where the image intensity
is changing more slowly) is abnormally small, and that nanfsivere chosen on the bottom boundary of
the image, except for the two bottom corner points which &rays forced to be selected. This results
in many sliver (i.e., long thin) triangles that lead to higesh approximation error. On the other hand,
in the Hilbert case (i.e., Fig. 4(b)), a much more reasonaldiloution of sample points is obtained in
the bottom part of the image.

SHORTCOMINGS . Although the ED method has very low computational complexitgoes have one
major weakness. Namely, when selecting sample points, thenEfdod does not explicitly consider the

error metric (i.e., squared error) or triangulation toggloTo allow the reader to better appreciate the
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TABLE IV

COMPARISON OF DIFFERENT SCAN ORDERS FOR THED METHOD

Samp.
Density PSNR (dB)
Image (%) Raster| Serpentine| Hilbert
ct 0.5 19.00 | 21.61 24.28
1.0 24.34 | 29.45 29.21
2.0 35.59 | 35.62 29.95
3.0 38.42 | 39.40 37.08
gl asses | 1.0 19.55 | 21.30 22.09
2.0 24.07 | 25.19 25.70
3.0 26.84 | 27.59 27.76
4.0 28.74 | 29.44 29.22
| ena 1.0 20.65 | 21.13 22.59
2.0 2495 | 25.83 25.77
3.0 27.63 | 28.05 27.51
4.0 29.16 | 29.58 28.96
peppers | 1.0 20.03 | 21.35 22.96
2.0 25.53 | 26.08 26.38
3.0 27.94 | 28.16 28.41
4.0 29.56 | 29.84 29.47

impact that this has on mesh quality, we make the followingristing observation, which is supported
by experimental results presented later in Section V. Giveneah produced by the ED method, we
can typically remove, in an intelligent manner, a very sabsal number of points from the mesh (in
many cases, about half) without increasing the approxanadrror. In fact, by removing points, the
approximation error can often heducedsignificantly. At first, this result may seem surprising, but it
does have a simple explanation. Because the ED method doesmnsitler triangulation topology, a mesh
produced by this method will typically have many triangleges that crosscut image edges, resulting in
higher approximation error. By removing points from the mase can change the triangulation topology

in such a way that triangle edges better align with image gdgssulting in lower approximation error.

IV. GREEDY POINT-REMOVAL (GPR) METHOD

The second mesh-generation method of interest herein igréegly point-removal (GPR)scheme of
Demaret and Iske [4] (called “adaptive thinning” in [4]), wh is closely related to the adaptive thinning

technique of Dyn et al. [8]. The GPR method first constructs a ntleahemploys all of the sample
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points of an image, and then repeatedly removes the sampié that yields the smallest increase in
the squared error of the mesh approximation, until the ddsiumber of sample points is obtained.
More specifically, for an image sampled on a truncated twoedsional integer latticé. of width W
and heightH and a desired numbe¥ of sample points, the method selects a.Seif sample points as
follows:

1) Initially, let S := A (hence,|S| = WH).

2) Construct the Delaunay triangulation 8f

3) If |S] < N, outputS and stop; otherwise, proceed to step 4.

4) For each poinp € S, compute the increasfe, in squared error of the mesh approximation that
is incurred if p is removed from the triangulation. Note that, for the pugsosf the preceding
computation, it is assumed that a planar interpolant is éofraver each face of the triangulation
as described earlier in Section II.

5) For the pointp € S that minimizesAe,, deletep from the triangulation, and le$ := S\ {p}.

6) Go to step 3 (i.e., the beginning of the loop).

A few comments are now in order regarding the preceding #lgor First, since the deletion of a
vertex from a Delaunay triangulation is guaranteed onlyftecathe faces incident on the vertex to be
deleted [38], step 4 can be performed quite efficiently in ficac That is, in each iteratiowith the
exception of the firststep 4 only needs to recompute the error increase for a wveall :iumber of
points, namely, the immediate neighbours of the point @dlén the previous iteration. Furthermore, by
maintaining all of the triangulation vertices in a heapdzhpriority queue (where a vertexhas priority
Ae,), one can efficiently determine the vertexminimizing Ae,, in step 5. For further details regarding
efficient implementation, the reader is referred to [4], [8].

Although the GPR method has been shown to yield excellenitguma¢shes, it has one major weakness,
namely its very high computational and memory costs. Sinee@RR method starts with a triangulation
containing all of the sample points of the image (i|d), = W H points), the mesh size at the beginning
of the algorithm can be extremely large. For example, wittays digital cameras, a value f6V H on
the order of107 is not unreasonable. This large initial mesh size leads tdgorithm that requires very
high computation times and large amounts of memory.

Lastly, we note that, due to the greedy nature of the GPR meth@lextremely unlikely to yield a
globally optimal solution. This suboptimality is a directs@quence of the short-sightedness of the greedy
strategy. That is, when a point is removed, the algorithns tailconsider how this point’s removal affects

the evolution of the algorithm imll subsequentterations (i.e., only the impact in the current iteration
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is considered). In short, trying to minimize the increasesiiror in the current iteration may cause the
error-increment values of later iterations to become mactelr.

In light of the above suboptimality, it would seem plausitib@t solutions of quality comparable to
(or perhaps even better than) those obtained with the GPRodhetbuld be achieved without the need
to consider a mesh containiradl W H sample points of the original image. That is, if we were to use a
point-removal algorithm similar to that employed in the GPBthod, but seed the algorithm with only a
small subset of th& H sample points that are wisely chosen to be sufficiently close good optimal
solution, such a scheme might be able to produce meshes lityqpe@mparable to (or better than) those
generated by the GPR method, but at only a small fraction oftcthmputational and memaory costs. It
was precisely this hypothesis that led to the developmettiehew mesh-generation approach proposed

in this paper, which we present next.

V. GREEDY POINT-REMOVAL FROM SUBSET (GPRFS) METHOD

With the above hypothesis as motivation, we propose a modikesion of the GPR scheme, which
we henceforth refer to a&PR from subset (GPRFS) Given an image sampled on a truncated two-
dimensional integer latticA of width W and heightHd and a desired numbéy of sample points, our
GPRFS method chooses a sebf sample points (wheréS| = N) using an algorithm identical to the
GPR scheme, except that step 1 (of the GPR scheme) is amendeaidttl) Select a subseb, of A
having size (i.e., cardinality)Ny, where Ny € [N, |A|] and the particular subset-selection policy to be
employed for choosingy, given Ny, is specified as an input to the method. ThenSlet Sy. Note that
Sp must be chosen to include the (four) extreme points of theesohull of I for the reasons mentioned
earlier in Section 11’ In other words, our GPRFS method initially inserts an arbytrsmbset of the
sample points inA into the triangulation instead of always inserting all oérni, as is the case in the
GPR scheme. Note that our GPRFS method includes the GPR schenspesia case. That is, if we
chooseN, = |A[, the GPR scheme is obtained. Since we can chdgst have any value in the range
[N, |A]], our method has considerably more flexibility than the GPR reehd-or example, by choosing
Ny < |A] (which results in a much smaller initial mesh), computadicend memory costs can be greatly
reduced relative to the GPR scheme. Also, as we will later sbgwchoosingVy > N and Ny < |A],
we can achieve meshes of quality comparable to, or better thase produced by the GPR scheme. In
this sense, we can tradeoff between mesh quality and cotigmabdimemory cost by varyingVy in the
range[N, |A]].

CHOICE OF Sy GIVEN Ny. Of course, for our proposed approach to be useful, we needfectie

subset-selection policy (i.e., a means for choosipggiven Ny). Although many subset-selection policies
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Fig. 5. Effect of varying the initial sampling densify, on mesh quality for the GPRFS-ED method. (a) Pepper s image

with a desired sampling densit® of 4%; and (b) Thd ena image with a desired sampling density of 2%.

could be developed, we consider only two herein, each lgadia different variant of the GPRFS method.
The first policy, which is the one whose use is advocated by thpep employs the ED method (of
Section 1ll) to selectSy, and yields the GPRFS variant known@BRFS-ED. In particular, the GPRFS-
ED method employs the ED scheme with zero extensi®3) smoothing, and a serpentine scan order.
The second policy, which is only used for benchmarking puppsimply chooses| randomly, and
yields the GPRFS variant known &PRFS-Random

RECOMMENDED CHOICE OF Nj. Although the GPRFS-ED and GPRFS-Random methods have been
completely specified above, both methods hayeas an input parameter. Therefore, in the interest of
making our work more practically useful, we provide a recagnohation in what follows as to how one
might reasonably choos®,, or equivalently, the initial sampling density, (where Ny and Dy are
related byNy = Dy |A]). Since the rationale behind our recommendation is benefiwihow, a brief
summary of the work that led to the recommendation is presehbéfore the recommendation itself.

To help in determining an appropriate strategy for choodihg the following experiment was con-
ducted for numerous images and values of the desired sagngéinsity D (where D = %). For the
given image and value ob, we measured the mesh quality (in terms of PSNR) as a functiabgof
while keepingD fixed. Fig. 5 shows the results obtained for two test cases, egtih graph having two
lines, one for each of the two GPRFS variants. (For each graphdrizontal axis corresponds to values
of Dy.)

From the results of Fig. 5, we can make a number of observatidms. first is that the GPRFS-ED

variant is vastly superior to the GPRFS-Random variant. Thatgber quality meshes (i.e., higher PSNR)
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can be obtained with the GPRFS-ED variant than the GPRFS-Randoantvési nearly all values of
Dy (and certainly all values of practical interest). In othesrds, using the ED scheme to wisely select
Sp in the GPRFS method is highly effective, much more so than d¢hgds) randomly. This shows the
effectiveness of the subset selection strategy in our pep&GPRFS-ED method. Since the GPRFS-ED
variant is vastly superior to the GPRFS-Random variant, we oahsider the first of these variants in
the remainder of our work. With this in mind, let us contineeexamine Fig. 5, focusing our attention
only on the results obtained with the GPRFS-ED variant. A camfaimination of these results leads to
the following interesting (and perhaps surprising) obagown: In both graphs, the maximum PSNR is not
obtained whenD, is 100%, the point at which the GPRFS-ED method becomes equivtaléhe GPR
scheme. More specifically, d3, is decreased from 100% (corresponding to moving from righétt on
the graphs), the PSNR climbs very slowly to a maximum value hed trops relatively rapidly thereafter.
Due to this behavior, the GPRFS-ED method can be made to produigher lyuality mesh than the
GPR scheme, provided that an appropriate choicégfis made. Based on further experimentation,
we found that, forD values of practical interest (e.gl} < % = 10%), the GPRFS-ED method can
usually be made to achieve a PSNR very close to that of the GPRoch#ilough a choice aby in the
approximate rangélD, 5.5D]. Consequently, we recommend thag be chosen using a simple formula
of the form Dy = min{~D, 1}, or equivalently, thatV, be chosen as

No = min{yN,WH}, (2
where~ is a real constant satisfying > 1. Note that the GPRFS-ED method includes the ED scheme as
a special case (i.e., the caseyof 1). For photographic imagery (except at very low samplingsitess),
in order to achieve results comparable to the GPR schemeyjitally sufficient to choose as4, while
in the remaining cases, a somewhat larger value (sometitoserdo5.5) may be more appropriate. In
the interest of minimizing computational/memory compigxhowever, we recommend thatbe chosen
nominally asy = 4, incurring a small mesh-quality penalty relative to the GIBResne in some cases. In
the remainder of our paper, all experiments involving the GBHD method follow our recommendation
of choosingNy using (2) withy = 4, unless otherwise noted.

ADDITIONAL REMARKS ON GPRFS-ED. As has already been mentioned, the GPRFS-ED method
uses the ED scheme with zero extensi®{3) smoothing, and a serpentine scan order. This choice of
options for the ED scheme, however, was made only after dareftudying the behavior of the ED
scheme specifically when it is us&dthin the GPRFS-ED method. In some respects, our findings were
similar as to what was observed when the ED scheme was studisdlation in Section lll, but there

were some differences. Since knowledge of these differeisclidsely to be beneficial to the reader, we
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comment on these differences below.

Scan order. First, we comment on the choice of the scan order used for éiffusion. As in the
case of the ED scheme (in isolation), in the GPRFS-ED method, thersine scan order was found to
perform better than the raster scan order. In contrast to EBrse, however, the percentage of cases in
which the Hilbert scan order outperforms the serpentinerastér scan orders is greatly reduced to the
point where any benefit of the Hilbert scan order is esseyta@iminated. Recall that, in the context of
the ED scheme, the good performance of the Hilbert scan osdargely due to its ability to reduce the
degradation caused by startup effects in error diffusicecaBise, for a giveiw (i.e., a desired number of
sample points) the GPRFS-ED method employs a much smallerdifiusion thresholdr than the ED
scheme, the startup effect becomes much less of an issue BRRFS-ED method. Thus, the benefit of
the Hilbert scan is essentially eliminated. For the abo@saeas, the serpentine scan order was ultimately
chosen for use in our GPRFS-ED method.

Smoothing operator. Lastly, we comment on the choice of smoothing operator. Tduata the
performance of the various smoothing operators, we celtkatset of results similar to those for the ED
scheme appearing earlier in Table Ill. That is, for numeroongges and sampling densities, a mesh was
generated using the GPRFS-ED method in conjunction with eadteaimoothing operators (including the
degenerate case of no smoothing), and in each case, the ma#ly Gn terms of PSNR) was measured.
A representative subset of the results is shown in Table Vc@wyparing the results of Tables V and I,
a few observations can be made. First, in the case of the GPRFS-EBdn&(3) smoothing and no
(i.e., B(1)) smoothing (especially the former) are much more stronglpifed than in the ED case. This
behavior can be briefly explained as follows. As was showniezaih Section lll, in the case of the
ED method, one of the main advantages of higher-order smupfiiters is that they help to reduce the
number of large triangle teeth artifacts, leading to loweysm approximation error. Since the GPRFS-
ED method effectively discards (via point-removal) bad sknmwints, such as those that produce large
triangle teeth, the GPRFS-ED method does not benefit as much femsthof higher-order smoothing
filters. For this reason, in the GPRFS-ED case, lower-order srmgpftiters (namely,B(1) and B(3))
are much more likely to perform best. Furthermore, by agamparing the results of Tables V and llI,
we can also observe that, in going from the ED method to GPRFS-EBhoahethe performance of
B(3) smoothing has improved overall relative 8(1) smoothing. That is, in some cases whé?él)
smoothing was superior for the ED methdd(3) smoothing is now best for the GPRFS-ED method,;
and in cases wher&(1) smoothing still beats3(3) smoothing in the GPRFS-ED method, the margin
(by which B(1) smoothing outperform#(3) smoothing) tends to be smaller than with the ED method.
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TABLE V
COMPARISON OF SMOOTHING OPERATORS IN THGEPRFS-EDMETHOD

PSNR (dB)
Samp. Smoothing
Density || None
Image (%) (B(1)) | B(3) | B(5) | B(7) | B(9)
bul | 0.5 40.14 | 39.78 | 40.63 | 39.99 | 39.19
1.0 4351 | 43.50 | 43.26 | 42.85| 42.27
2.0 4570 | 45.63 | 45.50| 45.29 | 44.94
3.0 47.01 | 46.91| 46.90 | 46.86 | 46.74
ct 0.5 37.17 | 36.85| 35.76 | 33.49 | 33.32
1.0 41.20 | 40.72 | 40.56 | 40.07 | 34.80
2.0 4510 | 44.63 | 44.19| 44.13 | 43.99
3.0 47.68 | 4753 | 47.12| 46.28 | 45.95
gl asses | 1.0 28.45 | 28.80 | 28.68 | 28.51 | 28.67
2.0 32.32 | 32.44| 32.07 | 31.73 | 31.55
3.0 34.78 | 3491 | 34.43| 33.92| 33.53
4.0 36.74 | 36.90 | 36.41 | 35.79 | 35.37
| ena 1.0 28.59 | 29.06 | 28.93 | 28.87 | 28.64
2.0 31.65 | 31.94 | 31.83| 31.68| 31.50
3.0 33.32 | 33.48| 33.38 | 33.25| 33.05
4.0 3444 | 3456 | 34.45| 34.29 | 34.11
peppers | 1.0 29.03 | 30.00 | 29.76 | 28.99 | 28.98
2.0 32.13 | 32.56 | 32.46 | 32.18 | 32.04
3.0 33.41 | 33.73| 33.65| 33.53 | 33.39
4.0 34.23 | 34.45| 34.39| 34.28 | 34.15
us 3.0 30.18 | 30.07 | 29.86 | 28.73 | 27.93
4.0 3261 | 3257 | 32.70| 32.33 | 31.37
5.0 34.23 | 34.38| 34.42| 34.23| 33.70
6.0 35.68 | 35.75| 35.66 | 35.52 | 35.17

Since B(3) smoothing was found to yield the best results in the majasftgases, and is much better
than B(1) smoothing for images with noise (e.§.gna andpepper s), B(3) smoothing was ultimately
chosen for use in our GPRFS-ED method.

GPRFS-MED. In the interest of providing an alternative tradeoff betwaeesh quality and com-
plexity, we now present a slight variation on our GPRFS-ED mettmalvn by the namé&SPRFS via
modified ED (GPRFS-MED). The GPRFS-MED method is identical to the GPRFS-ED scheme, except

for two key differences. First, instead of allowing flexibyliin the choice ofy (in (2)), we always choose
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~ = 1. Second, the stopping criterion in step 3 (of the GPRFS/GPRFS-EDodjeth amended to read:
“3) If |S| < N and removing another point would cause an increase in thehragproximation error,
output.S and stop; otherwise, proceed to step £ssentially, our GPRFS-MED method is equivalent to
adding a postprocessing step to the GPRFS-ED schemeywith (or equivalently, the ED scheme) that
continues to remove points as long as doing so does not chesedsh approximation error to increase.
This is precisely the intelligent point-removal procesd thas alluded to earlier in Section Il (under the
“Shortcomings” heading). Since the GPRFS-MED scheme chopsed, the initial mesh size is quite
small and the computational cost is quite low relative to@RRFS-ED method. The effectiveness of the
GPRFS-MED method is a consequence of the typical behavior of upaslity (in terms of PSNR) as
points are removed from the mesh. This behavior is illustiritteig. 6. In particular, for two test cases,
we show how the mesh approximation error changes as pomtgmaoved from the mesh (corresponding
to moving from right to left on the graphs). The important alvagon to make from the graphs in the
figure is that, as points are removed, the mesh quality (i.e. B 3Mreases significantly before starting
to decrease. In fact, a very large fraction of the points ftbminitial mesh can be removed before the
mesh quality first decreases (approximately 37% and 33% indbkes of Figs. 6(a) and (b), respectively).
Furthermore, the point-removal process typically yieldsomarall increasein mesh quality. The reason
for the preceding behavior is as was explained earlier ini@edHl. It is also important to note that the
increase in PSNR resulting from point removal also correlatel with subjective image quality. This
can be seen, for example, in the subjective results thatapger in Figs. 7(a) and (b) which correspond
to thepepper s test case from Fig. 6(a) above. In particular, Figs. 7(a) ahaliow, respectively, part
of the reconstructed images obtained before and aftercgpigln of the point-removal process. Notice
how the triangle teeth artifacts are reduced in the recocttn obtained after point removal has been
applied. Lastly, although in principle we could also chanlge GPRFS-ED method so that its step 3 is
amended as above, such a change would not have any signifftectt @& the GPRFS-ED method in
practice. This is because, with this methadis typically chosen sufficiently large (i.ey, > 4) that the
mesh quality is essentially guaranteed to be decreasingéyirhe the current number of sample points

is reduced taV (so the number of sample points would not be reduced beyénd

VI. EVALUATION OF THE PROPOSEDMETHODS

Having introduced our GPRFS-ED and GPRFS-MED methods, we now cortfggrgerformance to
the GPR and ED schemes in terms of mesh quality as well as cotigpataand memory complexities.
In passing, we note that the implementations of the ED, GPR, GHRK3nd GPRFS-MED methods,
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Fig. 6. Effect of removing points from the initial mesh in the cases of th@émper s image with an initial sampling density

of 1%, and (b)l ena image with an initial sampling density of 2%.

used for comparison purposes herein, were developed indep#y by the author in C++. The ED and
GPR implementations follow the details provided in [28] aAdl [8], respectively. The GPRFS-ED and
GPRFS-MED implementations were derived by extending the GPRemmguhtation in a straightforward

manner to handle different initial conditions (i.e., a dint initial mesh). Lastly, for the benefit of future
works that may wish to compare with results herein, the nunieof sample points in a mesh can be
computed from the sampling densify, and the widthi¥" and heightH of the original image using the

formulaN = |[DWH|.

MESH QUALITY . For several combinations of images and desired samplingitiks) the GPRFS-ED,
GPRFS-MED, GPR, and ED methods were used to generate meshes, andstheuality (in terms of
PSNR) was measured. A representative subset of the resultgeisig Table VI, with the best result in
each case being highlighted. For the GPRFS-ED method, two setsulfs are provided, corresponding
to two choices of the parameter(i.e., the nominal choice of = 4 as well asy = 5.5). Generally, the
PSNR was found to correlate reasonably well with subjectivagienquality. For the benefit of the reader,
however, an example illustrating the subjective qualithieeed by the various methods is provided in
Fig. 7, where a small part of each mesh approximation is shavdemumagnification. In what follows,
we examine the above results from Table VI and Fig. 7 in detail.

GPRFS-ED versus GPR and ED. To begin, we compare our GPRFS-ED method to the GPR and
ED schemes. From Table VI, we can see that for photographicdmégg.] ena and pepper s), our
GPRFS-ED scheme (with either= 4 or v = 5.5) yields results comparable to, or better than, the GPR

scheme. In particular, foy = 5.5, our GPRFS-ED method performs better at all sampling densifies o
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Fig. 7. Part of the image approximations obtained forge@per s image at a sampling density of 1% with the (a) ED (21.35
dB) (b) GPRFS-MED (23.34 dB, actual sampling density 0.64%) (cRE®ED with\ = 4 (30.00 dB), and (d) GPRFS-ED

with A = 5.5 (30.20 dB), and (e) GPR (30.04 dB) methods.
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TABLE VI

COMPARISON OF MESH QUALITY OBTAINED WITH THE VARIOUS METHODS

Samp. PSNR (dB)
Density GPRFS- GPRFS-ED
Image (%) ED MED* vy=4|~v=55| GPR
bul | 1.0 33.30 | 35.94 (0.54)| 43.50 | 43.88 43.99
2.0 37.56 | 39.63 (1.08)| 45.63 | 45.84 45.80
3.0 40.36 | 42.51 (1.69)| 46.91 | 47.12 47.11
4.0 41.51 | 43.74 (2.27)| 47.97 | 48.16 48.22
| ena 1.0 21.13| 23.37 (0.63)| 29.06 | 29.21 29.10
2.0 25.83 | 27.43 (1.37)| 31.94 | 32.00 31.77
3.0 28.05| 29.50 (2.07)| 33.48 | 33.55 33.33
4.0 29.58 | 30.87 (2.85)| 34.56 | 34.60 34.39
peppers | 1.0 21.35| 23.34 (0.64)| 30.00 | 30.20 | 30.04
2.0 26.08 | 27.45 (1.34)| 32.56 | 32.70 32.40
3.0 28.16 | 29.62 (1.98)| 33.73 | 33.82 33.50
4.0 29.84 | 31.39 (2.65)| 34.45 | 34.55 34.20
us 3.0 17.62 | 19.01 (2.10)| 30.07 | 30.12 30.00
4.0 21.84| 24.00 (2.74)| 32.57 | 32.68 32.48
5.0 22.32 | 24.43 (3.43)| 34.38 | 34.40 34.21
6.0 24.05| 26.06 (4.09)| 35.75 | 35.78 35.65

*The numbers in parentheses are the actual sampling densities (intpercen

interest. Fory = 4, our GPRFS-ED method tends to be very slightly worse by a few frattks of a dB

at a sampling density of 1% (which is clearly still compagghbut better at higher sampling densities.
As we will show later, however, at a sampling density of 1%t G@PRFS-ED method requires about
22 times less computation time and about 25 times less methary the GPR scheme. So any small
difference in mesh quality at a sampling density of 1% is abiy a small price to pay, considering
the savings in computational/memory cost. For other tygésiagery such as computer-generated (e.g.,
bul 1) and medical (e.g.us), our GPRFS-ED method still fares reasonably well relative ® @PR
scheme, producing (in most cases) results close to the GRInsclespecially when one considers the
much lower complexity of our GPRFS-ED method. From the above teeswe can also see that our
GPRFS-ED method outperforms the ED scheme by a very large marginl{y 4.6 to 12.5 dB in all
cases), demonstrating that the excellent performance RGRRFS-ED method is not simply due to its
use of the ED scheme alone. From the reconstructed images shadwigs. 7(c), (d), and (e), we can

see that, in terms of subjective quality, our GPRFS-ED methodnsparable to (if not better than) the
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TABLE VII
SUMMARY RESULTS COMPARING THEGPRFS-EDVETHOD TO THE GPRSCHEME FOR THE24 PHOTOGRAPHIC IMAGES OF

KODAK TEST SET

Samp. GPRFS-EDy = 4 GPRFS-EDy = 5.5
Density || Mean | Min. Max. || Mean | Min Max.
(%) Diff. Diff. Diff. Diff. Diff. Diff.
1.0 0.035| -0.191 | 0.223 || 0.169 | -0.010 | 0.301
2.0 0.125| -0.037 | 0.266 || 0.176 | 0.056 | 0.287
3.0 0.119 | -0.024 | 0.273 || 0.184 | 0.103 | 0.293
4.0 0.105 | -0.033 | 0.228 || 0.162 | 0.062 | 0.234

GPR scheme.

To further demonstrate the effectiveness of our GPRFS-ED mefthoghotographic imagery, we
provide some statistical results taken over a larger semnafjes. For (grayscale versions of) each of the
24 images in the well-known Kodak test set [39], we generabeghes at several sampling densities
using the GPRFS-ED and GPR methods and measured the mesh quiditsngnof PSNR in dB. Then,
we computed the difference between the PSNRs obtained for BRRFS-ED and GPR methods in
each case, with a positive value corresponding to bettdomeance by the GPRFS-ED method. The
resulting differences are summarized in statistical fonmTable VII. Clearly, at all sampling densities,
our GPRFS-ED method for both = 4 and~y = 5.5 outperforms the GPR scheme on average (i.e., the
mean difference is positive, ranging from about 0.03 to @&pending on the sampling density). The
minimum and maximum differences show that, in terms of woeste behavior, our GPRFS-ED method
performs better than the GPR scheme as well (i.e., the malgnatithe minimum difference is always
greater than the magnitude of the maximum difference). &, feor v = 5.5, our GPRFS-ED method
almost beats the GPR scheme in every case (since the mininfiaredce is only very slightly less than
zero). Thus, our GPRFS-ED method, in spite of its substantialiyetacomplexity, produces meshes of
guality comparable to, or better than, the GPR scheme.

GPRFS-MED versus ED. As will be seen shortly, the GPRFS-MED method has computatiamél a
memory complexities more comparable to the ED scheme tha@ @ approach or GPRFS-ED method
with v € {4,5.5}. For this reason, it is most meaningful to compare the GPRFS-MEEhad to the
ED scheme, as we do here. At this point, we revisit the resdlt$able VI from above. Since the
GPRFS-MED method normally produces a mesh with a sampling gemsith less than the target (i.e.,

desired) sampling density, in order to allow a fair compgarjghe actual sampling densities obtained with
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the GPRFS-MED method are shown in parentheses in this table. Fremesults of the table, we can
see that, for a given desired sampling density (correspgntti a single row in the table), our GPRFS-
MED method typically produces a mesh with a PSNR about 1 to 2 dBenighan the ED scheme.
Furthermore, this better performance is achieved in spithefact that the size of each mesh produced
by the GPRFS-MED method is about 50% to 66% of the size of the goneling mesh generated by
the ED scheme. If we take this smaller mesh size into accobnetpérformance of our GPRFS-MED
method is even more impressive relative to the ED scheme. Byadng Figs. 7(a) and (b), it is clear
that, in terms of subjective quality, our GPRFS-MED method i atsstly superior to the ED scheme
(especially, when one considers the significantly lower dermmensity in the GPRFS-MED case).

COMPUTATIONAL AND MEMORY COMPLEXITIES . Earlier, we made several claims about the com-
putational and memory complexities of the various methauteu consideration. We now present some
results to substantiate these claims.

Computational complexity. First, we consider the computational complexities of thehoes, where
computational complexity is measured in terms of executiore. Since the GPR, GPRFS-ED, and
GPRFS-MED schemes are all based on point removal, the timegeddor these methods are largely
determined by the initial mesh size. So, we would expect nustivath a larger initial mesh size to be
slower. For several test images and desired sampling densite measured the time required to generate
a mesh using each of the GPRFS-MED, GPRFS-ED, GPR, and ED methods. Sergptive subset of
these results (for theepper s image) is shown in Table VIIl. The most important comparisorbée
made here is between the GPRFS-ED and GPR methods. The above shsultshat, fory = 4 and
~ = 5.5 respectively, our GPRFS-ED method requires anywhere from &btmu83 and 6 to 25 times less
computation time than the GPR scheme, with the differencegbeiost pronounced at lower sampling
densities. In other words, although (as seen previously) @RRFS-ED method produces meshes of
guality comparable to, or better than, the GPR scheme, ttdsdemplished with very substantially less
computation. Comparing the time required by the GPRFS-MED and Efhads, we see that although
GPRFS-MED scheme takes about 3 or 4 times longer than the ED sctiera)solute time difference
is less than one second. So, given the fact that the GPRFS-MED dngitflds meshes of vastly superior
quality (typically, by a margin of about 1 or 2 dB) at signifitignlower sampling densities relative to
the ED scheme, the GPRFS-MED method is arguably quite compaetitthethe ED scheme. Lastly, we
can observe that ag is decreased, the complexity of our GPRFS-ED/GPRFS-MED method adese
That is, as we progress from GPRFS-ED with= 5.5 to GPRFS-ED withy = 4 to GPRFS-MED (i.e.,
~+ = 1), we reduce computational complexity at the cost of loweshnguality. (Recall, the GPRFS-MED
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TABLE VI

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE VARIOUSIETHODS FOR THEpepper s IMAGE

Samp. Time (s)

Density GPRFS- GPRFS-ED

(%) ED MED | y=4|~y=55]| GPR
0.5 0.171| 0.488 1.435 1.902 | 46.441
1.0 0.178 | 0.592 2.125 | 2906 | 45.761
2.0 0.196| 0.822 3.500 | 4.927 | 45.281
3.0 0.214| 1.031 | 4.860 | 7.028 | 44.838

method is equivalent to the GPRFS-ED scheme with 1 and a postprocessing step.) In this sense, our
GPRFS-ED/GPRFS-MED method is highly scalable in terms of computdtimomplexity (i.e., we can
easily tradeoff between mesh quality and computational) cos

Memory complexity. Next, we compare the memory complexities of the various oughunder
consideration. In each of the GPRFS-ED, GPRFS-MED, and GPR methaglsnémory usage is
dominated by the mesh data structure and (to a lesser exqmiprity queue that contains one entry
per mesh vertex. Furthermore, due to the similarities betwhese methods, they all employ identical
data structures for representing the mesh and priority gu€onsequently, the peak memory usage for
each method is approximately proportional to the peak nurobenesh vertices. With the ED method
(when used to actually construct a mesh), the peak memogeusaalso dominated by the peak mesh
size. Thus, for all of the methods, the peak mesh size is a gatidaitor of peak memory consumption.
For sampling densities of practical interest, the peak nsgh for the various methods is as shown in
Table IX, wherel/ and H are the image width and height, ahdis the desired sampling density. From
the results of this table, we can see that for sampling deaditom 1% to 4% the GPRFS-ED method
with v+ = 5.5 requires from% ~ 4.5 to % ~ 18.1 times less memory than the GPR scheme, with
the difference being most pronounced at lower sampling iless Similarly, the GPRFS-ED method
with v = 4 requires from% ~ 6.2 0 % ~ 25 times less memory than the GPR scheme. Moreover,
by using the GPRFS-MED variant, we can realize even greater nyesamings (i.e., 25 to 100 times
less memory). Clearly, our GPRFS-ED/GPRFS-MED method offers a wdrgtantial memory savings
relative to the GPR scheme. Again, as we move from GPRFS-EDwith5.5 to GPRFS-ED withy = 4
to GPRFS-MED (i.e., GPRFS-ED with = 1 and a postprocessing step), we tradeoff mesh quality for
a reduction in memory requirements. In this sense, our GPRFSERFS-MED method is also highly

scalable in terms of memory complexity.
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TABLE IX

COMPARISON OF THE PEAK MESH SIZE FOR THE VARIOUS METHODS

Peak Relative Peak Mesh Size
Method Mesh Size| General| D =1% | D = 4%
ED DWH 1 1 1
GPRFS-MED DWH 1 1 1
GPRFS-ED;y =4 4DWH 4 4 4
GPRFS-ED;y =5.5 || 5.5DWH 55 55 55
GPR WH 1/D 100 25

VIlI. CONCLUSIONS

In this paper, we have proposed a flexible new framework fotesdradaptive mesh generation for
image representation, called GPRFS. The flexibility of this fnaor& is inherent in its ability to employ
different subset-selection policies, which can lead, feameple, to differing tradeoffs between mesh
quality and complexity. In this work, we have advocated aipalar subset-selection policy based on
the ED scheme that yields the specific instance of GPRFS known aE&ER. Through experimental
results, our GPRFS-ED method was shown to be superior to theddttite-art GPR scheme, yielding
meshes of higher (in most cases) or comparable quality othrims of PSNR and subjective quality,
at much lower computational and memory costs. Furthermoyembking a different choice for the
parametery in the GPRFS-ED method from the recommended nominal value, @ine can easily
tradeoff between computational/memory complexity andhmsality. Herein, we have also proposed a
reduced-complexity variant of the GPRFS-ED method, called GPREB;Mvhich can also be viewed
as a modified version of the ED scheme. Our GPRFS-MED method was gbgwoduce vastly better
quality meshes than ED scheme with only a reasonably modasiase in computational cost. Since our
GPRFS-ED/GPRFS-MED method offers considerable flexibility in thecoff between mesh quality and
complexity, the method is suitable for a wide range of agpioms with differing computational/memory
constraints. Through the use of our newly proposed meshrgiime framework, GPRFS, and its related
methods, GPRFS-ED and GPRFS-MED, one can obtain mesh-based imagsenéations of higher
quality, which benefits the many applications that utilizersuepresentations. Furthermore, as future
work, one might develop better subset-selection polictesute within our GPRFS framework, further

enhancing its utility for the preceding applications.
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