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Motivation

◮ growing interest in image representations that
are based on nonuniform sampling and also
attempt to exploit geometric structure in im-
ages (e.g., image edges)

◮ triangle meshes well suited to nonuniform
sampling as well as capturing geometric
structure in images

◮ mesh representations of images useful in
many diverse areas such as: enhancement,
tomographic reconstruction, pattern recogni-
tion, computer vision, image/video coding

Conceptual Model of Image

◮ image modelled as function defined on contin-
uous domain

Image

Image Modelled as Surface

Mesh Model

◮ mesh model of image φ defined on Λ =

{0, 1, . . . , W−1}×{0, 1, . . . , H−1} (i.e., rectan-
gular grid of width W and height H) completely
characterized by:

1. set P = {pi}
|P|

i=1 of sample points
2. set Z = {zi}

|P|

i=1 of corresponding sample val-
ues (i.e., zi = φ(pi))

◮ P always chosen to include extreme convex
hull points of Λ so triangulation of P covers
entire image domain Λ

◮ mesh determined from model parameters as
follows:

1. construct triangulation of P

2. for each face in triangulation with vertices
(xi, yi), (xj, yj), and (xk, yk), and their re-
spective sample values zi, zj, and zk, form
unique planar interpolant passing through
points (xi, yi, zi), (xj, yj, zj), and (xk, yk, zk)

3. combine interpolants from faces to obtain
continuous piecewise-planar interpolant that
approximates φ over entire image domain Λ

◮ sampling density of mesh model defined as
|P| / |Λ|

Mesh Approximation of Image (Sampling Density 2.5%)

◮ reconstructed image obtained from mesh
model by scan conversion

Triangulation
of Image
Domain
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Mesh-Generation Framework

◮ proposed framework is iterative
◮ starts from initial mesh P0; points added and

deleted until target mesh size achieved and no
further modifications desired

◮ in each iteration, point is either added or
deleted using one of following operations:

1. optimal-add operation: in face with highest
squared error, point with highest candidate
error is added to mesh

2. optimal-delete operation: deletes point in
mesh that will cause least increase in
squared error

Bad-Point Replacement (BPR)

◮ propose postprocessing step to be applied af-
ter mesh generation called bad-point replace-
ment (BPR)

◮ point in mesh said to be bad if its deletion from
mesh would not cause approximation error to
increase

◮ BPR scheme removes bad points from mesh,
substituting new points in their place

◮ in more detail, consists of following steps:
1. while point p that would be deleted by

next optimal-delete operation is bad, perform
optimal-delete operation, and mark p as per-
manently removed from mesh; if no points
deleted in this step, stop

2. perform n optimal-add operations, where n

is number of points deleted in step 1
3. go to step 1

IDDT Mesh-Generation Method

◮ IDDT mesh-generation method based on
framework from above

◮ by using both optimal-add and optimal-delete
operations, number of mesh points increased
until target number N of points is reached

◮ finally, BPR scheme employed to remove any
bad points

◮ in more detail, consists of following steps:
1. let n = N − |P| (where P is set of points cur-

rently in mesh); if n 6 0, go to step 5
2. perform n optimal-add operations
3. perform ⌊n/2⌋ optimal-delete operations
4. go to step 1
5. apply BPR method to mesh

IDDT PSNR Performance Evaluation

◮ to evaluate PSNR performance of IDDT
scheme, compare to error diffusion (ED)
method of Yang et al. [3] and modified
Garland-Heckbert (MGH) method [1] inspired
by [2]

Samp.
Density PSNR (dB)

Image (%) ED MGH IDDT
bull 0.25 20.59 35.29 37.56

0.50 25.89 38.76 40.48
1.00 33.34 41.07 42.46
2.00 37.56 43.07 44.38

peppers 0.50 16.03 24.68 26.50
1.00 21.35 27.53 29.15
2.00 26.09 29.85 31.31
3.00 28.17 31.13 32.45

◮ IDDT method outperforms ED and MGH
schemes by about 4.28 to 16.97 dB and 1.31
to 2.27 dB, respectively

IDDT Subjective Performance Evaluation:
bull Image, Sampling Density 0.25%

Original (1024 × 768)

ED
(20.59 dB)

MGH
(35.29 dB)

IDDT
(37.53 dB)

◮ clearly, IDDT method yields image reconstruc-
tions with better subjective quality than those
obtained with ED and MGH schemes

BPR Performance Evaluation

Samp. PSNR (dB)
Density ED MGH

Image (%) ED with BPR MGH with BPR
bull 0.25 20.59 36.44 35.29 36.55

0.50 25.89 40.15 38.76 40.13
1.00 33.34 42.21 41.07 42.09
2.00 37.56 44.06 43.07 43.97

peppers 0.50 16.03 25.59 24.68 25.66
1.00 21.35 28.78 27.53 28.38
2.00 26.09 31.09 29.85 30.76
3.00 28.17 32.19 31.13 31.89

◮ using BPR as postprocessing step with
each of ED and MGH methods improves
mesh quality by 4.02 to 15.85 dB and 0.76
to 1.37 dB, respectively

Conclusions

◮ proposed IDDT method for mesh genera-
tion yields superior meshes relative to other
schemes, as demonstrated by experimental
results

◮ BPR scheme, used in IDDT method, can also
be used to optimize meshes produced by
other mesh-generation methods
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