A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity

Dan Han

University of Victoria

October 31, 2016

Outline

1 Introduction and Background

- 2.5-D Triangle Mesh
- Mesh Coding
- Vertex Split

2 Proposed Mesh-Coding Framework

- Mesh and Cbp-Tree
- Encoding Procedure
- Decoding Procedure

3 Evaluation

- Test Data
- Evaluation of Proposed Method

4 Conclusion

э

2.5-D Triangle Mesh

2.5-D Triangle Mesh

- one representation of bivariate functions $z = \phi(x, y)$
- compare with 3-D mesh, more restriction on data
- sample points triangulated, the domain partitioned into nonoverlapping triangle faces
- information in the mesh:
 - a set *P* of sample points (geometry information)
 - triangulation on the points (connectivity information)
 - a set $Z = \{z_i\}_{i=0}^{|P|-1}$ of function values where $z_i = \phi(p_i)$ (i.e., function value information)
- usually large, need to be compressed

(a) 2.5-D mesh.

3-D mesh.

Mesh Coding

lossy vs. lossless coding method

- lossy: permanently discard certain information, size reduced for storage, handling, and transmission
- Iossless: decompressed mesh identical with original mesh
- progressive coding method
 - transmit complex meshes over network with limited bandwidth
 - applications requiring real-time interaction
 - meaningfully decode partial bitstream
- motivation
 - less methods are about coding 2.5-D meshes, even less for progressive coding
 - many 2.5-D mesh coding methods only handle geometry and function value information
 - our interest: progressive lossy-to-lossless coding method for 2.5-D mesh with arbitrary connectivity (PK and ADIT methods)

Vertex Split

- an operation on triangulation
- increase the number of vertices by one

- connectivity changes
 - updates on the original neighbors, pivots and nonpivots
 - connectivity of new vertices

э

Main idea

- focus on encoder procedure
- use data structure: cell bi-partitioning tree (cbp-tree)
- store the mesh information in the tree nodes
 - geometry
 - connectivity
 - function value
- code information in the tree nodes using a top-down traversal

3

< ∃ >

Mesh and Cbp-Tree

Mesh and Cbp-Tree I

- recursive cell bi-partitioning
- each node corresponds to one nonempty cell $[x_1, x_2) imes [y_1, y_2)$
- leaf node: unit cell, one-on-one correspondence with the original sample point
- store function values and connectivity into leaf nodes
- propagate information stored in leaf nodes upwards

Mesh and Cbp-Tree

Mesh and Cbp-Tree II

- each node:
 - a cell
 - a representation vertex
 - one approximation coefficient
 - zero or one detail coefficient
- leaf node
- nonleaf node
 - has two child nodes
 - has one child node
- connectivity of nonleaf nodes

(日) (同) (三) (三)

э

Another Perspective of Cbp-Tree

- collapse two levels of cbp-tree cell-partitioning (CCP) into one level
- quadtree cell partitioning (QCP)
- first along x, then along y-axis

Figure: Previous cbp-tree with the dashed lines grouping the CCPs into QCPs

Figure: quadtree-view with the QCP operations

< D > < A >

글 > - < 글 >

э

Encoding Procedure

Encoding Geometry Information

- quad-tree view, richer geometry information
- *M* maximum nonempty cells
- \blacksquare T actual nonempty cells
- information to be coded
 - number T of nonempty child cells
 - \blacksquare which T of M are nonempty

Figure: quadtree-view

Encoding Procedure

Encoding Connectivity Information

- cbp-tree view
- if a node has two child nodes, vertex split
- connectivity changes when a vertex v is split into two new vertices v_1 and v_2
- v has M neighbors: $\{N_1, N_2, \ldots, N_M\}$.
- information to be coded
 - number P of pivots, and which P of M neighbors are pivots
 - how the nonpivots connect to v_1 or v_2
 - how v_1 and v_2 connect to each other

Encoding Procedure

Encoding Function Value Information

Information to be coded

- only code approximation coefficient for root node
- for each node, code detail coefficient if there is any
- function value, *n*-bit unsigned integer
- \blacksquare detail coefficient, (n+1)-bit signed integer
- code starting from most significant magnitude bit
- sign bit after the first nonzero magnitude bit

Sign bit

$$\downarrow \qquad \downarrow$$

 $0/1 \qquad bn-1...b2b1b0$

Decoding Procedure

Decoding Procedure

- almost a mirror of the encoding
- start from one single root node
- build the tree progressively based on the received information
- when the decoding is terminated:
 - current leaf nodes are represented as vertices located at the centroids of the cells
 - edges are generated based on the connectivity relation between the leaf nodes

э

New	Mesh-Coding	Method
Ē	Evaluation	

- Test Data

Test Data

- most interested in using the meshes to model images
- 64 mesh models of images studied
- measure mesh quality by measuring reconstructed image using PSNR
- meshes grouped into three categories
 A, B, and C based on the connectivity information
 - A: Delaunay connectivity
 - B: non-Delaunay connectivity with good quality
 - C: non-Delaunay connectivity with bad quality

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. Gzip

Gzip is a general-purpose compression method

	Original Mean Rate	Mean Rate (bits/vertex)		Gzip/Proposed	
Category	(bits/vertex)	Gzip	Proposed	Ratio	
A	349.64	119.52	19.07	6.27	
В	351.77	144.32	23.47	6.15	
C	348.52	136.27	31.82	4.28	
Overall	350.30	140.30	23.72	5.92	

Table: Overall average results for all meshes in three categories

- the proposed method: 23.72 bits per vertex (bpv)
- Gzip method: 140.30 bpv
- the proposed method is roughly **5.92** times better than Gzip.
- Gzip cannot perform progressive coding

⊸ ≣ ▶

New Mesh-Coding Method

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. Edgebreaker-Based Method I

- Edgebreaker is a 3-D mesh coding method
- lossless coding performance is related to mesh connectivity

Edge-flipping	Mean Rate (bits/vertex)				
Distance Range	Edgebreaker	Proposed			
0	20.51	19.05			
(0, 37.38%]	21.88	20.87			
(37.38%, 80%)	22.67	23.29			
> 80%	28.96	31.83			

- edge-flipping distance: percentage of edges to be flipped
- average lossless coding rate
 - Delaunay: proposed is better, 7.7% less bit rate
 - (0, 37.38%]: proposed is better, 4.8% less bit rate
 - (37.38%, 80%]: Edgebreaker is better, 2.7% less bit rate
 - \blacksquare > 80%: Edgebreaker is better, 9.9% less bit rate

New Mesh-Coding Method

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. Edgebreaker-Based Method II

Edgebreaker cannot progressive coding

문 🛌 문

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. MSDC Method I

- the MSDC method:
 - 2.5-D mesh coding method
 - only codes geometry information and function value information
 - assumes Delaunay connectivity
 - has lower lossless coding bit rate

Figure: Comparison of progressive coding performance

글 🖒 🖂 글

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. MSDC Method II

Iow bit rate:

Figure: 29.34 dB vs. 23.07 dB

Image: Image:

э

< ≣ ▶

- Evaluation

Evaluation of Proposed Method

Proposed Method vs. MSDC Method III

high bit rate:

Figure: 41.08 dB vs. 47.99 dB

overall: 75% maximum PSNR, proposed method uses less bit rate, 55% to 86% of the bit rate used by the MSDC

э

< ∃ >

Conclusion

- proposed new progressive lossy-to-lossless coding framework for 2.5-D triangle meshes with arbitrary connectivity
- performance of the proposed method:
 - outperforms Gzip, 5.92 times better on average
 - outperforms the Edgebreaker-base method, when meshes not deviated too far from Delaunay triangulation (37.38%)
 - Gzip and Edgebreaker cannot progressive coding
- outperforms the MSDC method for progressive coding performance, using 55% to 86% bit rate to achieve 75% maximum PSNR

THANK YOU! Q&A

æ

《口》《聞》《臣》《臣》

References:

- M. D. Adams, An efficient progressive coding method for arbitrarily-sampled image data, IEEE Signal Processing Letters, Vol. 15, pp. 629632, 2008.
- [2] M. D. Adams, Progressive lossy-to-lossless coding of arbitrarily-sampled image data using the modified scattered data coding method, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 10171020, 2009.
- [3] M. D. Adams, An improved progressive lossy-to-lossless coding method for arbitrarily-sampled image data, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 7983, 2013.
- [4] J. Peng and C.-C. J. Kuo, Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition, In ACM Transactions on Graphics, Vol: 24, pp. 609616, 2005.
- [5] L. Demaret and A. Iske, Scattered data coding in digital image compression, Curve and Surface Fitting: Saint-Malo, Vol:2003, pp: 107-117, 2002.
- [6] Y. Tang, Edgebreaker-based triangle mesh-coding method, 2016.

Triangulation I

A **triangulation** of a finite set P of points in \mathbb{R}^2 is a set T of (non-degenerate) open triangles such that:

- **1** the set of all the vertices of triangles in T is P;
- **2** the interiors of any two triangles in T are disjoint;
- **3** the union of all triangles in T is the convex hull of P; and
- 4 every edge of a triangle in T only contains two points from P.

Figure: Triangulation examples. (a) A set P of points, (b) a triangulation of P, and (c) another triangulation of P.

Triangulation II

- one basic operation on a triangulation is an edge flip
- edge e is called flippable if e has two incident faces and the union of these two faces is a strictly convex quadrilateral Q.

• for the same set P of points, one triangulation T can always be transformed into another triangulation T' with a finite sequence of edge flips

Delaunay Triangulation

 \blacksquare no point in P is strictly inside the circumcircle of any triangle in T.

not guaranteed to be unique, only guaranteed to be unique if no four points in P are co-circular.

Constrained Delaunay Triangulation I

- a triangulation with constrained edges is called a constrained triangulation
- planar straight line graph(PSLG):
 - a PSLG (P, E) is a collection of a set P of points in \mathbb{R}^2 and a set E of line segments such that:
 - **1** the endpoints of each segment of E must be in P; and
 - 2 any two segments of E must be disjoint or intersect at most at a common endpoint

Constrained Delaunay Triangulation II

- visibility: two points A and B are visible to each other in the PSLG (P, E), if and only if segment AB does not intersect the interior of any constrained edges in E
- constrained Delaunay triangulation:
 - given a PSLG (P,E), a triangulation T of P is said to be constrained
 Delaunay if each triangle t in T is such that: 1) the interior of t
 does not intersect any constrained edges in E; and 2) no vertex
 inside the circumcircle of t is visible from the interior of t.

Cbp-Tree

- based on spatial partitioning
- initial cell: root cell
 - contains all the sample points
- recursively bi-partitioning along x and v-axes
 - empty cell, no sample points
 - degenerate cell, zero area
- until nonempty cell contains only one sample point

root node each node, nonempty cell イロト イポト イヨト イヨト

э

2.5-D Mesh Model I

- 2.5-D meshes can be used to represent many types of data
- most interested in using the meshes to model images
- measure the difference between two meshes by comparing vertices is tricky to do
- instead measure the difference between the image reconstructions produced by the meshes
- generate a function $\tilde{\phi}$ defined on the entire domain D (and not just at lattice points in S), the function values Z are used in conjunction with linear interpolation.

2.5-D Mesh Model II

- function values in the original image are integers
- ${\scriptstyle \blacksquare}$ image approximation function $\hat{\phi}$ also need to be integer-valued
- rounding the non-integer function values of $\tilde{\phi}$ to the nearest integers: $\hat{\phi} = \operatorname{round} \left(\tilde{\phi} \right)$.
- standard rasterization techniques
- mean squared error(MSE)

• MSE =
$$|P|^{-1} \sum_{p \in P} \left(\phi(p) - \hat{\phi}(p) \right)^2$$

peak signal-to-noise ratio (PSNR)

•
$$\mathsf{PSNR} = 20 \log_{10} \frac{(2^{\rho} - 1)}{\sqrt{\mathsf{MSE}}}$$

smaller MSE, higher PSNR, better quality of reconstructed image

Go back

Test Data Example

	Mesh Information		Statistics about Valence							
Nickname	#Vertices	#Edges	#Faces	Max.	Min.	Median	Mean	Width×Height	ρ	Distance †
B3	15728	47042	31315	13	2	6	5.98194	1024×768	8	0
L1	1310	3880	2571	11	2	6	5.92366	512×512	8	0
P4	10485	31322	20838	11	3	6	5.97463	512×512	8	0
A2	14794	44311	29518	27	3	6	5.9904	1238×1195	8	39.55%
B5	3932	11757	7826	21	3	6	5.98016	1024×768	8	49.86%
CR2	35717	106893	71177	22	3	6	5.98555	1744×2048	10	33.73%
CT3	5242	15703	10462	29	2	6	5.99122	512×512	12	40.01%
Q4	38400	115193	76794	141	3	6	5.99964	1200×1600	8	41.53%
L9	1310	3919	2610	395	3	5	5.98321	512×512	8	145.65%
M7	14550	43580	29031	638	3	4	5.99038	1912×761	8	155.22%

- nickname of the mesh for convenience
- number of vertices, edges, and faces in the mesh
- statistics of valences in the original mesh: maximum, minimum, average, and median value of valences
- bounding box of conv(P): width, height
- number of bits to represent function values
- edge-flipping distance between the current mesh connectivity and (preferred-direction) Delaunay triangulation

Go back

Vertex Split Cont'd

Connectivity Change

- Updates on the original 1-ring neighbors $\{N_i\}$:
 - connect to v_1 or v_2 (nonpivot); or
 - connect to both v_1 and v_2 . (pivot)
- Connectivity of two new vertices: v_1 and v_2 connected or not.

Sometimes cause invalidate triangulation

Figure: An example of vertex split leading to invalid triangulation.

э

< ∃ >

Encoding Procedure Overview

- top-down traversal
- geometry information
 - consider QCP operation, provide richer information
 - \blacksquare how many nonempty cells T
 - which of them are nonempty
- connectivity information
 - $\max(T-1,0)$ vertex splits
 - how original neighbors connect to v₁ and v₂
 - how v_1 and v_2 connect to each other
- function value information
 - approximation coefficient of root node a_r
 - detail coefficient of each non-root node, if any

binarization of a hexary symbol

- \blacksquare has six possible values, e.g., $\{0,1,\ldots,5\}$
- binarization scheme for a hexary symbol:
 - code $b_1 = \lfloor n/3 \rfloor$ in bypass mode
 - code a ternary symbol $b_2 = mod(n, 3)$.
- binarization scheme for a ternary symbol:
 - code $b_1 = \lfloor n/2 \rfloor$, using the context c_{third}
 - if $b_1 = 0$, code another symbol $b_2 = mod(n, 2)$ in bypass mode

Go back

- *n*-bit unsigned integer, $v = \sum_{i=0}^{n-1} b_i 2^i$
- **UI-binarization** scheme UI(n, f), proposed in IT-method
- \blacksquare single parameter $f,\ f\in [1,n]$
- binarization steps:
 - **1** code the kth bit b_k using context c, where

$$c = \begin{cases} 2^{f-1} - 1 + \sum_{i \in [k+1,f]} (2b_i - 1)2^{i-1}, & k \in [0, f-1), \\ 2^f - f + k - 1, & k \in [f, n-1]. \end{cases}$$

2 if $b_k = 1$ and $k \ge f$, the remaining bits $\{b_i\}_{i \in [0,k)}$ will be coded in bypass mode and the loop will be terminated earlier

- \blacksquare each symbol in the range $\left[0,2^{f}\right)$ are assigned a distinct probability
- others (if any) are partitioned into the ranges $[2^i, 2^{i+1})$ for $i \in [f, n)$, equal probable
- if f = n, each symbol is coded using a distinct probability
- \blacksquare $\mathbf{SI}(n,f)\text{-binarization}$ works similar, extra sign bit coded in bypass mode

Go back

イロト イポト イヨト イヨト 二日

root cell

Two schemes are provided for selecting the root cell:

- **1** Unpadded scheme: smallest isorectangle containing $\operatorname{conv}(P)$
- 2 Padded scheme: smallest isorectangle containing conv(P) that also has dimensions that are equal and integer powers of two.

gray area is $\operatorname{conv}(P)$

- the dashed line (A) represents the unpadded root cell with the size $m \times n$
- line (B) represents the padded root cell with the size *M* × *M* and contains (A)
- M is the smallest integer power-of-two that is no smaller than m or n

Mesh and Cbp-tree Cont'd

- leaf nodes: have one-on-one correspondence with the original sample points
- unit cell, function values, connectivity
- propagate upwards

Store Mesh Info into Tree Nodes

- geometry information
 - location of sample points
- function values
 - approximation Coefficients
 - detail Coefficients
 - AD transform
- connectivity information.

Average-Difference(AD) transform

$$y_0 = \left\lfloor \frac{1}{2} \left(x_0 + x_1 \right) \right\rfloor$$
$$y_1 = x_1 - x_0$$

reverse operation

$$x_0 = y_0 - \left\lfloor \frac{1}{2}y_1 \right\rfloor$$
$$x_1 = y_1 + x_0$$

э

Generate the cbp-tree

- each node in the tree associates with a nonempty cell
- $\blacksquare \ {\rm root} \ {\rm cell} \to {\rm root} \ {\rm node}$

Figure: A cbp-tree structure

3 N 3

quadtree cell partitioning

• maximum number M of nonempty cells, M = 2 or M = 4

Go back

æ

-∢ ≣ ▶

encoding of T value

• $T \in \{1, 2, \dots, M\}$, M is the maximum number of nonempty cells

(a) Same valence (i.e., 6) with different levels.

(b) Same level (i.e., 9) with different valences.

Figure: Distributions of T under different valences and levels.

arithmetic coding conditioned on level (QP-level) and valence

decrease of coding bit rate by 61.9%

New Mesh-Coding Method

encoding of T-tuple

- $\binom{M}{T}$ possible configurations
- $\blacksquare \text{ if } M=2$
 - if T = 1, two possible configurations, 1 binary symbol
 - if T = 2, one possible configuration
- $\blacksquare \ \text{if} \ M=4$
 - if T = 1 or T = 3, 4 possible configurations, two binary symbols
 - if *T* = 2, six possible configurations, one hexary symbol binarization of hexary symbol
 - if T = 4, one possible configuration

듣▶ ★ 듣▶ ...

3

Encoding Connectivity Information

- \blacksquare assume T nonempty cells after QCP
- $\max\{T-1,0\}$ vertex splits
- connectivity changes when a vertex v is split into two new vertices v₁ and v₂
- v has 1-ring neighbors: $\{N_1, N_2, \dots, N_M\}.$
- information need to code
 - number P pivots, and which P of M neighbors are pivots
 - how the nonpivots connect to v_1 or v_2
 - how v₁ and v₂ connect to each other (one bit)

encoding of P value

- $\blacksquare \ P$ related to M
- \blacksquare distribution of P

coding bit rate decreased by 74.3% on average

Figure: Distributions of P when (a) M = 7 and (b) M = 8.

encoding of P-tuple I

- total number of different configurations is $\binom{M}{P}$
- each P-tuple is assigned an index *i*, so $i \in \{0, 1, 2, \dots, \binom{M}{P} 1\}$

encode the index of pivot-vertex-tuple

For each neighbor N_i , the possibility to be a pivot is determined by the formula

encoding of P-tuple II

with priority scheme, decreased by 53.10% compared with bypass, decreased by 2.0% compared with no-priority

Go back

э

▶ < ≣ ▶

encoding nonpivots I

partitioning rules

- partition first into different segments
 - \blacksquare each nonpivot connects to more than two other vertices in N_i forms a segment by itself; and
 - other nonpivots are partitioned into maximum-connected segments.

encoding nonpivots II

For each segmentation:

- one bit indicate whether connect to the same one of v_1 or v_2 . If not, treat as separate segments. (around 0.03 bpv)
- estimate which of the segment connects to, one bit to indicate whether the estimation is accurate or not (around 2.38 bpv, decreased by 44% compared with bypass)

Go back

potential problem in decoding

invalid triangulation connectivity caused by vertex split

Solution

- use constrained Delaunay triangulation
- previous-inserted edge removed if new-inserted edge intersects with it.

э

Time Complexity

- hardware used: 13-year-old computer with a 3.16 GHz Intel Core2 Duo CPU and 4.0 GB of RAM
- average time used for meshes in different categories:
 - category A: 0.75 s
 - category B: 1.33 s
 - category C: 1.90 s
- compared with Edgebreaker: 0.16 s, 0.25 s, and 0.19s.
- more computational complex because of the progressive functionality

Go back

-∢ ≣ ▶

э