An Improved Content-Adaptive Mesh-Generation Method for Image Representation

Michael D. Adams

Department of Electrical and Computer Engineering University of Victoria Victoria, BC, V&W 3P6, Canada E-mail: mdadams@ece.uvic.ca

> IEEE ICIP September 26–29, 2010 Hong Kong

Motivation

- Triangle Meshes for Image Representation
- Mesh-Generation Methods
- Proposed Mesh-Generation Method
- Performance Evaluation
- Conclusions

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- growing interest in geometric representations of images, especially those based on triangle meshes
- triangle-mesh representations of images have many advantages, including:
 - trivialize application of affine transformations (e.g., rotations, scaling, shears, translations) to images
 - greatly simplify image interpolation
 - facilitate easier handling of image domains with arbitrary polygonal shape (i.e., not necessarily rectangular)
- such representations useful in many diverse areas, including:
 - filtering, restoration
 - tomographic reconstruction
 - pattern recognition, feature detection
 - computer vision
 - image/video compression
- constructing triangle-mesh representation of image is challenging task
- want mesh-generation method that produces mesh of high quality (i.e., low approximation error) while requiring minimal computation and memory

イロト イボト イヨト イヨト 一日

Conceptual Model for Image

Image Modelled as Surface

Mesh Approximation of Image (Sampling Density 2.5%)

Triangulation of Image Domain

Resulting Triangle Mesh

イロト イポト イヨト イヨト

Image

Error Diffusion (ED) Method (Yang, Wernick, and Brankov)

- for image f sampled at points in set I, uses Floyd-Steinberg error diffusion to generate set S of N sample points distributed such that local density of sample points at each point (x,y) ∈ I proportional to largest magnitude second-order directional derivative of f at (x,y)
- in more detail, algorithm consists of following steps:
 - From f, compute the sample-point density function d defined on I given by $d(x,y) = \tilde{d}(x,y)/\tilde{d}_{max}$, where $\tilde{d}_{max} = \max_{(x,y) \in I} \tilde{d}(x,y)$, and $\tilde{d}(x,y)$ is the maximum magnitude second-order directional derivative of f at (x,y).
 - **2** Initially, set the threshold τ to use for Floyd-Steinberg error diffusion to be $\tau_0 = \frac{1}{2N} \sum_{(x,y) \in I} d(x,y).$
 - Convert d to a binary-valued function b using nonleaky Floyd-Steinberg error diffusion with the threshold τ and a serpentine scan order.
 - Set S to the set of all points (x, y) for which $b(x, y) \neq 0$. Then, let $S := S \cup H$, where H is the set of the (four) extreme convex hull points of I.
 - If |S| is close enough to N, stop; otherwise, adjust τ appropriately (i.e., if |S| > N, increase τ; if |S| < N, decrease τ) and go to step 3.</p>
- explicit construction of mesh not formally part of algorithm
- extremely fast and requires minimal memory
- derivatives computed by convolution, raising issue of noise suppression (via lowpass filtering) and how to handle image boundaries

- considered: 1) Gaussian smoothing (with various choices of standard deviation parameter σ) as well as 2) no smoothing
- Gaussian smoothing with $\sigma = 1$ found to perform better than no smoothing, typically by about 0.75 to 2.75 dB
- no smoothing tends to result in more uniform distribution of sample points, due to spurious large-magnitude derivatives caused by noise
- effect of smoothing on choice of sample points illustrated below for lena image at sampling density of 8%

No Smoothing

Gaussian Smoothing

イロト イポト イヨト イヨト

ED Method: Boundary Handling

- for boundary handling, considered: 1) zero extension, 2) constant extension, and
 3) symmetric extension
- zero extension found to perform best, regardless of whether smoothing employed, typically by margin of 0.25 to 1.05 dB
- constant and symmetric extension tend not to place sufficient number of points along boundary of image domain
- effect of boundary handling strategy on choice of sample points shown below for lena image at sampling density of 8%

Zero Extension

Symmetric Extension

イロト イロト イヨト イ

Greedy Point-Removal (GPR) Method (Demaret and Iske)

- for image of width W and height H and sampled at points in I, selects set S of N sample points, by first constructing mesh containing all WH sampling points
- each iteration removes point minimizing error increase
- in more detail, algorithm consists of following steps:
 - Let S := I (hence, |S| = WH).
 - Onstruct the Delaunay triangulation of S.
 - Solution If $|S| \leq N$, output S and stop.
 - For each point p ∈ S, compute the increase ∆e_p in the squared error of the mesh approximation that is incurred if p is removed from the triangulation.
 - Solution For the point $p \in S$ that minimizes Δe_p , delete p from the triangulation, and let $S := S \setminus \{p\}.$
 - Go to step 3.
- step 4 can be implemented efficiently since vertex deletion only has local effect in Delaunay triangulation
- step 5 can be implemented efficiently via heap-based priority queue
- for images of reasonable size, initial mesh size very large, leading to very high computational/memory requirements
- greedy approach unlikely to yield globally optimal solution

Greedy Point-Removal From Subset (GPRFS) Framework

- N: number of sample points to select; S: set of selected sample points; W: image width; H: image height; I: set of sample points of original image
- only differs from GPR algorithm in step 1
- starts with intelligently chosen subset of sample points
- in more detail, algorithm consists of following steps:
 - Select a subset S_0 of I such that $|S_0| = N_0$ (where $N_0 \in [N, WH]$), and let $S := S_0$.
 - Onstruct the Delaunay triangulation of S.
 - **If** $|S| \leq N$, output S and stop.
 - For each point p ∈ S, compute the increase ∆e_p in the squared error of the mesh approximation that is incurred if p is removed from the triangulation.
 - Solution For the point p ∈ S that minimizes Δe_p, delete p from the triangulation, and let S := S \{p}.
 - Go to step 3.
- using ED scheme in GPRFS framework to select S₀ yields proposed GPRFS-ED method
- GPRFS-ED method includes GPR and ED schemes as special cases (i.e., $N_0 = N$ and $N_0 = WH$, respectively)

<ロ> (四) (四) (三) (三) (三)

Initial Subset Selection

- use ED scheme to choose initial subset of sample points, but need to choose initial sampling density D₀ (where D₀ = ^{N₀}/_{WH} ∈ [D, 1])
- effect of varying initial sampling density D₀ on mesh quality shown below

lena image, D = 4% peppers image, D = 2%

- best mesh quality not obtained when D = 100% (where GPRFS-ED method becomes equivalent to GPR scheme)
- for sampling density D of practical interest (i.e., D < 10%) GPRFS-ED method usually achieves PSNR very close to GPR scheme if D₀ about 4D

• choose $D_0 = 4D$

ヘロト 人間 とくほ とくほとう

Objective Mesh-Quality Comparison

lena image				peppers image				
Samp.	PSNR (dB)				Samp.	PSNR (dB)		
Density	GPRFS-				Density	GPRFS-		
(%)	ED	GPR	ED		(%)	ED	GPR	ED
1.0	28.85	29.11	22.24]	1.0	29.85	30.05	22.23
1.5	30.68	30.68	24.75		1.5	31.57	31.55	24.84
2.0	31.95	31.78	26.32		2.0	32.55	32.40	26.33
4.0	34.50	34.40	29.43		4.0	34.43	34.20	29.78
8.0	37.11	37.00	32.35		8.0	36.11	35.76	32.04

- at sampling densities above 1% (typically required for good quality image reconstructions), GPRFS-ED method fairly consistently outperforms GPR scheme
- at sampling density of 1%, GPRFS-ED method typically produces meshes of slightly lower quality than GPR, but requires about 17 times less computation and 25 times less memory
- GPRFS-ED method vastly superior to ED scheme, so benefit of GPRFS-ED method not solely from its use of ED scheme

イロト イポト イヨト イヨト

Subjective Mesh-Quality Comparison (lena image, sampling density of 2%)

GPRFS-ED (31.95 dB)

GPR (31.78 dB)

ヘロト 人間 とくほとく ほど

 in terms of subjective image quality, GPRFS-ED method produces meshes of quality comparable to (or slightly better than) GPR scheme

Computational-Complexity Comparison

computational complexity measured in terms of execution time

lena image							
Samp.	Time						
Density	GPRFS-						
(%)	ED	GPR	Ratio				
1	3.47	58.41	16.8				
2	5.39	57.39	10.6				
4	9.26	56.30	6.0				
8	17.37	54.02	3.1				

- GPRFS-ED method requires 3 to 17 times less computation than GPR scheme, with difference most pronounced at lower sampling densities
- GPRFS-ED method yields significant computational savings in spite of producing higher quality meshes in most cases

	Peak	Relative Peak Mesh Size						
Method	Mesh Size	General	D = 1%	D = 2%	D = 4%	D = 8%		
GPRFS-ED	4DWH	1	1	1	1	1		
GPR	WH	$\frac{1}{4D}$	25	12.5	6.25	3.125		

sampling density D, image width W, image height H

- same data structures used for GPR and GPRFS-ED methods
- memory usage dominated by mesh data structure and priority queue with one entry per mesh vertex
- peak memory usage approximately proportional to peak mesh size (in vertices)
- for sampling densities from 1% to 8%, GPRFS-ED method requires from 25 to 3.125 times less memory than GPR, with difference most pronounced at lower sampling densities
- GPRFS-ED method offers very substantial memory savings

イロト イタト イヨト イヨン

- proposed new content-adaptive mesh-generation method for image representation, known as GPRFS-ED
- our GPRFS-ED method shown to yield better (or comparable) quality meshes in terms of squared error and subjective quality than state-of-the-art GPR method, at only very small fraction of computational and memory costs
- our GPRFS-ED method can easily tradeoff between mesh quality and computational/memory complexity (through choice of initial sampling density D₀)

イロト イポト イヨト イヨト