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ABSTRACT

A new progressive lossy-to-lossless coding framework for 2.5-dimensional (2.5-D) triangle

meshes with arbitrary connectivity is proposed by combining ideas from the previously pro-

posed average-difference image-tree (ADIT) method and the Peng-Kuo (PK) method with

several modifications. The proposed method represents the 2.5-D triangle mesh with a bina-

ry tree data structure, and codes the tree by a top-down traversal. The proposed framework

contains several parameters. Many variations are tried in order to find a good choice for

each parameter considering both the lossless and progressive coding performance. Based

on extensive experimentation, we recommend a particular set of best choices to be used for

these parameters, leading to the mesh-coding method proposed herein.

The lossless and progressive coding performance of the proposed method are evaluated

by comparing with other methods, namely, the general-purpose compression algorithm Gzip,

the 3-D mesh-coding method Edgebreaker, and the modified scattered data coding (MSDC)

method for the 2.5-D meshes with Delaunay connectivity. The experimental results show

that the proposed method outperforms Gzip with the lossless coding bit rate of the proposed

method being 5 to 6 times lower than that of Gzip. Moreover, Gzip cannot achieve progres-

sive coding functionality. The proposed method also outperforms the Edgebreaker method

by using 8.1% less bits on average in terms of the lossless coding if the mesh connectivity does

not deviate too far from a preferred-direction Delaunay triangulation, with the edge-flipping

distance no larger than 37.38%. Here the distance 37.38% means, 37.38% of edges need to be

flipped before transforming the triangulation of the original mesh to be preferred-direction

Delaunay. In addition, the Edgebreaker method cannot perform progressive coding. For pro-

gressive performance, we compare the proposed method with the MSDC method by testing

on the meshes with Delaunay connectivity. Since the direct comparison between different
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meshes is tricky to perform, instead, we generate image approximations from the meshes

and then compare the mean squared errors of the image approximations in terms of peak-

signal-to-noise ratio (PSNR) metric. Therefore, the experiments measure the progressive

performance using PSNR values of image reconstructions during the progressive decoding

procedure. The experimental results show that the proposed method can yield image ap-

proximations of considerable higher quality in terms of PSNR than those obtained with the

MSDC method. For example, in order to obtain similar-quality image approximations (i.e.,

with the PSNR being 75% of the maximum PSNR obtained for lossless reconstruction), the

bit rate used by the proposed method is 55% to 86% of that used by the MSDC method.

During the course of the work described herein, the author discovered that the PK method

cannot, in practice, handle meshes with large-valence vertices. The proposed framework pro-

vides a divide-and-conquer approach by introducing a parameter to avoid the combinatorial

blowup in the PK method when handling large-valence vertices. With the partitioning

scheme, the proposed method improves the previous PK method to be more practically use-

ful. Besides the problem of large-valence vertices, the author also discovered another problem

of the PK method. When the PK method updates the faces of the 3-D dataset, in certain

circumstances, some extra faces can be generated in the lossless reconstructed mesh that do

not exist in the original. In our work, the face information is not of concern in the 2.5-D

dataset. If we consider the basic linear interpolation on the mesh, however, the proposed

framework provides a method to generate the faces without having the extra-face problem.
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Chapter 1

Introduction

1.1 Mesh Modeling and Mesh Coding

Bivariate functions are used extensively in a variety of scientific applications, for example,

digital elevation maps in geographic information systems (GIS), images in signal processing,

and range images in computer vision. One representation of bivariate functions is offered

by 2.5-dimensional (2.5-D) triangle meshes. An example of a 2.5-D triangle mesh is shown

in Figure 1.1. In this example, the sample points of the dataset are triangulated and the

domain is partitioned into nonoverlapping triangle faces. The function value at each sample

point is represented by the height of the surface above the x-y plane. The difference between

a 2.5-D and a 3-D dataset is the 2.5-D has more restrictions on the data. To better illustrate

this difference, a 3-D dataset with a shape of sphere is shown in Figure 1.2. We can see

each point (x, y) in the 2.5-D mesh shown in Figure 1.1 only has one possible function value,

but in the 3-D mesh shown in Figure 1.2, one (x, y) can have two function values. Unless

explicitly mentioned as 3-D mesh, “mesh” stands for 2.5-D dataset in the context of this

thesis.

In the mesh shown in Figure 1.1, the points are distributed evenly and uniformly sampled

on a truncated lattice. In real-world applications, however, the information contained in

the 2.5-D dataset is generally nonstationary, so uniform sampling is usually not optimal.

Another sampling method called content-adaptive sampling is more practically useful. With

the content-adaptive sampling, the density of the sample points usually increases in the areas

of more intense variation in function values. To better illustrate this nonuniform sampling, an

example of a 2.5-D triangle mesh model of an image is illustrated in Figure 1.3. The original

image is shown in Figure 1.3(a) and a set of sample points with a triangulation is shown

in Figure 1.3(b). From Figure 1.3(b), we can see that the density of the sample points is

increased in areas with more detailed information and decreased in others. This nonuniform
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Figure 1.1: An example of a 2.5-D triangle mesh model.
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Figure 1.3: (a) An image, and (b) a set of nonuniformly sampled points with a triangulation
on these points partitions the image domain into nonoverlapping triangles.
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sampling is not only efficient by using less sample points to convey more information, but can

also capture the geometric structure inherent in the images, such as edges. The nonuniform

sampling has proven to be very useful in some applications such as feature detection [13],

filtering [21], image/video compression [9, 10, 33, 23], and computer vision [35].

From a mathematical viewpoint, a 2.5-D triangle mesh can be described and analyzed

as a triangulation over a subset of the plane, and a bivariate function defined on this subset

(i.e., z = f (x, y)). So, the information contained in the 2.5-D mesh can be divided into

the following three categories: 1) the locations (x, y) of the sample points in the subset, 2)

the connectivity of a triangulation of the sample points, and 3) the function value at each

sample point.

Because mesh models can be very large, we are often interested in compressing such

models. Although many mesh coding methods have been proposed, they can all be classified

as either lossy or lossless. If the decompressed mesh is identical to the original one, we call

the coding method lossless; otherwise, the method is lossy. Lossy methods often permanently

discard certain information to reduce the size of the information for storage, handling and

transmitting. In many cases, however, the original and the recovered data being identical is

very important, like coding executable programs, source codes, and medical images.

Because the desire for transmitting complex meshes over networks with limited bandwidth

and many applications requiring real-time interaction, progressive coding has become very

popular. Progressive coding methods can decode full bitstreams, or partial bitstreams if

the decoding procedure is terminated in an intermediate stage. Non-progressive methods

decode all of the information as a whole and cannot meaningfully decode partial bitstreams.

In this thesis, our interest is to propose a coding framework that can provide progressive

lossy-to-lossless coding functionality for 2.5-D triangle meshes.

1.2 Historical Perspective

Because of the growing interest in graphic 3-D data, much effort has been devoted to 3-D

triangle meshes. Earlier research has proposed numerous methods for coding 3-D meshes

based on the triangle strip [14], the spanning tree [38], the layered decomposition [11], the

triangle conquest [22, 34], connectivity-driven compression [32, 37, 12, 26] and geometry-

driven compression [20, 24, 31, 25], to name a few. An excellent survey of 3-D mesh-coding

methods can be found in [30].

One of the well-known methods is Edgebreaker [34]. In the Edgebreaker method, the

connectivity of the mesh is coded by a traversal of triangles. The Edgebreaker method is

not capable of progressive coding. In this thesis, a popular progressive 3-D mesh-coding
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method [31] proposed by Peng and Kuo (PK method) is of interest. The PK method is

based on an octree decomposition. In the PK method, an octree data structure is constructed

by recursive partitioning the bounding box of a mesh. Then, the mesh coder performs a top-

down traversal of the octree and codes the local changes associated with each cell partitioning,

including how many nonempty subcells are generated and how the mesh is updated during

the partitioning.

Although 3-D mesh-coding methods could be used directly to handle 2.5-D meshes, this

would be inefficient, because 2.5-D datasets have more restrictions than 3-D ones. Compres-

sion of 2.5-D meshes has been explored much less, and even less effort has been devoted to

progressive coding. Some previously proposed coding methods include the scattered data

coding (SDC) scheme [15] and image tree (IT) scheme [8].

The SDC scheme, proposed by Demaret and Iske in [15], views the combination of 2-D

sample points and corresponding sample values as points in 3-D space, and then utilizes

an octree data structure to partition the space for coding. This method has some im-

portant limitations. It can only handle 2.5-D meshes with domains that are square with

integer-power-of-two dimensions and only handles the locations and function values of the

sample points, assuming the underlying triangulation to have Delaunay connectivity. Since

Delaunay connectivity is assumed, the method cannot handle meshes with arbitrary con-

nectivity. Moreover, the SDC method does not provide progressive coding functionality.

Later, Adams [9] proposed a modified SDC (MSDC) method that removes the preceding

limitations, allowing progressively coding meshes with arbitrary rectangular domains. Unfor-

tunately, like the SDC method, the MSDC scheme also cannot handle meshes with arbitrary

connectivity.

Another effective method, the IT scheme, was originally proposed by Adams in [8]. This

method also assumes the mesh to be coded has Delaunay connectivity. Therefore, it cannot

handle meshes with arbitrary connectivity. This method uses an image tree to represent the

mesh model, where this tree structure is generated based on a recursive quadtree partitioning

of the image domain along with an iterative averaging process for the sample data. By

efficiently coding the information in the image tree using a top-down traversal, the method

can provide the progressive lossy-to-lossless functionality. Another method called average-

difference image-tree (ADIT) based on the IT scheme was proposed by Adams in [10]. It uses

another similar tree-based representation. The IT and ADIT methods provide a much better

progressive and lossless coding performance compared to the MSDC scheme. Unfortunately,

like the IT method, the ADIT scheme cannot handle meshes of arbitrary connectivity.

The meshes with arbitrary connectivity are of practical interest, since many applications

have such meshes. In prior work, however, not so much effort has been devoted to effec-
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tive coding methods for meshes with arbitrary connectivity. Due to the above statements,

proposing a progressive lossy-to-lossless coding method for handling 2.5-D triangle meshes

with arbitrary connectivity is our main focus and interest.

1.3 Overview and Contributions of the Thesis

In this thesis, we propose and develop a new mesh-coding framework for progressive lossy-to-

lossless code the 2.5-D triangle meshes with arbitrary connectivity. This framework is based

on ideas from the ADIT and PK methods. The framework has several associated parameters.

After extensive experimentation, we recommend a set of choices for these parameters to yield

our proposed method. As we will show later, the proposed method outperforms the general-

purpose compression algorithm Gzip, and outperforms the Edgebreaker mesh-coding method

for the meshes with connectivity close to Delaunay. Moreover, the proposed method also is

superior to the Gzip and the Edgebreaker methods because the latter two cannot achieve

the progressive coding. To evaluate the progressive performance of the proposed method, we

compare it with the MSDC method. The progressive performance is evaluated by the image

approximations generated from the reconstructed meshes, using peak-signal-to-noise ratio

(PSNR) values to indicate the quality of image approximations. As we will show later, the

proposed method outperforms the MSDC method by generating image approximations of

substantially higher quality at lower bit rates in terms of both PSNR values and subjective

image quality.

Besides the proposed framework, the thesis also makes a contribution by identifying the

problems in the PK method. One problem is that the PK method becomes computationally

intractable for meshes with large-valence vertices, due to combinatorial blowup. The other

problem is that in certain circumstances, the face updating rules of this method will cause

extra faces added to the lossless reconstructed mesh that do not exist in the original. The

first problem of the above problems is addressed by a divide-and-conquer approach.

The remainder of the thesis consists of four chapters and one appendix. An overview of

each of these chapters is described in what follows.

Chapter 2 presents background information necessary for understanding our work. First,

we introduce some basic notation and terminology. Then several fundamentals from geome-

try are introduced including convex hulls, triangulations, and Delaunay triangulations. Next,

a key operation that can be performed on a triangulation, called vertex split, is presented.

With the preceding background, 2.5-D triangle meshes are formally defined. This is followed

by some background about arithmetic coding. Finally, the average-difference transform is

presented.
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Chapter 3 introduces the proposed framework with several parameters, and how the pro-

posed method is developed. To begin, we introduce a binary tree data structure used in the

framework and how to use this tree to represent the 2.5-D triangle meshes. Then, we explain

how to utilize this binary tree to achieve progressive coding. With the preceding background,

the proposed mesh-coding framework is presented in detail for the encoding procedure. After

that, we study how different choices of the free parameters in the framework influence the

coding performance, leading to a set of recommended choices. Then the proposed method is

finalized with these recommended choices. Since the proposed method combines ideas from

two previous methods, we emphasize the differences between our method and the other two

in the end.

Chapter 4 evaluates the performance of the proposed method by comparing with other

methods. For lossless coding performance, the proposed method is compared with Gzip

and the Edgebreaker method. For progressive coding performance, the proposed method is

compared with the MSDC method. Based on the experiment results, the proposed method

outperforms Gzip with the lossless bit rate of the proposed method being 5 to 6 times lower

than that of Gzip. The proposed method outperforms the Edgebreaker method by using 8.1%

less bits on average for the lossless coding if the mesh connectivity does not deviate too far

from the preferred-directions Delaunay triangulation. The proposed method also is superior

to the Gzip and Edgebreaker methods because the latter two cannot provide progressive

coding functionality. Next, the proposed method is compared with the MSDC method

for handling the meshes with Delaunay connectivity. The bit rate used by the proposed

method is 55% to 86% of that used by the MSDC method, to achieve similar-quality image

approximations with the PSNR value being 75% of the maximum PSNR obtained for lossless

reconstruction. Furthermore, an extended application of the proposed method in the area

of image processing is presented.

Chapter 5 gives the conclusions of the work presented herein. Moreover, some recom-

mendations for the further research are stated in this chapter.

Appendix A describes the software used to implement the proposed framework and collect

all of the experimental results. The software was fairly complex to develop, but it was

designed to have a user-friendly interface. Some examples are also presented in this appendix

to show how to use this software.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, some background information is presented in order to facilitate the un-

derstanding of the work presented in this thesis. To begin, we present the notation and

terminology used herein. Then, several concepts from geometry are introduced, followed

by a description of the 2.5-D triangle meshes. Lastly, arithmetic coding and the average-

difference transform are presented.

2.2 Notation and Terminology

Before proceeding further, some basic notation and terminology used throughout the thesis

are introduced. The set of real numbers and integers are denoted as R and Z, respec-

tively. For a, b ∈ R, we use the following notation for denoting subsets of R: (a, b) =

{x ∈ R : a < x < b}, [a, b) = {x ∈ R : a ≤ x < b}, (a, b] = {x ∈ R : a < x ≤ b} and [a, b] =

{x ∈ R : a ≤ x ≤ b}. Note that, [a, a) and (a, a] are empty, and [a, a] only contains one ele-

ment a. The cardinality of a set S is denoted |S|. For x ∈ R, we use ⌊x⌋ to denote the largest
integer smaller than x and ⌈x⌉ to denote the smallest integer larger than x. For m,n ∈ Z,
mod (m,n) = m− n⌊m/n⌋ (i.e., the remainder after dividing m by n).

The point (x1, y1) is said to be less than (x2, y2) in lexicographic order if: (a) x1 < x2; or

(b)x1 = x2 and y1 < y2. The length of the line segment e = (x1, y1) (x2, y2) is denoted ∥e∥
and defined as

∥e∥ =

√
(x1 − x2)

2 + (y1 − y2)
2.
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Figure 2.1: Examples of (a) nonconvex and (b) convex sets.

2.3 Geometry

In this section, we present some important concepts in geometry such as a triangulation and

Delaunay triangulation. To begin, we introduce the concept of a convex set.

Definition 1. (Convex set). A set P of points in R2 is a convex if for every pair of points

A,B ∈ P , the line segment AB is also completely contained in P .

To better illustrate the notion of a convex set, two different sets are shown in Figure 2.1.

The set shown in Figure 2.1(a) is nonconvex, since the line segment AB is not completely

contained in the set. In the set shown in Figure 2.1(b), we can see that for every pair of two

points A and B, the segment connecting these two points must be contained in the set as

well. So, the set in Figure 2.1(b) is convex. Having introduced the concept of a convex set,

now we can present the notion of a convex hull.

Definition 2. (Convex hull). The convex hull of a set P of points in R2, denoted conv (P ),

is the intersection of all convex sets that contain P.

An example is shown in Figure 2.2 to better illustrate this definition. A set P of points is

given in Figure 2.2(a), and the convex hull of P is depicted in Figure 2.2(b). The boundary

of the convex hull of P can also be visualized in terms of a rubber band stretched to surround

all of the points in P , as illustrated in Figure 2.3. Based on the definition of the convex hull,

we can now introduce the concept of a triangulation.

Definition 3. (Triangulation). A triangulation of a finite set P of points in R2 is a set

T of (non-degenerate) triangles such that:

1. the set of all the vertices of triangles in T is P ;
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(a) (b)

Figure 2.2: An example of a convex hull of a set of points. (a) A set P of points, and (b) the
convex hull of the set P .

Figure 2.3: The rubber-band visualization of the convex-hull boundary.
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(a) (b) (c)

Figure 2.4: Triangulation examples. (a) A set P of points, (b) a triangulation of P , and
(c) another triangulation of P .

2. the interiors of any two triangles in T are disjoint;

3. the union of all triangles in T is the convex hull of P ; and

4. every edge of a triangle in T only contains two points from P .

For a specific set P of points, the triangulation of P is not necessarily unique. Given the set

P as illustrated in Figure 2.4(a), two possible triangulations of P include those illustrated

in Figures 2.4(b) and (c). We can see that the edges of the triangulation in Figure 2.4(b)

are different from those in Figure 2.4(c).

One basic operation on a triangulation is an edge flip. In a triangulation, an edge e is

called flippable if e has two incident faces and the union of these two faces is a strictly convex

quadrilateral Q. To better understand this operation, an example of edge-flipping is shown

in Figure 2.5. The edge e in the triangulation shown in Figure 2.5(a) is flipped to produce

another edge e′ in the newly generated triangulation shown in Figure 2.5(b). For the same

set P of points, one triangulation T can always be transformed into another triangulation

T ′ with a finite sequence of edge flips. In the earlier example in Figure 2.4, the triangulation

in Figure 2.4(b) can be transformed into the one in Figure 2.4(c) by three edge flips.

One important type of triangulation is a Delaunay triangulation, which has a number

of useful properties. Before introducing Delaunay triangulations, we first introduce the

concept of a circumcircle. In geometry, the circumcircle of a triangle t is the unique circle

passing through all three vertices of t. An example of a circumcircle of a triangle is shown in

Figure 2.6, with the circumcircle drawn with a dashed line. With the notion of a circumcircle

at hand, the definition of a Delaunay triangulation is as follows.

Definition 4. (Delaunay Triangulation). A triangulation T of a set P of points in R2 is

said to be Delaunay if no point in P is strictly inside the circumcircle of any triangle in T .
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Figure 2.5: An example of an edge-flipping operation, flipping (a) edge e in one triangulation
to (b) edge e′ in another.

Figure 2.6: An example of a triangle and its circumcircle drawn with a dashed line.
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Figure 2.7: An example of a Delaunay triangulation, with the circumcircles of triangles
drawn with dashed lines.

An example is shown in Figure 2.7 to better illustrate the concept of a Delaunay triangu-

lation. In this figure, the circumcircle of each triangle is drawn with a dashed line. As is

evident from this figure, each circumcircle contains no vertex of the triangulation strictly in

its interior. Delaunay triangulations avoid long thin triangles to whatever extent is possible

by maximizing the minimum interior angle of all triangles in the triangulation.

For a set P of points, the Delaunay triangulation of P is not guaranteed to be unique.

To be specific, the Delaunay triangulation of P is only guaranteed to be unique if no four

points in P are co-circular. To better illustrate the non-uniqueness issue, two different

Delaunay triangulations of the same set of points are shown in Figure 2.8. A set P of

points is shown in Figure 2.8(a), and two Delaunay triangulations of this set are shown in

Figures 2.8(b) and (c). In practical situations, the case of having four co-circular points in

the set is quite common. So, several techniques have been proposed in order to uniquely

choose one Delaunay triangulation amongst all of the possibilities. These techniques include

the symbolic perturbation [29, 16, 18, 28] and preferred directions methods [17]. In the

preferred-directions scheme, certain rules are established to choose a preferred diagonal,

based on its direction, to triangulate the quadrilateral Q generated by the four co-circular

points. The unique Delaunay triangulation generated using this scheme is known as the

preferred-directions Delaunay triangulation (PDDT).

In some applications, it is necessary for certain prescribed edges to be present in the

triangulation. Such edges are said to be constrained. A triangulation with constrained

edges is called a constrained triangulation. An essential concept related to constrained

triangulations is the planar straight line graph (PSLG), which is defined as follows.

Definition 5. (Planar straight line graph (PSLG)). A planar straight line graph (P ,E) is
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(a)

(b) (c)

Figure 2.8: Two different Delaunay triangulations of the same set of points. (a) A set P
of points, (b) a Delaunay triangulation of P , and (c) another Delaunay triangulation of P .
The circumcircles of triangles in (b) and (c) are drawn with dashed lines.
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(a) (b)

Figure 2.9: An example of (a) a PSLG and (b) a constrained triangulation of the PSLG.

a collection of a set P of points in R2 and a set E of line segments such that:

1. the endpoints of each segment of E must be in P ; and

2. any two segments of E must be disjoint or intersect at most at a common endpoint.

To better illustrate the preceding definition, an example of a PSLG consisting of a set P of

twelve points and a set E of 15 segments is shown in Figure 2.9(a). One possible constrained

triangulation of this PSLG is shown in Figure 2.9(b). The constrained triangulation can be

viewed as a triangulation T of P with segments in E as edges in T .

Keeping the definitions of Delaunay triangulation and constrained triangulation in mind,

we can introduce the notion of a constrained Delaunay triangulation. A constrained Delaunay

triangulation combines the constrained and Delaunay features, and this type of triangulation

is useful in many applications. To help understand the concept of constrained Delaunay

triangulation, the notion of visibility must first be introduced.

Definition 6. (Visibility). Two points A and B are visible to each other in the PSLG (P,

E), if and only if segment AB does not intersect the interior of any constrained edges in E.

To better illustrate the notion of visibility, an example is given in Figure 2.10. In the PSLG

in Figure 2.10(a), the point A is not visible to D, since the line segment connecting A and D

will intersect the interior of the constrained edge CM . Similarly, the point A is not visible

to G. Any two of the other points are visible to each other. Having introduced the concept

of visibility, we can now give the formal definition of a constrained Delaunay triangulation.

Definition 7. (Constrained Delaunay triangulation). Given a PSLG (P,E), a triangulation

T of P is said to be constrained Delaunay if each triangle t in T is such that: 1) the interior

of t does not intersect any constrained edges in E; and 2) no vertex inside the circumcircle

of t is visible from the interior of t.
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Figure 2.10: Constrained Delaunay triangulation example. (a) A PSLG (P, E) containing a
set P of points (where P = {A,B,C,D,F ,G,M})and a set E of one segment (where E ={
CM

}
), and (b) the constrained Delaunay triangulation T of (P, E), with the circumcircles

of triangles in T drawn using dashed lines.
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Figure 2.11: An example of vertex split. Vertex v is split into two new vertices v1 and v2.

To better illustrate the notion of a constrained Delaunay triangulation, an example is given in

Figure 2.10. The PSLG shown in Figure 2.10(a) has the constrained Delaunay triangulation

shown in Figure 2.10(b) . In this constrained Delaunay triangulation, the point A is inside

the circumcircle of the triangle △CDM , but A is not visible to the interior of the triangle,

because any segment that connects A and one interior point inside △CDM would intersect

the constraint CM . The point D is inside the circumcircle of the triangle △ACM , but

similarly, D is not visible to the interior of the triangle either. So the triangulation is

constrained Delaunay.

2.4 Vertex Split

Having introduced triangulations, we now discuss an operation that can be performed on

triangulations, called a vertex split. In a vertex split, a vertex v in a triangulation with

neighbors {Ni}, is split into two new vertices v1 and v2. Thus, a vertex split increases the

number of vertices in a triangulation by one. The connectivity changes associated with a

vertex split are characterized by:

• whether each Ni is connected to v1, or v2, or both v1 and v2; and

• whether the new vertices v1 and v2 are connected to each other.

An example of vertex split is illustrated in Figure 2.11. In this example, v is the original

vertex and has neighbors {N1,N2, . . . ,N6}, and v1, v2 are the new vertices generated from

this vertex split. After splitting, the updated connectivity is as follows:

1. N2 is connected to v1;

2. N4, N5, and N6 are connected to v2;
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Figure 2.12: An example of vertex split leading to invalid triangulation. (a) Before vertex
split and (b) after vertex split.

3. N1 and N3 are connected to both v1 and v2; and

4. the new vertices v1 and v2 are also connected to each other.

Note that, the inverse of a vertex split is called vertex merge, which combines two vertices

into one. All neighbors of the previous two vertices are connected to the new vertex after

the merge.

As mentioned above, vertex splits can be used to add new vertices to a triangulation.

In some situations, however, a vertex split can result in an invalid triangulation. To better

illustrate this problem, another example of vertex split is shown in Figure 2.12. The vertex

v in Figure 2.12(a) is split into v1 and v2 in Figure 2.12(b) with N1 and N6 being connected

to both two new vertices. This results in the edges N1v2 and N6v1 intersecting, which is not

valid for a triangulation. Therefore, in this example, the vertex split has led to a triangulation

with invalid connectivity.

2.5 2.5-D Triangle Mesh Models

At this point, we now formally introduce 2.5-D triangle meshes. Consider an integer-valued

function ϕ defined on D = [0,W − 1] × [0,H − 1] and sampled on the integer lattice S =

{0, 1, 2, . . . ,W − 1}×{0, 1, 2, . . . ,H − 1} (i.e., a rectangular grid of width W and height H).

In the context of this thesis, a 2.5-D triangle mesh is characterized by:

1. a set P = {pi} of sample points, where P ⊂ S (i.e., geometry information);

2. a triangulation of P (i.e., connectivity information); and

3. a set Z = {zi}|P |−1
i=0 of function values where zi = ϕ (pi) (i.e., function value informa-

tion).
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Figure 2.13: An example of a 2.5-D triangle mesh with four sample points. (a) The tri-
angulation and its associated sampled function values, and (b) the surface obtained from
piecewise-linear interpolation. Here z-axis represents the function value of ϕ̃.

To generate a function ϕ̃ defined on the entire domain D (and not just at lattice points in S),

the function values Z are used in conjunction with linear interpolation. All of the preceding

information needs to be coded in mesh-coding applications.

An example illustrating a 2.5-D triangle mesh is shown in Figure 2.13. In Figure 2.13(a),

the set P contains the four points {(0, 1) , (2, 0) , (0, 4) , (2, 3)} and is triangulated to form

two triangles. By applying linear interpolation over each face of the triangulation, a surface

ϕ̃ is obtained, as shown in Figure 2.13(b).

Although 2.5-D meshes can be used to represent many types of data, this thesis is most

interested in using the meshes to model images. We can measure the difference between two

meshes by measuring the differences of the corresponding vertices, which is tricky to do. An-

other way to measure the difference of meshes is to measure the difference between the image

reconstructions produced by the meshes. The function values in the original image are inte-

gers. So, the image approximation function ϕ̂ that used to approximate the original function

value also needs to be integer-valued, which can be calculated by rounding the non-integer

function values of ϕ̃ to the nearest integers: ϕ̂ = round
(
ϕ̃
)
. The approximation function

can be generated from the reconstructed mesh using standard rasterization techniques [19].

A 2.5-D triangle mesh model of an image is shown in Figure 2.14. In this example,

the original triangulation of the image domain is shown in Figure 2.14(a), with the vertices

of the triangulation being the sample points. The mesh model with the piecewise-linear

interpolation function (ϕ̃) is shown in Figure 2.14(b), from which we can generate an image
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Figure 2.14: An example of mesh model of image. (a) The original triangulation of the image
domain and (b) 2.5-D triangle mesh model with the associate piecewise-linear function.
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approximation ϕ̂. To measure the quality of the reconstructed images, we use the mean

squared error (MSE) to denote the difference between the original image (ϕ) and the

approximation (ϕ̂), using the formula given by

MSE = |P |−1
∑
p∈P

(
ϕ (p)− ϕ̂ (p)

)2

, (2.1)

where P is the set of sample points. In the intermediate stage, the smaller MSE value means

the better quality of the reconstructed image.

Generally, another quantity called peak signal-to-noise ratio (PSNR) is used instead

of MSE for convenience:

PSNR = 20log10
(2ρ − 1)√

MSE
, (2.2)

where ρ is the number of bits per function value used by the image ϕ. A larger PSNR value

corresponds to a lower MSE.

2.6 Arithmetic Coding

Next, we provide some background that relates to data compression. Of particular interest

is a technique known as binary arithmetic coding. Binary arithmetic coding maps a message

consisting of binary symbols to a real number n in the interval [0, 1). For the arithmetic

encoding, the interval is initially chosen at [0, 1). The current interval is partitioned into

two subintervals based on the probabilities of the symbols. Then the current interval is

recursively updated to one of the subintervals based on the encoded symbol. After all

symbols are encoded, any number in the final interval is sufficient to decode original message,

which is sent to the decoder side. The decoder also has the initial interval as [0, 1). The

partitioning on the current interval is the same as the encoder. Depending on the value

of n from the encoder, the interval is updated to one of the subintervals. Meanwhile, the

decoder outputs the corresponding symbol for this subinterval. The decoder terminates

by receiving a terminate symbol or after a certain number of symbols are decoded. The

probability distribution of symbols is called a context. The coder is called context-based

if the context used in the arithmetic coding procedure is selected based on the contextual

information, instead of always being the same one. Moreover, if the probability values in the

context can be updated based on the coded symbol, the arithmetic coder is called adaptive.

A binary symbol is said to be encoded in bypass mode if the two possible symbols 0 and

1 have the same fixed probability of 0.5.

To better illustrate how the arithmetic coding works, we consider an example of coding
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Table 2.1: A probability distribution and starting intervals for symbols {0, 1}

Symbol Probability Starting Interval
0 0.4 [0, 0.4)
1 0.6 [0.4, 1.0)

0.0

1.0

Initial 0

0

1

0 0 0 0

1 1 1 1

1 1 0 1

0.4 0.4

0.0 0.16

0.4

0.256 0.256

0.3136 0.3136

0.27904

1

0.3136

0.292864

1

0

Figure 2.15: Graphic representation of the arithmetic encoding procedure for a particular
message {0, 1, 1, 0, 1, 1}.

of the message {0, 1, 1, 0, 1, 1} taken from the binary alphabet {0, 1}. The probability of

each of the symbols is shown in Table 2.1. In order to avoid unnecessary complicating

the explanation of arithmetic coding, we only consider how arithmetic coding works with

infinite-precision arithmetic, which is sufficient for our needs in the thesis.

To begin, we present the encoding procedure, which is illustrated in Figure 2.15. The

encoder starts with the interval [0, 1), and then divides the interval into subintervals based

on the probabilities of the symbols. The range will be adjusted based on the symbol encoded.

First, after the symbol 0 is encoded, the current interval is set to the first subinterval [0, 0.4),

which corresponds to the symbol 0. Then the new current interval is divided into two

subintervals [0, 0.16) and [0.16, 0.4) for the symbols 0 and 1, respectively. Since the second

symbol is 1, after coding 1, the current interval is set to [0.16, 0.4). The next symbol is 1, and

the interval is narrowed further to [0.256, 0.4). Similarly, the encoding procedure continues

for the following symbols 0, 1 and 1. After the last symbol is successfully encoded, the final
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Figure 2.16: Graphic representation of the arithmetic decoding procedure with the input as
0.292864.

interval to represent the message becomes [0.292864, 0.3136). The decoder only needs one

number to indicate the range, so we choose the lower bound (i.e., 0.292864) and transmit

this value to the decoder.

Now, we consider decoding. Besides the lower bound value, the decoder also needs to

know that six symbols are encoded. A graphic representation of the decoding procedure

is illustrated in Figure 2.16. With the input result as 0.292864, the decoding procedure is

started with the interval [0, 1). The number 0.292864 is contained in the subinterval [0, 0.4).

So we know that the first symbol decoded is 0. After decoding 0, the current interval is set to

[0, 0.4). In the current interval, two subintervals [0, 0.16) and [0.16, 0.4) are generated based

on the symbol probabilities. The number 0.292864 is contained in the second subinterval. So,

the second decoded symbol should be 1. The new range is narrowed to [0.16, 0.4). Repeating

a similar procedure, we can retrieve later symbols as 1, 0, 1, and 1. After the sixth symbol

is successfully recovered, the decoding procedure is terminated.

In some applications, the need may arise to code symbols from a nonbinary alphabet. A

binary arithmetic coder, however, can only handle binary alphabet. Therefore, if a binary

arithmetic coder is to be used to code symbols from a nonbinary alphabet, such symbols

must first be translated into a sequence of binary symbols. Such a process is known as
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binarization.

An example of a binarization process is given in what follows. Suppose that each symbol

we need to code has the value being one of the four possibilities {0, 1, 2, 3}. Then, we

can represent the four-value symbols using two binary bits {00, 01, 10, 11} in order to cover

the four possibilities. For example, the sequence of the four-value symbols {1, 2, 3} can

be represented as {01, 10, 11}. So instead of coding the previous {1, 2, 3}, we encode the

sequence {0, 1, 1, 0, 1, 1} using a binary coder. The encoding and decoding procedures are

exactly the same as the preceding binary example. Other complex nonbinary symbols may

use less straightforward binarization schemes. The coder used in the proposed coding method

is context-adaptive binary arithmetic coder.

2.7 Average-Difference Transform

As we will see later, our work makes use of a transformation known as the average-difference

(AD) transform. The AD transform is a two-point transform used in the ADIT method

(introduced earlier). The transform maps two integers x0 and x1 into two integers y0 and

y1, as given by

y0 =

⌊
1

2
(x0 + x1)

⌋
and y1 = x1 − x0.

Observe that, y0 is the approximate average of x0 and x1, and y1 is the difference between

x0 and x1. If x0 and x1 are n-bit integers, y0 and y1 can be represented using n and (n+ 1)

bits, respectively. The corresponding inverse transform is given by

x0 = y0 −
⌊
1

2
y1

⌋
and x1 = y1 + x0.
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Chapter 3

Proposed Mesh-Coding Method and

Its Development

3.1 Introduction

In this chapter, a new progressive lossy-to-lossless coding framework is proposed for 2.5-

D triangle meshes with arbitrary connectivity. This framework borrows ideas from the

ADIT [10] and PK [31] methods, and uses a tree-based structure to represent the 2.5-D

dataset and codes the information in the tree with a top-down traversal.

To begin, we present the tree data structure and describe how to use the tree to store all

the information of the mesh. Next, we explain how to use the tree to achieve the progressive

coding functionality. With the introduction of the preceding knowledge, we describe the

coding framework with several free parameters. After that, the selection of the parameters

is discussed in conjunction with experimental results. Then, the proposed method is finalized

with a particular recommended set of choices for these parameters. At last, the differences

between the proposed method and the other two methods (i.e., the ADIT and PK methods),

upon which our work is based, are emphasized.

3.2 Cell Bi-Partitioning Tree-Based Representation of

2.5-D Triangle Meshes

The data structure used in the proposed framework, called a cell bi-partitioning tree (cbp-

tree), is a binary tree based on spatial partitioning. The cbp-tree is utilized to capture all

the information of the mesh, including the geometry, connectivity, and the function values.

To begin, we describe how to generate the tree with the information of geometry and function
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Figure 3.1: An example of root cells for different schemes. The gray area is conv (P ), where
P is the set of sample points. Dashed lines (A) and (B) represent the root cells under
unpadded and padded schemes, respectively.

values. Then, we explain how the connectivity information is stored in the tree.

The cbp-tree is generated by recursively bi-partitioning an initial cell, which contains all

the sample points of the original mesh. The initial cell for partitioning is called the root

cell. Two schemes are provided for selecting the root cell:

1. Unpadded scheme: The root cell is chosen as the smallest isorectangle containing

conv (P ) (i.e., the convex hull of the set P of sample points).

2. Padded scheme: The root cell is chosen as the smallest isorectangle containing conv (P )

that also has dimensions that are equal and integer powers of two.

To better illustrate the difference between unpadded and padded schemes, an example of

root cells under different schemes is illustrated in Figure 3.1. In this figure, the gray area

is conv (P ), the dashed line (A) represents the unpadded root cell with the size m × n and

line (B) represents the padded root cell with the size M ×M and contains (A). Here M is

the smallest integer power-of-two that is no smaller than m or n. A free parameter of the

framework is used to select different schemes, and we will see how to choose it later.

With the root cell, we can generate the cbp-tree by splitting the root cell through the

approximate midpoints along the x and y-axes recursively. Note that, a cell is said to be

empty if it contains no sample points, and is called degenerate if it has zero area. Empty

cells are not split further. In particular, a given nonempty cell C = [x1,x2)× [y1, y2) is first
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split along the x-axis through the approximate midpoint xm to yield two child cells C1 and

C2 given by

C1 = [x1,xm)× [y1, y2) and C2 = [xm,x2)× [y1, y2) ,

where xm = ⌊(1/2) (x1 + x2)⌋. If C1 and C2 are not empty, they are split further along the

y-axis through the approximate midpoint ym, where ym = ⌊(1/2) (y1 + y2)⌋. So together four

new cells C11, C12, C21, and C22 are generated and given by

C11 = [x1, xm)× [y1, ym) , C12 = [x1, xm)× [ym, y2) ,

C21 = [xm,x2)× [y1, ym) , and C22 = [xm, x2)× [ym, y2) .

We provide an example to illustrate the cell bi-partitioning process in Figure 3.2(a).

Suppose that the root cell in this example has the size 4 × 4. First, the root cell is split

along the x-axis to yield two nonempty child cells. Then the two child cells are split along

the y-axis. Note that, the upper-right cell in the subfigure (III) of Figure 3.2(a) is empty

and not split further. The resulting nonempty cells are split along the x-axis again to yield

new child cells. The partitioning procedure stops when each nonempty cell contains only

one sample point and has an area of one as shown in the subfigure (V) of Figure 3.2(a).

Each cell with an area larger than one can generate at most two or one nonempty child cells

during the bi-partitioning. The latter case only happens when the root cell does not have a

equal power-of-two dimensions.

The above recursive cell partitioning procedure generates a cbp-tree. To be specific, each

node in the cbp-tree is associated with a nonempty cell. The cbp-tree is generated from a

single root node, which corresponds to the root cell. Each time when a cell C is split to yield

two nonempty child cells, two child nodes are added to the corresponding node Q. If C only

has one nonempty child cell, Q has one child node added as well. To better illustrate the tree

construction, an example of a cbp-tree is shown in Figure 3.2(b) and is related to the recursive

cell partitionings in Figure 3.2(a). As can be seen, different numbers {(1), (2), . . . , (10)} are

labeled in Figure 3.2(b), which are related to the corresponding cell partitionings labeled

with the same numbers in Figure 3.2(a). For example, for the bi-partitioning labeled with

“(3)”, the cell is split to yield only one nonempty child cell. So the corresponding tree node

has one child node added. From Figure 3.2(b), we can see the tree is fully generated when the

recursive partitioning procedure is finished and each leaf node in the tree has a one-on-one

correspondence with an original sample point.

After the tree is fully generated, besides the nonempty cell, each node is also associated

with the following information:
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Figure 3.2: An example of (a) a recursive cell partitioning procedure, and (b) the corre-
sponding cbp-tree structure. The labels {(1), (2), . . . , (10)} have one-on-one correspondence
in (a) and (b).
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Figure 3.3: An example of a cbp-tree. (a) A mesh with five sample points, and (b) its cor-
responding cbp-tree representation showing only geometry and function value information.

1. an approximation coefficient;

2. zero or one detail coefficient; and

3. a representative vertex.

For a leaf node, the approximation coefficient is the function value of the single sample point

contained in the node’s cell, and the representative vertex is chosen as this sample point. For

a nonleaf node, the approximation coefficient is the approximate average function value of

all samples contained in the cell and the representative vertex is located at the approximate

centroid of the cell. A node only has a detail coefficient if it has two children, calculated as

the difference between the approximation coefficients of the two child nodes. An example of

a cbp-tree is shown in Figure 3.3(b), with the corresponding dataset shown in Figure 3.3(a).

The mesh in Figure 3.3(a) consists of five sample points, a triangulation, and a set of function

values for these sample points. Each leaf node in Figure 3.3(b) corresponds to a unit cell

(i.e., the shaded area in Figure 3.3(a)) containing exactly one integer lattice point which is

a sample point. Furthermore, each node is labeled with its associated cell, approximation

coefficient, and detail coefficient if any.

In order to capture the geometry information and the function values of the mesh in the

cbp-tree without redundancy, we need to specify the following:

1. the width and height of the root cell;

2. the configuration of each node (i.e., how many and which child cells are nonempty);
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(1)

Figure 3.4: An example of a QCP containing three CCPs. (a) Original cell to split. (b) The
first CCP along x-axis, and (c) the other two CCPs along y-axis.

3. the approximation coefficient ar of the root node; and

4. the detail coefficient (DC) if any, of each node.

Note that, the approximation coefficients for the non-root nodes are not required, because

they can be determined from the inverse AD-transform as described in Section 2.7 (on page

24) using ar and the appropriate DCs.

Along the cell bi-partitionings, the cbp-tree is generated with the geometry and function

values of the mesh contained in the tree nodes. Now, we consider the connectivity information

associated with the mesh. We utilize the property that the leaf nodes in the fully generated

cbp-tree have a one-on-one correspondence with the actual sample points in the mesh. Since

the sample points are connected in a certain way in the original mesh, we can store the same

connectivity information to the leaf nodes. For the node cells in the cbp-tree, two cells ci and

cj are said to be neighbors if at least one edge exists in the original mesh with one endpoint

in ci and the other endpoint in cj. Returning to the example from Figure 3.3, we can see

v1 is connected to v2, v3, and v4 in Figure 3.3(a). Therefore, in Figure 3.3(b), the cell c1 is

a neighbor to c2, c3, and c4 based on the mesh connectivity. The cells c6 = [0, 2) × [0, 2)

and c7 = [2, 4) × [0, 2) are neighbors to each other, since one edge in the original mesh in

Figure 3.3(a) has two endpoints (0, 0) and (3, 0) in cell c6 and c7, respectively.

Note that, the previous cbp-tree cell bi-partitioning operations, denoted as CCP, can

be viewed in another perspective if we collapse two-level operations into one. The new

perspective is a quadtree cell bi-partitioning, denoted as QCP. In particular, a QCP operation

starts with bi-partitioning a cell along the x-axis, and then all resulting nonempty child cells

are bi-partitioned along the y-axis. Therefore, a QCP on a nonleaf cell contains at most three

CCPs. An example of a QCP is illustrated in Figure 3.4 to better understand this operation.

In this example, the original cell in Figure 3.4(a) is first split along the x-axis and generates

two nonempty child cells in Figure 3.4(b). Then, each of the two cells in Figure 3.4(b) are
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Figure 3.5: (a) Redraw the previous cbp-tree in Figure 3.3(b) with the dashed lines grouping
the CCPs into QCPs, and (b) the new representation with the QCP operations.

split further along the y-axis in Figure 3.4(c). As can be seen from Figure 3.4, the QCP

contains three CCPs, which are labeled with (1), (2), and (3). As stated before, a CCP

on a nonleaf cell can generate at most two or one nonempty child cells. Therefore, a QCP

on a nonleaf cell can have at most either four or two subcells, and the latter case only

happens when the root cell does not have a square power-of-two dimension. Here the new

cells generated from a QCP are called “subcells” in order to be distinguished from “child

cells” generated from a CCP. Recall that the previous cbp-tree in Figure 3.3(b) is generated

with the recursive CCP operations. We redraw this tree in Figure 3.5(a) using dashed lines

to group CCPs into related QCPs. The new representation with QCP operations of the

previous cbp-tree is illustrated in Figure 3.5(b). We call this new representation a quadtree,

since each operation (QCP) on a tree node can yield at most four child nodes. Essentially,

a QCP operation only performs on the nodes on the even levels of the original cbp-tree.
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The original cbp-tree with L levels can be replaced by a quadtree with only ⌈L/2⌉ levels.

Here, we say the nodes on the even level le of the cbp-tree are of le/2 level for the quadtree.

As we can see in Figure 3.5(b), the quadtree has only three levels, instead of five. This

QCP-viewpoint is important in our coding procedure, as we will see later.

3.3 Progressive Coding Mechanism

In this section, we explain how the proposed framework achieves progressive coding func-

tionality using the cbp-tree. First we introduce how the information contained in the tree is

encoded. Then, the general idea behind progressive decoding is given.

As we introduced in Section 3.2, the tree is generated along with the recursive cell-

partitioning procedure. The cell partitionings are performed on the tree nodes in a specific

order, which we will describe in a later section. After the tree is fully generated with all

the mesh information contained in the tree nodes, the encoding procedure is started. The

encoder performs a top-down traversal of the cbp-tree in previous cell-partitioning order.

For each cell partitioning, the encoder encodes the changes of corresponding tree node. The

changes on geometry information are about how many and which child cells are nonempty.

Each time when a cell is partitioned into two nonempty child cells, the corresponding tree

node has two child nodes. Recall that each node has a representative vertex. Thus, we can

say the representative vertex of the original node is split into the two representative vertices

of the child nodes. The changes on connectivity information can be characterized using the

vertex split as we described in Section 2.4 (on page 17). In addition, a detail coefficient is

generated during this cell partitioning (as described on page 29). Therefore, If the node has

two child nodes, the encoder also codes the changes on connectivity information caused by

the corresponding vertex split and the changes on function values indicated by the detail

coefficient of the node.

Next, we explain the general idea of the progressive decoding. Since the encoder codes

the information in the cbp-tree by a top-down traversal, the decoder can start with one

root node. Based on the geometry information from the encoder, the decoder can perform

cell partitionings and generate the cbp-tree progressively. The decoder also receives the

connectivity information from the encoder. So, the neighbor relations of the current leaf

nodes are also stored in the nodes. When the tree is at a certain pruned version, the current

leaf nodes can be represented using the representative vertices located at the centroids of the

nodes’ cells. With these vertices, an intermediate mesh is generated with the edges in the

mesh representing the neighbor relations of all the current leaf nodes. The function values

of the non-root nodes can be recovered using the approximation coefficient of the root node
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and the appropriate detail coefficients recovered from the encoder. As more information

is received, the tree reconstructed in the decoder side will have more leaf nodes, and the

reconstructed mesh will become closer to the original one. In this way, progressive decoding

functionality is achieved.

3.4 Proposed Mesh-Coding Framework

With the background information presented in the preceding sections, we now can introduce

our proposed coding framework for 2.5-D triangle meshes which has several free parameters.

The remaining part of this section is mainly focused on the details of the encoding proce-

dure. The decoder is mostly symmetric with the encoder, and the few asymmetries will be

considered later.

3.4.1 Overview of the Encoding Procedure

As we stated before, the information contained in the mesh includes a set of sample points,

a triangulation, and a set of function values (at the sample points). In the proposed frame-

work, all mesh information is encoded in two different procedures. The first is called cell-

partitioning (CP) coding and is used to code the information of the local geometry and con-

nectivity changes during several cell bi-partitionings. The second is called detail-coefficient

(DC) coding and is used to code the DCs of the tree nodes.

Besides the cbp-tree, the encoder also utilizes two queues: 1) the CI queue and 2) the

RDC queue. To encode the nodes stored on the CI queue, the CP coding procedure is

invoked once and the DC coding procedure is invoked several times for coding the initial DC

information. A parameter usePriorityScheme is used to set the CI queue as prioritized or

non-prioritized, which will be described later. The RDC queue is first-in first-out (FIFO),

and the nodes on the RDC queue are encoded for the remaining DC information.

The overall encoding procedure is given in Algorithm 1. To begin, a short header is

output, containing the width W , height H, and the lower-left corner p of the unpadded root

cell, the approximation coefficient ar of the root node, and several parameters, which will be

introduced later. The quantities W , H, and p can be used to determine the root cell. The

context-adaptive binary arithmetic-coding engine is initialized. The root cell is selected ac-

cording to the parameter usePaddedRootCell. In particular, the usePaddedRootCell is either

set to 1 or 0 for the padded or unpadded scheme. Next, the root node is placed on the CI

queue. Then the encoder codes the geometry, connectivity, and DC information by invoking

the CP and DC coding procedures for nodes from the two queues. The encoder switch-
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Algorithm 1 Encoding procedure.

1: ciBudget := thresholdCI, rdcBudget := thresholdRDC

2: encode header information (i.e., W , H, p, ar, usePaddedRootCell, initialDC, remainDC,
and valenceMax)

3: initialize CI queue and RDC queue, and initialize the arithmetic-coding engine
4: insert root node into CI queue
5: while CI queue not empty or RDC queue not empty do
6: while ciBudget > 0 and CI queue not empty do
7: set currentNode as the first node in CI queue, and remove the node from the queue
8: invoke CP coding procedure for currentNode and set b1 to the number of encoded

bits, new nodes {ni} generated during CP coding procedure
9: invoke initialDC (where initialDC ≥ 0) times of DC coding procedure for each ni

having a DC and set b2 to the number of encoded bits in this step
10: ciBudget := ciBudget - b1 - b2

11: insert new nodes ni that have not been processed for CP coding to CI queue
12: insert ni with more bits to code for the DC on RDC queue
13: end while
14: while rdcBudget > 0 and RDC queue not empty do
15: set currentNode as the first node in RDC queue and remove the node from the queue
16: invoke the DC coding procedure remainDC (where remainDC ≥ 1) times for

currentNode, set b to the number of encoded bits
17: if more bits of DC need to code for currentNode then
18: insert currentNode on RDC queue.
19: end if
20: rdcBudget := rdcBudget - b

21: end while
22: ciBudget := min(thresholdCI, ciBudget + thresholdCI)

23: rdcBudget := min(thresholdRDC, rdcBudget + thresholdRDC)

24: end while

es between these two queues controlled by two thresholds thresholdCI and thresholdRDC.

When the queue currently being processed becomes empty or the number of coded bytes has

exceeded the current threshold, the processing switches to the other queue. During the CP

coding procedure, the geometry and connectivity information of a node is coded. During the

CP coding procedure, a parameter valenceMax is used to control the coding behavior, which

we will explain later. As shown in Algorithm 1, for each new node ni generated from the

previous CP coding procedure with a detail coefficient, the DC coding procedure is invoked

initialDC times (where initialDC ≥ 0). Then the new nodes that have not undergone the

CP coding are placed on the CI queue, and the nodes with more bits of the DCs to be coded

are moved to the RDC queue. After a node is handled from the RDC queue by invoking

the DC coding procedure remainDC times (where remainDC ≥ 1), the node is only returned
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to the queue if more bits of the DC remain to be coded.

In summary, the framework has the parameters usePaddedRootCell, thresholdCI, thresholdRDC,

usePriorityScheme, initialDC, remainDC, and valenceMax. How these parameters should

best be chosen will be discussed later.

3.4.2 Binarization Schemes

Before describing the details about the CP and DC coding procedures, a brief digression is in

order concerning the binarization schemes used in our work. In the proposed framework, we

utilize a context-adaptive binary arithmetic coder. If the symbol to be coded is not binary,

a binarization scheme must be utilized to transform the symbol into a sequence of binary

symbols. Four types of nonbinary symbols need to be handled during the coding process,

and are introduced in what follows.

The first type of nonbinary symbol is a ternary symbol (i.e., an element of {0, 1, 2}) with
a fixed uniform distribution. To handle this type of symbol, we define a context cthird with a

fixed probability value for one equal to 1/3. The ternary value n ∈ {0, 1, 2} can be binarized

as follows:

1. Code b1 = ⌊n/2⌋, using the context cthird.

2. If b1 = 0, code another symbol b2 = mod (n, 2) in bypass mode.

The second type of nonbinary symbol is a hexary symbol (i.e., an element of {0, 1, 2, 3, 4, 5})
with a fixed uniform distribution. The hexary value n ∈ {0, 1, . . . , 5} can be binarized as

follows:

1. Code b1 = ⌊n/3⌋ in bypass mode.

2. Code a ternary symbol b2 = mod (n, 3) using the preceding binarization scheme.

The third type of nonbinary symbol is an n-bit unsigned integer. For this type of symbol,

we use the UI-binarization scheme proposed in the IT method [8] with a single parameter

f ∈ [1,n]. The binarization scheme works as follows. First, the n-bit unsigned integer v

is represented as v =
∑n−1

i=0 bi2
i. Then, for each bit position k from n − 1 down to 0, we

perform the following steps:

1. Code the kth bit bk using context c, where

c =

2f−1 − 1 +
∑

i∈[k+1,f)(2bi − 1)2i−1, k ∈ [0, f − 1),

2f − f + k − 1, k ∈ [f ,n− 1].
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2. If bk = 1 and k ≥ f , the remaining bits {bi}i∈[0,k) will be coded in bypass mode and

the loop will be terminated earlier.

Using this scheme, each symbol in the range
[
0, 2f

)
is assigned a distinct probability and the

remaining symbols (if any), are partitioned into the ranges [2i, 2i+1) for i ∈ [f ,n), where the

values within each range are equiprobable. If f = n, each symbol is coded using a distinct

probability.

The last type of nonbinary symbol is an (n+ 1)-bit signed integer. For this type, We

utilize the SI-binarization scheme used in the ADIT method [10], which is similar to UI-

binarization with an extra sign bit coded in bypass mode.

3.4.3 Cell-Partitioning Coding Procedure

Now, we can describe the remaining details of the coding framework. To begin, we describe

the CP coding procedure, which handles the coding of the changes in geometry and connec-

tivity information. In general, for each cell bi-partitioning, the geometry changes consist of

how many nonempty child cells are generated and which of them are nonempty. The con-

nectivity changes, caused by vertex splits as described in Section 2.4 (on page 17), consist

of how the original neighbor vertices and the new vertices are connected. In what follows,

we describe the encoding of each of the geometry and connectivity changes.

Geometry changes. When a cell is split into two child cells, the corresponding cbp-tree

node can have at most two child nodes. In order to provide richer geometry information for

coding, we consider the geometry information changes in a QCP operation. As stated in

Section 3.2 (on page 31), after a QCP operation, each nonleaf node in the tree can have at

most four or two children, and the latter case only happens when the root cell does not have a

square power-of-two dimension. Let M denote the maximum number of nonempty subcells,

so that M ∈ {2, 4}. During each QCP operation, the information related to geometry

changes is given by

1. how many nonempty subcells generated from this QCP operation; and

2. which of the subcells are nonempty.

Suppose that after one QCP operation, T subcells are nonempty. Recall that T cannot be

zero since empty cell will not be partitioned.

First the quantity value of T is encoded. Generally, the cell on a higher level of the tree

(i.e., closer to the root cell) or with more neighbors is more possible to have a larger T after

a QCP operation. Note that, the cell on the highest level of the tree is the root cell, and

has the smallest level index (i.e., l = 0). The number of neighbor cells is called the valence
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Figure 3.6: Distributions of T under different valences and levels. (a) Same valence (i.e., 6)
with different levels. (b) Same level (i.e., 9) with different valences.

of the cell. The distributions of T under different quadtree levels and valences are shown in

Figure 3.6. We count the numbers of nonempty subcells for all cells being partitioned with

the valences as 6 but with different level indices, and for all cells with the level indices as 9

but with different valences, then plot the histograms in Figures 3.6(a) and (b), respectively,

to show the distributions of T under different situations. From Figure 3.6(a) we can see that

with the same valence, the distributions of T vary for different levels. The chance of T to

be 4 is much smaller for nodes on the lower levels (i.e., with larger level indices) of the tree.

In Figure 3.6(b), the cells with larger valences tend to have larger possibilities to have more

nonempty subcells. Based on the observation, T is arithmetic coded conditioned on the cell’s

valence and the quadtree-level, leading to a decrease of coding bit rate by 61.9% compared

with encoding T in bypass mode as a (log2M)-bit integer, where M = 2 or M = 4.

Next we consider the encoding of a configuration for which T of M subcells are nonempty.

If M = 2, T has two possible values, namely, T ∈ {1, 2}. If T = 1, only two configurations

are possible and can be represented using one single bit and coded in bypass mode. If

T = 2, only one configuration is possible and no information needs be coded. If M = 4,

T ∈ {1, 2, 3, 4}. We need to consider the following three cases.

1. T = 1 or T = 3. In this case, four configurations are possible and can be represented

using two bits. Each of the two bits is coded in bypass mode.

2. T = 2. In this case, six configurations are possible. We can use a hexary symbol to rep-

resent the six possibilities and utilize the binarization scheme described in Section 3.4.2

(on page 35).

3. T = 4. In this case, one configuration is possible and no information needs be coded.
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Figure 3.7: An example of vertex split. Vertex v is split into two new vertices v1 and v2.

Connectivity changes. Having encoded the geometry changes, now we can encode the

connectivity changes. As we described before, local connectivity changes are associated with

vertex splits. Before we proceed further, two concepts need to be introduced first. After a

vertex split, if an original neighbor connects to both of the new vertices, we call it a pivot;

otherwise, we call it a nonpivot. In the example of vertex split illustrated in Figure 3.7, N1

and N3 are pivots. The other neighbors N2, N4, N5, and N6 are nonpivots. Let us denote the

vertex to be split as v, and the two new vertices as v1 and v2. Assume that the vertex v has

M neighbors before splitting, denoted as {N1,N2, . . . ,NM}. To fully cover the connectivity

changes during the vertex split, we need to code the following information:

• the number and the configuration of the pivots (i.e., how many vertices among M and

which of them are pivots);

• for each nonpivot n, to which new vertex v1 or v2 does n connect; and

• whether v1 and v2 are neighbors or not in the refined mesh.

Suppose that P of the M vertices are pivots, so that P ∈ {0, 1, 2, . . . ,M}. Since the

value of P is related to the value of M , P is arithmetic coded conditioned on M . The

distributions of P under different values of M are illustrated in Figure 3.8. Figure 3.8(a)

shows the distribution of P when the number of neighbor vertices is six (i.e., M = 6). We

can see that P is concentrated at locations around P = 2. Figures 3.8(b), (c), and (d) show

the distributions of P when M = 7, M = 8, and M = 9, respectively. The possible values of

P differ with different M values, but all distributions of P are very skewed, which means the

arithmetic coding of P should be very efficient. The conclusion is justified by experimental

results, showing the bit rate decreased by 74.3% on average with adaptive arithmetic coding

compared with encoding P in bypass mode as a ⌈log (M + 1)⌉-bit integer.
After encoding the number of pivots P , next we encode the configuration of which P

among M neighbors are pivots. The total number of different configurations is
(
M
P

)
and



39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 0 1 2 3 4 5 6 7

P

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 0 1 2 3 4 5 6 7 8

P

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 0 1 2 3 4 5 6 7 8 9

P

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2 0 2 4 6 8 10

P

(d)

Figure 3.8: Distributions of P when (a) M = 6, (b) M = 7, (c) M = 8, and (d) M = 9.
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Figure 3.9: Distributions of indices of pivot-vertex tuple (a) before and (b) after priority
calculation.

each one contains P neighbor vertices. This configuration containing P elements is called

a P-tuple. The desired configuration containing all P pivots is called a pivot-vertex tuple.

Each P-tuple is assigned an index i, so i ∈
{
0, 1, 2, . . . ,

(
M
P

)
− 1

}
.

Before encoding the index of the pivot-vertex tuple, we first estimate the priority of each

P-tuple to be the actual pivot-vertex tuple, generate a frequency table, sort all possible

P-tuples based on their priorities in descending order, and then encode the index of the

actual pivot-vertex tuple in this sorted frequency table. To calculate the priority of a certain

P-tuple, we first estimate the possibility of each vertex to be a pivot. Then, the priority of

the tuple is calculated by summing the probabilities of the neighbor vertices it contains. For

each neighbor Ni, the possibility to be a pivot is determined by the formula

pi = ri =
σi

2s
=

√
s (s− a) (s− b) (s− c)

2s
,

where a, b, and c are the lengths of the three edges in △Niv1v2, σi is the area of △Niv1v2 and

s = (a+ b+ c) /2. This possibility also represents the regularity of the triangle. Therefore,

if the triangle is more regular, the neighbor Ni will have a larger chance to be pivot.

To demonstrate the effectiveness of the priority scheme, we count the numbers of differ-

ent indices encoded for the pivot-vertex tuple during the entire encoding procedure before

and after applying the priority scheme, and plot the histograms in Figures 3.9(a) and (b),

respectively. Note that, in Figure 3.9, we only plot the histograms for the indices to be at

most 12, since this value can cover the vast majority of cases. The indices in Figure 3.9(b)

are more concentrated in lower-index locations than in Figure 3.9(a). After utilizing the

preceding priority scheme, the distribution of indices becomes more skewed, which means

the arithmetic coding should be more efficient. Based on the observation, the index of the
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pivot-vertex tuple is arithmetic coded conditioned on P and M . This priority scheme lead-

s to an average decrease in the bit rate by 53.10% compared with coding the index as a

⌈log
((

M
P

))
⌉-bit integer in bypass mode. Also, the bit rate using the priority scheme leads an

average decrease in the bit rate by 2.0% compared to not using the priority scheme.

One potential problem occurs in the preceding coding procedure when the valence of

the vertex is large, however. If the valence is large, to store the results of all
(
M
P

)
possible

configurations requires tremendous amount of memory and the calculations also consume

tremendous time. To avoid this computationally intractable situation due to combinatorial

blowup and be more practically useful, the proposed framework uses a divide-and-conquer

approach by introducing a free parameter valenceMax to set a threshold value for M . If the

current v to be split has more than valenceMax neighbors, we will first divide the neigh-

bor list into several small lists, each with at most valenceMax elements. For example, if

valenceMax = 10 and the size of original neighbors is 15, two neighbor sublists are gener-

ated as {N1,N2, . . . ,N10} and {N11,N12, . . . ,N15}. Note that, in order to ensure that the

encoder and decoder split the original neighbor list in the same way, the neighbor vertices

are sorted first based on the lexicographic order before splitting. Then, the number and the

configuration of pivots need to be coded for each sublist. The choice of this free parameter

valenceMax will be described in a later section.

Next, we need to encode the information of nonpivots. Recall from the earlier definition,

the nonpivots are the neighbors only connect to one of the v1 or v2. Before encoding the

connectivity information of nonpivots, we need to partition them into several segments. The

partitioning rules are given by

1. each nonpivot connects to more than two other vertices in Ni forms a segment by itself;

and

2. other nonpivots are partitioned into maximum-connected segments.

To better explain the above rules, two examples of nonpivots partitioning are illustrated in

Figure 3.10. In Figure 3.10(a), N4 and N8 are pivots. Since the nonpivots N1 and N7 are

both connected to three other neighbors, they form segments separately by themselves. The

remaining nonpivots are partitioned into the two segments {N2,N3} and {N5,N6}. Overall,

the nonpivots are partitioned into the four segments {N1}, {N2,N3}, {N5,N6}, and {N7}.
Similarly, in Figure 3.10(b), the nonpivots are partitioned into the two segments {N1,N2,N3}
and {N5,N6,N7}. In the above figures, different labels are assigned to different segments.

For each segment, one bit is coded to indicate whether the vertices in this segment are

connected to the same new vertex v1 or v2. If not, the vertices are treated as separate

segments. For example, in the fourth segment {N5,N6} as shown in Figure 3.10(a), N5 is
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Figure 3.10: Two examples of nonpivots partitioning. In (a), four segments are generated
for the nonpivots. In (b), two segments are generated for nonpivots with the centroids of
the segments denoted as o1 and o2.



43

connected to v2, and N6 is connected to v1. In a manifold mesh or “almost manifold” mesh,

however, almost every segment of nonpivots is connected to the same one of v1 and v2. So,

this bit can be arithmetic coded efficiently. The total cost for coding this bit is only about

0.03 bits per vertex on average.

Next, we need to specify to which of v1 or v2 does each segment connect. For each

segment, its centroid oi is calculated by averaging the locations of the nonpivots contained

in the segment. Then, we calculate the distances d1 and d2 between the centroid of the

segment oi and the new vertices v1 and v2, respectively, and predict the segment connected

to one of the v1 and v2 with the smaller distance. In the example shown in the Figure 3.10(b),

o1 and o2 are the centroids of the two segments of nonpivots. Since o1 is closer to v1 than v2,

we predict that the segment with label “1” is connected to v1. Similarly, the other segment

with label “2” is predicted as connected to v2. One bit is arithmetic coded to indicate

whether the prediction is correct or not. The total cost for coding this bit is about 2.38 bits

per vertex on average, reduced by 44% relative to coding in bypass mode.

Besides encoding the connectivity changes of the original neighbor vertices, we also need

to encode the connectivity of the two new vertices. One bit is coded to indicate whether

the two new vertices v1 and v2 are connected to each other after the vertex split. This bit

can also be arithmetic coded efficiently, with the total cost around 0.43 bits per vertex on

average, reduced by 57% relative to coding in bypass mode.

Summary of cell-partitioning coding procedure. Suppose that after one QCP

operation, the cell of a nonleaf node is partitioned into T nonempty subcells. Then this QCP

operation includes max (T − 1, 0) cell bi-partitionings that split a cell into two nonempty

child cells, corresponding to max (T − 1, 0) vertex splits. To better understand this relation

between the QCP operation and cell bi-partitionings, four examples of QCP operations are

illustrated in Figure 3.11. In Figure 3.11(a), after a QCP operation, the actual number of

nonempty subcells is T = 1 and the maximum number of nonempty subcells is M = 4. We

can see the first bi-partitioning along the x-axis generates one nonempty child cell, which

is bi-partitioned further along the y-axis and also generates one nonempty child. Therefore,

no cell bi-partitioning generates two nonempty child cells. In Figure 3.11(b), T = 2 and

M = 4. The first bi-partitioning along the x-axis generates two nonempty child cells, each of

which is bi-partitioned further along the y-axis and only generates one nonempty child cell.

Therefore, only one bi-partitioning generates two nonempty child cells. Similarly, we can

see in Figure 3.11(c), T = 3 and M = 4, and two bi-partitionings generate two nonempty

child cells. In Figure 3.11(d), since the width of the cell to be partitioned is one, after bi-

partitioning along the x-axis, a degenerate child cell with zero area is generated. Then the

nondegenerate one is bi-partitioned along the y-axis and generates one nonempty child cell.
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Figure 3.11: Four examples of QCP. After a QCP, (a) the actual number of nonempty cells
is T = 1 and the maximum number of nonempty cells is M = 4. Similarly, (b) T = 2 and
M = 4 and (c) T = 3, M = 4. (d) Since the cell bi-partitioning along x-axis generates a
degenerate cell, so the maximum number of nonempty cells M = 2, and the actual number
is T = 1.
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Therefore, in the case of Figure 3.11(d), M = 2, T = 1, and no cell bi-partitioning generates

two nonempty child cells. To summarize, the information coded during the CP coding

procedure includes the geometry changes (the number T and configuration of nonempty

subcells) and the connectivity changes caused by max (T − 1, 0) vertex splits.

3.4.4 Detail Coefficient Coding Procedure

To handle the function values, the proposed framework uses a similar idea from the ADIT

method. Instead of coding the function values directly, we only code the approximation

coefficient of the root node, and all of the DCs of the nodes in the tree. Then using the

inverse AD-transform, we can calculate the approximation coefficients of the other nodes.

Suppose that each function value of the mesh can be represented using a ρ-bit unsigned

integer. Then, the DCs can be represented as (ρ+ 1)-bit signed integers, with ρ magnitude

bits plus one sign bit. Each DC is coded using the SI-binarization scheme. The DCs are

coded starting from the most-significant magnitude bit. The sign bit is coded in bypass

mode immediately after the first nonzero magnitude bit. Every time when the DC coding

procedure is invoked, one extra magnitude bit is coded. Two free parameters related to DC

coding procedure, namely initialDC and remainDC, control how many times the DC coding

procedure is invoked at each of two places in Algorithm 1 in Section 3.4.1 (on page 32).

Details about how to choose these two free parameters will be discussed in a later section.

3.4.5 Decoding

The decoding procedure is almost a mirror of the encoding procedure. Therefore, decoding is

not described in detail here. The decoder starts with a single root node, whose representative

vertex is set to the centroid of the root cell. After the geometry changes information is

decoded and the value T (i.e., the number of nonempty cells) is obtained, the connectivity

changes information related to max{T − 1, 0} vertex splits to refine the mesh is decoded. The

decoding procedure continues and processes information from the bitstream, until the end

of the bitstream is reached. After the decoding procedure is terminated, the reconstructed

mesh consists of the vertices associated with the current leaf nodes in the tree, and the

edges representing the neighbor relations between these nodes. As we have described in

Section 2.4 (on page 17), vertex splits can potentially lead to a triangulation with invalid

connectivity. Therefore, a reconstructed mesh produced at intermediate stages of decoding

is not guaranteed to have valid triangulation connectivity. To enforce valid connectivity,

we represent the connectivity by a constrained Delaunay triangulation with all of the edges

as constraints. From the implementation viewpoint, the edges are set as constraints and
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Table 3.1: Category A: Delaunay triangulation meshes (twelve meshes). Edge-flipping dis-
tances are always zero for these cases.

Mesh Information Statistics about Valence
Nickname #Vertices #Edges #Faces Max. Min. Median Mean Width×Height ρ
B1 3932 11756 7825 15 2 6 5.97965 1024×768 8
B2 7864 23532 15669 13 2 6 5.98474 1024×768 8
B3 15728 47042 31315 13 2 6 5.98194 1024×768 8
B4 31457 94112 62656 12 2 6 5.98353 1024×768 8
L1 1310 3880 2571 11 2 6 5.92366 512×512 8
L2 2621 7788 5168 11 2 6 5.94277 512×512 8
L3 5242 15612 10371 11 2 6 5.95651 512×512 8
L4 10485 31283 20799 11 2 6 5.96719 512×512 8
P1 1310 3905 2596 12 3 6 5.96183 512×512 8
P2 2621 7814 5194 12 3 6 5.96261 512×512 8
P3 5242 15641 10400 13 3 6 5.96757 512×512 8
P4 10485 31322 20838 11 3 6 5.97463 512×512 8

inserted to the triangulation in a particular order. If a constrained edge intersects with

a previous inserted edge, the previous constraint will be removed. The insertion order is

determined by the parameter edgeInsertion, which can be one of the following four cases:

1. edge-iteration order as determined by the data structure employed in the implementa-

tion;

2. in order of descending edge length;

3. in order of ascending edge length; and

4. pseudo-random order.

We will see later about how to choose this parameter.

3.5 Test Data

Before proceeding further, a brief digression is in order concerning the test data used herein.

The author’s main application focus is image processing. Therefore, we employ a set of 64

2.5-D meshes generated from images using several mesh-generation schemes, including [27].

The test meshes are grouped into three categories A, B, and C based on their underlying

connectivity, and listed in Tables 3.1, 3.2, and 3.3, respectively. In these three tables, meshes

are denoted by nicknames for convenience. The original filenames for the meshes are also

listed in Tables 3.4, 3.5, and 3.6 for reference.

Category A meshes as listed in Table 3.1, have Delaunay connectivity. Category B and

C meshes, as listed in Tables 3.2 and 3.3, have arbitrary connectivity with good and bad
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Table 3.2: Category B: Non-Delaunay triangulation meshes with good quality (44 meshes)

Mesh Information Statistics about Valence
Nickname #Vertices #Edges #Faces Max. Min. Median Mean Width×Height ρ Distance †

A1 7397 22140 14744 40 3 6 5.98621 1238×1195 8 40.41%
A2 14794 44311 29518 27 3 6 5.9904 1238×1195 8 39.55%
A3 29588 88657 59070 49 3 6 5.99277 1238×1195 8 36.23%
A4 44382 132985 88604 31 3 6 5.99274 1238×1195 8 35.10%
B5 3932 11757 7826 21 3 6 5.98016 1024×768 8 49.86%
B6 7864 23533 15670 19 3 6 5.98499 1024×768 8 45.93%
B7 15728 47063 31336 22 2 6 5.98461 1024×768 8 41.49%
B8 23592 70585 46994 20 2 6 5.98381 1024×768 8 38.73%
CH1 655 1950 1296 17 3 5 5.9542 512×512 8 36.41%
CH2 1310 3859 2550 22 3 5 5.8916 512×512 8 46.26%
CH3 2621 7753 5133 41 3 5 5.91606 512×512 8 57.53%
CR1 17858 53419 35562 19 3 6 5.98264 1744×2048 10 34.29%
CR2 35717 106893 71177 22 3 6 5.98555 1744×2048 10 33.73%
CR3 71434 213899 142466 41 3 6 5.98872 1744×2048 10 33.81%
CR4 107151 320873 213723 54 2 6 5.98917 1744×2048 10 33.80%
CT1 1310 3914 2605 22 2 6 5.97557 512×512 12 38.68%
CT2 2621 7840 5220 25 2 6 5.98245 512×512 12 39.32%
CT3 5242 15703 10462 29 2 6 5.99122 512×512 12 40.01%
CT4 7864 23559 15696 27 2 6 5.99161 512×512 12 39.30%
K1 1966 5889 3924 18 3 6 5.99084 768×512 8 39.68%
K2 3932 11787 7856 30 3 6 5.99542 768×512 8 39.68%
K3 7864 23583 15720 46 3 6 5.99771 768×512 8 37.38%
K4 11796 35377 23582 47 3 6 5.99813 768×512 8 36.60%
L5 657 1948 1292 14 3 6 5.92998 513×513 8 42.76%
L6 1315 3893 2579 14 2 6 5.92091 513×513 8 41.74%
L7 2631 7812 5182 17 3 6 5.93843 513×513 8 41.27%
L8 5263 15659 10397 15 2 6 5.9506 513×513 8 39.95%
L13 1310 3882 2573 18 3 6 5.92672 512×512 8 40.86%
L14 2621 7797 5177 17 3 6 5.94964 512×512 8 41.46%
L15 5242 15611 10370 17 3 6 5.95612 512×512 8 40.68%
L16 7864 23441 15578 16 2 6 5.9616 512×512 8 39.31%
M1 3637 10858 7222 18 3 6 5.97086 1912×761 8 52.04%
M2 7275 21745 14471 19 3 6 5.97801 1912×761 8 49.92%
M3 14550 43491 28942 19 3 6 5.97814 1912×761 8 47.69%
M4 29100 86988 57889 21 3 6 5.97856 1912×761 8 45.38%
P5 327 965 639 14 3 5 5.90214 512×512 8 33.23%
P6 655 1947 1293 16 3 6 5.94504 512×512 8 31.86%
P7 1310 3898 2589 15 3 6 5.95115 512×512 8 30.30%
P8 2621 7799 5179 17 3 6 5.95116 512×512 8 30.75%
P9 5242 15628 10387 19 3 6 5.96261 512×512 8 30.80%
Q1 7864 23465 15602 19 3 6 5.9677 512×512 8 56.12%
Q2 9600 28793 19194 50 3 6 5.99854 1200×1600 8 52.86%
Q3 19200 57593 38394 93 3 6 5.99927 1200×1600 8 47.42%
Q4 38400 115193 76794 141 3 6 5.99964 1200×1600 8 41.53%
† Distance: edge-flipping distance between the mesh triangulation and the PDDT.
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Table 3.3: Category C: Non-Delaunay triangulation meshes with poor quality (eight meshes)

Mesh Information Statistics about Valence
Mesh Nickname #Vertices #Edges #Faces Max. Min. Median Mean Width×Height ρ Distance †

L9 1310 3919 2610 395 3 5 5.98321 512×512 8 145.65%
L10 2621 7843 5223 459 3 5 5.98474 512×512 8 148.83%
L11 5242 15690 10449 522 3 5 5.98626 512×512 8 149.66%
L12 7864 23539 15676 575 3 5 5.98652 512×512 8 150.51%
M5 3637 10883 7247 266 3 4 5.9846 1912×761 8 138.00%
M6 7275 21786 14512 392 3 4 5.98928 1912×761 8 146.06%
M7 14550 43580 29031 638 3 4 5.99038 1912×761 8 155.22%
M8 29100 87183 58084 887 3 5 5.99196 1912×761 8 163.26%
† Distance: edge-flipping distance between the mesh triangulation and the PDDT.

Table 3.4: The original filenames and nicknames of the meshes in category A

Original Name Nickname
bull@1-GPRFS-ED-G4@default@0.005@model B1
bull@1-GPRFS-ED-G4@default@0.01@model B2
bull@1-GPRFS-ED-G4@default@0.02@model B3
bull@1-GPRFS-ED-G4@default@0.04@model B4
lena@1-ABOVE1-40@default@0.005@model L1
lena@1-ABOVE1-40@default@0.01@model L2
lena@1-ABOVE1-40@default@0.02@model L3
lena@1-ABOVE1-40@default@0.04@model L4
peppers@1-MGH@default@0.005@model P1
peppers@1-MGH@default@0.01@model P2
peppers@1-MGH@default@0.02@model P3
peppers@1-MGH@default@0.04@model P4
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Table 3.5: The original filenames and nicknames of the meshes in category B

Original Name Nickname
animal@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh A1
animal@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh A2
animal@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh A3
animal@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh A4
bull@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh B5
bull@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh B6
bull@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh B7
bull@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh B8
checkerboard_antialiased@sqrErr:h25:jndfe:pef:fe@41@0.0025@mesh CH1
checkerboard_antialiased@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh CH2
checkerboard_antialiased@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh CH3
cr@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh CR1
cr@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh CR2
cr@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh CR3
cr@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh CR4
ct@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh CT1
ct@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh CT2
ct@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh CT3
ct@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh CT4
kodim15@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh K1
kodim15@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh K2
kodim15@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh K3
kodim15@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh K4
lena_513x513@sqrErr:h25:jndfe:pef:fe@41@0.0025@mesh L5
lena_513x513@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh L6
lena_513x513@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh L7
lena_513x513@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh L8
lena@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh L13
lena@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh L14
lena@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh L15
lena@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh L16
muttart@sqrErr:h25:jndfe:pef:fe@41@0.0025@mesh M1
muttart@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh M2
muttart@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh M3
muttart@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh M4
peppers@gh_hybrid@41@0.0025@mesh P5
peppers@gh_hybrid@41@0.005@mesh P6
peppers@gh_hybrid@41@0.01@mesh P7
peppers@gh_hybrid@41@0.02@mesh P8
peppers@gh_hybrid@41@0.03@mesh P9
question2_grayscale@sqrErr:h25:jndfe:pef:fe@41@0.0025@mesh Q1
question2_grayscale@sqrErr:h25:jndfe:pef:fe@41@0.005@mesh Q2
question2_grayscale@sqrErr:h25:jndfe:pef:fe@41@0.01@mesh Q3
question2_grayscale@sqrErr:h25:jndfe:pef:fe@41@0.02@mesh Q4
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Table 3.6: The original filenames and nicknames of the meshes in category C

Original Name Nickname
lena@pae:pae:fe:none@41@0.005@mesh L9
lena@pae:pae:fe:none@41@0.01@mesh L10
lena@pae:pae:fe:none@41@0.02@mesh L11
lena@pae:pae:fe:none@41@0.03@mesh L12
muttart@sqrErr:pae:fe:none@41@0.0025@mesh M5
muttart@sqrErr:pae:fe:none@41@0.005@mesh M6
muttart@sqrErr:pae:fe:none@41@0.01@mesh M7
muttart@sqrErr:pae:fe:none@41@0.02@mesh M8
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Table 3.7: Images used to generate the test datasets

Image Name Image Description
lena woman [6]
bull cartoon animal
peppers collection of peppers
ct CT scan of head, from JPEG-2000 test set [7]
muttart architecture
question question mark
checkerboard computer generated image
kodim15 digital image, from Kodak test set [3]

qualities, respectively. In each table, several characteristics of each mesh are listed, including

the number of vertices, edges, and faces of the mesh, the maximum, minimum, average, and

median valences of the vertices in the mesh, the width and height of the unpadded root

cell, and the edge-flipping distance between the mesh triangulation and the PDDT (i.e., the

percentage of edges need to be flipped before transforming the original triangulation into the

PDDT). We note that the good-quality meshes usually have small edge-flipping distances ,

and the poor-quality meshes usually have very large distances. Note that, the poor-quality

meshes are not of practical interest and are only included to allow us to see how robust our

proposed framework is to handling datasets with bizarre statistical properties.

The 64 meshes in Tables 3.1, 3.2, and 3.3 were chosen to be quite diverse, with different

numbers of bits per function value, unpadded root cell sizes, valence statistics, and sampling

densities. The meshes are generated from images in standard test sets such as [6, 7, 3], which

contain varied image types as shown in Table 3.7. From the original mesh filenames, one

can infer from which image each mesh was generated. For example, the mesh with filename

lena@sqrErr:h25:jndfe:pef:fe@41@0.03@mesh was generated from the image lena, which

is an image of a woman.

3.6 Development of Proposed Method and Selection of

Parameters

As introduced earlier, the proposed coding framework for 2.5-D triangle meshes has several

parameters, namely:

1. the parameter usePaddedRootCell, which determines whether the encoder starts with

unpadded or padded mode;

2. the parameters thresholdCI and thresholdRDC, which control the switching between

queues during the coding procedure;
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3. the parameter usePriorityScheme, which determines whether the CI queue is to be

prioritized or not;

4. the parameter valenceMax, which sets a threshold value for the valence of the vertex

to split during the CP coding procedure;

5. the parameters initialDC and remainDC, which determine how many times the DC

coding procedure is invoked when a node is coded from the CI and RDC queue, re-

spectively; and

6. the parameter edgeInsertion, which determines the order used to insert the edge

constraints when generating the constrained Delaunay triangulation in the decoder.

In what follows, we study how various choices of these parameters affect lossless and progres-

sive coding performance. Based on these experimental results, we ultimately recommend a

particular set of choices to be used for these parameters, leading to our mesh-coding method

proposed herein. In the sections that follow, several experiments are performed in which

our framework is used to code meshes. During some of these experiments, we vary one

parameter while keeping the others fixed at default values. For the purpose of these ex-

periments, these defaults are as follows: 1) usePaddedRootCell = 1 (i.e., padded scheme),

2) thresholdCI = 512, thresholdRDC = 128, 3) usePriorityScheme = 1 (i.e., prioritized),

4) valenceMax = 12, 5) initialDC = 3, remainDC = 1, and 6) edgeInsertion = 1 (i.e., in

order of descending edge length).

3.6.1 Choice of Root Cell Selection Strategy

To begin, we consider how different root cell selection strategies affect the progressive and

lossless coding performance. The parameter usePaddedRootCell is provided to choose d-

ifferent schemes. If usePaddedRootCell is 1, the padded root cell is used; otherwise, the

unpadded root cell is employed. In order to find the best choice for usePaddedRootCell, we

consider meshes where the unpadded root cells do not have dimensions that are equal and

powers of two. Since different schemes will not make a difference if the meshes already have

the unpadded and padded root cells being the same. Among the 64 datasets listed in Ta-

bles 3.1, 3.2, and 3.3 in Section 3.5, 36 meshes fall into this category. In what follows, we only

change the parameter usePaddedRootCell, and set the other parameters in the framework as

default values as described at the beginning of Section 3.6.

First, we consider the influence of usePaddedRootCell on progressive performance (i.e.,

decoding in a lossy manner to various intermediate rates). Using each of the padded and



53

12

14

16

18

20

22

24

26

28

30

32

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

P
S
N
R
(d
B
)

Rate(bytes)

none
power2

(a)

10

15

20

25

30

35

40

45

50

55

60

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
S
N
R
(d
B
)

Rate(bytes)

none
power2

(b)

Figure 3.12: Progressive performance using different schemes for (a) mesh M4 and (b) mesh
Q4. Label “none” represents unpadded scheme and “power2” represents padded scheme.

unpadded schemes, each mesh is encoded once losslessly, and then decoded at many inter-

mediate rates. In each case, the decoded dataset was interpolated and rasterized to produce

a lattice-sampled image and the PSNR relative to the original lattice-sampled image was

computed. We give a representative subset of these results involving two datasets, namely,

M4 and Q4. These results are given in Figure 3.12. Each of the two graphs in Figure 3.12

shows the PSNR of the reconstructed image plotted against rate. On each graph, the far

left corresponds to no information having been decoded, while the far right corresponds to

the coded bitstream having been fully decoded. Since the PSNR is measured relative to

the original lattice-sampled image and the original mesh only approximates the original im-

age, the lossless reconstruction does not achieve zero error. Thus, the PSNR obtained for

the lossless reconstruction is not infinity. In Figure 3.12, the label “none” represents the

unpadded scheme and “power2” represents the padded scheme. Next, we will examine the

results in Figure 3.12 more closely.

From Figure 3.12(a), it is clear that the image reconstructions generated with a padded

root cell are consistently better (often around one dB in terms of PSNR) than the one

obtained with the unpadded cell. From Figure 3.12(b), we can see the difference between

the padded and unpadded cases is not significant. We illustrate the original datasets M4

and Q4, in Figures 3.13 and 3.14, respectively, to explain the above observation. As can

be seen from Figures 3.13 and 3.14, the quality of these two meshes are very good, showing

clearly the inherent geometric structure in the original images. The difference is that, in the

mesh Q4 as shown in Figure 3.14, not so many sample points are near the function-domain

boundary. Since the most direct influence of the padded scheme is on the boundary-area

points, if not many samples are in that area, the benefit of using the padding scheme is less

significant, as we can see in Figure 3.12(b). To study whether the padded scheme is robust to
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Figure 3.13: The original dataset with good quality, mesh M4

Figure 3.14: The original dataset with good quality, mesh Q4
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Figure 3.15: Progressive coding performance for M8 with different schemes. Label “none”
represents unpadded scheme and “power2” represents padded scheme.
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Figure 3.16: The original dataset with poor quality, mesh M8

the poor-quality meshes, we present a representative result involving a poor-quality dataset

M8 in Figure 3.15. The original dataset M8, as illustrated in Figure 3.16, is generated from

the same image as M4, but with a different mesh-generation method. From Figure 3.16,

we can clearly see the connectivity is so poor that we can barely see the inherent geometric

structure in the image. Besides the bad connectivity, we also observe that M8 has less points

in the boundary area compared to M4 in Figure 3.13. As can be seen from Figure 3.15, the

results with the padded scheme is only slightly better than with the unpadded scheme, with

a less significant improvement relative to the results in Figure 3.12(a), as expected based on

the previous analysis.

To summarize, we conclude that, in terms of progressive coding performance, using a

padded root cell works better than an unpadded one, and the improvement becomes less
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Table 3.8: Comparison of the lossless coding performance with different root cell selection
strategies

Rate (bits/vertex)
Unpadded (usePaddedRootCell = 0) Padded (usePaddedRootCell = 1)

Individual Mesh Total GD† Connectivity Total GD† Connectivity
A1 22.45 14.50 7.92 22.30 14.35 7.91
A4 17.95 10.80 7.14 17.69 10.67 7.01
B5 24.75 15.49 9.20 24.83 15.31 9.45
B8 19.22 11.72 7.48 19.46 11.70 7.74
CR1 23.93 16.89 7.02 23.73 16.83 6.88
CR4 20.11 13.35 6.75 19.86 13.30 6.56
L5 27.70 18.37 8.93 27.78 18.49 8.90
L8 21.72 13.95 7.72 21.79 14.04 7.69
M2 26.90 16.39 10.48 25.78 16.36 9.38
M3 24.90 15.14 9.74 24.00 15.09 8.89
M5 33.78 16.85 16.86 34.06 16.64 17.35
M8 32.33 13.11 19.22 32.82 12.76 20.05
Q3 21.61 12.61 8.99 21.17 12.45 8.71
Q4 19.50 11.02 8.47 18.98 10.87 8.10

† GD: geometry and DC information.

significant if the tested mesh has less samples near the function-domain boundary area. The

conclusion is also the same for the poor-quality meshes.

Next, we consider the lossless coding performance. For the same 36 meshes as used

in the previous experiments, we losslessly code each of them with padded and unpadded

root cells, and measure the final bit rates. A representative subset of the results is given

in Table 3.8. In this table, we separate the total information into two parts. One part

includes the geometry and DC information, denoted as GD, and the other part includes the

connectivity information. We also record and list the bit rates used to encode these two

parts separately. The best results for each test case are typeset with bold font.

Examining the results in Table 3.8, we can see that for most cases, the GD bit rates

obtained with the unpadded root cell are larger than those with the padded one, except for

L5 and L8. For meshes L5 and L8, the unpadded root cell has the size 513 × 513 and the

padded root cell has the size 1024 × 1024. The padded root cell is much larger than the

unpadded one (i.e., the fraction of the unpadded size over padded is only 25.1%). With

the padded root cell, the information that needs to be coded is much more than with the

unpadded scheme. Therefore, the lossless bit rates obtained with the padded root cell are

larger. Among the results for all test datasets, 96% of the cases have the GD coding results

obtained with the padded root cell better than those with the unpadded cell. Although the
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connectivity bit rates are less predictable than the GD information, still more cases (74%)

have better results with the padded scheme than with the unpadded scheme. In terms of

total lossless coding results, 90% of the cases have better results with the padded scheme

than with the unpadded scheme. From the above results, we conclude that the lossless coding

performance with different root-cell selection schemes are influenced by two factors together.

Generally, on the one hand, if the root starts with the unpadded cell, the encoder needs to

handle the degenerate cases. With the extra bits on degenerate cases, the overall lossless

coding performance is degraded for the unpadded scheme. On the other hand, however, if

the padded size is much larger than the original unpadded size, the lossless bit rates obtained

with the padded root cell tend to be higher than with the unpadded cell, since much more

information needs to be coded under the padded scheme.

To summarize, the padded scheme can provide a better progressive performance, and

a better lossless coding performance in a majority of cases without degrading too much in

other situations. Therefore, we recommend the coding starts with the padded root cell. The

experiment described above was also repeated with different choices of the fixed parameters

in the framework, and similar results were obtained.

3.6.2 Choice of Prioritized or Non-Prioritized CI Queue

As described in Section 3.4.1 (on page 33), the nodes on the CI queue are handled for the

CP information (i.e., the geometry and connectivity information involved in the CP coding

procedure) and the initial DC information. Therefore, the order of the nodes on the CI

queue determines the splitting order of the node cells. If the more important nodes on the

CI queue are split first, a better mesh quality will be obtained with a lower bit rate. In this

regard, we observe that:

1. a cell with higher valence tends to contain more sample points;

2. a cell with larger size has more impact on the mesh quality after splitting; and,

3. a cell with larger distance from its neighbor cells implies more influence on the refine-

ment of the mesh after splitting.

Based on the preceding observations, the importance value I of a node can be determined

as

I = vsl, (IV)

where v is the valence of the cell to be partitioned, s is the size of the cell, and l is the average

distance between the target cell’s centroid and its neighbor cells’ centroids. The parameter
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Figure 3.17: Progressive coding performance for meshes (a) A3, (b) CT3, (c) P8, and (d) L12
using different values of usePriorityScheme. Labels “IV” and “FIFO” represent the results
obtained with usePriorityScheme set as 1 and 0, respectively.

usePriorityScheme is used to determine the order in which elements are removed from the

CI queue. In the case that usePriorityScheme is 1, the scheme in (IV) is used; otherwise,

FIFO order is used.

First, we study the influence of different values of usePriorityScheme on progressive cod-

ing performance by testing with the 64 meshes as listed in the Tables 3.1, 3.2, and 3.3 in

Section 3.5 (on page 46). Using each of the FIFO and IV orders with usePriorityScheme set

to 0 and 1 respectively, each mesh is encoded losslessly, and then decoded at many interme-

diate rates. In each case, the decoded dataset was interpolated and rasterized to produce a

lattice-sampled image and the PSNR relative to the original lattice-sampled image was com-

puted. The other parameters in the framework are set to the default values mentioned earlier

at the beginning of Section 3.6 (on page 52). We choose a representative subset of these

results involving several datasets, which is shown in Figure 3.17. Each of the four graphs in

the figure shows the PSNR of the reconstructed image plotted against rate. On each graph,

the far left corresponds to no information having been decoded, while the far right corre-
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Figure 3.18: (a) Progressive performance for the mesh CH2 using different values of
usePriorityScheme (1 labeled with “IV”, and 0 labeled with “FIFO”). (b) The original
image checkerboard used to generate CH2.

sponds to the coded bitstream having been fully decoded. The maximum PSNR obtained

corresponds to lossless reconstruction of the mesh. In each graph, the results obtained with

usePriorityScheme set to 1 and 0, are labeled with “IV” and “FIFO”, respectively.

Now, we examine the results in Figure 3.17 more closely. The results in Figure 3.17 are

obtained for the four test datasets A3, CT3, P8, and L12. The first three meshes have good

quality and the last one has poor quality. In Figures 3.17(a), (b), and (c), it is clear that

the PSNR results obtained with the IV order are better (often by several dB) for the image

reconstructions than those obtained with the FIFO order. Since L12 is a mesh with poor

quality, the result in Figure 3.17(d) suggests that the IV order also works better for poor

mesh quality. The reason is, with the IV order, more important nodes are coded first, so

more information for a given bit rate can be decoded. Another representative subset of the

results, namely, for the checkerboard image, is given in Figure 3.18. The checkerboard

image is illustrated in Figure 3.18(b). From this figure, we can see that the black and

white blocks are distributed evenly in the image domain. Unlike an image like woman or

animal, the checkerboard image has less varying content and the mesh information is more

evenly distributed in the tree nodes. In Figure 3.18(a), the results with different values of

usePriorityScheme are very close to each other. Therefore, if the mesh information is less

varying, the benefit of using the IV order disappears since the information stored in the tree

nodes tends to be equally important. From the above analysis, we conclude that in terms

of progressive performance, the results with usePriorityScheme set to 1 are better relative

to those with the parameter set to 0. If the information of the datasets is distributed more

evenly, the improvement is less significant.
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Table 3.9: Comparison of the lossless coding performance with different values of
usePriorityScheme. (a) Individual results for seven datasets, and (b) overall average re-
sults for meshes in different categories.

(a)
Rate(bit/vertex)

Individual Mesh 1 (IV order) 0 (FIFO order)
A1 22.27 22.42
B6 22.73 22.90
CH3 20.34 20.42
CT4 23.37 23.49
L8 21.75 21.85
M2 25.76 25.86
P4 17.45 17.50

(b)
Rate (bit/vertex)

Category 1 (IV order) 0 (FIFO order)
A 19.03 19.16
B 22.69 22.78
C 32.26 32.30

Next, the influence of different values of usePriorityScheme on lossless coding perfor-

mance is studied. For the same 64 meshes as listed in Section 3.5, we losslessly encode each

mesh with each of the IV and FIFO orders, and then measure the final bit rates. The other

fixed parameters in the framework are still set to default values (as shown on page 52). A

representative subset of these results for several individual datasets is given in Table 3.9(a),

and the average results for all meshes based on categories are given in Table 3.9(b). The

different categories of meshes were listed earlier in Tables 3.1, 3.2, and 3.3 (on page 47). In

Tables 3.9(a) and (b), the best result in each case is typeset with bold font. As can be seen

in these two tables, the results obtained with the IV order are better than those obtained

with the FIFO order. From the results of all test datasets, we obtain the statistics that the

lossless bit rates with the IV order are decreased compared to the results with the FIFO

order, by 0.75%, 0.43%, and 0.14% for meshes in categories A, B, and C, respectively. With

more important nodes being handled first to provide more information, the estimation of the

later information is more accurate. As a result, the coding efficiency can be improved.

Besides the lossless bit rates, we also consider the time cost with the different values of

usePriorityScheme. For the purpose of making time measurements, very modest hardware

was employed, namely, a 13-year-old computer with a 3.16 GHz Intel Core2 Duo CPU and

4.0 GB of RAM. To get the precise timing results, we run each test case for the encoder
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Table 3.10: Comparison of the lossless coding performance with different values of
usePriorityScheme. (a) Individual results for seven datasets, and (b) overall average re-
sults for meshes in different categories.

(a)
Time (s)†

Individual Mesh 1 (IV order) 0 (FIFO order)
A1 0.84 0.64
B6 0.87 0.66
CH3 0.20 0.17
CT4 0.77 0.60
L8 0.51 0.40
M2 0.93 0.67
P4 0.98 0.70

(b)
Time (s)†

Category 1 (IV order) 0 (FIFO order)
A 0.77 0.55
B 1.80 1.24
C 1.91 1.50

† Time: Encoding time in seconds, chosen as the median value among the 9 times running
for each case.

nine times, measuring the coding time in each case, and then compute the median of these

values. A representative subset of these results for several individual datasets is listed in

Table 3.10(a), and the average results for all meshes based on categories are summarized

in Table 3.10(b). As can be seen from Tables 3.10, the time cost with the IV order are

higher relative to with the FIFO order. We consider the average time cost. The encoding

procedures with the IV order consume 24.27%, 23.99%, and 16.79% more time than with

the FIFO order for meshes of categories A, B, and C, respectively. Therefore, the extra cost

of using the IV order is spending more time on calculating and updating the importance

values for the nodes on the queue.

Summarizing the results of this section, the progressive results obtained with the IV or-

der are better than those obtained with the FIFO order by using 3.69 to 9.83 bits/vertex

less (depending on the particular dataset being coded) to achieve a similar quality of re-

constructed images with PSNR values around 75% of the maximum PSNR obtained for the

lossless reconstructions. Furthermore, if a mesh has a better quality and contains more vary-

ing information, the improvement IV order makes over FIFO order is more significant. For

lossless coding performance, the coding bit rate obtained with the IV order is decreased by

approximately 0.46% relative to with the FIFO order, with 23.14% more time cost. Because
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Table 3.11: Three thresholding schemes of different values for the parameters thresholdCI

and thresholdRDC

Scheme thresholdCI thresholdRDC

1 512 128
2 512 256
3 512 512

of the better progressive and lossless coding performance, we are willing to take the extra

time-cost and recommend the parameter usePriorityScheme be set as 1 (i.e., using the IV

order to select the next node on the CI queue). The above experiments were repeated with

different choices of the fixed parameters in the framework (on page 52), and we obtained a

similar conclusion.

3.6.3 Choices of Threshold Values of Two Queues

As explained earlier, the framework parameters thresholdCI and thresholdRDC are provided

to control the switching between the CI and RDC queues during the coding procedure. In

what follows, we study the influence of different values of thresholdCI and thresholdRDC on

progressive coding performance by considering three different thresholding schemes as given

in Table 3.11. In Table 3.11, the values of thresholdCI and thresholdRDC have different

values in different thresholding schemes. The two values have the largest margin (i.e., 512

and 128) in scheme 1, and smallest margin (i.e., 512 and 512) in scheme 3.

The test datasets are still the 64 meshes (as listed previously in Tables 3.1, 3.2, and 3.3

in Section 3.5 on page 47). Using each of the thresholding schemes in Table 3.11, each mesh

was losslessly encoded, and then decoded at many intermediate rates. In each case, the

decoded mesh was interpolated and rasterized to produce a lattice-sampled image and the

PSNR relative to the original lattice-sampled image was computed. The other parameters in

the framework are set to the default values described earlier at the beginning of Section 3.6

(on page 52). A representative subset of these results for four datasets, namely, A4, B8, K4,

and L10, is listed in Figure 3.19. Each of the four graphs in the figure shows the PSNR of the

reconstructed image plotted against rate, where the far left corresponds to no information

having been decoded and the far right corresponds to the coded bitstream having been fully

decoded.

Now, we analyze the results introduced above in detail. In Figures 3.19(a), (b), and (c),

it is clear that the image reconstructions generated with scheme 1 are consistently better

(often less than or around one dB in terms of PSNR) than with the other two schemes. The

reason is, the nodes on the first CI queue are coded for the geometry, connectivity, and initial
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Figure 3.19: Progressive performance for meshes (a) A4, (b) B8, (c) K4, and (d) L10 using
different thresholding schemes as shown in Table 3.11.
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DC information and the nodes on the second RDC queue are coded for the remaining DC

information. The important information to recover the structure of the mesh is provided

by the geometry and connectivity information. So, we need to spend more bits on coding

this important information before having unnecessarily-detailed information for recovering

function values. The mesh L10 has poor quality and the results in Figure 3.19(d) obtained

with different schemes are close to each other, which at least suggests that scheme 1 does

not degrade the performance for the poor-quality meshes.

In terms of progressive coding performance, we conclude that the most effective choices

for thresholdCI and thresholdRDC are 512 and 128, respectively. These choices do not

degrade performance for poor-quality meshes. We repeated the above experiments with the

different choices of the fixed parameters in the framework (on page 52), and obtained the

similar results.

3.6.4 Choice of the Threshold Value for Valence

As explained earlier, in order to avoid combinatorial-explosion problems as described in

Section 3.4.3 (on page 41), we use the parameter valenceMax. In what follows, we consider

the influence of different values of valenceMax on progressive and lossless coding performance.

First we study the influence of valenceMax on progressive coding performance. In this

experiment, we use the 64 meshes listed in Tables 3.1, 3.2, and 3.3 in Section 3.5 (on page 47).

We consider four values for valenceMax, namely, 8, 10, 12, and 14. With each of the values

of valenceMax under consideration, each mesh is losslessly encoded, and then decoded at

many intermediate rates. In each case, the decoded dataset was interpolated and rasterized

to produce a lattice-sampled image and the PSNR relative to the original lattice-sampled

image was computed. The other parameters in the framework are set to default values (on

page 52). A representative subset of these results involving two datasets is illustrated in

Figure 3.20. Each of the two graphs in the figure shows the PSNR of the reconstructed

image plotted against rate, where the far left corresponds to no information having been

decoded and the far right corresponds to the coded bitstream having been fully decoded.

The maximum PSNR in the graphs corresponds to the lossless reconstruction of the mesh.

Now, we analyze the results from above in detail. The results of progressive performance

with different valenceMax are very close for the two datasets L16 and A4, as shown in

Figures 3.20(a) and (b), respectively. In order to examine the results more closely, we

provide specific numerical values in Table 3.12 for the mesh L16. In this table, the PSNR

values of the reconstructed images obtained at different intermediate rates are given. At

each decoding rate, the best result obtained with different valenceMax is typeset with bold
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Figure 3.20: Progressive performance for meshes (a) L16 and (b) A4 using different
valenceMax as 8, 10, 12, and 14.

Table 3.12: Reconstruction quality at various (lossy) decoding rates for the mesh L16

PSNR (dB)
Decoded Bytes valenceMax = 8 valenceMax = 10 valenceMax = 12 valenceMax = 14
100 13.49 13.43 13.70 13.65
1100 18.11 18.05 17.91 17.87
5100 21.66 21.66 21.62 21.60
10100 24.31 24.31 24.29 24.27
15100 28.04 28.09 28.01 27.91
20100 34.20 34.20 34.20 34.20
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Table 3.13: Lossless bit rates for meshes (a) L16 and (b) A4 using different valenceMax as
8, 10, 12, and 14

(a)
valenceMax Bit Rate (bits/vertex)
8 20.83
10 20.73
12 20.75
14 20.81

(b)
valenceMax Bit Rate (bits/vertex)
8 17.89
10 17.74
12 17.69
14 17.70

font. From the data in the table, we can clearly see the PSNR values at each rate are very

close with no value of valenceMax consistently performing better than the others. Thus, we

conclude that the choice of valenceMax does not have a significant impact on the progressive

coding performance.

Next, we study the influence of valenceMax on lossless coding performance. Again, we

use the 64 meshes as listed in Section 3.5 (on page 47), and consider the same four values for

valenceMax (i.e., 8, 10, 12, and 14). We losslessly code each of the meshes with the values of

valenceMax under consideration, and measure the final bit rates. The other parameters in

the framework are still set to default values (as on page 52). A representative subset of these

results is given in Table 3.13. The best result for each test case is typeset with bold font.

Recall that the parameter is a threshold related to valences of vertices being split. This fact

motivates us to examine the statistics of the valences for all the vertices being split during

the coding procedure.

To order to explain the results in Table 3.13, we collect some statistics for the vertex

valences encountered during the coding procedure by recording the valence of each vertex

being split. The resulting statistics are given in Tables 3.14 and 3.15, for the two datasets

L16 and A4, respectively. First, we consider the results for L16. Among the total 7863

vertex splits, 2010, 432, and 60 vertices have the valences exceed 8, 10, and 12, respectively.

For mesh A4, we obtain the statistics that among all 44381 vertex splits, 2418 and 418 cases

with valences exceed 10 and 12. Recall that the number of pivots P is coded conditioned

on M , and the index of pivot-vertex tuple is coded conditioned on M and P (as described

on page 38). If M is set to a sufficiently large number, context dilution will occur and the
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Table 3.14: The numbers of vertices being split with specific valences (i.e., 0, 1, . . . , 19)
during the coding procedure for mesh L16

Valence 0 1 2 3 4 5 6 7 8 9
Counts 1 1 6 57 281 823 1498 1687 1499 1030

Valence 10 11 12 13 14 15 16 17 18 19
Counts 548 269 103 37 14 5 3 1 0 0

Table 3.15: The numbers of vertices being split with specific valences (i.e., 0, 1, 2, . . . )
during the coding procedure for mesh A4

Valence 0 1 2 3 4 5 6 7 8 9
Counts 1 1 5 230 1343 4352 8176 9973 8953 5882

Valence 10 11 12 13 14 15 16 17 18 ≥19
Counts 3047 1386 614 234 102 41 22 8 4 7
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Table 3.16: (a) The numbers of vertices being split with specific valences (i.e., 0, 1, 2, . . . )
during the coding procedure for mesh L12, and (b) lossless bit rate for L12 using different
valenceMax

(a)
Valence 0 1 2 3 4 5 6 7 8 9
Counts 1 1 2 55 196 415 646 762 799 757

Valence 10 11 12 13 14 15 16 17 18 19
Counts 725 622 572 472 403 340 263 223 168 98

Valence 20 21 22 23 24 25 26 27 28 ≥29
Counts 96 57 55 36 27 19 6 8 7 32

(b)
valenceMax Bit Rate (bits/vertex)
8 30.84
10 30.86
12 30.92
14 31.08

efficiency of arithmetic coding will be degraded. For mesh L16, only 432 vertices being split

have more than 10 neighbors, and for mesh A4, only 418 vertices being split have more than

12 neighbors. So, for L16, if valenceMax is set to a value larger than 10, the overall lossless

coding performance is degraded as shown in Table 3.13(a). For A4, the overall lossless

coding performance is degraded with valenceMax set to a larger value than 12, as shown in

Table 3.13(b).

Based on the above analysis, we conclude that the influence of valenceMax on lossless

coding performance is related to the statistics of the valences of the vertices being splits

during coding. If more vertices being split have larger valences, the lossless results obtained

with a larger value of valenceMax tend to be better than those obtained with smaller values.

If less vertices being split have larger valences, the lossless results with a smaller value of

valenceMax tend to be better.

We also consider the case of poor-quality meshes. For poor-quality meshes, the valences

during the vertex splits are distributed more evenly on a larger range. To better illustrate the

situation for poor-quality meshes, a representative dataset L12 is considered in what follows.

Table 3.16(a) shows the statistics for the vertex valences encountered during the coding

procedure, from where we can see that the valence distribution is wider compared with the

preceding two examples. The lossless coding bit rates for L12 with different valenceMax are

listed in Table 3.16(b). As can be seen from Table 3.16(b), the lossless coding performance

is less predictable, but the results obtained with valenceMax chosen as 12 is not too bad.
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Figure 3.21: Progressive performance for mesh L12 using different valenceMax as 8, 10, 12,
and 14.

The results of progressive coding performance with different valenceMax are still very close

to each other, as shown in Figure 3.21.

Based on the above observations, we recommend 12 as the best choice of valenceMax,

since it can yield better lossless coding performance for most cases, without degrading the

performance too much in other cases. We also repeated the previous experiments with the

different choices for the fixed parameters (on page 52), and obtained the similar results.

3.6.5 Choices of Invoking of the DC Coding Procedure

Next, we consider the influence of the framework parameters initialDC and remainDC on

progressive coding performance. We start with the first parameter initialDC involved in the

CI queue, and then study the remainDC parameter involved in the RDC queue.

Parameter initialDC. First, we study how different choices of the initialDC parameter

affect the progressive performance. The datasets used in this part are the 64 meshes as listed

in previous Tables 3.1, 3.2, and 3.3 in Section 3.5 (on page 47). We consider the values 0,

1, 2, 3, and 4 for initialDC. Using each of the values for initialDC under consideration,

each of the meshes is losslessly encoded, and then decoded at many intermediate rates. In

each case, the decoded mesh was interpolated and rasterized to produce a lattice-sampled

image and the PSNR relative to the original lattice-sampled image was computed. During

the experiments, the other parameters in the framework, including remainDC, are set to

the default values as listed earlier (on page 52). A representative subset of these results

is illustrated in Figures 3.22 and 3.23. Each of these graphs shows the PSNR of the

reconstructed image plotted against rate. On each graph, the far left corresponds to no

information having been decoded, while the far right corresponds to the coded bitstream
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Figure 3.22: Progressive performance obtained with initialDC set as 0, 1, 2, 3, and 4 for
meshes (a) CT4 (sampling density is 0.03) and (b) CT1 (sampling density is 0.005).
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Figure 3.23: Progressive performance for meshes (a) L13 (sampling density is 0.005), (b) L16
(sampling density is 0.03), (c) P4 (sampling density is 0.0025), and (d) P9 (sampling density
is 0.03) using different values of initialDC as 0, 1, 2, 3, and 4.
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having been fully decoded.

Now, we analyze the results introduced above in detail. The results in Figure 3.22 are

obtained for the meshes CT4 and CT1, which are generated from the ct image with the

sampling densities 0.03 and 0.005, respectively. The number of bits used to represent the

function values for the ct image is 12 (i.e., ρ = 12). Examining the results in Figure 3.22(a),

we can see that the results with initialDC set to 3 and 4 are close to each other during most

stages of the progressive decoding and are better than the results with initialDC set to the

other values. In Figure 3.22(b), the results with initialDC set to 2 and 3 are very close and

are better than the result with initialDC set to 4. Therefore, choosing initialDC as 3 is a

good tradeoff. Another four sets of results are shown in Figure 3.23, obtained for the four

datasets L13, L16, P4, and P9. The meshes, L13 and L16, are generated from the lena

image with the sampling densities 0.005 and 0.03, respectively. The meshes, P4 and P9, are

generated from the peppers image with the sampling densities 0.0025 and 0.03, respectively.

Both of the lena and peppers images use 8 bits to represent the function values (i.e., ρ = 8).

Examining the results in Figure 3.23, we can make the following observations. The results

in Figures 3.23(a) and (c) are obtained for the meshes with lower-sampling densities, and

the results obtained with initialDC set to 2 and 1 are better than those obtained with

the other values. The results in Figures 3.23(b) and (d) are obtained for the meshes with

higher-sampling densities, and the results obtained with initialDC set to 2 and 3 are better

than those obtained with the other values. So, for the the above four test cases, choosing

initialDC as 2 is a good tradeoff. Compared with the previous two results in Figure 3.22,

the four results in Figure 3.23 lead to a lower recommended value (i.e., 2), which is because

the first two datasets have a higher ρ than the latter four datasets.

Based on the above results, we observe that the influence of initialDC on progressive

performance is related to ρ and the sampling density of the mesh. To summarize, if the mesh

has a lower sampling density, it is better to choose a smaller value for initialDC, so more bits

spent on the CI queue are concentrated on coding the geometry and connectivity information

in order to recover a relatively good approximation of the mesh first. Otherwise, if the mesh

has a higher sampling density, the number of bits spent on the DCs can be increased in

order to recover more accurate function values, so the quality of reconstructed mesh can be

improved. If the mesh has a higher value of ρ to represent the function values, spending more

bits on coding DCs also helps to recover higher mesh quality. Therefore, we recommend the

value of initialDC be set to ⌊ρ
4
⌋, as this is a good choice for most cases. We repeated the

preceding experiments with different values of the other parameters in the framework (on

page 52), and the results obtained showed that the previous conclusion still holds.

Parameter remainDC. Next, we consider the influence of the choice of the remainDC
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Figure 3.24: Progressive performance for meshes (a) A4 and (b) CT4 using different values
of remainDC as 1, 2, and 3.

parameter on progressive coding performance. Again, the datasets used in this part are the

same 64 meshes listed in Tables 3.1, 3.2, and 3.3 in Section 3.5 (on page 47). We consider the

values 1, 2, and 3 for remainDC. Using each of the values of remainDC under consideration,

each of the meshes is losslessly encoded, and then decoded at many intermediate rates. In

each case, the decoded dataset was interpolated and rasterized to produce a lattice-sampled

image and the PSNR relative to the original lattice-sampled image was computed. The other

parameters in the framework, including initialDC, remain as the default values listed earlier

(on page 52). A representative subset of the results obtained is illustrated in Figure 3.24.

Each of the graphs in the figure shows the PSNR of the reconstructed image plotted against

rate, where the far left corresponds to no information having been decoded and the far

right corresponds to the coded bitstream having been fully decoded. The maximum PSNR

obtained corresponds to the lossless reconstruction of the mesh.

Now, we analyze the above results in detail. The results in Figures 3.24(a) and (b)

are obtained for the two datasets A4 and CT4, respectively. As can be seen from these

graphs, the results obtained with remainDC set as 1 are slightly better than those obtained

with other values. We also consider the case of poor-quality meshes. To better illustrate

the situation for poor-quality meshes, a representative result for a poor-quality mesh L11 is

presented in Figure 3.25, from where we can see the difference between the various results

is difficult to recognize. Therefore, different values of remainDC do not have significant

impact on progressive performance for poor-quality meshes. Based on all of the test results,

we recommend that the remainDC parameter be chosen as 1. We also repeated the above

experiments with nondefault values for the other parameters in the framework (on page 52),

and obtained the similar results. To summarize, the recommended values for the parameters

initialDC and remainDC are ⌊ρ
4
⌋ and 1, respectively.
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Figure 3.26: Progressive performance using different orders for inserting constraints for (a) a
good-quality mesh A4 and (b) a poor-quality mesh L12.

3.6.6 Choice of Insertion Order of Edge-Constraints

In what follows, we consider the influence of the choice of edgeInsertion on progressive

coding performance. The values are considered for edgeInsertion are 0, 1, 2, and 3, which

correspond to the following orders:

• edge-iteration order as determined by the data structure employed in the implementa-

tion;

• in order of descending edge length;

• in order of ascending edge length; and

• pseudo-random order.

As before, for experimental purposes, we use the 64 meshes listed in Tables 3.1, 3.2,

and 3.3 in Section 3.5 (on page 47). Using each of the four orders described above, each

mesh was losslessly encoded, and then decoded at many intermediate rates. In each case, the

decoded dataset was interpolated and rasterized to produce a lattice-sampled image and the

PSNR relative to the original lattice-sampled image was computed. The other parameters

in the framework are again set to the default values described earlier (on page 52). A

representative subset of these results involving two datasets is illustrated in Figure 3.26.

Each of the two graphs in this figure shows the PSNR of the reconstructed image plotted

against rate. On each graph, the far left corresponds to no information having been decoded,

while the far right corresponds to the coded bitstream having been fully decoded. The results

labeled with “none”, “descending”, “ascending”, and “random” in the figure are obtained

with the edgeInsertion parameter set to 0, 1, 2, and 3.
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Table 3.17: Reconstruction quality at various (lossy) decoding rates, obtained with different
insertion orders, for the mesh A4

PSNR (dB)
Decoded Bytes none descending ascending random
100 12.330 12.330 12.330 12.330
2542 23.195 23.202 23.212 23.203
4983 24.765 24.772 24.757 24.772
7423 26.275 26.278 26.260 26.271
9865 27.157 27.154 27.184 27.166
12308 28.216 28.214 28.207 28.191
14746 28.777 28.777 28.759 28.761
17188 30.139 30.129 30.133 30.140
19629 31.714 31.693 31.707 31.656
22071 32.273 32.289 32.310 32.274
24511 32.721 32.741 32.688 32.677
26952 33.135 33.130 33.131 33.119
29392 33.620 33.623 33.629 33.603
31834 33.799 33.813 33.791 33.795
34274 34.261 34.252 34.251 34.263
36716 34.540 34.542 34.553 34.581

Now, we analyze the results from above in detail. The representative results in Figure 3.26

are obtained for the meshes A4 and L12, which have the good and poor qualities, respective-

ly. For good-quality meshes, we can see from Figure 3.26(a) that different insertion orders do

not have a significant impact on the progressive performance. In order to examine the results

more closely, we provide specific numerical values in Table 3.17 for the mesh A4. In this

table, the PSNR values of the reconstructed images at different intermediate rates are given.

At each decoding rate, the best result obtained with different insertion orders is typeset with

bold font. From the data in the table, we can clearly see that the PSNR values at each stage

are very close with no specific order consistently performing better than the others. Thus,

we conclude that the choice of different insertion orders do not have a predictable impact on

the progressive coding performance for the good-quality meshes. In terms of poor-quality

meshes, we can see from the representative result, as illustrated in Figure 3.26(b), that the

PSNR values for the image reconstructions generated using different insertion orders are

significantly different. In particular, inserting the edge-constraints in the length-descending

order can yield image reconstructions with higher PSNR (often by several dB) than in the

length-ascending order. To better understand the influence of the different edge-insertion

orders on the poor-quality meshes, we illustrate two lossy reconstructed meshes for L12 in

Figure 3.27. The lossy meshes in Figure 3.27 are reconstructed by decoding 20000 bytes from
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Figure 3.27: Reconstructed meshes for L12 at lossy decoding rate (20000 bytes) using dif-
ferent edge insertion orders: (a) length-descending order and (b) length-ascending order.

the lossless coded bitstream, but with different insertion orders when generating the con-

strained Delaunay triangulation. As can be seen, the mesh in Figure 3.27(a) generated with

the length-descending order has a better connectivity (showing inherent geometric structure

more clearly) than the mesh in Figure 3.27(b), which is generated with the length-ascending

order. The reason is, for poor-quality cases, the lossy reconstructed meshes will have even

worse connectivity. Inserting the constrained edges in a length-descending order can avoid

the long and bizarre edges to whatever extent is possible. Therefore, the recovered connec-

tivity in Figure 3.27(a) is less messy compared to the connectivity in Figure 3.27(b). For

the good-quality meshes, the connectivity of the decoded dataset is already in good shape,

so different orders of inserting constraints do not have much influence on the quality of the

mesh.

Since generating the constrained Delaunay triangulation is a post-processing step, so

different orders of inserting the constraints do not have any impact on lossless coding bit rate.

The computational time for the lengths of edges is also negligible. Therefore, we recommend

setting edgeInsertion as descending order, which can also cover the poor-quality datasets

without significant extra cost. The above experiments were repeated with different choices

of the fixed parameters (on page 52) in the framework, and the conclusion remained the

same.



77

3.7 Proposed Method

In the preceding sections, we have studied how various free parameters influence the coding

performance and made a set of recommended choices for these parameters. Thus, our pro-

posed method is defined to correspond to these best choices from earlier and are as follows:

1) usePaddedRootCell is set to 1 (i.e., use padded scheme); 2) thresholdCI and thresholdRDC

are set to 512 and 128, respectively; 3) usePriorityScheme is set to 1 (i.e., use the priori-

tized order determined by importance values); 4) valenceMax is set to 12; 5) initialDC and

remainDC are set to ⌊ρ
4
⌋ and 1, respectively; and 6) edgeInsertion is set to 1 (i.e., the order

of descending edge length).

3.8 Differences Between Proposed Method and the ADIT

and PK Methods

For the convenience of the reader, we now highlight the differences between the proposed

method and the ADIT and PK schemes, upon which the proposed method is based. In

particular, the proposed method borrows ideas from the ADIT method in terms of geometry

and function value coding, and borrows ideas from the PK method in terms of connectivity

coding.

3.8.1 Two Queues and DC Information

As explained earlier, the proposed method uses two queues, namely, the CI and RDC queues.

The ADIT method also uses two queues, which play similar roles as the CI and RDC queues

in the proposed method. The CI queue in the proposed method uses a priority calculation

scheme that is dependent on the data set (as described on page 57), while the CI queue in

the ADIT method uses a fixed priority scheme that causes nodes to be coded in breadth-first

traversal order. Besides the different priority schemes, another difference between the CI

queues of the two methods is the coded information for the nodes on the queues. In the

ADIT scheme, the nodes from the CI queue are only coded for the geometry information

without connectivity information, and all the DC information are left to be coded from the

RDC queue. In the proposed method, however, the nodes from the CI queue are coded for

the geometry and connectivity information, as well as the initial part of the DC information.

Based on the experimental results shown in Section 3.6.5 (on page 70), we can see coding

some initial DC information in the CI queue is better than leaving all DC information to

the RDC queue for the proposed method.



78

In the ADIT method, the thresholding schemes used for the two queues, thresholdCI

and thresholdRDC, are set to 512 and 256, respectively. In the proposed method, however,

these parameters are set to 512 and 128. In the proposed method, more information needs

to be coded for the nodes from the first queue compared to the ADIT method. Therefore,

the two parameters thresholdCI and thresholdRDC in the proposed method should have a

larger margin.

3.8.2 Geometry Information

The data structure used to represent the dataset in the ADIT method is a quadtree, generated

by a quadtree partitioning of the root cell. The representation of the dataset in the proposed

method with the QCP operations is similar as the quadtree in the ADIT method. Both of

these two methods need to code the number (T ) of nonempty subcells and the configuration

of the nonempty subcells, but they code the value T in different ways.

In the ADIT method, T is arithmetically coded conditioned on M , P , and the level of the

target cell on the quadtree. The quantity P is the prediction of T using the information of

previously-coded neighbors, and the neighbor is defined based on the spatial closeness of the

cells. In the proposed method, T is also coded based on the information of previously-coded

neighbors, but the neighbor is defined based on the actual connectivity of the original mesh,

which is more accurate than the spatial closeness.

3.8.3 Connectivity Information

The idea of coding the connectivity information is derived from the PK method. One of the

differences between the proposed and the PK methods is that the proposed method uses the

divide-and-conquer approach to handle large-valence vertices (as described in Section 3.4.3

on page 42). The large neighbor list is partitioned into several small sublists, and each sublist

is handled in a practical efficient way without the risk of combinatorial blowup. Since the

PK method does not have such a partitioning scheme, it would likely fail in practice when

handling large-valence vertices.

Another difference in the coding of connectivity information relates to the updating of

the face information. In the proposed method, the face information is not of concern in

the 2.5-D dataset. We are only concerned with the connectivity (i.e., the triangulation)

and the locations and function values of the sample points. If we consider the basic linear

interpolation on the dataset, the linear faces can be determined by the constrained Delaunay

triangulation generated in the post-processing step. In the PK method, however, the faces

are updated from the edge-based connectivity after each of the vertex splits during the coding



79

v
v1 v2

N1

N2

N3 N4

N5

N6 N1 N6

N5

N4N3

N2

Figure 3.28: An example of vertex split. Vertex v is split into two new vertices v1 and v2.

procedure.

3.9 Additional Comments on the PK method

As stated before, the face information in the PK method is not explicitly coded, and can be

updated from the edge-based connectivity. During the course of the work described herein,

the author discovered that the rules used to update the face information in the PK method

are not correct in certain circumstances. In what follows, we first introduce the face-updating

rules in the PK method, and then use a simple 3-D triangle mesh as an example to illustrate

the condition when the rules fail.

In the PK method, after each vertex split, the incident faces are updated as follows:

1. Suppose that A1 is the vertex to be split in the incident face △A1A2A3, and the

splitting generates two new vertices v1 and v2. The updating rules of the faces are

given by

(a) if both A2 and A3 are connected to v1, add face △v1A2A3;

(b) if both A2 and A3 are connected to v2, add face △v2A2A3; and

(c) delete △A1A2A3.

2. If v1 and v2 are connected, for each pivot Ni, add faces △v1v2Ni, i = 1, 2, . . . ,P , where

P is the number of pivots.

In the example of vertex split illustrated in Figure 3.28, the original vertex v has six local

incident faces prior to the vertex split. After the vertex split, △N1N2v is replaced by

△N1N2v1 because both N1 and N2 are connected to v1, and△N1N6v is replaced by△N1N6v2

because both N1 and N6 are connected to v2. Since v1 and v2 are connected to each other,

and N1, N3 are pivots, extra faces △N1v1v2 and △N3v1v2 are added. Other incident faces

are updated accordingly.
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Figure 3.29: A simple 3-D triangle mesh. (a) Original mesh with four vertices (A, B, C, and
D) and three faces (△ABC, △ADC, and △BCD), and (b) the latest version of a coarser
mesh.

In certain circumstances, however, using the preceding updating rules will cause extra

faces to be added to the lossless reconstructed mesh that do not exist in the original. A simple

3-D triangle mesh is shown in Figure 3.29 to better illustrate the extra-face problem. The

original mesh, as shown in Figure 3.29(a), has four vertices (i.e., A, B, C, and D) and three

faces (i.e., △ABC, △ADC, and △BCD). Essentially, this mesh looks like a tetrahedron

but without the bottom face. Suppose that the vertices C and D are generated from the last

vertex split of a previous vertex V . So the latest previous stage of a coarser mesh is shown

in Figure 3.29(b). Based on the updating rules, the only face △ABV before vertex split can

be updated in the following steps: 1) since both A and B are connected to C, face △ABC

is added; 2) since both A and B are connected to D, face △ABD is added; 3) since C and

D are connected, and both A and B are pivots, faces △ACD and △BCD are added; and 4)

the original face △ABV is removed. Therefore, after the last vertex split, the reconstructed

mesh has four vertices with four faces. The lossless reconstructed mesh has one extra face

△ABD compared with the original mesh. In the proposed method, this extra-face problem

does not occur, since the linear-interpolated faces of the mesh are determined implicitly by

the constrained Delaunay triangulation.
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Chapter 4

Evaluation of Proposed Mesh-Coding

Method

Having introduced our proposed mesh-coding method, we now evaluate its performance by

comparing with other coding methods. In particular, the proposed method is compared to

the Gzip and Edgebreaker methods for lossless coding and the MSDC method for progressive

coding.

4.1 Performance Comparison With Gzip

Gzip is general-purpose data compression method. Since Gzip cannot perform progressive

coding, we only compare it with the proposed method in terms of lossless coding performance.

For each of the 64 test meshes as listed earlier in Tables 3.1, 3.2, and 3.3 (on page 47), we

losslessly encode the mesh using each of the Gzip and proposed methods and record the

lossless bit rate. We list a representative subset of these lossless coding results, for nine

individual datasets, in Table 4.1(a), and summarize the overall results for all 64 test meshes

based on their categories in Table 4.1(b). The best result in each case in typeset with bold

font.

Examining the individual results shown in Table 4.1(a), we can see the proposed method

outperforms Gzip for meshes in all three categories, which is reasonable since Gzip is not

designed to handle meshes, but as a string compression algorithm. The proposed method

can exploit the structure inherent in meshes, leading to much higher coding efficiency. The

overall results for all 64 meshes, as shown in Table 4.1(b), are consistent with the individual

results. For the Delaunay meshes (i.e., category A), the average bit rate with the proposed

method is 6.27 times lower than that obtained with Gzip. For the non-Delaunay meshes with

good (i.e., category B) and bad (i.e., category C) qualities, the average bit rates with the
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Table 4.1: Comparison of the lossless coding performance with Gzip. (a) Individual results
for nine datasets, and (b) overall average results for all meshes in three categories.

(a)
Individual Original Rate Rate (bits/vertex) Gzip/Proposed

Category Mesh (bits/vertex) Gzip Proposed Ratio
A B4 393.05 120.28 14.89 8.08
A L1 316.56 118.48 22.15 5.35
A L4 356.55 119.45 16.65 7.17
A P4 356.58 120.00 17.46 6.87
B B5 363.12 144.71 24.77 5.84
B B6 370.19 148.97 22.72 6.56
B CT4 378.38 152.88 23.37 6.54
B L16 367.18 147.51 20.72 7.12
C L12 362.99 136.48 30.86 4.42

(b)
Original Mean Rate Mean Rate (bits/vertex) Gzip/Proposed

Category (bits/vertex) Gzip Proposed Ratio
A 349.64 119.52 19.07 6.27
B 351.77 144.32 23.47 6.15
C 348.52 136.27 31.82 4.28
Overall 350.30 140.30 23.72 5.92
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Table 4.2: Comparison of the lossless coding performance with Edgebreaker. (a) Individual
results for five datasets, and (b) overall average results for meshes with edge-flipping distances
in different ranges.

(a)
Individual Edge-flipping Rate (bits/vertex)
Mesh Distance Edgebreaker Proposed
P7 30.30% 23.29 22.81
CR1 34.29% 24.26 23.75
CR3 40.01% 23.62 24.60
CH3 57.53% 20.18 20.34
L12 150.51% 27.22 30.86

(b)
Edge-flipping Mean Rate (bits/vertex)
Distance Range Edgebreaker Proposed
0 20.51 19.05
(0, 37.38%] 21.88 20.87
(37.38%, 80%] 22.67 23.29
> 80% 28.96 31.83

proposed method are 6.15 and 4.28 times lower than those obtained with Gzip, respectively.

From the overall results, the lossless bit rate with the proposed method is roughly 5.92

times better than that obtained with Gzip. Based on the above extensive experimental

results, we conclude that the proposed method outperforms Gzip in terms of lossless coding

performance. Moreover, the proposed method has the progressive coding capability, which

Gzip does not.

4.2 Performance Comparison With the Edgebreaker

Method

Now, the performance of the proposed method is compared to that of the Edgebreaker mesh-

coding method, as implemented in [36]. This comparison was done as follows. For each of

the 64 meshes listed in Tables 3.1, 3.2, and 3.3 (on page 47), the mesh was losslessly encoded

using the two methods under consideration and the lossless coding bit rate was recorded.

We list a representative subset of these results involving five individual datasets in Ta-

ble 4.2(a) and summarize the overall results for all 64 meshes in Table 4.2(b). In Table 4.2(a),

for each mesh, we give the edge-flipping distance as well as the lossless bit rate for each

method. The best result in each test case is typeset with bold font. As can be observed

in Table 4.2(a), the proposed method outperforms the Edgebreaker for meshes with smaller
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edge-flipping distances. By collecting the average results for the 64 meshes with different

edge-flipping distances as shown in Table 4.2(b), we obtain the similar results as the indi-

vidual datasets. Based on the average results and some calculations, we have the following

observation. The proposed method outperforms Edgebreaker for all of the Delaunay meshes,

with the lossless bit rate being 7.7% less on average. For the non-Delaunay meshes with good

quality, if the edge-flipping distance is smaller than 37.38%, the proposed method is better

than Edgebreaker, with the average lossless bit rate being 4.8% less. If the edge-flipping dis-

tance is greater than 37.38% and smaller than 80%, Edgebreaker outperforms the proposed

method with the lossless bit rate being 2.7% less on average. For the non-Delaunay meshes

with poor quality, which are not of practical interest, Edgebreaker outperforms the proposed

method with the average lossless bit rate being 9.9% lower.

Although the proposed method only outperforms the Edgebreaker method for meshes

with smaller edge-flipping distances in terms of lossless coding performance, it has the pro-

gressive coding capability, which the Edgebreaker does not. For each of the 64 meshes as

listed in Section 3.5, after each mesh is coded losslessly using the proposed method, it is

decoded at many intermediate rates. The decoded dataset at each case is interpolated and

rasterized to produce a lattice-sampled image and the PSNR relative to the original lattice-

sampled image is computed. We illustrate a representative subset of these progressive coding

results involving four datasets in Figure 4.1. The results in Figure 4.1 are obtained for the

four meshes CH2, P9, K3, and CR2, which have the edge-flipping distances 46.26%, 30.80%,

37.38%, and 33.73%, respectively. On each graph, the trend line represents the PSNR of the

reconstructed image plotted against rate, and the far right of the trend line corresponds to

the lossless bit rate with the proposed method. The vertical bar on the right side of each

graph denotes the corresponding lossless bit rate with the Edgebreaker method. As can be

seen from Figure 4.1, the proposed method can achieve a progressive coding capability with

smaller lossless bit rates for these four datasets compared with the Edgebreaker method.

Besides the lossless and progressive performance, we are also interested at the time cost

using the two methods under consideration. For the purpose of making time measurements,

we employed very modest hardware, namely, a 13-year-old computer with a 3.16 GHz Intel

Core2 Duo CPU and 4.0 GB of RAM. From the results of the previous 64 meshes (as listed

in Section 3.5 on page 47), the average time used by the Edgebreaker method for coding the

meshes in categories A, B, and C, are 0.16 s, 0.25 s, and 0.19 s, respectively. The average

time used by the proposed method, however, are 0.76 s, 1.33 s, and 1.90 s for these three

categories. Therefore, the proposed method is less time-efficient relative to the Edgebreaker

method.

To summarize, the proposed method outperforms the Edgebreaker method in terms of
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Figure 4.1: Progressive performance of the proposed method for meshes (a) CH2 (edge-
flipping distance 46.26%), (b) P9 (edge-flipping distance 30.80%), (c) K3 (edge-flipping dis-
tance 37.38%), and (d) CR2 (edge-flipping distance 33.73%), with the vertical bar on the
right side denoting the corresponding lossless bit rate with the Edgebreaker method.
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progressive coding performance, and also outperforms the Edgebreaker in terms of lossless

coding performance if the meshes do not deviate too far from (preferred-directions) Delaunay.

Due to the progressive functionality, the proposed method is more computationally complex

and therefore consumes more time.

4.3 Performance ComparisonWith the MSDCMethod

So far, the evaluation of our method has been focused on lossless coding performance. Next,

we consider progressive coding performance. Due to limited access to implementations of

progressive mesh coders, the proposed method is compared to the MSDC method, which can

only code meshes having Delaunay connectivity. So, the test datasets used in this comparison

are all Delaunay meshes (i.e., from category A as listed in Table 3.1 on page 47).

For each of the twelve meshes as listed in Table 3.1, each mesh is losslessly coded, and then

decoded at many intermediate rates. In each case, the decoded dataset was interpolated and

rasterized to produce a lattice-sampled image and the PSNR relative to the original lattice-

sampled image was computed. A representative subset of these progressive coding results

involving several datasets is shown in Figure 4.2. Each of the four graphs in the figure

shows the PSNR of the reconstructed image plotted against rate. On each graph, the far

left corresponds to no information having been decoded, while the far right corresponds to

the coded bitstream having been fully decoded. The maximum PSNR obtained corresponds

to lossless reconstruction of the mesh.

Now, we examine the results in Figure 4.2 more closely. The results in Figure 4.2 are

obtained for the four datasets B4, L1, L4, and P4. As can be seen from each graph, during

most stages of the decoding procedure, the PSNR results obtained by the proposed method

are higher (often by several dB) for the image reconstructions than those obtained with the

MSDC method. Since the MSDC method does not code connectivity information, it has a

smaller lossless bit rate than the proposed method. As shown in the graphs, after a certain

stage when the lines for the two methods intersect, the MSDC method has higher PSNR

values and the corresponding trend line terminates earlier. By studying the results for all

Delaunay meshes, we have the similar observation that the proposed method has a better

progressive performance at lower bit rates than the MSDC method, using 55% to 86% of

the bit rate of that needed by the MSDC method to obtain similar-quality image approxi-

mations (with the PSNR value being 75% of the maximum PSNR obtained for the lossless

reconstruction). At higher bit rates, both methods can generate image approximations with

sufficiently high PSNR values, although the PSNR values of the MSDC method are higher

than those of the proposed method.
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Figure 4.2: Comparison of the progressive performance with the MSDCmethod for individual
meshes (a) B4, (b) L1, (c) L4, and (d) P4.
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In our experiments, PSNR was found to correlate reasonably well with image quality as

perceived by the human visual system. To demonstrate this, we now provide some examples

of reconstructed images obtained with the methods under consideration. First, we study the

quality of the reconstructed images at lower bit rates. We choose two representative test

cases, B4 and L4, which are generated from the images bull and lena, respectively. Using

each of the proposed and MSDC methods, each of the two meshes is losslessly coded once,

and then decoded at a lossy bit rate. Then the decoded datasets are interpolated to produce

the lattice-sampled images. For mesh B4 and L4, we choose the lossy bit rates as 17000

bytes and 10000 bytes, respectively. The reconstructed lattice-sampled images are shown in

Figures 4.3 and 4.4. Examining the two images in Figure 4.3, it is clear that the proposed

method can recover a reasonably good-quality image reconstruction (i.e., Figure 4.3(b)),

while the MSDC method cannot (i.e., Figure 4.3(a)). We compute the PSNR of the two

images relative to the original bull image, and the two values are 23.07 dB and 29.34 dB,

for Figures 4.3(a) and (b), respectively. As we can see, the PSNR correlates reasonably well

with the subjective quality. The similar phenomenon can also be observed in Figure 4.4.

The PSNR values of these two images, Figures 4.4(a) and (b), are also computed relative to

the original image lena. We obtain the two values as 21.97 dB and 26.94 dB. The image

reconstruction generated by the proposed method in Figure 4.4(b) is reasonably good, while

the one generated by the MSDC method in Figure 4.4(a) is not acceptable in most practical

applications.

Next, we consider the quality of reconstructed images at higher bit rates. The same two

meshes, B4 and L4, are decoded at a higher lossy bit rate after being losslessly encoded. For

mesh B4 and L4, we choose the lossy bit rates as 45000 bytes and 17000 bytes, respectively.

The reconstructed lattice-sampled images are shown in Figures 4.5 and 4.6. The PSNR values

of the reconstructed images relative to the corresponding original images are computed as

47.99 dB, 41.08 dB, 34.68 dB, and 32.06 dB, for Figures 4.5(a), 4.5(b), 4.6(a), and 4.6(b),

respectively. From the PSNR values, the image quality in Figure 4.5(a) should be better

than Figure 4.5(b), and Figure 4.6(a) should be better that Figure 4.6(b). Examining the

images in these two figures, however, we can barely see the difference in quality. The reason

is, at higher bit rates, the image reconstructions already close to visually lossless. Therefore,

the differences in quality between different images are difficult to recognize.

From the above, we conclude that the proposed method outperforms the MSDC method

in terms of progressive performance. At lower bit rates, the proposed method can generate

acceptable-quality image approximations with higher PSNR values, while the results from

the MSDC method are not practically useful. At higher bit rates, although the MSDC

method may obtain image approximations with higher PSNR values, the qualities of both
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(a)

(b)

Figure 4.3: Reconstructed images obtained when 17000 bytes are decoded for mesh B4 using
(a) the MSDC method (23.07 dB) and (b) the proposed method (29.34 dB).
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(a)

(b)

Figure 4.4: Reconstructed images obtained when 10000 bytes are decoded for mesh L4 using
(a) the MSDC method (21.97 dB) and (b) the proposed method (26.94 dB).
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(a)

(b)

Figure 4.5: Reconstructed images obtained when 45000 bytes are decoded for mesh B4 using
(a) the MSDC method (47.99 dB) and (b) the proposed method (41.08 dB).
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(a)

(b)

Figure 4.6: Reconstructed images obtained when 17000 bytes are decoded for mesh L4 using
(a) the MSDC method (34.68 dB) and (b) the proposed method (32.06 dB).
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Figure 4.7: Triangulation of a mesh model of an image with an arbitrary convex domain.

results are sufficiently high that the difference in quality cannot be seen by the human visual

system. Moreover, the proposed method can handle meshes with arbitrary connectivity,

while the MSDC method cannot.

4.4 An Extended Application in Image Processing

In passing, we note that one advantage of using mesh models for images is that such models

can directly represent images defined on arbitrary convex domains (as opposed to domains

that are required to be isorectangles). Because of this, the proposed method can be used

to code such images. For illustrative purposes, we now provide an example to illustrate this

use of the proposed coder.

We consider a 2.5-D mesh model of part of the famous lena image with an arbitrary

convex domain. The triangulation of the image domain is shown in Figure 4.7. The mesh is

losslessly coded once, and then decoded at many intermediate rates. Four image approxima-

tions are generated from the decoded meshes at different intermediate rates and illustrated

in Figure 4.8. From the subjective viewpoint, the qualities of the reconstructed images in

Figures 4.8(a), (b), and (c) are incrementally better. The image shown in Figure 4.8(d) is

the lossless reconstruction. This example demonstrates that the proposed method is effective

for coding images defined on arbitrary convex domains.
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(a) (b)

(c) (d)

Figure 4.8: Reconstructed image approximations obtained when (a) 500 bytes, (b) 1000
bytes, and (c) 1500 bytes are decoded, and (d) the lossless decoded image approximation
when all 1598 bytes are decoded.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, a new progressive lossy-to-lossless coding framework was proposed for 2.5-

D triangle meshes with arbitrary connectivity. The proposed framework has several free

parameters and many variations were tried for each parameter in order to find an effective

choice for good coding performance. After extensive experimentation, we recommended a

particular set of choices for these parameters, leading to the specific mesh-coding method

proposed herein.

Through experimental results, the proposed method was shown to be significantly better

than the general-purpose compression method Gzip with the lossless bit rate of the proposed

method being 5 to 6 times lower than that of Gzip. The proposed method also outperforms

the Edgebreaker method, needing 8.1% less bits on average for lossless coding if the mesh con-

nectivity does not deviate too far from the PDDT (i.e., the edge-flipping distance is less than

37.38%). Moreover, unlike Gzip and Edgebreaker, the proposed method provides progressive

coding functionality. For progressive performance, the proposed method was compared with

the MSDC scheme for meshes with Delaunay connectivity. From the experimental results,

the proposed method was shown to outperform the MSDC method at lower bit rates by

generating image approximations of much better quality, both in terms of the PSNR values

and the subjective image quality. In particular, to achieve similar image quality (i.e., with

a PSNR value being 75% of the maximum PSNR obtained for the lossless reconstruction),

the proposed method needs 55% to 86% of the bit rate of that used by the MSDC method.

At higher bit rates, although the images reconstructed by the MSDC method have higher

PSNR, the difference in image quality obtained with the two methods is indistinguishable

to the human visual system.

Besides achieving good performance, our work also makes contributions by solving the



96

two problems, combinatorial-blowup and extra-face, in the PK method, as described in

Section 3.4.3 (on page 42) and Section 3.8 (on page 79), respectively. The first problem

is addressed in the proposed framework by a divide-and-conquer approach. The proposed

framework also avoids the second problem by generating linear-interpolated faces on the

2.5-D meshes implicitly using the constrained Delaunay triangulation.

5.2 Future Research

Although the coding method presented in this thesis has achieved fairly good performance,

some aspects of this work are still worth exploring further. In what follows, we will briefly

describe these areas.

When presenting the geometry coding in Section 3.4.3 (on page 37), we mentioned that

after encoding the number T of nonempty subcells, the configuration specifying which T of

the M subcells are nonempty is coded next. If the symbol representing the configuration is

not binary, we need to employ a binarization scheme first to transform this symbol into a

binary sequence and then code the resulting binary symbols in bypass mode, which is not

an efficient coding method. Coding this configuration happens frequently during the entire

coding procedure. So, if the efficiency of coding one configuration is increased slightly, the

total coding efficiency may have a noticeable improvement. The above facts motivate us to

consider a better way for coding the nonempty subcell configuration. Recall that the coding

method of pivot-vertex tuple is efficient. If a similar efficient priority scheme is employed

first to make the distribution of the encoded indices of the configurations more skewed, the

coding efficiency may be increased with an adaptive arithmetic coder.

Another potential improvement is in the DC coding procedure. As stated before in

Section 3.4.4 (on page 46), each DC is a (ρ+ 1)-bit signed integer, and the sign bit is

coded in bypass mode. If some effective sign prediction scheme could be devised, the coding

efficiency could be improved.
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Appendix A

Software User Manual

A.1 Introduction

As part of this work, a software implementation of the coding method proposed herein was

developed. The software was written in C++ and consists of about 11000 lines of code.

The libraries utilized in this software include the Boost Library [1], the Computational

Geometry Algorithm Library (CGAL) [2], the Signal Processing Library (SPL) [5], and the

SPL Extensions Library (SPLEL).

Generally speaking, the software consists of two programs: 1), the encoder program,

which performs encoding, and 2) the decoder program, which performs decoding. The

encoder program reads a mesh from standard input in OFF format [4], encodes the mesh,

and writes the coded bitstream to standard output. There are several options for encoder

program that can be provided by the user to specify the parameters controlling the encoding

procedure. The decoder program reads the coded bitstream from standard input, decodes

the mesh, and writes the reconstructed mesh to standard output in OFF format.

The remainder of this appendix provides details on how to build and use the software.

Several specific examples illustrating software usage are provided.

A.2 Build the Software

To build the software, the Make tool is utilized. Since the program utilizes several features

from C++11/14, the compiler needs to be compatible with C++11/14. Hence, we choose GCC

6.1.0 as the compiler. As mentioned earlier, our software also utilizes the libraries such as

CGAL, SPL, SPLEL, and Boost. Before building the software, users need to ensure that

these libraries are installed. The versions of these libraries that were used for development
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were:

• CGAL 3.8.2,

• SPL 1.1.24,

• SPLEL 1.1.26, and

• Boost-1.53.0.

In order to compile all of the source files and link the object files, one should set the directory

to the top-level directory for the software. Then, to delete all the object files and executable

files that were generated during the previous building process, run the command:

make clean

To compile all the source files and link the object files, run the command:

make

A.3 Detailed Program Descriptions

As mentioned earlier, the software consists of two programs, the encoder and decoder

programs. In what follows, we provide detailed descriptions of these two programs and how

to use them.

A.3.1 encoder

SYNOPSIS

encoder [OPTIONS]

DESCRIPTION

This program reads a mesh from standard input in OFF format, encodes the mesh and

writes the coded bitstream to standard output.

OPTIONS

The following options are supported:
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-h Prints the information of encoder usage.

-p $padding mode Sets the padding mode to $padding mode. There are t-

wo allowable values for the $padding mode parameter:

none and power2. The value none means unpadded

mode; the value power2 means padded mode. The de-

fault value is power2.

-l $thresholdRDC Sets the threshold value for the RDC queue to

$thresholdRDC. The default value is 128.

-Z $initialDC Sets the number of times the DC coding procedure is

invoked for each DC in the CI queue as $initialDC.

The default value is 3.

-z $remainDC Sets the number of times for DC coding procedure is

invoked for each DC in the RDC queue as $remainDC.

The default value is 1.

-v $valenceMax Sets the threshold value for valence during the vertex s-

plit to $valenceMax to avoid the combinatorial blowup.

The default value is 12.

-r $resultsFile Specifies the result file to be $resultsFile. This is a

file to which to print all the necessary result informa-

tion.

The program exits with status 0 if the software finishes normally, 1 if the software fails,

and 2 if the options provided by the user are invalid. The result file has the following

information in order:

• the number of vertices in the mesh

• the number of edges in the mesh

• the number of faces in the mesh

• the total number of bits of coded data (header + geometry + connectivity + function

value)

• the total number of bits of coded geometry data and function values

• the total number of bits of coded connectivity data

• the time in seconds needed for encoding

• the maximum amount of memory used by the encoding program
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For example, one basic way of using the encoder program with all default settings is as

follows:

encoder < mesh.off > mesh.coded

The file mesh.coded will contain all the coded information.

A.3.2 decoder

SYNOPSIS

decoder [OPTIONS]

DESCRIPTION

This program reads a coded mesh from standard input and writes the decoded mesh to

standard output in OFF format. The decoding process can be truncated to allow progressive

decoding.

OPTIONS

The following options are supported:

-h Prints out the information of decoder usage.

-m $totalByte Sets the approximate number of bytes that will be de-

coded to $totalByte. Due to the manner of imple-

mentation, the actual number of bytes decoded may be

slightly larger than $totalByte. By default the value

is −1, which means the decoder will decode all bytes

from the input file.

-r $resultsFile Specifies the result file to be $resultsFile. This is a

file to which to print all the necessary result informa-

tion.

-a Enable the automatic progressive decoding procedure.

-i $interval Indicates meshes will be generated automatically each

time when $interval extra number of bytes are decod-

ed progressively until all information has been decoded.

The first reconstructed mesh will be output when 100

bytes have been decoded. Other meshes will be output

every time when $interval extra bytes being decoded.

The default value for $interval is 100.

The program exits with status 0 if the software finishes normally, 1 if the software fails,

and 2 if the options provided by the user are invalid. The result file has the following
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information in order:

• the number of vertices in decoded mesh

• the number of edges in decoded mesh

• the number of faces in decoded mesh

• the time in seconds needed for decoding

• the maximum amount of memory used by the decoding program

The -a and -i options are provided for automatic progressive decoding purpose. The basic

usage of the decoding program decoder for lossless decoding is as follows:

decoder < mesh.coded > recovered.off

The mesh is losslessly reconstructed and stored in the file recovered.off.

A.4 Examples of Software Usage

A few examples are provided in what follows to illustrate how to use the software with

different options.

Example 1A. Suppose that we would like to encode the mesh in the file mesh.off to

the file mesh.coded with the following requirements:

• Use the original unpadded root cell to start, even if the image domain does not have

square power-of-two dimensions.

• For the nodes with detail coefficients processed from the CI queue, invoke two DC

coding procedures for each DC generated during the CP coding procedure.

• When the nodes are processed from the RDC queue, invoke one DC coding procedure

for each node to handle its DC.

• The threshold value for the valence is set to 10.

The above can be accomplished with the following command:

encoder -p none -Z 2 -z 1 -v 10 < mesh.off > mesh.coded

Example 1B. Suppose that we would like to encode the mesh in the file mesh.off to

the file mesh.coded with the following requirements:

• Use the root cell as a padded rectangle with square power-of-two dimensions.
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• Invoke four DC coding procedures for each node with a DC generated during the CP

coding procedure in the CI queue.

• Invoke two DC coding procedures for each node handled from the RDC queue.

• The threshold value for the valence is set to 11.

The above can be accomplished with the following command:

encoder -Z 4 -z 2 -v 11 < mesh.off > mesh.coded

Example 2A. Suppose that we have a file mesh.coded containing encoded information,

and we would like to decode the mesh in a lossless manner to the file recover.off, with the

result file decoded info.txt. The above can be accomplished with the following command:

decoder -r decoded_info.txt < mesh.coded > recover.off

Example 2B. Suppose that we have a file mesh.coded containing encoded information,

and we would like to decode approximately 2000 bytes from mesh.coded and write the

intermediate mesh to the file recMesh 2000.off. The above can be accomplished with the

following command:

decoder -m 2000 < mesh.coded > recMesh_2000.off

Example 3. Suppose that we have a file mesh.coded containing encoded information

and the size of this file is 10000 bytes. We would like to generate intermediate meshes

whenever approximately 1000 extra bytes have been decoded during the entire decoding

procedure, and write the lossless decoded mesh to the file recovered.off. The above can

be accomplished with the following command:

decoder -a -i 1000 < mesh.coded > recovered.off

After the program terminates normally, ten intermediate meshes are generated during this

procedure, namely, recMesh 100.off, recMesh 1100.off, . . . , recMesh 9100.off, and the

lossless reconstructed mesh is stored in recovered.off.
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