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Abstract

Based on the greedy-point removal (GPR) scheme of Demaret and Iske, a simple yet highly-effective

framework for constructing triangle-mesh representations of images, called GPRFS, is proposed. By using

this framework and ideas from the error diffusion (ED) scheme (for mesh-generation) of Yang et al.,

a highly effective mesh-generation method, called GPRFS-ED, is derived and presented. Since the ED

scheme plays a crucial role in our work, factors affecting the performance of this scheme are also studied

in detail. Through experimental results, our GPRFS-ED method is shown to be capable of generating

meshes of quality comparable to, and in many cases better than, the state-of-the-art GPR scheme, while

requiring very substantially less computation and memory.Furthermore, with our GPRFS-ED method, one

can easily tradeoff between mesh quality and computational/memory complexity. A reduced complexity

version of the GPRFS-ED method (called GPRFS-MED) is also introduced to further demonstrate the

computational/memory-complexity scalability of our GPRFS-ED method.

Index Terms

Image representations, triangle meshes, mesh generation,greedy point removal, error diffusion.

I. I NTRODUCTION

In the last several years, image representations based on adaptive (i.e., irregular) sampling have

been receiving an increasing amount of attention from the research community [1]–[8]. This is largely

due to the fact that, in many situations, such representations have numerous advantages over those
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based on regular (e.g., truncated-lattice) sampling, including greater compactness and the ability to

facilitate methods that yield higher quality results or (insome cases) have lower overall complexity.

Some applications that can benefit from image representationsbased on adaptive sampling include

filtering [9], feature detection [10], restoration [7], tomographic reconstruction [5], computer vision [11],

pattern recognition [12], and image/video compression [2], [13]–[18], to name but a few.

Amongst the many classes of image representations based on adaptive sampling (e.g., [1], [19]–[26]),

triangle meshes have received considerable attention, with those utilizing Delaunay triangulations proving

to be particularly effective (e.g., [3], [6], [27]). Since images are usually sampled on a truncated lattice, if

a triangle mesh is to be used to represent an image, a means is needed for choosing a good subset of the

original sample points from which to form a mesh approximation. This is the so-called mesh-generation

problem. Due to the necessity for solutions to this problem,mesh-generation methods are of fundamental

importance.

Two highly effective mesh-generation methods proposed to date are thegreedy point-removal (GPR)

scheme of Demaret and Iske [4] (called “adaptive thinning” in [4]) and theerror-diffusion (ED) scheme

of Yang et al. [28]. The GPR method is state of the art in terms of its ability to produce very high quality

meshes, but has extremely high computational and memory requirements. For example, in the recent

paper [1, Figs. 4 and 5], the GPR scheme (called “adaptive thinning” therein) was shown to yield meshes

of vastly superior quality in comparison to all of the other methods considered. On the other hand, the

ED method produces much lower quality meshes than the GPR scheme, but is still generally considered

to be quite effective due to its extremely low computationaland memory complexities. In this paper, we

introduce a flexible new mesh-generation framework calledGPR from subset (GPRFS), based on the

GPR scheme. Then, using this framework, we propose two mesh-generation methods known asGPRFS

with ED (GPRFS-ED) andGPRFS via modified ED (GPRFS-MED). Both of these methods exploit

ideas from the ED scheme in order to achieve much lower computational and memory complexities

than the GPR scheme, but make different tradeoffs between mesh quality and computational/memory

complexity. The GPRFS-ED method produces meshes of quality comparable to (or better than) the GPR

scheme, at a greatly reduced cost in terms of computational and memory complexities. The GPRFS-MED

method, which is effectively a reduced complexity version of the GPRFS-ED scheme and also can be

viewed as a modified version of the ED scheme, makes further substantial reductions in complexity at

the cost of lower mesh quality. In passing, we note that our work described herein has been partially

presented in our conference paper [29].

The remainder of this paper is organized as follows. To begin,Section II provides some background
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information on triangle meshes for image representation. Then, the focus shifts to mesh-generation

schemes. In Section III, the ED method is introduced and studied in detail, with an emphasis on

factors affecting the method’s performance, and in Section IV, the GPR method is presented along with

its shortcomings. In Section V, our newly proposed mesh-generation framework, GPRFS, and mesh-

generation methods, GPRFS-ED and GPRFS-MED, are presented. Section VI evaluates our GPRFS-ED

and GPRFS-MED methods in relation to other schemes. Through experimental results, our methods

are shown to produce excellent quality meshes when computational/memory cost is considered. Finally,

Section VII concludes the paper with a summary of our key results and some closing remarks.

Before proceeding further, a brief comment is appropriate regarding some of the notation employed

in this paper. The set of integers is denotedZ. The cardinality of a setS is denoted|S|. Lastly, when

presenting algorithms, the symbol “:=” is used to denote variable assignment.

II. T RIANGLE-MESH-BASED IMAGE REPRESENTATIONS

Consider an imagef defined on the domainI = [0, W − 1]× [0, H − 1] that has been sampled at the

points in the setΛ = I ∩ Z
2 (i.e., f has been sampled on a truncated two-dimensional integer lattice

of width W and heightH). Conceptually, the process of generating a triangle-meshapproximation off

consists of the following steps:

1) Select a subsetS = {(xi, yi)} of the setΛ of the original sample points, whereS must contain

the (four) extreme convex hull points ofI (i.e., the four corners of the image bounding box) so

that the triangulation ofS covers the entire image domainI.

2) Construct a triangulation ofS.

3) For each face of the triangulation, form an interpolant over the face.

4) Combine the interpolants for all of the faces from step 3 toproduce a single interpolant̂f defined

over the entire image domainI.

In the context of our work, in step 3, a planar interpolant is employed. That is, given a face of the

triangulation with vertices(xi, yi), (xj , yj), and (xk, yk), and the corresponding sample valueszi =

f(xi, yi), zj = f(xj , yj), andzk = f(xk, yk), we form the unique planar interpolant passing through the

points(xi, yi, zi), (xj , yj , zj), and(xk, yk, zk). In step 2, the Delaunay triangulation [30] is employed, due

largely to its good properties for approximation. In many applications, it is desirable that the triangulation

of S be uniquely determined byS alone, as this avoids the need for additional side information during

the triangulation process. Unfortunately, the Delaunay triangulation is only guaranteed to be unique if

no four points inS are cocircular, and this condition is unlikely to be satisfiedin practice, sinceS
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TABLE I

TEST IMAGES

Name Size Depth Description

bull 1024× 768 8 computer-generated bull

ct 512× 512 12 tomography [34]

glasses 1024× 768 8 raytraced glasses

lena 512× 512 8 woman [33]

peppers 512× 512 8 numerous peppers [33]

us 512× 448 8 ultrasound [34]

wheel 512× 512 8 antialiased color wheel

is a subset of the latticeZ2. Therefore, to eliminate this potential nonuniqueness problem, we use the

preferred-directions scheme of Dyken and Floater [31] to uniquely select a single triangulation from the

set of all possible Delaunay triangulations ofS.

In practice, the difficult part of the above mesh-generation process is step 1. In this step, for a given

desired numberN of sample points, we must choose a subsetS of Λ such that|S| = N and the resulting

mesh approximation error is as small as possible—ideally, aglobal minimum. This is the part of the

mesh-generation problem that we address in this paper. In our work, the squared error is used as the

error metric and is expressed in terms of the peak-signal-to-noise ratio (PSNR), which is defined as

PSNR = 20 log10(M/d), whered = [|Λ|−1 ∑

i∈Λ |f̂(i) − f(i)|2]1/2, M = 2ρ − 1, andρ is the sample

precision in bits/sample. As a matter of terminology, we refer to the quantity|S| / |Λ| as thesampling

density. Since problems like the one above are known to be NP-hard [32],developing effective mesh-

generation methods (i.e., methods that produce high-quality meshes at a reasonable computational/memory

cost) is a challenging task.

Before proceeding further, a brief digression is in order regarding the (grayscale) test images used in

our work. Although many images were employed for evaluation/testing purposes, the results presented

herein focus primarily on the small representative subset of images listed in Table I, which consists of

photographic, medical, and computer-generated imagery, originating from various sources, including the

USC image database [33] and JPEG-2000 test set [34].

III. E RRORDIFFUSION (ED) METHOD

Before presenting our new approach, we first introduce two other related mesh-generation methods in

detail. The first of these methods is theerror-diffusion (ED) method proposed by Yang et al. [28]. For a

given imagef (which is defined onI and sampled at the points inΛ) and a desired numberN of sample
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points, the ED method uses Floyd-Steinberg error diffusion [35] to generate a setS of N sample points,

distributed such that the local density of sample points at each point(x, y) ∈ Λ is proportional to the

largest magnitude second-order directional derivative off at (x, y). More specifically, the ED method

consists of the following steps:

1) Fromf , compute the sample-point density functiond defined onΛ given byd(x, y) = d̃(x, y)/d̃max,

whered̃max = max(x,y)∈Λ d̃(x, y) and d̃(x, y) is the maximum magnitude second-order directional

derivative off at (x, y).

2) Set the thresholdτ to use for Floyd-Steinberg error diffusion to beτ0 = 1
2N

∑

(x,y)∈Λ d(x, y).

3) Convertd to a binary-valued functionb using nonleaky Floyd-Steinberg error diffusion as described

in [28] with the thresholdτ .

4) SetS to the set of all points(x, y) for which b(x, y) 6= 0. Then, letS := S ∪ H, whereH is the

set of the (four) extreme convex hull points ofI.

5) If |S| is close enough toN , stop; otherwise, adjustτ appropriately (i.e., if|S| > N , increaseτ ; if

|S| < N , decreaseτ ) and go to step 3.

In step 1,d̃ is computed as given by [28, Corollary 1 and Equation (12)]

d̃(x, y) = max{|α(x, y) + β(x, y)| , |α(x, y) − β(x, y)|}, (1)

whereα(x, y) = 1
2 [ ∂2

∂x2 f(x, y)+ ∂2

∂y2 f(x, y)] andβ(x, y) =
√

1
4 [ ∂2

∂x2 f(x, y) − ∂2

∂y2 f(x, y)]2 + [ ∂2

∂x∂yf(x, y)]2.

The partial-derivative operators in the preceding equationare formed from the tensor product of one-

dimensional derivative operators, where the discrete-time approximations of the one-dimensional first-

and second-order derivative operators are computed using the filters with transfer functions12z − 1
2z−1

andz − 2 + z−1, respectively.

It is important to note that the above method does notexplicitly construct a mesh. That is, although

a choice is made forS, the above method does not triangulateS to form an explicit mesh, nor is

any interpolant explicitly generated. The method tacitly assumes that, when an explicit mesh is later

constructed, a Delaunay triangulation will be used to triangulateS, and then, from this triangulation,

an interpolant is formed using the approach described earlier in Section II. (Note that, although [28]

considers both interpolating and non-interpolating mesh models, we only consider the interpolating case

herein.)

Since the expression for̃d in (1) involves partial derivatives, which are to be determined by convolution,

two questions naturally arise. First, since derivative operations are sensitive to noise, exactly how much

benefit can be realized by including a smoothing operator in the convolution kernels used for derivative

computation, and which smoothing operator might be the mosteffective for this purpose? Second, how
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should the image boundaries be handled when computing convolutions? Unfortunately, in [28], Yang

et al. did not clearly specify how to treat image boundaries during convolution, nor did they provide a

detailed quantitative analysis of the impact of different choices of smoothing operator. For this reason,

we consider both of these issues in more detail in what follows.

Although many choices of smoothing operators could be made,we elected to consider binomial

filters [36] herein. The one-dimensionalkth-order binomial (lowpass) filter (with zero-phase and unity

DC gain) has the transfer functionHk(z) = z(k−1)/2(1
2 + 1

2z−1)k−1, wherek is odd. Binomial filters are

attractive, since they have reasonably-good frequency responses with very simple filter coefficients. For

convenience, in what follows, we henceforth refer to smoothing using the (two-dimensional) smoothing

operator obtained from the tensor product of two one-dimensional kth-order binomial filters asB(k)

smoothing. Note that, sinceH1(z) = 1, B(k) smoothing degenerates into the case of no smoothing when

k = 1. Thus, for convenience, we often use the notation “B(1)” as a synonym for no smoothing.

BOUNDARY-HANDLING STRATEGY . To begin, let us focus our attention on the choice of the boundary-

handling strategy to be used during convolution. Since only separable filters are employed, we need only

concern ourselves with boundary handling in one dimension.In our work, we considered three common

boundary-handling strategies: 1) zero extension (i.e., the signal is padded with zeros); 2) constant extension

(i.e., the first and last samples of the signal are repeated); and 3) symmetric extension (i.e., the signal is

mirrored about its first and last sample points). For numerousimages, sampling densities, and smoothing

operators (including the degenerate case of no smoothing),a mesh was generated using the ED method

in conjunction with each of the boundary-handling strategies under consideration. In each case, the mesh

quality (in terms of PSNR) was measured. A representative subset of the results is shown in Table II,

covering both the cases of smoothing and no smoothing, with the best result highlighted in each case.

From these results, we observe that regardless of whether smoothing is employed, zero extension yields

the highest quality meshes. In particular, zero extension outperforms constant and symmetric extension

by about 0.6 to 2.3 dB in the no-smoothing case and 1.3 to 2.3 dBin the B(3) smoothing case. More

generally, considering our comprehensive set of results (and not just the subset presented here), we found

zero extension to fairly consistently perform best, regardless of the image and sampling density.

A closer analysis shows that the relatively poor performance of constant and symmetric extension is

due to their inability to place a sufficient number of sample points along the boundary of an image,

which leads to very high distortion in the vicinity of image boundaries. This behavior is illustrated in

Fig. 1. In this figure, for one of the test cases from Table II, we show the location of the sample points

obtained using each of the boundary-handling strategies. Comparing the results for zero extension (in
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TABLE II

COMPARISON OF BOUNDARY-HANDLING STRATEGIES IN THEED METHOD FOR THEpeppers IMAGE

PSNR (dB)

Samp. No Smoothing B(3) Smoothing

Density Zero Const. Sym. Zero Const. Sym.

(%) Ext. Ext. Ext. Ext. Ext. Ext.

1 19.00 18.10 17.94 21.35 19.10 19.23

2 23.08 21.52 21.51 26.09 24.37 24.75

4 27.69 25.42 25.83 29.85 27.58 27.73

8 31.11 29.46 30.49 32.11 30.65 30.13

(a) (b) (c)

Fig. 1. Selected sample points obtained for thepeppers image at a sampling density of 2% usingB(3) smoothing in

conjunction with (a) zero extension, (b) constant extension, and (c) symmetric extension.

Fig. 1(a)) to those for constant and symmetric extension (in Figs. 1(b) and (c)), we observe that there is

a significant difference in the number of sample points placedalong the image boundary. In particular,

in the case of constant and symmetric extension, noticeablyfewer points are placed along the bottom

and right boundaries of the image. Since zero extension clearly outperforms the other two boundary-

handling strategies, zero extension is always used for the EDmethod in the remainder of this paper,

unless otherwise noted.

SMOOTHING OPERATOR . Having examined various boundary-handling strategies, wenow turn our

attention to the choice of smoothing operator. In particular, we consider the use ofB(k) smoothing

for k ∈ {1, 3, 5, 7, 9} with k = 1 corresponding to the degenerate case of no smoothing. (Recall that

the quantityk in B(k) denotes the order of the smoothing filter.) For numerous images and sampling

densities, a mesh was generated using the ED method in conjunction with each of the smoothing operators
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under consideration (including the degenerate case of no smoothing). In each case, the mesh quality (in

terms of PSNR) was measured. A representative subset of the results is shown in Table III, with the

best result in each case being highlighted. From these results, we can make a number of observations.

First, there is a general tendency for higher-order smoothing filters to perform better at lower sampling

densities, while lower-order smoothing filters (such asB(1) and B(3)) fare better at higher sampling

densities. The preceding behavior is most clearly seen in thecases of thebull, glasses, lena,

andpeppers images. In the case of images having nonnegligible noise (e.g., photographic imagery),

B(k) smoothing withk ≥ 3 generally performs much better than no smoothing, withB(3) smoothing

typically faring the best at sufficiently-high sampling densities. This behavior is clearly demonstrated by

thelena andpeppers images, whereB(3), B(5), B(7), andB(9) smoothing consistently outperform

no smoothing for all of the sampling densities considered. In instances where images have negligible

noise and a significant amount of sharp edges, no smoothing often performs best, especially at higher

sampling densities. This behavior is observed in the cases ofthect andus images. (As an aside, we note

that although parts of thect andus images are relatively smooth, these images still have a significant

amount of sharp edges, due to factors such as an imaged patient region being superimposed on a larger

rectangular background or the addition of text annotations, lines, and other markings.) In passing, we note

that, in the above results, the subjective quality of imageswas generally found to correlate reasonably

well with PSNR.

The above results show that, at sufficiently high sampling densities (which typically correspond to

image reconstructions of high enough quality to be practically useful), eitherB(3) or no smoothing

tends to perform best. Since no smoothing performs very poorly in the case of images with noise,B(3)

smoothing arguably has the best overall performance acrossthe broadest range of image types. For this

reason, we recommend the use ofB(3) smoothing. Furthermore, in the remainder of this paper, we

always employB(3) smoothing for the ED method, unless otherwise noted.

Having observed several trends in the above experimental results, we now seek to explain the reason

behind these trends. As was observed above, in images with a nonnegligible amount of noise (such

as photographic imagery like thelena and peppers images), not using smoothing tends to lead to

poorer results. A more careful analysis shows that not employing smoothing in the presence of noise

tends to lead to sample points with a somewhat more uniform (random) distribution, due to phantom

large-magnitude derivatives resulting from noise. This behavior is illustrated in Fig. 2. In this figure,

for one of our test cases, we show the location of the sample points chosen using no smoothing and

B(3) smoothing. Clearly, the points in Fig. 2(b), which were obtained with smoothing, better reflect the
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TABLE III

COMPARISON OF SMOOTHING OPERATORS IN THEED METHOD

PSNR (dB)

Samp. Smoothing

Density None

Image (%) (B(1)) B(3) B(5) B(7) B(9)

bull 0.5 27.06 25.88 26.99 27.06 25.71

1.0 31.30 33.33 32.53 32.55 31.79

2.0 37.63 37.56 38.41 37.59 37.24

3.0 39.97 40.36 39.65 39.83 39.58

ct 0.5 23.30 21.61 22.41 21.81 20.74

1.0 31.96 29.45 25.60 25.57 25.18

2.0 37.34 35.62 35.76 32.43 32.32

3.0 40.13 39.40 38.30 37.23 34.11

glasses 1.0 19.59 21.30 21.85 22.45 22.81

2.0 23.52 25.19 25.62 26.03 25.67

3.0 26.01 27.59 27.80 27.41 27.56

4.0 28.82 29.44 29.25 28.46 28.31

lena 1.0 20.12 21.13 22.08 22.87 23.21

2.0 23.71 25.83 26.56 26.58 26.66

3.0 26.23 28.05 28.36 28.14 28.01

4.0 27.85 29.58 29.34 29.33 28.89

peppers 1.0 18.99 21.35 22.15 22.71 22.96

2.0 23.07 26.08 26.24 26.53 26.47

3.0 25.88 28.16 27.83 27.75 27.65

4.0 27.68 29.84 29.19 28.47 28.49

us 3.0 19.29 17.62 21.11 20.49 20.39

4.0 22.39 21.84 21.69 21.10 18.75

5.0 24.17 22.32 22.30 21.99 22.00

6.0 26.10 24.05 22.82 22.76 22.68

underlying structure of the image (especially fine detail such as image edges) than those in Fig. 2(a),

which were obtained without smoothing.

To explain some of the other results from above, it is instructive to consider a simple example. For the

wheel image shown in Fig. 3(a), we generated a mesh usingB(k) smoothing fork ∈ {1, 3, 9}, with

the degenerate case ofk = 1 corresponding to no smoothing. In each case, for the small rectangular

region highlighted in Fig. 3(a), shown enlarged in Fig. 3(b), we present the resulting sample-point density

functiond (in Figs. 3(c) to (e)), image-domain triangulation (in Figs. 3(f) to (h)), and image approximation
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(a) (b)

Fig. 2. Selected sample points obtained for thepeppers image at a sampling density of 2% using (a) no smoothing and

(b) B(3) smoothing.

(in Figs. 3(i) to (k)). As is evident in Figs. 3(c) to (e), the sample-point density function generally has a

double response to image edges. As one would expect with triangle-mesh approximations of images (and

which is also demonstrated by Figs. 3(i) to (k)), the predominant type of artifact is the triangle tooth, which

is caused by a triangulation edge crosscutting an image edge. When the crosscutting triangulation edge

is short, a small tooth results (such as the numerous small teeth in Fig. 3(k)), and when the crosscutting

edge is long, a large tooth is obtained (such as the one in Fig. 3(i)).

Examining the results of Fig. 3 more closely, we observe that, as the order of the smoothing filter

increases: 1) The sample-point density functiond becomes more blurred and the double response to each

image edge widens, with the peaks in the response being displaced slightly farther away from the image

edge. 2) In the image-domain triangulation, the sample points are spread more widely about image edges.

3) In the image reconstruction, the greater spread in the sample points about image edges leads to an

increase in the number of smaller-teeth artifacts and a decrease in the number of larger-teeth artifacts.

So, all other things being equal, higher-order smoothing filters tend to favor many smaller-teeth artifacts

over a few larger-teeth artifacts (such as in Fig. 3(k)), whereas a lower-order smoothing filter tends to

favor a few larger-teeth artifacts over many smaller-teethartifacts (such as in Fig. 3(i)). Earlier, when

examining the results of Table III, we observed a general tendency for higher-order smoothing filters

to perform better at lower sampling densities, with lower-order smoothing filters becoming increasingly

favored as the sampling density increases. We are now in a position to explain the reason for this

behavior. At lower sampling densities, triangle edges tendto be longer and the mesh approximation error

is most strongly influenced by large-teeth artifacts. Since a higher-order smoothing filter tends to trade
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 3. The effect of smoothing on the generated mesh. (a) Full image,showing a rectangular region of interest. (b) Region of

interest under magnification. The density function used for error diffusion with (c)B(1) (i.e., no) smoothing, (d)B(3) smoothing,

and (e)B(9) smoothing; the corresponding image-domain triangulation for (f)B(1), (g) B(3), and (h)B(9) smoothing; and

the corresponding image approximation for (i)B(1), (j) B(3), and (k)B(9) smoothing.
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larger teeth for smaller ones, it has a mitigating effect on the error. Thus, higher-order smoothing filters

tend to lead to better results at lower sampling densities. As the sampling density increases, however,

large teeth are eliminated and small teeth become the main contributor to error. Consequently, at higher

sampling densities, the approximation error is most strongly influenced by small teeth. Since higher-order

smoothing filters encourage the creation of small teeth, suchfilters exacerbate the error incurred by small

teeth, resulting in lower-order smoothing filters tending toperform better.

ERROR-DIFFUSION SCAN ORDER . In our analysis of the ED method, we also studied the effect that

the scan order used for error diffusion has on mesh quality. More specifically, we considered the Hilbert

scan order from [37] (where all error is diffused into the next point in the scan) as well as the raster and

serpentine scan orders from [28]. For numerous test images and sampling densities, the ED method was

employed to generate a mesh using each of the preceding threescan orders, and the resulting mesh quality

measured (in terms of PSNR). A representative subset of the results is shown in Table IV. Generally,

the serpentine scan order was found to fairly consistently outperform the raster scan order, regardless

of the smoothing operator and particular image. So, in the remainder of this comparison, we focus our

attention on the serpentine and Hilbert scan orders. The Hilbert scan order was sometimes found to

perform better than the serpentine scan order at lower sampling densities. Although the Hilbert scan

order can have an advantage at lower sampling densities, theserpentine scan order generally tends to be

superior at higher sampling densities. This behavior is apparent in the results of Table IV. In particular,

for each of the four images, the serpentine scan order consistently performs best at the highest sampling

density. In practice, however, the sampling density is muchmore likely to be chosen near the higher end

of the ranges considered in the table, since the lower sampling densities often correspond to relatively

poor quality image reconstructions. Lastly, it was also observed that in some instances where the Hilbert

scan order produced the best PSNR result, the corresponding subjective image quality was sometimes

clearly not the best. Taking all of the above observations into consideration along with the fact that the

serpentine scan order has much lower complexity than the Hilbert scan order (and essentially the same

complexity as the raster scan order), we conclude that the serpentine scan order strikes the best overall

balance between mesh quality and complexity. Consequently, the serpentine scan order is always used

for the ED method in the remainder of this paper, unless otherwise noted.

For the reader’s benefit, we note that the tendency of the Hilbert scan order to sometimes outperform

the serpentine scan order at lower rates can be largely attributed to a startup effect that exists in error

diffusion. In particular, if the sample-point density function d is quite small relative to the error-diffusion

thresholdτ in the region first processed by error diffusion, error will accumulate very slowly, resulting

March 7, 2011 DRAFT



13

X X

XX

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X
X

X

X

X

X
X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X
XX

X
X

X
X

X
X

X

X

X
X

X

X

X

X
X

X

XX

X

X

X
X

X

X

X

X
X

X

X
X X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X
X

X

X

XX

X
X

X

X

X

X
XX

X

X

X

X

X

X
X

X

X

X

X

X

X X

X

X

X

X
X

X

X

X

X

X

X

X

X X

X
X

X

X

X
X

X X

X

X

X
X

X

X

X
X

X

X

X X

X

X

X

X
X

X
X

X

X
X

X

X
X

X

X X
X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X
X X

X

X

X

X

X X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X

X

X
X

X

X X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X
XX

X

X

X

X

X

X

X

X

X
X X

X

X

X

X

X

X

X

X

X

X X

X

X X

X
X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X

XX

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X
X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X
X X

X
X

X

X

X X

X
X

X
X

X

X

X
X

X

X

X

X

X

XX X

X

X

X

X

X
X

X

X

X

X X

XX

X

X

X

X X

X
X

X

X

X
X

XX

X

XX X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

XX

X

X X
X

X

X

X

X
X

X

X
X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X

X
X

XX

X

X
X

X

X
X

X

X

X

X

XX
X

X

X

XX

X

X

X

X

XX

X
X

X
X

X X

X

X

X

X

X
X

X
X

X

X

X
X

XX

X

X

XX

X

X X

X X

X
X

X

X

X

X

X

X
X

X

X

X

X

XX
X

X

X

X X

X
X

X X

X
X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

XX

X

X

X

X

X

X

X X X

X

X

X

X
X X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

XXX

X

X

X

X

X

X

X
X

X

X

X
X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X
X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

XX
X

X

X

X

XX

X
X X

XX

XX

X

X

X
X

X

X

X
X

X

X

X X X
X

X
X

X

X

X

X X

X
X

X

X
X

X

X

X

X

X

X

X

X

XX
X

X

X
X

XX

X

X

X

X

X

X
X X

X

X

X

X

X

X

X

X

X

X

X

X X

X
X

X

X

XX

X X

X

X

X

X

X

XX

X

X

X X
X

X

X

XX

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X X
X

X X
X

X

X

X

X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X X X

X
X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
XX

X

X
X

X

X

X
X

X

X X

X

X

X

X

X XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X
X

X

X
X

X X
X

X

X

X

X

X

X

X

X

XX
X

X
X

X

X

X

X
X

X

X

X

X
X

X X
X X

X
X

X
X

X

X X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X
X

X

X

X X

X
X

X

X
X

X X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X
X

X
X

X

X

X
X

XX X

X

X
X

X

X

X

X X X

X

X

X

X

X

X

XX
X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X X

X

X

X

X X

X

X
X

X

X

XX

X

XX
X X

X

X

X

X

X

X

X
X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

XX
X

X

X

X

XX

X

X
X

X
X

X
X

X

X

X

X
X

X

X

X

X

X

X X
X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

X

X

X

X

X

X

XX

X

X

X

X X

X

X

X

X

X X
X

X
X

X

X
X

X X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

X

X
X

X

X

X

X

X

X

X

X

X XX

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X XX X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X
X X

X

X

X

X

X

X
X

X

X
X

X

X
XX X

X

X

X

X

X

X

X

X

X

X X

X X

X

X

X

X

X

X

X

X X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X
X

X

X

X

X
X

X

X X
X X

X

X

X X

X
X

X

X

X

X

X

X

X

X

X

X

X

X X
X

X
X

XX
X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X
X

X
X

X

X

X X X

X

X

X X

X

X
X

X

X
X X X

X
X X

X

X

X
X

X

X

X

X

X

X

X
X

XX X

X

X X

X

X

X
X

X

X
X

X

X

X
X

X

X
X

X X X

X

XX

X

X
X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X

X

X
X

X

X
X

X
X

X

X

X

X

X
X

X

X

X

X

X
X

X X

X

X

X

X
X

X

X X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X
X

X
X

X
X

X

X

X

X X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

XX

X
X

X

X
X

X

X
X

X
X X

X

X

X
X

X X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X
X X

X

X

X

X

X

X

X

X

X

X

X X X

X

X

X

X

X

X

X

X X
X

X

X
X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X
X

X X

X

XX

X

X
X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X
X X

X
X

X

X

X

X

X X

X

X

X

X X

X X

XX
X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X
X

X
X

X
X

X

X X X

X

X
X

XX X

X

X

X

X
X X

X

X
X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

XX

X

X

X
X X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

XX

X

X

X

X

X

X

X
X

XX
X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X X

X

X

X

X

X

X

X

X
X

X

X

X X

X

X

X

X

X
X

X X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X
X X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

X

X

XX

X

X

X

X

X

X

X
X

X
X

X

X X
X

X

X

X

X
X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X
X

X

X

X

X X

X

XX

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X
X

X

X

X

X X

XX

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X X

XX

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X X
X

X

X

X

X

X

X

X X

X

XX X X

X

X
X

XX X X X X X X X

X

X

X X

X

XX X XX X X X XX X

X

XX X X X X

X

X XX X

X

X XX X X XXX X XX X X

X

X X XXX

X

X X XX X
X

X X XX X XX X X X X X X

X

X
X

X X X
X

X

X
X X X X X X X XX

X
X

X
XX X X X X X

X

X
X X

X
X X X

X
X

X
X X X

X
X X

X

X

X X
X XX X X X

X
X

X
XXXX XX

X
X XX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

(a)

X X

XX

X

X

X

X

X
XX

X

X
XX X

X

X
X

X

X

X
X

X
X

X

X X

X
X

X

X

X

X

X

X
X

X
X

X
X

X

X
X

X
X

X

X
XX

X

X
XX

X

X X

X

X
X

X

X

X

X X
XX X

X

X

X
X

XX
X

X
X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X X
X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

XX

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X
XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

XX X
X

X

X

X

X

X X

X

X

X

X

X

X

X

X X X

X

X

X

X

X

X
X X

X

X

X

X

X

X

X

X

X X

X

X
X

X

X

X

X

X

X

X X
X

X

X

X

X

X

X

X

X

X

X X

X X

X

X
XX

X

X
X

X

X

X

X

X
X

X

X

X
X XX

X

X
X

X

X

X

X

XX

X X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X
X

X

XX
X

X
X

X
X

X

X

X

X
X

X

X

X
X

X

X X

X

X
X

X

X X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X X

X X X
X

X

X

X

XX

X X

X
X

X

X X
X

X
X

X
X X

X

X

X

X

X

X

X

X

X X
X

X

X X

X

X

X

X

X
X

X

X

X

X

X

X

X

X X
X X

X
X

X

X

X

X

X X

XX
X X

X

X X

X

X

X

XX

X

X

X X

X

X

X X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X X X

X XX

X
XX

X

X

X

X
X

X X

X
X

X

X

X X
X

X
X

X

X

X X
X

X

X

X

X

X

X

X

X
X

X

X
X

X

X
X

X

X
X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X X

X

X
X

X

X

X X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

XX
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X X

X
X X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X
X

X

X

X X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X
X

X

X

X
X

X
X

X

X

X
X

X

X

X
X X

X

X

X
X

X

X
XX

X

XX

X

X X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X X

X
X

X

X

X

X

X

X

X

X

X
X X

X

X X

X

X

X

X
X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X
X

XX

X X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X
X

X

XX

X

X

X

X

X

X

XX

X
X

X

X

X

X XX

X

X

X
X

X

X

X

X

X

X

X

X

XX
X

X

X

X

X
X

X

X
XX

X

X

X

XX X

X

X
X

X

X
X

X
X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

XX

X
X

X X

X
X

X
X

X

X

X

X
X

X
X

X
X

X

X

X

X

X
X

X

X
X

X
X X

X

X

X
X

X
X

X
X X

X X

X

X

X X
X

X

X

X

X

X X X X

X
X

X

X
X

X X
X

X

X

X X

X

X

X

X X

X
X

X

X

X

X

X

X

XX
X

X

X
X

X

X

X

X

X

X

X

X

X X

X

X X
X

X X

X

X

X
X

X

X

X

X

X

X

XX

X

X

X

X X
X

X
X

X

X

X

X
X

X
X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X
X

X

X

X
X

X

X
X

X

XX

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X X

XX

X
X

X

X

X X

X

X

X

X

X

X

X

XX

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X

XX

X
X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X
X

X
X

X

XX

X

X

X

X

X

X

X

X

X

XX

X
X

X
X

X X

X

X

X

XX X

X

X

X X

X

X
X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X
X

X

X

X

XX

X
X X

X

X

X
X

X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X X

X

X

X

X
X

X

X
X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X X X

X

X

X

X

X

X X
X

X

X

X
X

X

X
X

X

X

X

X X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X X

X
X

X
X

X

X

X

X

X

X

X

X X

X

X

X

X
X

X

X

X

X X

X

X X

X

X

X

X

X
X

X

X

X

X

X

X
X

X
X

X

X
X

X

X

X

X

X

X

X

X X X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X X

X

X
X

X

X
X

X

X

X

X
X

X

X

X

X

X

X X
X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X X X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

XX
X

X

X

X

X
X X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X X

X

X
X

X

X

X
X

X

X

X
X X

X
X

X

X

XX

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

XX

X

XX
X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X X

X

X
X

X

X

X

X
X

X

X

X

X X
X

X

X
X

XX
X X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X X

X X

X

X
X

X

X
X

X X

X

X X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

XX XX

X

X

X

X X

X

X X

X

X

XX

X

X

X

X

X

X

X

X

X X

X

X

X

X

X
X

X

X
X

XX

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X

X

X

XX

X

X X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

XX

X

X

X

X

X

X

X
X

X X
X X X

X
X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X X
X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

XX

X

X

X X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

XX X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X X

X

X
X

X

XX

X

X

X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X

X

X

XX

X

X

X
X

XX

X

X
XX

X
X

XX

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X
X

X

X X

X

X

X

X

X

X

X

X XX

XX

X

X

X

X

X

X

X

X

X

X

X
X X

X
X

X

X X

X

X

X
X X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X

X

X
X

X
X

X

X

X

X

X

X
X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X X
X

X

X
X

X
X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

XX

X

X
X X

X

X

X

X

X

X

X

X

X

X

X
X

XX X
X

X

XXX

X

X
X

X X
X X X

X

X X
XX

X

X

X
X

X
X X

X
X

X

X
XX X

X
X

X

X
X X

X
X X X X X

X
X

X X

X

X

XX
X XX

X
X

X

X

X X
X

XX XX
X

XX X X

(b)

Fig. 4. Triangulations obtained for thelena image at a sampling density of 1% using the ED method with error diffusion

employing the (a) serpentine and (b) Hilbert scan orders.

in very few (or no) sample points being selected in this region. Since the raster and serpentine scan

orders process the image row-by-row starting from the bottom of the image, the entire bottom part of

the image can potentially be affected by this startup behavior. For example, at low sampling densities,τ

can become so large relative tod that it becomes either very unlikely or even impossible for any sample

points to be placed in the firstn rows processed during error diffusion, wheren increases withτ . Since

we process images starting from the bottom and proceeding upwards, this results in very few sample

points in the bottom part of the image (except the two bottom corner points which are always forced to

be selected). In contrast, the Hilbert scan order does not experience such a strong startup effect, due to

the highly winding path that it employs. The above startup phenomenon is illustrated in Fig. 4. In this

figure, for one of our test cases involving thelena image, we show the triangulations of the sample

points chosen using each of the serpentine and Hilbert scan orders. Notice that, in the serpentine case

(i.e., Fig. 4(a)), the number of sample points in the bottom part of the image (where the image intensity

is changing more slowly) is abnormally small, and that no points were chosen on the bottom boundary of

the image, except for the two bottom corner points which are always forced to be selected. This results

in many sliver (i.e., long thin) triangles that lead to high mesh approximation error. On the other hand,

in the Hilbert case (i.e., Fig. 4(b)), a much more reasonable distribution of sample points is obtained in

the bottom part of the image.

SHORTCOMINGS . Although the ED method has very low computational complexity, it does have one

major weakness. Namely, when selecting sample points, the EDmethod does not explicitly consider the

error metric (i.e., squared error) or triangulation topology. To allow the reader to better appreciate the
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TABLE IV

COMPARISON OF DIFFERENT SCAN ORDERS FOR THEED METHOD

Samp.

Density PSNR (dB)

Image (%) Raster Serpentine Hilbert

ct 0.5 19.00 21.61 24.28

1.0 24.34 29.45 29.21

2.0 35.59 35.62 29.95

3.0 38.42 39.40 37.08

glasses 1.0 19.55 21.30 22.09

2.0 24.07 25.19 25.70

3.0 26.84 27.59 27.76

4.0 28.74 29.44 29.22

lena 1.0 20.65 21.13 22.59

2.0 24.95 25.83 25.77

3.0 27.63 28.05 27.51

4.0 29.16 29.58 28.96

peppers 1.0 20.03 21.35 22.96

2.0 25.53 26.08 26.38

3.0 27.94 28.16 28.41

4.0 29.56 29.84 29.47

impact that this has on mesh quality, we make the following interesting observation, which is supported

by experimental results presented later in Section V. Given amesh produced by the ED method, we

can typically remove, in an intelligent manner, a very substantial number of points from the mesh (in

many cases, about half) without increasing the approximation error. In fact, by removing points, the

approximation error can often bereducedsignificantly. At first, this result may seem surprising, but it

does have a simple explanation. Because the ED method does notconsider triangulation topology, a mesh

produced by this method will typically have many triangle edges that crosscut image edges, resulting in

higher approximation error. By removing points from the mesh, we can change the triangulation topology

in such a way that triangle edges better align with image edges, resulting in lower approximation error.

IV. GREEDY POINT-REMOVAL (GPR) METHOD

The second mesh-generation method of interest herein is thegreedy point-removal (GPR)scheme of

Demaret and Iske [4] (called “adaptive thinning” in [4]), which is closely related to the adaptive thinning

technique of Dyn et al. [8]. The GPR method first constructs a meshthat employs all of the sample
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points of an image, and then repeatedly removes the sample point that yields the smallest increase in

the squared error of the mesh approximation, until the desired number of sample points is obtained.

More specifically, for an image sampled on a truncated two-dimensional integer latticeΛ of width W

and heightH and a desired numberN of sample points, the method selects a setS of sample points as

follows:

1) Initially, let S := Λ (hence,|S| = WH).

2) Construct the Delaunay triangulation ofS.

3) If |S| ≤ N , outputS and stop; otherwise, proceed to step 4.

4) For each pointp ∈ S, compute the increase∆ep in squared error of the mesh approximation that

is incurred if p is removed from the triangulation. Note that, for the purposes of the preceding

computation, it is assumed that a planar interpolant is formed over each face of the triangulation

as described earlier in Section II.

5) For the pointp ∈ S that minimizes∆ep, deletep from the triangulation, and letS := S \ {p}.

6) Go to step 3 (i.e., the beginning of the loop).

A few comments are now in order regarding the preceding algorithm. First, since the deletion of a

vertex from a Delaunay triangulation is guaranteed only to affect the faces incident on the vertex to be

deleted [38], step 4 can be performed quite efficiently in practice. That is, in each iterationwith the

exception of the first, step 4 only needs to recompute the error increase for a very small number of

points, namely, the immediate neighbours of the point deleted in the previous iteration. Furthermore, by

maintaining all of the triangulation vertices in a heap-based priority queue (where a vertexp has priority

∆ep), one can efficiently determine the vertexp minimizing ∆ep in step 5. For further details regarding

efficient implementation, the reader is referred to [4], [8].

Although the GPR method has been shown to yield excellent quality meshes, it has one major weakness,

namely its very high computational and memory costs. Since the GPR method starts with a triangulation

containing all of the sample points of the image (i.e.,|Λ| = WH points), the mesh size at the beginning

of the algorithm can be extremely large. For example, with today’s digital cameras, a value forWH on

the order of107 is not unreasonable. This large initial mesh size leads to an algorithm that requires very

high computation times and large amounts of memory.

Lastly, we note that, due to the greedy nature of the GPR method,it is extremely unlikely to yield a

globally optimal solution. This suboptimality is a direct consequence of the short-sightedness of the greedy

strategy. That is, when a point is removed, the algorithm fails to consider how this point’s removal affects

the evolution of the algorithm inall subsequentiterations (i.e., only the impact in the current iteration
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is considered). In short, trying to minimize the increase inerror in the current iteration may cause the

error-increment values of later iterations to become much larger.

In light of the above suboptimality, it would seem plausiblethat solutions of quality comparable to

(or perhaps even better than) those obtained with the GPR method could be achieved without the need

to consider a mesh containingall WH sample points of the original image. That is, if we were to use a

point-removal algorithm similar to that employed in the GPR method, but seed the algorithm with only a

small subset of theWH sample points that are wisely chosen to be sufficiently close to a good optimal

solution, such a scheme might be able to produce meshes of quality comparable to (or better than) those

generated by the GPR method, but at only a small fraction of thecomputational and memory costs. It

was precisely this hypothesis that led to the development ofthe new mesh-generation approach proposed

in this paper, which we present next.

V. GREEDY POINT-REMOVAL FROM SUBSET (GPRFS) METHOD

With the above hypothesis as motivation, we propose a modifiedversion of the GPR scheme, which

we henceforth refer to asGPR from subset (GPRFS). Given an image sampled on a truncated two-

dimensional integer latticeΛ of width W and heightH and a desired numberN of sample points, our

GPRFS method chooses a setS of sample points (where|S| = N ) using an algorithm identical to the

GPR scheme, except that step 1 (of the GPR scheme) is amended to read:“1) Select a subsetS0 of Λ

having size (i.e., cardinality)N0, whereN0 ∈ [N, |Λ|] and the particular subset-selection policy to be

employed for choosingS0, givenN0, is specified as an input to the method. Then, letS := S0. Note that

S0 must be chosen to include the (four) extreme points of the convex hull ofI for the reasons mentioned

earlier in Section II.” In other words, our GPRFS method initially inserts an arbitrary subset of the

sample points inΛ into the triangulation instead of always inserting all of them, as is the case in the

GPR scheme. Note that our GPRFS method includes the GPR scheme as aspecial case. That is, if we

chooseN0 = |Λ|, the GPR scheme is obtained. Since we can chooseN0 to have any value in the range

[N, |Λ|], our method has considerably more flexibility than the GPR scheme. For example, by choosing

N0 ≪ |Λ| (which results in a much smaller initial mesh), computational and memory costs can be greatly

reduced relative to the GPR scheme. Also, as we will later show, by choosingN0 > N andN0 ≪ |Λ|,

we can achieve meshes of quality comparable to, or better than, those produced by the GPR scheme. In

this sense, we can tradeoff between mesh quality and computational/memory cost by varyingN0 in the

range[N, |Λ|].

CHOICE OF S0 GIVEN N0. Of course, for our proposed approach to be useful, we need an effective

subset-selection policy (i.e., a means for choosingS0, givenN0). Although many subset-selection policies
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Fig. 5. Effect of varying the initial sampling densityD0 on mesh quality for the GPRFS-ED method. (a) Thepeppers image

with a desired sampling densityD of 4%; and (b) Thelena image with a desired sampling densityD of 2%.

could be developed, we consider only two herein, each leading to a different variant of the GPRFS method.

The first policy, which is the one whose use is advocated by this paper, employs the ED method (of

Section III) to selectS0, and yields the GPRFS variant known asGPRFS-ED. In particular, the GPRFS-

ED method employs the ED scheme with zero extension,B(3) smoothing, and a serpentine scan order.

The second policy, which is only used for benchmarking purposes, simply choosesS0 randomly, and

yields the GPRFS variant known asGPRFS-Random.

RECOMMENDED CHOICE OF N0. Although the GPRFS-ED and GPRFS-Random methods have been

completely specified above, both methods haveN0 as an input parameter. Therefore, in the interest of

making our work more practically useful, we provide a recommendation in what follows as to how one

might reasonably chooseN0, or equivalently, the initial sampling densityD0 (where N0 and D0 are

related byN0 = D0 |Λ|). Since the rationale behind our recommendation is beneficialto know, a brief

summary of the work that led to the recommendation is presented before the recommendation itself.

To help in determining an appropriate strategy for choosingD0, the following experiment was con-

ducted for numerous images and values of the desired sampling densityD (whereD = N
WH ). For the

given image and value ofD, we measured the mesh quality (in terms of PSNR) as a function ofD0

while keepingD fixed. Fig. 5 shows the results obtained for two test cases, witheach graph having two

lines, one for each of the two GPRFS variants. (For each graph, the horizontal axis corresponds to values

of D0.)

From the results of Fig. 5, we can make a number of observations.The first is that the GPRFS-ED

variant is vastly superior to the GPRFS-Random variant. That is,higher quality meshes (i.e., higher PSNR)
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can be obtained with the GPRFS-ED variant than the GPRFS-Random variant for nearly all values of

D0 (and certainly all values of practical interest). In other words, using the ED scheme to wisely select

S0 in the GPRFS method is highly effective, much more so than choosing S0 randomly. This shows the

effectiveness of the subset selection strategy in our proposed GPRFS-ED method. Since the GPRFS-ED

variant is vastly superior to the GPRFS-Random variant, we onlyconsider the first of these variants in

the remainder of our work. With this in mind, let us continue to examine Fig. 5, focusing our attention

only on the results obtained with the GPRFS-ED variant. A carefulexamination of these results leads to

the following interesting (and perhaps surprising) observation: In both graphs, the maximum PSNR is not

obtained whenD0 is 100%, the point at which the GPRFS-ED method becomes equivalent to the GPR

scheme. More specifically, asD0 is decreased from 100% (corresponding to moving from right to left on

the graphs), the PSNR climbs very slowly to a maximum value and then drops relatively rapidly thereafter.

Due to this behavior, the GPRFS-ED method can be made to produce a higher quality mesh than the

GPR scheme, provided that an appropriate choice ofD0 is made. Based on further experimentation,

we found that, forD values of practical interest (e.g.,D < 1
10 = 10%), the GPRFS-ED method can

usually be made to achieve a PSNR very close to that of the GPR method through a choice ofD0 in the

approximate range[4D, 5.5D]. Consequently, we recommend thatD0 be chosen using a simple formula

of the formD0 = min{γD, 1}, or equivalently, thatN0 be chosen as

N0 = min{γN, WH}, (2)

whereγ is a real constant satisfyingγ ≥ 1. Note that the GPRFS-ED method includes the ED scheme as

a special case (i.e., the case ofγ = 1). For photographic imagery (except at very low sampling densities),

in order to achieve results comparable to the GPR scheme, it istypically sufficient to chooseγ as4, while

in the remaining cases, a somewhat larger value (sometimes closer to5.5) may be more appropriate. In

the interest of minimizing computational/memory complexity, however, we recommend thatγ be chosen

nominally asγ = 4, incurring a small mesh-quality penalty relative to the GPR scheme in some cases. In

the remainder of our paper, all experiments involving the GPRFS-ED method follow our recommendation

of choosingN0 using (2) withγ = 4, unless otherwise noted.

ADDITIONAL REMARKS ON GPRFS-ED. As has already been mentioned, the GPRFS-ED method

uses the ED scheme with zero extension,B(3) smoothing, and a serpentine scan order. This choice of

options for the ED scheme, however, was made only after carefully studying the behavior of the ED

scheme specifically when it is usedwithin the GPRFS-ED method. In some respects, our findings were

similar as to what was observed when the ED scheme was studied in isolation in Section III, but there

were some differences. Since knowledge of these differencesis likely to be beneficial to the reader, we

March 7, 2011 DRAFT



19

comment on these differences below.

Scan order. First, we comment on the choice of the scan order used for errordiffusion. As in the

case of the ED scheme (in isolation), in the GPRFS-ED method, the serpentine scan order was found to

perform better than the raster scan order. In contrast to ED scheme, however, the percentage of cases in

which the Hilbert scan order outperforms the serpentine andraster scan orders is greatly reduced to the

point where any benefit of the Hilbert scan order is essentially eliminated. Recall that, in the context of

the ED scheme, the good performance of the Hilbert scan order is largely due to its ability to reduce the

degradation caused by startup effects in error diffusion. Because, for a givenN (i.e., a desired number of

sample points) the GPRFS-ED method employs a much smaller error-diffusion thresholdτ than the ED

scheme, the startup effect becomes much less of an issue in the GPRFS-ED method. Thus, the benefit of

the Hilbert scan is essentially eliminated. For the above reasons, the serpentine scan order was ultimately

chosen for use in our GPRFS-ED method.

Smoothing operator. Lastly, we comment on the choice of smoothing operator. To evaluate the

performance of the various smoothing operators, we collected a set of results similar to those for the ED

scheme appearing earlier in Table III. That is, for numerous images and sampling densities, a mesh was

generated using the GPRFS-ED method in conjunction with each of the smoothing operators (including the

degenerate case of no smoothing), and in each case, the mesh quality (in terms of PSNR) was measured.

A representative subset of the results is shown in Table V. Bycomparing the results of Tables V and III,

a few observations can be made. First, in the case of the GPRFS-ED method, B(3) smoothing and no

(i.e., B(1)) smoothing (especially the former) are much more strongly favored than in the ED case. This

behavior can be briefly explained as follows. As was shown earlier in Section III, in the case of the

ED method, one of the main advantages of higher-order smoothing filters is that they help to reduce the

number of large triangle teeth artifacts, leading to lower mesh approximation error. Since the GPRFS-

ED method effectively discards (via point-removal) bad sample points, such as those that produce large

triangle teeth, the GPRFS-ED method does not benefit as much from the use of higher-order smoothing

filters. For this reason, in the GPRFS-ED case, lower-order smoothing filters (namely,B(1) andB(3))

are much more likely to perform best. Furthermore, by again comparing the results of Tables V and III,

we can also observe that, in going from the ED method to GPRFS-ED method, the performance of

B(3) smoothing has improved overall relative toB(1) smoothing. That is, in some cases whereB(1)

smoothing was superior for the ED method,B(3) smoothing is now best for the GPRFS-ED method;

and in cases whereB(1) smoothing still beatsB(3) smoothing in the GPRFS-ED method, the margin

(by which B(1) smoothing outperformsB(3) smoothing) tends to be smaller than with the ED method.
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TABLE V

COMPARISON OF SMOOTHING OPERATORS IN THEGPRFS-EDMETHOD

PSNR (dB)

Samp. Smoothing

Density None

Image (%) (B(1)) B(3) B(5) B(7) B(9)

bull 0.5 40.14 39.78 40.63 39.99 39.19

1.0 43.51 43.50 43.26 42.85 42.27

2.0 45.70 45.63 45.50 45.29 44.94

3.0 47.01 46.91 46.90 46.86 46.74

ct 0.5 37.17 36.85 35.76 33.49 33.32

1.0 41.20 40.72 40.56 40.07 34.80

2.0 45.10 44.63 44.19 44.13 43.99

3.0 47.68 47.53 47.12 46.28 45.95

glasses 1.0 28.45 28.80 28.68 28.51 28.67

2.0 32.32 32.44 32.07 31.73 31.55

3.0 34.78 34.91 34.43 33.92 33.53

4.0 36.74 36.90 36.41 35.79 35.37

lena 1.0 28.59 29.06 28.93 28.87 28.64

2.0 31.65 31.94 31.83 31.68 31.50

3.0 33.32 33.48 33.38 33.25 33.05

4.0 34.44 34.56 34.45 34.29 34.11

peppers 1.0 29.03 30.00 29.76 28.99 28.98

2.0 32.13 32.56 32.46 32.18 32.04

3.0 33.41 33.73 33.65 33.53 33.39

4.0 34.23 34.45 34.39 34.28 34.15

us 3.0 30.18 30.07 29.86 28.73 27.93

4.0 32.61 32.57 32.70 32.33 31.37

5.0 34.23 34.38 34.42 34.23 33.70

6.0 35.68 35.75 35.66 35.52 35.17

SinceB(3) smoothing was found to yield the best results in the majorityof cases, and is much better

thanB(1) smoothing for images with noise (e.g.,lena andpeppers), B(3) smoothing was ultimately

chosen for use in our GPRFS-ED method.

GPRFS-MED. In the interest of providing an alternative tradeoff between mesh quality and com-

plexity, we now present a slight variation on our GPRFS-ED methodknown by the nameGPRFS via

modified ED (GPRFS-MED). The GPRFS-MED method is identical to the GPRFS-ED scheme, except

for two key differences. First, instead of allowing flexibility in the choice ofγ (in (2)), we always choose
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γ = 1. Second, the stopping criterion in step 3 (of the GPRFS/GPRFS-ED method) is amended to read:

“3) If |S| ≤ N and removing another point would cause an increase in the mesh approximation error,

outputS and stop; otherwise, proceed to step 4.”Essentially, our GPRFS-MED method is equivalent to

adding a postprocessing step to the GPRFS-ED scheme withγ = 1 (or equivalently, the ED scheme) that

continues to remove points as long as doing so does not cause the mesh approximation error to increase.

This is precisely the intelligent point-removal process that was alluded to earlier in Section III (under the

“Shortcomings” heading). Since the GPRFS-MED scheme choosesγ = 1, the initial mesh size is quite

small and the computational cost is quite low relative to theGPRFS-ED method. The effectiveness of the

GPRFS-MED method is a consequence of the typical behavior of meshquality (in terms of PSNR) as

points are removed from the mesh. This behavior is illustrated in Fig. 6. In particular, for two test cases,

we show how the mesh approximation error changes as points are removed from the mesh (corresponding

to moving from right to left on the graphs). The important observation to make from the graphs in the

figure is that, as points are removed, the mesh quality (i.e., PSNR) increases significantly before starting

to decrease. In fact, a very large fraction of the points fromthe initial mesh can be removed before the

mesh quality first decreases (approximately 37% and 33% in thecases of Figs. 6(a) and (b), respectively).

Furthermore, the point-removal process typically yields anoverall increasein mesh quality. The reason

for the preceding behavior is as was explained earlier in Section III. It is also important to note that the

increase in PSNR resulting from point removal also correlateswell with subjective image quality. This

can be seen, for example, in the subjective results that appear later in Figs. 7(a) and (b) which correspond

to thepeppers test case from Fig. 6(a) above. In particular, Figs. 7(a) and (b) show, respectively, part

of the reconstructed images obtained before and after application of the point-removal process. Notice

how the triangle teeth artifacts are reduced in the reconstruction obtained after point removal has been

applied. Lastly, although in principle we could also change the GPRFS-ED method so that its step 3 is

amended as above, such a change would not have any significant effect on the GPRFS-ED method in

practice. This is because, with this method,γ is typically chosen sufficiently large (i.e.,γ ≥ 4) that the

mesh quality is essentially guaranteed to be decreasing by the time the current number of sample points

is reduced toN (so the number of sample points would not be reduced beyondN ).

VI. EVALUATION OF THE PROPOSEDMETHODS

Having introduced our GPRFS-ED and GPRFS-MED methods, we now comparetheir performance to

the GPR and ED schemes in terms of mesh quality as well as computational and memory complexities.

In passing, we note that the implementations of the ED, GPR, GPRFS-ED, and GPRFS-MED methods,
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Fig. 6. Effect of removing points from the initial mesh in the cases of the (a) peppers image with an initial sampling density

of 1%, and (b)lena image with an initial sampling density of 2%.

used for comparison purposes herein, were developed independently by the author in C++. The ED and

GPR implementations follow the details provided in [28] and [4], [8], respectively. The GPRFS-ED and

GPRFS-MED implementations were derived by extending the GPR implementation in a straightforward

manner to handle different initial conditions (i.e., a different initial mesh). Lastly, for the benefit of future

works that may wish to compare with results herein, the number N of sample points in a mesh can be

computed from the sampling densityD, and the widthW and heightH of the original image using the

formula N = ⌊DWH⌋.

M ESH QUALITY . For several combinations of images and desired sampling densities, the GPRFS-ED,

GPRFS-MED, GPR, and ED methods were used to generate meshes, and themesh quality (in terms of

PSNR) was measured. A representative subset of the results is given in Table VI, with the best result in

each case being highlighted. For the GPRFS-ED method, two sets ofresults are provided, corresponding

to two choices of the parameterγ (i.e., the nominal choice ofγ = 4 as well asγ = 5.5). Generally, the

PSNR was found to correlate reasonably well with subjective image quality. For the benefit of the reader,

however, an example illustrating the subjective quality achieved by the various methods is provided in

Fig. 7, where a small part of each mesh approximation is shown under magnification. In what follows,

we examine the above results from Table VI and Fig. 7 in detail.

GPRFS-ED versus GPR and ED. To begin, we compare our GPRFS-ED method to the GPR and

ED schemes. From Table VI, we can see that for photographic images (e.g.,lena andpeppers), our

GPRFS-ED scheme (with eitherγ = 4 or γ = 5.5) yields results comparable to, or better than, the GPR

scheme. In particular, forγ = 5.5, our GPRFS-ED method performs better at all sampling densities of
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(a) (b)

(c) (d)

(e)

Fig. 7. Part of the image approximations obtained for thepeppers image at a sampling density of 1% with the (a) ED (21.35

dB) (b) GPRFS-MED (23.34 dB, actual sampling density 0.64%) (c) GPRFS-ED withλ = 4 (30.00 dB), and (d) GPRFS-ED

with λ = 5.5 (30.20 dB), and (e) GPR (30.04 dB) methods.
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TABLE VI

COMPARISON OF MESH QUALITY OBTAINED WITH THE VARIOUS METHODS

Samp. PSNR (dB)

Density GPRFS- GPRFS-ED

Image (%) ED MED∗ γ = 4 γ = 5.5 GPR

bull 1.0 33.30 35.94 (0.54) 43.50 43.88 43.99

2.0 37.56 39.63 (1.08) 45.63 45.84 45.80

3.0 40.36 42.51 (1.69) 46.91 47.12 47.11

4.0 41.51 43.74 (2.27) 47.97 48.16 48.22

lena 1.0 21.13 23.37 (0.63) 29.06 29.21 29.10

2.0 25.83 27.43 (1.37) 31.94 32.00 31.77

3.0 28.05 29.50 (2.07) 33.48 33.55 33.33

4.0 29.58 30.87 (2.85) 34.56 34.60 34.39

peppers 1.0 21.35 23.34 (0.64) 30.00 30.20 30.04

2.0 26.08 27.45 (1.34) 32.56 32.70 32.40

3.0 28.16 29.62 (1.98) 33.73 33.82 33.50

4.0 29.84 31.39 (2.65) 34.45 34.55 34.20

us 3.0 17.62 19.01 (2.10) 30.07 30.12 30.00

4.0 21.84 24.00 (2.74) 32.57 32.68 32.48

5.0 22.32 24.43 (3.43) 34.38 34.40 34.21

6.0 24.05 26.06 (4.09) 35.75 35.78 35.65
∗The numbers in parentheses are the actual sampling densities (in percent).

interest. Forγ = 4, our GPRFS-ED method tends to be very slightly worse by a few hundredths of a dB

at a sampling density of 1% (which is clearly still comparable) but better at higher sampling densities.

As we will show later, however, at a sampling density of 1%, our GPRFS-ED method requires about

22 times less computation time and about 25 times less memorythan the GPR scheme. So any small

difference in mesh quality at a sampling density of 1% is arguably a small price to pay, considering

the savings in computational/memory cost. For other types of imagery such as computer-generated (e.g.,

bull) and medical (e.g.,us), our GPRFS-ED method still fares reasonably well relative to the GPR

scheme, producing (in most cases) results close to the GPR scheme, especially when one considers the

much lower complexity of our GPRFS-ED method. From the above results, we can also see that our

GPRFS-ED method outperforms the ED scheme by a very large margin (i.e., by 4.6 to 12.5 dB in all

cases), demonstrating that the excellent performance of our GPRFS-ED method is not simply due to its

use of the ED scheme alone. From the reconstructed images shownin Figs. 7(c), (d), and (e), we can

see that, in terms of subjective quality, our GPRFS-ED method is comparable to (if not better than) the
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TABLE VII

SUMMARY RESULTS COMPARING THEGPRFS-EDMETHOD TO THE GPRSCHEME FOR THE24 PHOTOGRAPHIC IMAGES OF

KODAK TEST SET

Samp. GPRFS-EDγ = 4 GPRFS-EDγ = 5.5

Density Mean Min. Max. Mean Min Max.

(%) Diff. Diff. Diff. Diff. Diff. Diff.

1.0 0.035 -0.191 0.223 0.169 -0.010 0.301

2.0 0.125 -0.037 0.266 0.176 0.056 0.287

3.0 0.119 -0.024 0.273 0.184 0.103 0.293

4.0 0.105 -0.033 0.228 0.162 0.062 0.234

GPR scheme.

To further demonstrate the effectiveness of our GPRFS-ED methodfor photographic imagery, we

provide some statistical results taken over a larger set of images. For (grayscale versions of) each of the

24 images in the well-known Kodak test set [39], we generatedmeshes at several sampling densities

using the GPRFS-ED and GPR methods and measured the mesh quality interms of PSNR in dB. Then,

we computed the difference between the PSNRs obtained for the GPRFS-ED and GPR methods in

each case, with a positive value corresponding to better performance by the GPRFS-ED method. The

resulting differences are summarized in statistical form in Table VII. Clearly, at all sampling densities,

our GPRFS-ED method for bothγ = 4 andγ = 5.5 outperforms the GPR scheme on average (i.e., the

mean difference is positive, ranging from about 0.03 to 0.19depending on the sampling density). The

minimum and maximum differences show that, in terms of worst-case behavior, our GPRFS-ED method

performs better than the GPR scheme as well (i.e., the magnitude of the minimum difference is always

greater than the magnitude of the maximum difference). In fact, for γ = 5.5, our GPRFS-ED method

almost beats the GPR scheme in every case (since the minimum difference is only very slightly less than

zero). Thus, our GPRFS-ED method, in spite of its substantially lower complexity, produces meshes of

quality comparable to, or better than, the GPR scheme.

GPRFS-MED versus ED. As will be seen shortly, the GPRFS-MED method has computational and

memory complexities more comparable to the ED scheme than theGPR approach or GPRFS-ED method

with γ ∈ {4, 5.5}. For this reason, it is most meaningful to compare the GPRFS-MED method to the

ED scheme, as we do here. At this point, we revisit the results of Table VI from above. Since the

GPRFS-MED method normally produces a mesh with a sampling density much less than the target (i.e.,

desired) sampling density, in order to allow a fair comparison, the actual sampling densities obtained with
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the GPRFS-MED method are shown in parentheses in this table. From the results of the table, we can

see that, for a given desired sampling density (corresponding to a single row in the table), our GPRFS-

MED method typically produces a mesh with a PSNR about 1 to 2 dB higher than the ED scheme.

Furthermore, this better performance is achieved in spite ofthe fact that the size of each mesh produced

by the GPRFS-MED method is about 50% to 66% of the size of the corresponding mesh generated by

the ED scheme. If we take this smaller mesh size into account, the performance of our GPRFS-MED

method is even more impressive relative to the ED scheme. By comparing Figs. 7(a) and (b), it is clear

that, in terms of subjective quality, our GPRFS-MED method is also vastly superior to the ED scheme

(especially, when one considers the significantly lower sampling density in the GPRFS-MED case).

COMPUTATIONAL AND M EMORY COMPLEXITIES . Earlier, we made several claims about the com-

putational and memory complexities of the various methods under consideration. We now present some

results to substantiate these claims.

Computational complexity. First, we consider the computational complexities of the methods, where

computational complexity is measured in terms of executiontime. Since the GPR, GPRFS-ED, and

GPRFS-MED schemes are all based on point removal, the times required for these methods are largely

determined by the initial mesh size. So, we would expect methods with a larger initial mesh size to be

slower. For several test images and desired sampling densities, we measured the time required to generate

a mesh using each of the GPRFS-MED, GPRFS-ED, GPR, and ED methods. A representative subset of

these results (for thepeppers image) is shown in Table VIII. The most important comparison to be

made here is between the GPRFS-ED and GPR methods. The above resultsshow that, forγ = 4 and

γ = 5.5 respectively, our GPRFS-ED method requires anywhere from about9 to 33 and 6 to 25 times less

computation time than the GPR scheme, with the difference being most pronounced at lower sampling

densities. In other words, although (as seen previously) our GPRFS-ED method produces meshes of

quality comparable to, or better than, the GPR scheme, this isaccomplished with very substantially less

computation. Comparing the time required by the GPRFS-MED and ED methods, we see that although

GPRFS-MED scheme takes about 3 or 4 times longer than the ED scheme,the absolute time difference

is less than one second. So, given the fact that the GPRFS-MED method yields meshes of vastly superior

quality (typically, by a margin of about 1 or 2 dB) at significantly lower sampling densities relative to

the ED scheme, the GPRFS-MED method is arguably quite competitivewith the ED scheme. Lastly, we

can observe that asγ is decreased, the complexity of our GPRFS-ED/GPRFS-MED method decreases.

That is, as we progress from GPRFS-ED withγ = 5.5 to GPRFS-ED withγ = 4 to GPRFS-MED (i.e.,

γ = 1), we reduce computational complexity at the cost of lower mesh quality. (Recall, the GPRFS-MED

March 7, 2011 DRAFT



27

TABLE VIII

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE VARIOUSMETHODS FOR THEpeppers IMAGE

Samp. Time (s)

Density GPRFS- GPRFS-ED

(%) ED MED γ = 4 γ = 5.5 GPR

0.5 0.171 0.488 1.435 1.902 46.441

1.0 0.178 0.592 2.125 2.906 45.761

2.0 0.196 0.822 3.500 4.927 45.281

3.0 0.214 1.031 4.860 7.028 44.838

method is equivalent to the GPRFS-ED scheme withγ = 1 and a postprocessing step.) In this sense, our

GPRFS-ED/GPRFS-MED method is highly scalable in terms of computational complexity (i.e., we can

easily tradeoff between mesh quality and computational cost).

Memory complexity. Next, we compare the memory complexities of the various methods under

consideration. In each of the GPRFS-ED, GPRFS-MED, and GPR methods, the memory usage is

dominated by the mesh data structure and (to a lesser extent)a priority queue that contains one entry

per mesh vertex. Furthermore, due to the similarities between these methods, they all employ identical

data structures for representing the mesh and priority queue. Consequently, the peak memory usage for

each method is approximately proportional to the peak number of mesh vertices. With the ED method

(when used to actually construct a mesh), the peak memory usage is also dominated by the peak mesh

size. Thus, for all of the methods, the peak mesh size is a good indicator of peak memory consumption.

For sampling densities of practical interest, the peak meshsize for the various methods is as shown in

Table IX, whereW andH are the image width and height, andD is the desired sampling density. From

the results of this table, we can see that for sampling densities from 1% to 4% the GPRFS-ED method

with γ = 5.5 requires from 25
5.5 ≈ 4.5 to 100

5.5 ≈ 18.1 times less memory than the GPR scheme, with

the difference being most pronounced at lower sampling densities. Similarly, the GPRFS-ED method

with γ = 4 requires from25
4 ≈ 6.2 to 100

4 ≈ 25 times less memory than the GPR scheme. Moreover,

by using the GPRFS-MED variant, we can realize even greater memory savings (i.e., 25 to 100 times

less memory). Clearly, our GPRFS-ED/GPRFS-MED method offers a very substantial memory savings

relative to the GPR scheme. Again, as we move from GPRFS-ED withγ = 5.5 to GPRFS-ED withγ = 4

to GPRFS-MED (i.e., GPRFS-ED withγ = 1 and a postprocessing step), we tradeoff mesh quality for

a reduction in memory requirements. In this sense, our GPRFS-ED/GPRFS-MED method is also highly

scalable in terms of memory complexity.
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TABLE IX

COMPARISON OF THE PEAK MESH SIZE FOR THE VARIOUS METHODS

Peak Relative Peak Mesh Size

Method Mesh Size General D = 1% D = 4%

ED DWH 1 1 1

GPRFS-MED DWH 1 1 1

GPRFS-ED,γ = 4 4DWH 4 4 4

GPRFS-ED,γ = 5.5 5.5DWH 5.5 5.5 5.5

GPR WH 1/D 100 25

VII. C ONCLUSIONS

In this paper, we have proposed a flexible new framework for content-adaptive mesh generation for

image representation, called GPRFS. The flexibility of this framework is inherent in its ability to employ

different subset-selection policies, which can lead, for example, to differing tradeoffs between mesh

quality and complexity. In this work, we have advocated a particular subset-selection policy based on

the ED scheme that yields the specific instance of GPRFS known as GPRFS-ED. Through experimental

results, our GPRFS-ED method was shown to be superior to the state-of-the-art GPR scheme, yielding

meshes of higher (in most cases) or comparable quality both in terms of PSNR and subjective quality,

at much lower computational and memory costs. Furthermore, by making a different choice for the

parameterγ in the GPRFS-ED method from the recommended nominal value of4, one can easily

tradeoff between computational/memory complexity and mesh quality. Herein, we have also proposed a

reduced-complexity variant of the GPRFS-ED method, called GPRFS-MED, which can also be viewed

as a modified version of the ED scheme. Our GPRFS-MED method was shownto produce vastly better

quality meshes than ED scheme with only a reasonably modest increase in computational cost. Since our

GPRFS-ED/GPRFS-MED method offers considerable flexibility in the tradeoff between mesh quality and

complexity, the method is suitable for a wide range of applications with differing computational/memory

constraints. Through the use of our newly proposed mesh-generation framework, GPRFS, and its related

methods, GPRFS-ED and GPRFS-MED, one can obtain mesh-based image representations of higher

quality, which benefits the many applications that utilize such representations. Furthermore, as future

work, one might develop better subset-selection policies for use within our GPRFS framework, further

enhancing its utility for the preceding applications.
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