AN INCREMENTAL/DECREMENTAL DELAUNAY MESH-GENERATION FRAMEWORK
FOR IMAGE REPRESENTATION

Michael D. Adams

Dept. of Elec. and Comp. Eng., University of Victoria, Victoria, BC, V8W 3P6, Canada

ABSTRACT

A flexible new mesh-generation framework for image representa-
tion is proposed, based on Delaunay triangulations. It is shown that
this framework can be used to form a postprocessing optimization
step that, when added to other previously-proposed methods, yields
meshes of much greater quality. A new mesh-generation method,
called IDDT, is also derived using the proposed framework, and
shown to yield meshes of much better quality than those produced by
previously-proposed methods as well as optimized versions of these
methods constructed with the proposed framework.

Index Terms— Image representations, mesh generation, Delau-
nay triangulations, triangle meshes.

1. INTRODUCTION

Image representations that employ adaptive (i.e., nonuniform) sam-
pling have been receiving increasing attention in recent years, as
such representations are useful in many applications, including filter-
ing, feature detection, restoration, tomographic reconstruction [1],
computer vision, pattern recognition, and image/video coding [2].
Although many classes of adaptively-sampled image representations
have been proposed to date, those based on Delaunay triangulations
have proven to be particularly effective, and are the focus of the work
described herein. Since image acquisition systems typically produce
data that is sampled on a (truncated) lattice, in order to generate an
adaptively-sampled representation, a means is needed for selecting a
good subset of the original sample points of the image from which
to form such a representation. This is the so called mesh-generation
problem.

Two highly effective mesh-generation methods proposed to
date are the MGH scheme proposed in [2] and the error-diffusion
(ED) scheme proposed in [1]. In this paper, we propose a flexible
new mesh-generation framework and two methods derived from it,
known by the names IDDT and BPR. We explain how our BPR
scheme can be used to form a postprocessing optimization step
that can be added to the MGH and ED methods in order to obtain
meshes of much greater quality. Also, the IDDT method is shown to
produce meshes of vastly superior quality relative to the MGH and
ED schemes and their optimized versions constructed with the BPR
scheme.

The remainder of this paper is structured as follows. Section 2
begins by providing some background information on mesh mod-
els for image representation. In Section 3, our new mesh-generation
framework is introduced along with our IDDT and BPR methods.
Then, Section 4 offers some guidance regarding the efficient imple-
mentation of our framework. To demonstrate the effectiveness of
the proposed framework and methods, some experimental results are

This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada.

presented in Section 5. Finally, Section 6 concludes the paper with a
summary of the key results.

2. MESHES FOR IMAGE REPRESENTATION

In the context of this work, a mesh model of an image ¢ defined on
A={0,1,...,W—-1}x{0,1,..., H—1} (i.e., arectangular grid
of width W and height H) is completely characterized by: 1) a set
P = {pl}yj1 of sample points; and 2) the set Z = {Zz}‘zi of the
corresponding sample values (i.e., z; = ¢(p;)). The set P is always
chosen to include the extreme convex hull points of A (i.e., the four
corner points of the image bounding box) so that the triangulation
of P covers the entire image domain A. From P and Z, a unique
interpolant ép is constructed as follows. First, we form the Delau-
nay triangulation of P, which is ensured to be uniquely determined
(from P) by employing the preferred-directions scheme [3]. Then,
the interpolant <£ p is constructed by forming, for each face of the tri-
angulation, the unique plane that passes through the sample values at
the three vertices of the face. Since the vertices of the triangulation
are nothing more than the sample points, often the terms “sample
point” and “vertex” are used interchangeably herein. As a matter of
terminology, the sampling density of the mesh model is defined as
1P| /|Al

Having defined the above mesh model, the mesh-generation
problem that we address herein can be succinctly stated as follows:
For a given target number N of sample points (where N < |A]),
choose P C A such that |[P| = N and the mesh approximation
error €(P) is as small as possible (ideally, a global minimum). In
our work, the mean squared error is used as the error metric, so that
e(P) = |AI* ZpeA(qu(p) — ¢(p))?. Finding good practically-
useful methods for solving the above problem is quite challenging,
since problems like this are known to be NP hard.

3. PROPOSED MESH-GENERATION FRAMEWORK

Having introduced the particular mesh model for image represen-
tation assumed in our work, we are ready to present our proposed
mesh-generation framework. On a very basic level, our framework
takes the following information as input: 1) an image ¢ sampled
at the points A (which form a rectangular grid), 2) a subset Py of
the sample points A from which to form an initial mesh approxima-
tion of the image, and 3) the target number N of sample points that
should be present in the mesh to be generated (where N € [4, |A[]).
The framework is iterative in nature. Let P denote the sample points
of the mesh in the current iteration. To begin, P is initialized to F.
Then, in each iteration, a single point is either added to or deleted
from P. In order to either force or prevent certain points in A from
appearing in the final mesh, the notion of mutability of a point is
introduced. A point p € A is said to be mutable if it is permitted
to be added to or deleted from the mesh in this iterative framework.

(A point that is not mutable is said to be immutable.) Since the
mesh model must always include the four corner points of the image
bounding box, these points are always included in P and marked as
immutable (so that they cannot be later deleted). All other points are
initially marked as mutable.

Before proceeding further, it is necessary to introduce some ad-
ditional definitions and notation. Let quS be the interpolant associated
with P. Let F' denote the set of all faces in the Delaunay trian-
gulation of P. Each point p € A is assigned to exactly one face
in F, which is denoted face(p). If p is strictly inside a face f,
face(p) = f; otherwise (for points on edges or vertices), a method
like the one in [4] is used to uniquely assign p to exactly one face.
The set of all points p satisfying face(p) = f (i.e., all points be-
longing to the face f) is denoted points(f). For a point p € A,
candErr(p) denotes a local error measure that quantifies, in some
way, the difference between ¢(p) and ¢(p). Unless otherwise indi-
cated, we choose candErr(p) = |$(p) — ¢(p)| (i.e., absolute error).
The significance of a mutable point p € P, denoted vertexSig(p),
is the amount by which the squared error increases if p were deleted
from the mesh, computed over all points in R N A, where R is the
region in the triangulation affected by the deletion of p. The squared
error computed over all points p € A N points(f) is denoted as

faceErr(f) (i.e., faceErr(f) = ZpeAmpoints(f)(gzﬁ(p) — o(p)?).
The candidate point for a face f, denoted cand(f), is defined as the
mutable point p € (A\ P)Npoints(f) that maximizes candErr(p).

With the above definitions in place, we can now specify in more
concrete terms the process whereby points are added/deleted. In par-
ticular, in each iteration, the mesh can be modified by applying ex-
actly one of the following two operations: 1) optimal add: this op-
eration adds the (mutable) point p = cand(f) to the mesh, where
f is the face in F' that maximizes faceErr(f); 2) optimal delete:
this operation deletes the point p from the mesh, where p is the mu-
table point in P that minimizes vertexSig(p). In simple (but less
precise) terms, the optimal-add operation adds to the mesh the can-
didate point of the face with the highest squared error, while the
optimal-delete operation deletes from the mesh the point that will
cause the least increase in squared error. The iterative framework
simply performs optimal add/delete operations until |P| = N and
no further optimal add/delete operations are desired.

A few comments are in order regarding the proposed framework.
First, it is important to note that this framework is greedy in nature.
That is, it makes the choice of which point to insert/delete in a given
iteration without regard to how this choice affects later iterations.
Consequently, this framework does not guarantee a globally opti-
mal solution. Practically speaking, however, no computationally-
tractable algorithm likely exists for producing a globally optimal
solution, since mesh-generation problems like the one addressed in
this paper are NP hard. Next, it is important to understand that
the (probably suboptimal) result produced from this framework is
very heavily dependent on the choice of Py as well as the specific
sequence of points added/deleted that lead to the final mesh. For
example, given a mesh, the number of sample points in the mesh
could be increased by 100 by either: 1) performing two optimal-
add operations followed by one optimal-delete operation, repeated
100 times; or 2) performing 200 optimal-add operations followed
by 100 optimal-delete operations, only once. Although both scenar-
ios have the same total number of optimal-add and optimal-delete
operations, the quality of the resulting mesh in each case could be
radically different. Furthermore, computational complexity is also
strongly influenced by the choice of Py as well as the specific se-
quence of optimal-add/delete operations. For example, for reasons
that will become clearer later in Section 4, it is more computationally

efficient to group optimal add/delete operations of the same type to-
gether. Therefore, scenario 2 from above would most likely require
less computation. The flexibility of our framework comes from the
fact that there are a great many ways in which to choose Py as well
as the precise sequence of optimal add/delete operations used to pro-
duce the final mesh.

BAD-POINT-REPLACEMENT (BPR) METHOD. As a matter
of terminology, a (mutable) point p in the mesh is said to be bad, if
vertexSig(p) < 0 (i.e., the deletion of p would not cause an increase
in the mesh approximation error). Clearly, bad points are undesirable
since their inclusion in the mesh either increases the mesh approxi-
mation error (if vertexSig(p) < 0) or leaves the mesh approxima-
tion error unchanged (if vertexSig(p) = 0). As it turns out, with
our framework, when the target number of points is finally achieved
and the mesh-generation process would normally terminate, there
is the possibility that some bad points will be present in the mesh.
Depending on the initial subset Py and the particular sequence of
additions/deletions, the number of bad points could, in fact, be quite
large.

To combat the degradation in mesh quality caused by the pres-
ence of bad points, we have devised a technique for eliminating
such points called the bad-point-replacement (BPR) method. This
method works by deleting bad points and substituting other new
points in their place. This is done in such a way as to not result
in any net change in the number of points in the mesh (i.e., the num-
ber of add operations and number of delete operations employed are
equal). This method is intended to be performed as a final step in
the mesh-generation process, once a mesh with the target number of
points has been obtained. In more detail, the BPR method consists
of the following steps: 1) while the point p that would be deleted by
the next optimal-delete operation satisfies vertexSig(p) < 0, per-
form an optimal-delete operation, and mark p as immutable; if no
points were deleted in this step, stop; 2) perform n optimal-add op-
erations, where n is the number of points deleted in step 1; 3) go
to step 1. In step 1, p is marked as immutable in order to avoid p
being added back to the mesh in subsequent iterations, which could
cause the algorithm to become trapped in an infinite loop, repeatedly
cycling through the same sequence of addition/deletions.

It is important to note that our BPR method can be used as a
postprocessing step added to other arbitrary (i.e., not necessarily de-
rived from our framework) mesh-generation methods in order to im-
prove the resulting mesh quality. That is, we can take a mesh M
produced by another arbitrary method, use M as the initial mesh for
our framework, and then simply invoke our BPR scheme to produce
the new mesh M’. Provided that M had some bad points (which is
the case for many methods), we can expect the new mesh M’ to be
of higher quality than the original mesh M. As we will see later,
some previously proposed schemes, although quite effective, often
produce meshes with a significant number of bad points.

Although the BPR method constitutes a useful tool, it is really
only intended to be employed as a postprocessing step used in con-
junction with some standalone mesh-generation method. Since the
BPR method does not change the number of points in the mesh, it
has to rely on some other mesh-generation scheme to provide a mesh
of the desired size, which can then be optimized. With the above in
mind, we now turn our attention to a standalone mesh-generation
method derived from our framework.

IDDT METHOD. Since the proposed mesh-generation frame-
work is very flexible, many different mesh-generation methods can
be constructed from it. In what follows, we present one of the more
effective of these methods that we have found to date. This par-
ticular method we refer to by the name IDDT. The IDDT method
selects, as the initial mesh Py, the four corner points of the image

bounding box. Then, by using both optimal add and delete opera-
tions, the number of mesh points is increased until the target number
of points is reached. Finally, the BPR method is used to remove any
bad points. In more detail, the IDDT method consists of the follow-
ing steps: 1) letn = N — | P| (where P is the set of points currently
in the mesh); if n < 0, go to step 5; 2) perform n optimal-add oper-
ations; 3) perform |n/2| optimal-delete operations; 4) go to step 1;
5) apply the BPR method to the mesh. The candErr function is
chosen as candErr(p) = d(p)|d(p) — ¢(p)|, where d(p) denotes
the maximum magnitude second-order directional derivative of ¢ at
p. As a practical matter, d is computed using the formula given
in [1], where the associated partial-derivative operators are applied
to a smoothed version of ¢, and the smoothing operator employed is
the tensor product of two one-dimensional filters with transfer func-
tion 2% (3 + 1271)%

4. IMPLEMENTATION

Although our proposed mesh-generation framework is conceptually
simple, implementing it in a computationally efficient manner is
tricky and requires careful software design. A naive implementation
could easily require several orders of magnitude more computation
than is strictly necessary. Below, we offer some guidance as to how
our mesh-generation framework can be efficiently implemented, by
describing the particular implementation strategy that we employed.

The mesh-generator state consists primarily of the following:
1) the Delaunay-triangulation data structure, which maintains the
mesh geometry and connectivity information; 2) the vertex prior-
ity queue, a heap-based priority queue with an entry for each muta-
ble point currently in the mesh, where the entry for the point p has
priority — vertexSig(p); 3) the face priority queue, a heap-based
priority queue with an entry for each face f in the mesh satisfying
faceErr(f) > 0 (i.e., faces with a strictly positive error), where the
entry for face f has priority faceErr(f); 4) the vertex scan list,
a doubly-linked list with an entry for each vertex whose priority re-
quires updating due to changes in the mesh. In what follows, we now
describe how the optimal-add and optimal-delete operations can be
implemented.

To perform an optimal-add operation, we proceed as follows:
1) Remove the face with the highest priority from the face priority
queue, letting f denote the face removed. The point p to be added
to the mesh is then cand(f). 2) Insert p in the triangulation, letting
R denote the region in the triangulation affected by the insertion
of p. 3) For each face f in R, recompute faceErr(f) and update
accordingly the priority of f on the face priority queue. 4) For each
mutable vertex p in R, add p to the vertex scan list for (possible)
later updating of its priority.

To perform an optimal-delete operation, we proceed as follows:
1) For each vertex p on the vertex scan list, remove p from the list,
recompute vertexSig(p), and update accordingly the priority of the
vertex p on the vertex priority queue. 2) Remove the vertex with
the highest priority from the vertex priority queue, letting p denote
the vertex removed. The vertex to be deleted is then p. 3) Delete
p from the triangulation, letting R denote the region affected by the
deletion of p (namely, the faces incident on p). 4) For each face
f in R, recompute faceErr(f) and update accordingly the priority
of f on the face priority queue. 5) For each mutable vertex p in
R, add p to the vertex scan list for (possible) later updating of its
priority. To recompute vertexSig(p), for a given mutable vertex
p, we temporarily delete p from the triangulation, and compute the
resulting change in the mesh approximation error over the region
affected by point deletion (namely, the faces incident on p).

Table 1. Test Images

Image Size Bits/Sample | Description

bull 1024 %768 8 computer-generated

ct 512x512 12 tomography [6]

lena 512%x512 8 woman [7]

peppers | 512x512 8 collection of peppers [7]

As the description above implies, the computation associ-
ated with updating the vertex priority queue (e.g., re-evaluating
vertexSig values for vertices) is deferred until the result is abso-
lutely needed (namely, when an optimal-delete operation is to be
performed). In situations where multiple optimal-add operations
are performed without an intervening optimal-delete operation, this
deferred processing can save a considerable amount of computa-
tion. This savings results from avoiding vertex-priority updates that
would later be rendered unnecessary by other optimal-add opera-
tions. Lastly, in order to further reduce computational complexity,
we employ two additional optimizations: 1) the face priority queue
is not initialized until the first optimal-add operation; and 2) the
vertex priority queue is not initialized until the first optimal-delete
operation. These optimizations save considerable time when the
mesh-generation process begins with 1) a large number of optimal-
add operations without an intervening optimal-delete operation; or
2) a large number of optimal-delete operations without an interven-
ing optimal-add operation.

5. RESULTS

Having introduced our proposed mesh-generation framework, we
will now demonstrate its utility by showing that: 1) the BPR scheme
(derived from our framework) can be added as a postprocessing
step to other previously-proposed methods to yield meshes of much
higher quality; and 2) the IDDT method (also derived from our
framework) produces meshes of better quality relative to other ef-
fective methods. For the purposes of evaluation herein, we consider
28 (grayscale) images, namely, the four listed in Table 1 plus the 24
images of the Kodak test set [5].

As stated earlier, given an arbitrary mesh-generation method
(i.e., one that is not necessarily derived from our framework), it is
often the case that method may yield meshes with some bad sam-
ple points. (Note that, in this context, we mean “bad” in the spe-
cific sense introduced before in Section 3.) Earlier (in Section 1),
we mentioned two previously-proposed mesh-generation methods
that have proven quite effective, namely the MGH and ED schemes.
Through experimentation, we have discovered, perhaps surprisingly,
that the MGH and ED methods both typically yield meshes with a
significant number of bad sample points. In the case of the MGH
method, it is not unusual for about 10% of the sample points to be
bad; while in the case of the ED method, often about 50% of the
sample points are bad. Thus, the MGH and ED methods could both
potentially benefit from the use of our BPR scheme.

To allow us to evaluate the benefit of our BPR scheme, we con-
sider modified versions of the MGH and ED methods, called op-
timized MGH (OMGH) and optimized ED (OED), respectively,
which include our BPR scheme as a postprocessing step. That is, the
OMGH method first uses the MGH scheme to produce a mesh with
the desired number of sample points, and then our BPR scheme is
applied to the resulting mesh. Similarly, the OED method first em-
ploys the ED scheme to produce a mesh with the desired number of
sample points, and then our BPR scheme is applied to the resulting
mesh.

Table 2. Comparison of mesh quality for various mesh-generation
methods. (a) Results for four specific images; and (b) results aver-
aged across 28 images.

(@
Samp.
Density PSNR (dB)
Image (%) |[MGH|OMGH] ED | OED | IDDT
lena 0.5 2426 | 25.17 | 17.17 | 25.37 | 25.81
1.0 26.87 | 27.77 |21.13 |27.92 | 28.54
2.0 29.74 | 30.49 | 25.83 | 30.60 | 31.09
3.0 31.33 | 32.01 |28.06 |32.06 | 32.51
peppers 0.5 24.68 | 25.66 | 16.03 | 25.59 | 26.50
1.0 27.53 | 28.38 |21.35|28.78 | 29.15
2.0 29.85 | 30.76 |26.09 | 31.09 | 31.31
3.0 31.13 | 31.89 |28.17 | 32.19 | 32.45
ct 0.25 29.74 | 31.25 | 17.81 | 30.72 | 32.25
0.5 35.13 | 36.45 |21.61 | 35.82| 37.59
1.0 39.70 | 40.45 |29.45|40.44 | 4142
2.0 43.78 | 44.44 |35.62 | 44.02 | 45.39
bull 0.25 3529 | 36.55 |20.59 | 36.44 | 37.56
0.5 38.76 | 40.13 | 25.89 | 40.15 | 40.48
1.0 41.07 | 42.09 |33.34|42.21 | 42.46
2.0 43.07 | 43.97 | 37.56 | 44.06 | 44.38
(b)
Samp.
Density PSNR (dB)

(%) MGH | OMGH | ED | OED | IDDT

0.25 20.89 | 22.11 | 15.60 | 22.66 | 22.78

0.5 22.89 | 2391 |17.67 | 24.46 | 24.61

1.0 25.00 | 25.86 |20.77 | 26.34 | 26.56

2.0 27.38 | 28.11 |24.01 | 28.42| 28.73

3.0 28.92 | 29.60 | 25.87 |29.78 | 30.14

Now, we are ready to present some experimental results to com-
pare the performance of the various mesh-generation methods in-
troduced herein (namely, the MGH, OMGH, ED, OED, and IDDT
methods). For numerous images and target sampling densities, each
of the MGH, OMGH, ED, OED, and IDDT methods was used to
generate a mesh and the resulting mesh quality was measured in
terms of peak-signal-to-noise ratio (PSNR). A representative sub-
set of the results, involving four specific images, is shown in Ta-
ble 2(a), while the average results computed across all 28 test images
are shown in Table 2(b). In each case (i.e., table row), the best result
is indicated in boldface.

MGH vS. OMGH AND ED vs. OED. First, we compare the
performance of the MGH and OMGH methods. A quick inspection
of the results in Tables 2(a) and (b) shows that the OMGH method
beats the MGH scheme in every case. In the case of the four im-
ages in Table 2(a) and the average results in Table 2(b), the OMGH
method outperforms the MGH scheme by 0.6 to 1.6 dB and 0.6 to
1.22 dB, respectively. So, clearly, the addition of our BPR method
in the OMGH scheme has resulted in a significant improvement in
mesh quality. Next, we compare the performance of the ED and
OED methods. A quick glance at the data in Tables 2(a) and (b)
reveals that the OED method outperforms the ED scheme in every
case. In the case of the four images in Table 2(a) and the average
results in Table 2(b), the OED method outperforms the ED scheme
by 4.0 to 15.9 dB and 3.9 to 7.1 dB, respectively. Obviously, the
addition of our BPR method in the OED scheme has led to a very
marked improvement in mesh quality. From these results, it is clear

that our BPR method is extremely effective.

IDDT vs. MGH/OMGH/ED/OED. Next, we compare the
performance of our IDDT method to all four of the other methods.
From the results of Tables 2(a) and (b), it is evident that the IDDT
method outperforms all of the other methods under consideration,
yielding the best result in every case. In terms of the summary results
in Table 2(b), the IDDT method performs best in every case and
beats the second-place contender (which is either OMGH or OED)
by 0.12 to 0.36 dB. Relative to the previously proposed MGH and
ED methods, the IDDT method is vastly superior, beating the best
of the MGH and ED methods in each case by 1.22 to 1.89 dB. The
large margin by which our IDDT method outperforms previously-
proposed methods, like the MGH and ED schemes, demonstrates
the effectiveness of our method.

Lastly, we would like to briefly note that, for sampling densities
of practical interest, all of the methods under consideration here take
a relatively modest amount of computation time. For example, for
the 1ena image at a sampling density of 2%, all of the methods take
less than 3.1 seconds on a six-year old notebook computer (with a 3.4
GHz Intel Pentium 4 and 1 GB RAM). Undoubtedly, these execution
times would be even shorter on more modern hardware.

6. CONCLUSIONS

In this paper, we have proposed a new very-flexible mesh-generation
framework for image representation, along with two methods de-
rived from this framework, namely the BPR and IDDT schemes. The
BPR method was shown to be highly effective as a postprocessing
step to improve upon the results produced by other mesh-generation
methods. In particular, this postprocessing strategy was shown to
yield much higher quality meshes when applied to the previously-
proposed MGH and ED schemes. The IDDT method was shown
to produce meshes having vastly superior quality to those produced
with previously-proposed methods. The BPR and IDDT methods
that we have proposed can benefit the numerous applications where
adaptively-sampled image representations are needed. Moreover, by
further exploring the many other algorithmic possibilities that our
proposed framework affords, we are optimistic that it will be possi-
ble to derive even more effective mesh-generation schemes.

7. REFERENCES

[1] Y. Yang, M. N. Wernick, and J. G. Brankov, “A fast approach
for accurate content-adaptive mesh generation,” IEEE Trans. on
Image Processing, vol. 12, no. 8, pp. 866—881, Aug. 2003.

[2] M. D. Adams, “An evaluation of several mesh-generation meth-
ods using a simple mesh-based image coder,” in Proc. of IEEE
International Conference on Image Processing, San Diego, CA,
USA, Oct. 2008, pp. 1041-1044.

[3] C. Dyken and M. S. Floater, “Preferred directions for resolving
the non-uniqueness of Delaunay triangulations,” Computational
Geometry—Theory and Applications, vol. 34, pp. 96-101, 2006.

[4] K. Fleischer and D. Salesin, “Accurate polygon scan conversion
using half-open intervals,” in Graphics Gems I1I, 1995, pp. 362—
365.

[5] “Kodak lossless true
http://rOk.us/graphics/kodak.

[6] “JPEG-2000 test images,” ISO/IEC JTC 1/SC 29/WG 1 N 545,
July 1997.

[7] “USC-SIPI image database,” 2010, http://sipi.usc.edu/database.

color image suite,” 2010,

