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Introduction

growing interest in geometric representations of images, especially those based
on triangle meshes

triangle-mesh representations of images have many advantages, including:
1 trivialize application of affine transformations (e.g., rotations, scaling, shears,

translations) to images
2 greatly simplify image interpolation
3 facilitate easier handling of image domains with arbitrary polygonal shape (i.e., not

necessarily rectangular)

such representations useful in many diverse areas, including:
filtering, restoration
tomographic reconstruction
pattern recognition, feature detection
computer vision
image/video compression

constructing triangle-mesh representation of image is challenging task

want mesh-generation method that produces mesh of high quality (i.e., low
approximation error) while requiring minimal computation and memory
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Conceptual Model for Image

Image

Image Modelled as Surface
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Mesh Approximation of Image (Sampling Density 2.5%)

Triangulation of Image
Domain
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Error Diffusion (ED) Method (Yang, Wernick, and Brankov)

for image f sampled at points in set I, uses Floyd-Steinberg error diffusion to
generate set S of N sample points distributed such that local density of sample
points at each point (x,y) ∈ I proportional to largest magnitude second-order
directional derivative of f at (x,y)

in more detail, algorithm consists of following steps:
1 From f, compute the sample-point density function d defined on I given by

d(x,y) = d̃(x,y)/d̃max, where d̃max = max(x,y)∈I d̃(x,y), and d̃(x,y) is the
maximum magnitude second-order directional derivative of f at (x,y).

2 Initially, set the threshold τ to use for Floyd-Steinberg error diffusion to be
τ0 = 1

2N

∑
(x,y)∈I d(x,y).

3 Convert d to a binary-valued function b using nonleaky Floyd-Steinberg error
diffusion with the threshold τ and a serpentine scan order.

4 Set S to the set of all points (x,y) for which b(x,y) 6= 0. Then, let S := S∪H, where
H is the set of the (four) extreme convex hull points of I.

5 If |S| is close enough to N, stop; otherwise, adjust τ appropriately (i.e., if |S| > N,
increase τ; if |S| < N, decrease τ) and go to step 3.

explicit construction of mesh not formally part of algorithm
extremely fast and requires minimal memory
derivatives computed by convolution, raising issue of noise suppression (via
lowpass filtering) and how to handle image boundaries
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ED Method: Smoothing

considered: 1) Gaussian smoothing (with various choices of standard deviation
parameter σ) as well as 2) no smoothing

Gaussian smoothing with σ = 1 found to perform better than no smoothing,
typically by about 0.75 to 2.75 dB

no smoothing tends to result in more uniform distribution of sample points, due to
spurious large-magnitude derivatives caused by noise

effect of smoothing on choice of sample points illustrated below for lena image at
sampling density of 8%

No Smoothing Gaussian Smoothing
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ED Method: Boundary Handling

for boundary handling, considered: 1) zero extension, 2) constant extension, and
3) symmetric extension

zero extension found to perform best, regardless of whether smoothing employed,
typically by margin of 0.25 to 1.05 dB

constant and symmetric extension tend not to place sufficient number of points
along boundary of image domain

effect of boundary handling strategy on choice of sample points shown below for
lena image at sampling density of 8%

Zero Extension Symmetric Extension

Michael D. Adams (University of Victoria) ICIP 2010 Sept. 2010 8



Greedy Point-Removal (GPR) Method (Demaret and Iske)

for image of width W and height H and sampled at points in I, selects set S of N

sample points, by first constructing mesh containing all WH sampling points

each iteration removes point minimizing error increase

in more detail, algorithm consists of following steps:
1 Let S := I (hence, |S| = WH).
2 Construct the Delaunay triangulation of S.
3 If |S| 6 N, output S and stop.
4 For each point p ∈ S, compute the increase ∆ep in the squared error of the mesh

approximation that is incurred if p is removed from the triangulation.
5 For the point p ∈ S that minimizes ∆ep, delete p from the triangulation, and let

S := S\ {p}.
6 Go to step 3.

step 4 can be implemented efficiently since vertex deletion only has local effect in
Delaunay triangulation

step 5 can be implemented efficiently via heap-based priority queue

for images of reasonable size, initial mesh size very large, leading to very high
computational/memory requirements

greedy approach unlikely to yield globally optimal solution
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Greedy Point-Removal From Subset (GPRFS) Framework

N: number of sample points to select; S: set of selected sample points; W: image
width; H: image height; I: set of sample points of original image

only differs from GPR algorithm in step 1

starts with intelligently chosen subset of sample points

in more detail, algorithm consists of following steps:

1 Select a subset S0 of I such that |S0| = N0 (where N0 ∈ [N,WH]), and let S := S0.
2 Construct the Delaunay triangulation of S.
3 If |S| 6 N, output S and stop.
4 For each point p ∈ S, compute the increase ∆ep in the squared error of the mesh

approximation that is incurred if p is removed from the triangulation.
5 For the point p ∈ S that minimizes ∆ep, delete p from the triangulation, and let

S := S\ {p}.
6 Go to step 3.

using ED scheme in GPRFS framework to select S0 yields proposed GPRFS-ED
method

GPRFS-ED method includes GPR and ED schemes as special cases (i.e.,
N0 = N and N0 = WH, respectively)
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Initial Subset Selection

use ED scheme to choose initial subset of sample points, but need to choose
initial sampling density D0 (where D0 = N0

WH
∈ [D,1])

effect of varying initial sampling density D0 on mesh quality shown below
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peppers image, D = 2%
best mesh quality not obtained when D = 100% (where GPRFS-ED method
becomes equivalent to GPR scheme)

for sampling density D of practical interest (i.e., D < 10%) GPRFS-ED method
usually achieves PSNR very close to GPR scheme if D0 about 4D

choose D0 = 4D
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Objective Mesh-Quality Comparison

lena image
Samp. PSNR (dB)
Density GPRFS-

(%) ED GPR ED
1.0 28.85 29.11 22.24
1.5 30.68 30.68 24.75
2.0 31.95 31.78 26.32
4.0 34.50 34.40 29.43
8.0 37.11 37.00 32.35

peppers image
Samp. PSNR (dB)
Density GPRFS-

(%) ED GPR ED
1.0 29.85 30.05 22.23
1.5 31.57 31.55 24.84
2.0 32.55 32.40 26.33
4.0 34.43 34.20 29.78
8.0 36.11 35.76 32.04

at sampling densities above 1% (typically required for good quality image
reconstructions), GPRFS-ED method fairly consistently outperforms GPR scheme

at sampling density of 1%, GPRFS-ED method typically produces meshes of
slightly lower quality than GPR, but requires about 17 times less computation and
25 times less memory

GPRFS-ED method vastly superior to ED scheme, so benefit of GPRFS-ED
method not solely from its use of ED scheme
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Subjective Mesh-Quality Comparison (lena image, sampling density of 2%)

GPRFS-ED (31.95 dB) GPR (31.78 dB)

in terms of subjective image quality, GPRFS-ED method produces meshes of
quality comparable to (or slightly better than) GPR scheme
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Computational-Complexity Comparison

computational complexity measured in terms of execution time

lena image
Samp. Time (s)
Density GPRFS-

(%) ED GPR Ratio
1 3.47 58.41 16.8
2 5.39 57.39 10.6
4 9.26 56.30 6.0
8 17.37 54.02 3.1

GPRFS-ED method requires 3 to 17 times less computation than GPR scheme,
with difference most pronounced at lower sampling densities

GPRFS-ED method yields significant computational savings in spite of producing
higher quality meshes in most cases
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Memory-Complexity Comparison

Comparison of the peak mesh size for the various methods
Peak Relative Peak Mesh Size

Method Mesh Size General D = 1% D = 2% D = 4% D = 8%
GPRFS-ED 4DWH 1 1 1 1 1
GPR WH 1

4D
25 12.5 6.25 3.125

sampling density D, image width W, image height H

same data structures used for GPR and GPRFS-ED methods

memory usage dominated by mesh data structure and priority queue with one
entry per mesh vertex

peak memory usage approximately proportional to peak mesh size (in vertices)

for sampling densities from 1% to 8%, GPRFS-ED method requires from 25 to
3.125 times less memory than GPR, with difference most pronounced at lower
sampling densities

GPRFS-ED method offers very substantial memory savings
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Conclusions

proposed new content-adaptive mesh-generation method for image
representation, known as GPRFS-ED

our GPRFS-ED method shown to yield better (or comparable) quality meshes in
terms of squared error and subjective quality than state-of-the-art GPR method, at
only very small fraction of computational and memory costs

our GPRFS-ED method can easily tradeoff between mesh quality and
computational/memory complexity (through choice of initial sampling density D0)
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