
PROGRESSIVE LOSSY-TO-LOSSLESS CODING OF ARBITRARILY-SAMPLED IMAGE DATA USING THE MODIFIED SCATTERED DATA CODING METHOD

Michael D. Adams
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, V8W 3P6, Canada

mdadams@ece.uvic.ca

1. Introduction

TO BETTER EXPLOIT the nonstationary and geometric properties of images, many
geometric-based image coders employ arbitrary sampling (i.e., sampling at an arbitrary

subset of points from a lattice). In this context, the need to code arbitrarily-sampled image
data arises. One highly effective scheme for the coding of such data is the scattered data
coding (SDC) method proposed by Demaret and Iske [1]. Unfortunately, the SDC coder,
as originally proposed in [1], has some significant limitations. In particular, the width and
height of the image to be coded are assumed to be equal and integer powers of two, and the
precision of the image sample data is assumed to be relatively small. These assumptions
are not satisfied in many practical situations. Furthermore, the SDC coder, as originally pro-
posed, did not address the issue of progressive coding functionality. In many applications,
progressive coding functionality is beneficial or even required.

2. Objective

The goal of this work was to develop a modified version of the SDC coder that 1) removes
any restrictions on the image width/height and sample-precision; 2) offers improved cod-
ing efficiency; and 3) most importantly provides an efficient progressive lossy-to-lossless
coding capability.

3. Arbitrarily-Sampled Image Dataset

Consider a grayscale image defined on a rectangular domain D of width W and height H
(i.e., D = [0, W) × [0, H)) and having integer-valued samples in the range [0, D). For such
an image, an arbitrarily-sampled dataset is a set of sample positions {pi = (xi, yi)} and
their corresponding sample values {zi}, where pi ∈ D, zi ∈ [0, D), and xi and yi denote
the horizontal and vertical position of pi, respectively. The sample positions {pi} must be
distinct.

4. SDC Coder

The SDC coder [1] views an arbitrarily-sampled image dataset as a collection of points in
the 3-dimensional (3-D) region I = [0, W)× [0, H)× [0, D). In particular, each sample posi-
tion (xi, yi) and corresponding sample value zi is represented by a sample point (xi, yi, zi)
in I. The coding scheme employed by the SDC coder is based on an octree partitioning
of I into hyperrectangular regions called cells. As a matter of terminology, the volume of a
cell is defined as the number of lattice points (from Z3) it contains. As cell is said to be de-
generate if it has zero volume, empty if it contains no sample points, and full if the number
of contained sample points equals the cell volume. A cell with a volume of four or less is
called atomic.

To begin encoding, a header is written with W , H, and D, and the total number of sam-
ple points. Then, the root cell I is recursively split to produce the remainder of the code
stream. The cell splitting process works as shown in Fig. 1. A cell C is split first in the
x direction yielding two cells (i.e., {C ′i}

1
i=0), then in the y direction yielding four cells (i.e.,

{C ′′i }
3
i=0), and finally in the z direction yielding eight cells (i.e., {Ci}7i=0). As each of the cells

C, C
′

0, C
′

1, C
′′

0, C
′′

1, C
′′

2, C
′′

3 is split, the number of sample points contained in one of the two
resulting cells is coded. For each child cell Q in {Ci}7i=0, if Q is empty or full, we do nothing;
otherwise, we proceed as follows. If Q is atomic, the configuration of the sample points
within Q is directly coded. Otherwise, Q is recursively split.

z
y

x

C C
′

0

x0 xm x1

C
′

1

x0

z1

z0

x1

y0

y1
x direction y direction

C
′′

0

C
′′

2

C
′′

1

C
′′

3

C0 C1

C5C4

C6 C7

C3

z1

z0

zm

x0

y0

ym

y1

C2 (hidden)

x1x0 xm x1

y0

ym

z direction

xm

split in

split in split in

y1

Fig. 1: Cell splitting. A cell C is split in the x, y, and z directions in order to produce eight
child cells {Ci}7i=0.

5. Modified SDC (MSDC) Coder

In our work, we have proposed an improved version of the SDC coder called the modified
SDC (MSDC) coder. The key differences between our MSDC coder and the SDC coder
can be summarized as follows:
1. To allow for arbitrary image width/height and sample precision in the MSDC coder, the

formula for the cell midpoint used in cell splitting has been changed to include a rounding
operation.

2. To provide a flexible progressive-coding capability in the MSDC coder, the cells still re-
maining to be processed are kept in a priority queue, called the work queue, and cells
are processed in the order that they are removed from this queue (i.e., the highest prior-
ity cells are processed first). By using different cell-priority functions, the order in which
information is coded can be controlled, leading to different progression orders.

3. The MSDC coder employs arithmetic coding, while the SDC coder employs Huffman
coding.

As a consequence of item 1 above, the MSDC coder has a number of other differences with
the SDC coder. For example, in the MSDC coder, the cell splitting process can result in
degenerate cells, whereas the SDC coder never encounters such cells. Also, in the MSDC
coder, there are more possible sizes for atomic cells. These differences result in numerous
new cases in the MSDC coder that must be identified and handled correctly.

PROGRESSIVE CODING. During the coding process, cells are split into smaller cells until
the locations of all of the sample points are known exactly. As soon as all of the sample-
point locations are known exactly to the decoder, it can losslessly reconstruct the dataset.
The decoder, however, can obtain approximations to the dataset before all of the sample-
point locations are known exactly. If the locations of the sample points in a particular cell are
not known exactly, the decoder can simply choose to represent the sample points in the cell
with a single representative sample point at the approximate centroid of the cell. In this
way, progressive coding functionality can be provided. Furthermore, different progression
orders can be achieved by varying the cell-priority function used with the work queue.

SAMPLE-VALUE AMBIGUITY PROBLEM. Unfortunately, there is a fundamental problem
associated with progressive decoding that must be addressed in order to obtain good cod-
ing performance. Namely, it is possible, during intermediate stages of decoding, for two
or more nonempty cells to have representative sample points with the same x and same
y coordinates but distinct z coordinates. This would correspond to a particular sample
position having multiple distinct sample values, which is clearly impossible. In such a sit-
uation, the decoder must resolve this ambiguity and choose a single z value (i.e., sample
value) for the sample position of interest. This leads to the question of how best to resolve
this ambiguity problem. In our work, we have proposed the following four sample-value
ambiguity-resolution methods:
1. Discard. Throws away any ambiguous sample points.
2. Mean. Uses the mean of the conflicting sample values.
3. Nearest neighbour. Chooses the sample value that deviates least from the sample value

of the closest neighbouring ambiguity-free sample point.
4. Median. Uses the median of the conflicting sample values.

PROGRESSION ORDER. Since many progression orders are possible, one might wonder
which yields the best coding performance. In our work, we have considered the following
six progression orders:
1. Breadth first. The cell that is the nearest descendant of the root cell is split first.
2. Depth first. The cell that is the farthest descendant of the root cell is split first.
3. Count. The cell containing the most sample points is split first.
4. Density. The cell with the highest sample-point density is split first.
5. Sparsity. The cell with the lowest sample-point density is split first.
6. Deviation from half density (DFHD). The cell with the sample-point density that deviates

most from 1/2 is split first.
With each of these progression orders, the next information to be decoded can always be
determined from previously decoded data. Therefore, the progression order itself does not
need to be coded as side information.

6. Experimental Results

Experimentally, we studied how the choices of sample-value ambiguity-resolution method
and progression order affect our coder, and evaluated our coder’s performance relative to
the SDC coder. Here, we present a representative subset of our results. In our experiments,
we used the MGH mesh-generation method and corresponding triangulation-based inter-
polation scheme from [2] to generate arbitrarily-sampled datasets from (lattice-sampled)
images and vice versa.

SAMPLE-VALUE AMBIGUITY RESOLUTION. Progressive coding results comparing the
performance of the four proposed sample-value ambiguity-resolution methods are given in
Fig. 2, with one set of lossy image reconstructions shown in Fig. 4. From the results of

Fig. 2, we can see that the median method performs best, often beating the other methods
by more than 1 dB. As illustrated by Fig. 4, in terms of subjective image quality, the median
method also performs best. Due to the sample-value ambiguity problem, the rate-distortion
curves for our MSDC coder can depart significantly from monotonic behavior, especially at
low rates. This behavior is clearly evident in the graph (i.e., Fig. 2).

PROGRESSION ORDER. Progressive coding results comparing the effectiveness of the
six progression orders under consideration are given in Fig. 3, with one set of lossy image
reconstructions shown in Fig. 5. From the results of Fig. 3, we can see that the sparsity and
DFHD progressions orders (which yield almost identical rate-distortion curves) outperform
the other progression orders by a significant margin (i.e., 0.5 to 1 dB or more). As is evident
from the reconstructed images shown in Fig. 5, the DFHD progression order also yields
the best subjective image quality. Furthermore, a more detailed evaluation shows that the
DFHD progression order offers slightly better objective performance at very high rates.

MSDC CODER VERSUS SDC CODER. Results comparing the lossless coding perfor-
mance of our MSDC coder and the SDC coder are provided in Table 1. From these results,
we can observe that our MSDC coder yields a lossless rate that is typically about 4% less
than that obtained with the SDC coder.

 5

 10

 15

 20

 25

 30

 35

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
S

N
R

 (
d

B
)

Compression Factor

Discard
Mean

Nearest Neighbour
Median

Fig. 2: Comparison of various sample-
value ambiguity-resolution methods.
Progressive coding results obtained using
various sample-value ambiguity-resolution
methods for the lena image with a dataset
sampling density of 1/40.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
S

N
R

 (
d

B
)

Compression Factor

Breadth First
Depth First

Count
Density

Sparsity
DFHD

Fig. 3: Comparison of various progres-
sion orders. Progressive coding results
obtained using various progression orders
for the lena image with a dataset sampling
density of 1/40.

(a) (b)

(c) (d)
Fig. 4: Subjective image quality comparison for various sample-value ambiguity-
resolution methods. Lossy reconstructions obtained at about 33:1 compression with the
(a) discard (23.34 dB), (b) mean (22.11 dB), (c) nearest-neighbour (23.92 dB), and (d) me-
dian (24.37 dB) sample-value ambiguity-resolution methods.

(a) (b) (c)

(d) (e) (f)
Fig. 5: Subjective image quality comparison for various progression orders. Lossy
reconstructions obtained at about 29:1 compression with the (a) breadth-first (25.88 dB),
(b) depth-first (21.43 dB), (c) count (24.88 dB), (d) density (18.48 dB), (e) sparsity
(26.37 dB), and (f) DFHD (26.37 dB) progression orders.

Table 1: Comparison of MSDC and SDC coders. Lossless coding results obtained using
the MSDC and SDC methods for the (a) lena and (b) peppers images

(a)
Sampling File Size (Bytes) Relative
Density MSDC SDC Diff. (%)
1/40 11263 11734 4.0
1/30 14488 15114 4.1
1/20 20568 21498 4.3

(b)
Sampling File Size (Bytes) Relative
Density MSDC SDC Diff. (%)
1/40 11614 12087 3.9
1/30 14909 15532 4.0
1/20 21150 22053 4.1

7. Conclusions

We have proposed the MSDC coder, a modified version of the SDC coder. Relative to the
SDC coder, our MSDC coder has three key advantages, namely, it: 1) has support for
images of arbitrary width, height, and sample precision; 2) offers better lossless coding per-
formance; and 3) provides an efficient progressive lossy-to-lossless coding capability that
can accommodate a wide range of progression orders. For applications where progressive
transmission by fidelity is desired, we showed the DFHD progression order to be most ef-
fective. Moreover, we found that a simple median scheme was most effective at overcoming
the sample-value ambiguity problem that arises during progressive decoding.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of
Canada.

References

[1] L. Demaret and A. Iske, “Scattered data coding in digital image compression,” in Curve
and Surface Fitting: Saint-Malo 2002, Brentwood, TN, USA, 2003, pp. 107–117, Nash-
boro Press.

[2] M. D. Adams, “An evaluation of several mesh-generation methods using a simple mesh-
based image coder,” in Proc. of IEEE International Conference on Image Processing,
Oct. 2008, pp. 1041–1044.

[3] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

ICASSP 2009: IEEE International Conference on Acoustics, Speech, and Signal Processing, 19–24 April 2009, Taipei, Taiwan

