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ABSTRACT

Studied are two lifting-based families of symmetry-preserving re-
versible integer-to-integer wavelet transforms. The transforms from
both of these families are shown to be compatible with symmet-
ric extension, which permits the treatment of arbitrary length sig-
nals in a nonexpansive manner. Throughout this work, particularly
close attention is paid to rounding functions, and the properties
that they must possess in various instances. Symmetric extension
is also shown to be equivalent to constant per-lifting-step extension
in certain circumstances.

1. INTRODUCTION

Lifting-based reversible integer-to-integer wavelet transforms [1,
2] have become a popular tool in signal coding applications. In
such applications, however, it is often desirable to employ trans-
forms that preserve symmetry. For example, symmetry-preserving
transforms have the advantage of being compatible with symmet-
ric extension techniques, allowing signals of arbitrary length to be
handled in a nonexpansive manner [3]. (As a matter of terminol-
ogy, a transform is said to be nonexpansive if its application to a
signal of length

�
always yields a result that can be completely

characterized by no more than
�

transform coefficients.) Fortu-
nately, using the lifting scheme, one can construct transforms that
are not only reversible and integer to integer, but also symmetry
preserving.

In this paper, we study two families of symmetry-preserving
reversible integer-to-integer wavelet transforms. Both of these fam-
ilies of transforms are shown to be compatible with symmetric
extension, facilitating the treatment of arbitrary length signals in
a nonexpansive manner. In our treatment, we pay particularly
close attention to the rounding functions involved, emphasizing
the properties that such functions must possess in various circum-
stances. Lastly, we examine the relationship between symmetric
extension and per-lifting-step extension.

2. NOTATION AND OTHER PRELIMINARIES

Before proceeding further, a short digression concerning the nota-
tion used in this paper is appropriate. The symbols � and � denote
the sets of integer and real numbers, respectively. For ����� , the
notation ���
	 denotes the largest integer not more than � (i.e., the
floor function), and the notation ���
� denotes the smallest integer
not less than � (i.e., the ceiling function). One can show that the
floor and ceiling functions are related as follows:��
�����������
	 for all �������
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The signum, truncation, rounding-away-from-zero (RAFZ), and����� functions are defined, respectively, as� �"! �$#� %& ')( for ��*�++ for �,�-+� ( for ��.�+0/21 354 !76 �8#�:9 ���
	 for ��;<+���
� for ��.<+ /
3>=@?A �B#�:9 ���C� for �$;�+���C	 for �$.�+ / and�����)DFE / GIH #� E � G � EKJ G 	 / where �$��� and E /LG �M�N�

A rounding operator O is said to be integer-shift invariant ifO D �MP E H �QO D � H P E for all ���R� and all E �S�T�
Similarly, a rounding operator O is said to be odd ifO D � H �U�VO D ��� H for all �$�����
One can show that a rounding operator cannot be both odd and
integer-shift invariant [4]. In passing, we note that the floor and
ceiling functions are integer-shift invariant (but not odd), while
the 1 354 !I6 and 3>=@?A functions are odd (but not integer-shift invari-
ant). All rounding operators considered in this paper are tacitly
assumed to be memoryless, time invariant, and leave integer val-
ues unchanged. Any (reasonable) rounding operator will preserve
signal symmetry (but not necessarily signal antisymmetry), while
any odd rounding operator will preserve both symmetry and anti-
symmetry.

3. TRANSFORM FAMILIES

In this paper, we consider two families of symmetry-preserving
reversible integer-to-integer wavelet transforms. Both are derived
from the lifting-based parameterizations of linear-phase filter banks
presented in [5], and have the general form shown in Fig. 1. In
the figure, the W@O�XZY and W@[�X\Y are rounding operators. As we
will demonstrate, by choosing the lifting filters W@]^X\Y and W@_^X\Y
wisely, one can construct filter banks that not only yield symmet-
ric/antisymmetric subband signals (i.e., G\`"a bKc and GIdea bKc ) for an
appropriately chosen input signal (i.e., E a bKc ), but also yield in-
termediate signals (i.e., Wgf)X a b)c Y , Wgh"X a bKc Y ) that are all or mostly
symmetric/antisymmetric.

The first family of reversible integer-to-integer wavelet trans-
forms is associated with a linear-phase filter bank having odd-
length analysis/synthesis filters, and has been described in [5].
For convenience, we will refer to this as the odd-length analy-
sis/synthesis filter (OLASF) parameterization. In this case, the
lifting step filters are chosen to have transfer functions of the form:]^X Dji H �,kUlnmpoZqKr s�t>ruv ` w X@x u Dji q u P i uzy d H and (1)_^X Dji H �,k ln{|oZqKr s�t}ruv ` ~ X@x u Dji q u q d P i u Hfor ���Q+ / ( / ����� />� � ( , where the Wg��X"Y and W@��XZY are all even in-
tegers. The WgOVX\Y�� q dX v ` and Wg[�XZY�� q dX v ` are chosen to be any arbitrary
rounding operators.

The second family of reversible integer-to-integer wavelet trans-
forms is associated with a linear-phase filter bank having even-
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Fig. 1. Lifting-based realization of reversible integer-to-integer
wavelet transform. (a) Analysis filter bank and (b) synthesis filter
bank.

length analysis/synthesis filters, and has been described in [5].
For convenience, we will refer to this as the even-length analy-
sis/synthesis filter (ELASF) parameterization. In this case, the lift-
ing step filters are chosen to have transfer functions of the form:] ` Dji H �U� ( / _ ` Dji H � dr P.-_ ` Dji H}/ (2)

-_ ` Dji H � k ln{ � q d s�t>ruzv d -~ ` x u Dji q u � i u H}/] X Dji H �-k lnmpoZq d s�t>ruv d w X@x u Dji q u � i u H for �0� ( / / / ����� /5� � ( /_ X Dji H � k ln{|o"q d s�t>ruzv d ~ X@x u Dji q u � i u H for � � ( / / / �e��� />� � ( /where the Wg��X"Y and W@��XZY are all odd integers. The operator O `is simply the identity (since the output of the filter ] ` is always an
integer), and the rounding operator [ ` is chosen to be integer-shift
invariant. The rounding operators W@O X Y � q dX v d are chosen to be odd,
and the W@[�XZY � q dX v d are chosen arbitrarily.

4. TRANSFORMS AND SYMMETRIC EXTENSION

In the previous section, we introduced the OLASF and ELASF
families of reversible integer-to-integer wavelet transforms. Now,
we show that the transforms from these two families can be used
with symmetric extension in order to handle signals of arbitrary
length in a nonexpansive manner.

Consider a filter bank of the form shown in Fig. 1 that is con-
strained to be of the OLASF type. Suppose that we are given a
signal -E a bKc defined for b � + / ( / ��� � / � � ( . We then chooseE a bKc , the input to the analysis filter bank, as the following sym-
metric extension of -E a bKc :E a b)c � -E a �10 ! DF�����)D b / / � � / H}/ / � � / � �����)D b / / � � / H H�c(i.e., E a bKc is defined such that E a b)c � E a b P / � � / c and E a bKc �E a � bKc ). Evidently, E a bKc is D / � � / H -periodic and symmetric about+ and

� � ( (with additional pairs of symmetry points following
from periodicity). From the properties of downsampling, one can
show that f `\a bKc is D � � ( H -periodic and symmetric about + and

2 q dr , and h `\a bKc is D � � ( H -periodic and symmetric about � dr and2 q)rr . Consider now the first lifting step (associated with filter ] ` ).
The filter ] ` has a group delay of � dr and the rounding operatorO ` preserves symmetry, so the adder is summing two D � � ( H -periodic symmetric signals with the same symmetry centers. Thus,
the adder output, h d a bKc , is also D � � ( H -periodic and symmetric
with the same symmetry centers, namely � dr and

2 q)rr . Consider
now the second lifting step (associated with filter _ ` ). The filter_ ` has a group delay of dr and the rounding operator [ ` preserves
symmetry, so both adder inputs are D � � ( H -periodic symmetric
signals with the same symmetry centers. Therefore, the adder out-
put, f dga bKc , must also be D � � ( H -periodic and symmetric with
the same symmetry centers, namely + and

2 q dr . By repeating the
above reasoning for each of the remaining lifting steps, we have
that the Wef)X a b)c Y � q dX v ` and G\`�a bKc are all D � � ( H -periodic and sym-
metric about + and

2 q dr . Likewise, the Wgh"X a b)c Y � q dX v ` and G d a b)c are
all D � � ( H -periodic and symmetric about � dr and

2 q)rr .
By examining the form of the various signals we note that theWef X a bKc Y � q dX v ` and G ` a bKc are completely characterized by their sam-

ples at indices + / ( / ����� / � 2 q dr 	 , and the Wgh"X a b)c Y � q dX v ` and G|dea b)care completely characterized by their samples at indices + / ( / �e� � /� 2 q)rr 	 . Consequently, for even
�

, we require
2 r samples to rep-

resent each of G\`"a bKc and GIdea bKc , and for odd
�

, we need
2Ny drsamples to represent G ` a bKc and

2 q dr samples to represent G d a bKc .In either case, a total of
�

samples is required, and the resulting
transform is, therefore, nonexpansive.

Consider a filter bank of the form shown in Fig. 1 that is con-
strained to be of the ELASF type. Suppose that we are given a
signal -E a bKc defined for b � + / ( / ����� / � � ( . We then chooseE a bKc , the input to the analysis filter bank, as the following sym-
metric extension of -E a bKc :E a b)c � -E a �10 ! DF�����)D b / / � H}/ / � � ( � �����)D b / / � H H�c (3)
(i.e., E a b)c is defined such that E a b)c � E a b P / � c and E a bKc �E a � ( � bKc ). For the time being, we assume that f dga bKc is

�
-periodic

and symmetric about � dr and
2 q dr , and h d a b)c is

�
-periodic and

antisymmetric with the same symmetry points as f d a bKc . These as-
sumptions will be proven valid in Section 5. Consider now the
third lifting step (associated with filter ] d ). The filter ] d has a
group delay of 0 and the rounding operator O d preserves antisym-
metry (since it is odd, by assumption), so the adder is summing two�

-periodic antisymmetric signals with the same symmetry cen-
ters. Thus, the adder output is also

�
-periodic and antisymmetric

with the same symmetry centers. Consider the fourth lifting step
(associated with filter _ d ). The filter _ d has a group delay of 0 and
the rounding operator [ d preserves symmetry, so the adder is sum-
ming two

�
-periodic symmetric signals with the same symmetry

centers. Thus, the adder output is also
�

-periodic and symmetric
with the same symmetry centers. It is important to note that [ dneed not be odd, contrary to the suggestions of some, in the case
of similar parameterizations (e.g., [6]). By repeating the above
reasoning for each of the remaining lifting steps, we have that theWef)X a bKc Y � q dX v d and G ` a bKc are

�
-periodic and symmetric with sym-

metry centers � dr and
2 q dr , and the Wgh"X a bKc Y � q duv d and GId�a bKc are�

-periodic and antisymmetric with the same symmetry centers.
By examining the form of the various signals, we note that

the WgfKX a b)c Y � q dX v d and G"`\a b)c are completely characterized by their
samples at indices + / ( / � ��� / � 2 q dr 	 and the Wgh"X a bKc Y � q dX v d and G|dea b)care completely characterized by their samples at indices + / ( / �e� � /� 2 q)rr 	 . Consequently, for even

�
, we require

2 r samples to rep-
resent each of G\`�a bKc and G|dea b)c , and for odd

�
, we require

2Ny drsamples to represent G\`"a bKc and
2 q dr samples to represent G7d�a bKc .In either case, regardless of the parity of

�
, a total of

�
samples

is required, and the resulting transform is, therefore, nonexpansive.
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Fig. 2. Base analysis filter bank for the ELASF family of trans-
forms.
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Fig. 3. Linear version of the base analysis filter bank for the
ELASF family of transforms.

5. ELASF BASE FILTER BANK

Consider a filter bank of the form shown in Fig. 1 that is con-
strained to be of the ELASF type with � � ( . The analysis side
of such a filter bank has the form illustrated in Fig. 2. In the pre-
vious section, we made certain assumptions concerning the form
of G"`\a b)c and G|dea bKc supposing that E a bKc is generated using (3). We
will now prove our earlier assumptions to be valid.

We begin by considering a slightly different filter bank of the
form shown in Fig. 3. For this filter bank, let us denote the transfer
functions of the lowpass and highpass analysis filters as � ` Dji H and
� d Dji H , respectively. Using the noble identities, we can show that

� ` Dji H � dr Dji P ( H P Dji � ( H -_ ` Dji r H and � d Dji H � i � ( �
Due to the form of -_ ` Dji H , it follows that the filter � ` has an im-
pulse response symmetric about � dr . Clearly, the filter � d has an
impulse response that is antisymmetric about � dr . Consequently,
if E a bKc is generated using (3), we have that G ` a bKc is

�
-periodic and

symmetric about � dr and G|dga bKc is
�

-periodic and antisymmetric
about � dr .

Now, suppose that we round the lowpass subband output, so
as to obtain the system shown in Fig. 4. For any (non-pathological)
rounding function, this process will maintain signal symmetry. More-
over, if the rounding operator, [ ` , is integer-shift invariant, we can
equivalently move the rounding operator to the input side of the
adder, resulting in the system in Fig. 2. Consequently, in the case
of the system in Fig. 2, if the input E a bKc has the form of (3), GZ`\a bKcmust be

�
-periodic and symmetric about � dr and GId�a bKc must be�

-periodic and antisymmetric about � dr . This is the result that
we initially sought to prove.

As demonstrated above, the system of Fig. 4 has the symmetry-
preserving properties that we desire, regardless of whether the round-
ing operator [ ` is integer-shift invariant. If [ ` is not integer-
shift invariant, however, it is not clear that the resulting trans-
form necessarily has an inverse. In fact, one can easily prove
that some such choices of [ ` do not lead to reversible transforms
(e.g., [ ` DFE H � 1 354 !I6 E ). This said, however, at least one common
rounding operator does yield a reversible transform. In particu-
lar, if [ ` is chosen as [ ` DFE H � 3>=@?A E , the resulting transform is
reversible, an assertion that we will now prove.

Consider a network of the form shown in Fig. 5, where the
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Fig. 4. Modified base analysis filter bank for the ELASF family of
transforms.
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Fig. 5. Network consisting of a ladder step and rounding function.Wef)X a bKc Y and Weh\X a bKc Y are integer-valued sequences. Clearly, if this
network can be inverted, so can the network in Fig. 4. For conve-

nience, we define the quantities f #�-f `\a bKc , h #�Qh `\a bKc , � #�-� a bKc .The network in Fig. 5 can be inverted if we can solve for f in terms
of h and � in the equationh � 3>=g?�A D f P$� H �We now proceed to manipulate the preceding equation as follows:h � 3>=g?�A D f PB� H� 9 ��f PB�
� for f P$�$;<+��f PB�
	 for f P$�$.<+�<9 f P ���
� for f P$�$;<+f P ���
	 for f P$�$.<+|�
Solving for f in the above equation, we obtainfR�<9 h � ���
� for f P$�$;<+h � ���
	 for f P$�$.<+|� (4)

From the definition of the 3>=g?�A function, however, we know that� ��! D 3>=g?�A � H � � �"! � for all � �Q� (i.e., the 3>=@?�A function pre-
serves signedness). Consequently, we have that � �"! D f P-� H �� ��! h . Using this fact and algebraic manipulation, we can rewrite (4)
as follows: f�� 9 h �U��
� for h�;<+h �U��
	 for h�.<+� 9 ��h � �
	 for h�;<+��h � �
� for h�.<+I�
Thus, we have solved for f in terms of h and � . Consequently, we
can invert the network in Fig. 5, and, in turn, the network in Fig. 4
as well.

6. RELATIONSHIP BETWEEN SYMMETRIC
EXTENSION AND PER-LIFTING-STEP EXTENSION

Although symmetric extension is very popular, others extension
schemes also exist. For example, one common extension tech-
nique used in conjunction with lifting-based transforms is the per-
lifting-step extension method. This technique is mentioned briefly
in [7] and used in the SBTLIB [8] and JasPer [9] software. More
recently, this method has also been described in [6, 10] (under the
name of “iterated extension”).

With per-lifting-step extension, signal extension is performed
at the input to each lifting step filter rather than being performed
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Fig. 6. Structure of a lifting step in the case of per-lifting-step
extension. (a) Forward lifting step and (b) inverse lifting step.

at the input to the filter bank. That is, each lifting step on the anal-
ysis side of the filter bank has the form shown in Fig. 6(a). In the
diagram, � ` a bKc and 	 ` a bKc represent intermediate lowpass channel
signals, � d�a bKc and 	 dga bKc represent intermediate highpass channel
signals, and 
 is a rounding operator. The parameter � determines
the channel modified by the lifting step. On the synthesis side of
the filter bank, the lifting step of Fig. 6(a) has a corresponding in-
verse of the form shown in Fig. 6(b). Clearly, the same extension
values can be generated on both the analysis and synthesis sides
(since � d q � a bKc ��	 d q � a b)c ). Thus, this scheme can generate re-
versible transforms.

Consider again a system of the form shown in Fig. 1. In Sec-
tion 4, we carefully examined the symmetry properties of the sig-
nals Wgf X a bKc Y � q dX v ` , Wgh X a bKc Y � q dX v ` , G ` a bKc , and G d a b)c . In the OLASF
case, all of these signals are symmetric, while in the ELASF case,
all of these signals are symmetric/antisymmetric, except f ` a bKc andh `\a bKc . Therefore, we can equivalently define symmetric extension
in terms of per-lifting-step extension in which case the input to
each lifting step filter is extended by symmetric extension (with
the appropriate choice of symmetry type and centers).

Suppose that we have a filter bank of the form shown in Fig. 1
that is constrained to be of the OLASF type with ��X� /

and� X  /
for ��� + / ( / ����� />� � ( . In this case, we assert that sym-

metric extension is equivalent to constant per-lifting-step extension
(where the lifting step filter input is extended to the left by repeat-
ing its leftmost sample and to the right by repeating its rightmost
sample). In the case of both symmetric extension and constant
per-lifting-step extension, the signals Wef X a bKc Y � q dX v ` and G"`"a b)c are
completely characterized by their samples at indices b �-+ / ( / � ��� /� 2 q dr 	 and the signals Wgh"X a bKc Y � q dX v ` and G d a bKc are completely char-
acterized by their samples at indices b � + / ( / ����� / � 2 qKrr 	 . Fur-
thermore, both extension methods yield the same f `\a b)c and h `\a bKcfor b over their characteristic sample indices.

Consider the lifting steps involving the filters Wg_ X Y . When fil-
tering with the filter _^X , h\X y d a bKc always requires left extension by
one sample in order to obtain the value for hZX y d a � ( c . In the case of
symmetric extension, since a symmetry center of h X y dea b)c is � dr ,
the sample obtained by extension is equal to h X y dga + c . Clearly, this
is the same result obtained by constant per-lifting-step extension.
If

�
is odd, h X y dea bKc must also be right extended by one sample in

order to obtain the value for h\X y d a 2 q dr c (since one fewer sample
is associated with h\X y d a bKc than fKX y d a bKc ). In the case of symmetric
extension, the symmetry center

2 q)rr is an odd multiple of dr , so
the sample obtained by extension is equal to h\X y d a 2 q��r c . Again,
this is the same result that is obtained from constant per-lifting-
step extension. Thus, symmetric extension is equivalent to con-
stant per-lifting-step extension for the lifting steps involving the
filters Wg_^XZY .

Consider the lifting steps involving the filters W@]^X\Y . When fil-
tering with the filter ]^X , fKX a bKc only ever requires right extension
by one sample (if at all) in order to obtain the value for f X a � 2Ny dr 	 c .Suppose first that

�
is even. In the case of symmetric extension,

the symmetry center of f X a b)c at
2 q dr is an odd multiple of dr , so

the sample obtained by extension is equal to f X a 2 q)rr c . This, how-
ever, is the same result obtained by constant per-lifting-step exten-
sion. Finally, if

�
is odd, one less sample needs to be computed

for h"X a bKc than f)X a bKc , and f)X a bKc need not be extended at all. Thus,
symmetric extension is equivalent to constant per-lifting-step ex-
tension for the lifting steps involving the filters Wg]�X"Y .

Combining the above results for both sets of lifting filters, we
see that constant per-lifting-step extension is equivalent to sym-
metric extension for the specific case considered. Since constant
per-lifting-step extension is typically easier to implement than sym-
metric extension, this equivalence is potentially quite useful. For
example, both of the filter banks defined in the JPEG-2000 Part-1
standard (i.e., ISO/IEC 15444-1:2001 [2]) are of the form assumed
above. Therefore, one can exploit the equivalence between sym-
metric extension and constant per-lifting-step extension in order
to simplify JPEG-2000 codec implementations. For example, this
equivalence has been employed by the JasPer software [9] since at
least version 0.044.

7. CONCLUSIONS

Two families of symmetry-preserving reversible integer-to-integer
wavelet transforms were studied (i.e., the OLASF and ELASF
families). We showed that the transforms from both families are
compatible with symmetric extension, and can be used to handle
signals of arbitrary length in a nonexpansive manner. For OLASF
systems with length-2 lifting filters, we showed that symmetric
extension is equivalent to constant per-lifting-step extension. This
fact can be exploited in order to reduce the complexity of JPEG-
2000 Part-1 codec implementations.
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