
TWO FAMILIES OF SYMMETRY-PRESERVING REVERSIBLE INTEGER-TO-INTEGER
WAVELET TRANSFORMS

Michael D. Adams and Rabab Ward
Dept. of Elec. and Comp. Eng., University of British Columbia, 2356 Main Mall, Vancouver, BC, Canada V6T 1Z4

mdadams@ieee.org and rababw@ece.ubc.ca

ABSTRACT
Two families of symmetry-preserving reversible integer-to-integer
wavelet transforms are introduced. Briefly, we explain how trans-
forms from these families can be used in conjunction with sym-
metric extension in order to handle signals of arbitrary length in a
nonexpansive manner (which is often a desirable attribute in sig-
nal coding applications). The characteristics of the two transform
families and their constituent transforms are then studied. For the
more constrained of the two families, we identify precisely which
transforms belong to the family (by specifying properties and con-
ditions for membership). Such results might be exploited in the fil-
ter bank design process in order to find new symmetry-preserving
reversible integer-to-integer wavelet transforms for signal coding
applications.

1. INTRODUCTION

Lifting-based reversible integer-to-integer wavelet transforms [1,
2] have become a popular tool in signal coding applications. In
such applications, however, it is often desirable to employ trans-
forms that preserve symmetry. For example, symmetry-preserving
transforms have the advantage of being compatible with symmet-
ric extension techniques, allowing signals of arbitrary length to be
handled in a nonexpansive manner [3]. (As a matter of terminol-
ogy, a transform is said to be nonexpansive if its application to a
signal of length

�
always yields a result that can be completely

characterized by no more than
�

transform coefficients.) Fortu-
nately, using the lifting scheme, one can construct transforms that
are not only reversible and integer to integer, but also symmetry
preserving (and nonexpansive).

In this paper, we introduce two families of symmetry-preserving
reversible integer-to-integer wavelet transforms. Then, we proceed
to study the characteristics of these families and their constituent
transforms. In the case of the more constrained family, several in-
teresting results are presented, which provide new insights into the
transforms belonging to this family.

2. NOTATION AND OTHER PRELIMINARIES

Before proceeding further, a short digression concerning the nota-
tion used in this paper is appropriate. The symbols � and � denote
the sets of integer and real numbers, respectively. Matrix and vec-
tor quantities are indicated using bold type. The symbols � and �
denote the identity and anti-identity matrices, respectively. In the
case of matrix multiplication, we define the product operator as����
	��� ����  �  �����������  ��� �  �
for

�����
. (One should note the order in which the matrix fac-

tors are multiplied above, since matrix multiplication is not com-
mutative.) In the case that

�����
, we define the product opera-

tor notation to denote an “empty” product (i.e., the multiplicative
identity, � ).
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For a Laurent polynomial �! #"%$ , we denote the degree of �! #"%$
as &('�)*�! #"%$ , and define this quantity as follows. In the case that�! #"+$ has the form �! #"+$ �-, ��
	.��/ � " � � where

�����
, / �10�2

, and / � 0� 2
(i.e., �! #"+$ 03 2

), &('�)*�! #"%$ �� �546�
. In the

case of the zero polynomial, we define &('�) 2 �� 487
. Thus,

for any two Laurent polynomials, 9: #"%$ and ;< #"%$ , we have that&('�)= #9: #"%$>;< #"%$?$ � &@'�)*9: #"+$�AB&@'C)D;< #"%$ .
For EGF�� , the notation HIE�J denotes the largest integer not

more than E (i.e., the floor function), and the notation KIEML denotes
the smallest integer not less than E (i.e., the ceiling function). The
truncation, rounding-away-from-zero (RAFZ), and NPOQ& functions
are defined, respectively, asR?SUTWVWX E ��-Y HZEMJ for E � 2KZEML for E � 2P[S]\_^Z` E ��aY KIE�L for E � 2HIE�J for E � 2 [ and

NPOQ&b dc [?e $ �� c 4 e HIcgf e J [ where EhF<� and c [ie Fj�Dk
A rounding operator l is said to be integer-shift invariant ifl< dEmAhcb$ � lP dEn$.Aoc for all EoFp� and all cjFq�rk
Similarly, a rounding operator l is said to be odd ifl< dEs$ � 4 lP 4 En$ for all EhFm�tk
One can show that a rounding operator cannot be both odd and
integer-shift invariant [4]. In passing, we note that the floor and
ceiling functions are integer-shift invariant (but not odd), while
the

R?SUTWV@X
and

S]\_^Z`
functions are odd (but not integer-shift invari-

ant). All rounding operators considered in this paper are tacitly
assumed to be memoryless, time invariant, and leave integer val-
ues unchanged. Any (reasonable) rounding operator will preserve
signal symmetry (but not necessarily signal antisymmetry), while
any odd rounding operator will preserve both signal symmetry and
antisymmetry.

3. TRANSFORM FAMILIES

In this paper, we consider two families of symmetry-preserving
reversible integer-to-integer wavelet transforms. Both are derived
from the lifting-based parameterizations of linear-phase filter banks
presented in [5], and have the general form shown in Fig. 1. In
the figure, the u_lwv+x are rounding operators, and the analysis and
synthesis polyphase filtering networks each consist of y{z lifting
step filters u|9}v+x . As we will demonstrate, by choosing the lift-
ing step filters u_9}v{x wisely, one can construct filter banks that not
only yield symmetric/antisymmetric subband signals (i.e., e+~{� �b�
and e � � �b� ) for an appropriately chosen input signal (i.e., c � �g� ), but
also yield intermediate signals (i.e., u|��v � �g� x , u��+v � �b� x ) that are all
or mostly symmetric/antisymmetric.

The first family of reversible integer-to-integer wavelet trans-
forms is associated with a linear-phase filter bank having odd-
length analysis/synthesis filters, and has been described in [5].
For convenience, we will refer to this as the odd-length analy-
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Fig. 1. Lifting-based realization of reversible integer-to-integer
wavelet transform. (a) Analysis filter bank and (b) synthesis filter
bank.

sis/synthesis filter (OLASF) parameterization. In this case, the
lifting step filters are chosen to have transfer functions of the form:

9}v( #"+$ �76 ,98;:,< ��=?>A@5=�Z	 ~ B v	C �  #" � � A " �Z� � $ for even D,98;: < ��=?>A@5=�Z	 ~ B v	C �  #" � � ��� AB" � $ for odd D (1)

for D � 2 ['E{[ kCk�k [ y z 4 E , where the uGFDv%x are all even integers.
Without loss of generality, we assume that none of the u|9tv( #"%$Ux =?H%��=v 	 �
are identically zero. That is, only 9 ~  #"%$ and 9 =?H+���  #"%$ may be
identically zero. The u_lwv+x =?H+���v 	 ~ are chosen to be any arbitrary
rounding operators (e.g., the floor, ceiling,

S]\|^I`
, or

R?SUT@VWX
func-

tions).
The second family of reversible integer-to-integer wavelet trans-

forms is associated with a linear-phase filter bank having even-
length analysis/synthesis filters, and has been described in [5].
For convenience, we will refer to this as the even-length analy-
sis/synthesis filter (ELASF) parameterization. In this case, the lift-
ing step filters are chosen to have transfer functions of the form:

9}v% #"%$ �JIK L 4 E for D � 2�= ANM9 �  #"%$ for D � EM9}v% #"%$ for D � y (2)

for D � 2 ['E [ k�k�k [ y{z 4 E , whereM9}vQ #"%$ � ,O8P: < ���Q>R@5=�
	 � MB vGC �  #" � � 4 " � $ [z � E , and the uGFDv%x are all odd integers. Without loss of general-
ity, we assume that none of the u M9}vQ #"%$Ux =?H+�S=v 	 = are identically zero.
That is, only M9 �  #"%$ and M9 =?H+���  #"%$ may be identically zero. The
operator l ~ is simply the identity (since the output of the filter9 ~ is always an integer), and the rounding operator l � is cho-
sen to be integer-shift invariant (e.g., the floor or ceiling function).
The remaining rounding operators u_l:v+x =?H%�.�v 	 = are chosen to be odd
(e.g., the

R?SUTWV@X
or
S]\|^I`

function) for even D and chosen arbitrarily
for odd D . (We note that, in the case of transform families with
a similar structure, it is commonly suggested that the u_l:v+x must

be chosen as odd functions for all D � y (e.g., as in [6]). Such a
choice, however, is overly restrictive.)

4. TRANSFORMS AND SYMMETRIC EXTENSION

In the previous section, we introduced the OLASF and ELASF
families of reversible integer-to-integer wavelet transforms. Now,
we briefly explain how transforms from these two families can be
used with symmetric extension in order to handle signals of arbi-
trary length in a nonexpansive manner.

Consider a filter bank of the form shown in Fig. 1 that is con-
strained to be of the OLASF type. Suppose that we are given a
signal Mc � �g� defined for � � 2 ['E{[ kCk�k [ � 4 E . We then choose c � �g� ,
the input to the analysis filter bank, as the following infinite-length
signal which is a symmetric extension of Mc � �g� :c � �g� � Mc � NUT V  dNPOQ&b �n[ y � 4 y $ [ y � 4 y 4 NPOQ&. �s[ y � 4 y{$?$ �
(i.e., c � �g� is defined such that c � �g� � c � � A y � 4 y � and c � �b� �c � 4 �g� ). With this choice of extension, one can show (e.g., as
in [7]) that the u���v � �g� x =?H+���v 	 ~ and e ~ � �g� are all  � 4 E $ -periodic
and symmetric about

2
and

� �.�= . Likewise, the u|�+v � �g� x =?H+���v 	 ~
and e � � �g� are all  � 4 E $ -periodic and symmetric about

4 �= and���S== . As a result, the u|� v � �g� x =?H+���v 	 ~ and e ~ � �g� are completely
characterized by their samples at indices

2 [#E [ k�k�k [ H � ���= J , and theu��+v � �b� x =?H%�.�v 	 ~ and e � � �g� are completely characterized by their sam-
ples at indices

2 ['E{[ kCk�k [ H � ��== J . Consequently, for even
�

, we
require

� = samples to represent each of e%~+� �g� and e � � �g� , and for
odd

�
, we need

� � �= samples to represent e ~ � �g� and
� �.�= sam-

ples to represent e � � �g� . In either case, a total of
�

samples is
required, and the resulting transform is, therefore, nonexpansive.

Consider a filter bank of the form shown in Fig. 1 that is con-
strained to be of the ELASF type. Suppose that we are given a
signal Mc � �g� defined for � � 2 ['E{[ kCk�k [ � 4 E . We then choose c � �g� ,
the input to the analysis filter bank, as the following infinite-length
signal which is a symmetric extension of Mc � �g� :c � �g� � Mc � NUT V  dNPOQ&b �s[ y � $ [ y � 4 E 4 NPOQ&� �s[ y � $?$ �
(i.e., c � �b� is defined such that c � �b� � c � � A y � � and c � �g� �c � 4 E 4 �g� ). With this choice of extension, one can show (e.g., as
in [7]) that the u|� v � �g� x =?H%�.�v 	 = and e ~ � �b� are

�
-periodic and sym-

metric with symmetry centers
4 �= and

� �.�= , and the u��+v � �g� x =?H+����
	 �
and e � � �b� are

�
-periodic and antisymmetric with the same sym-

metry centers. As a result, the u|�bv � �b� x =?H%�.�v 	 = and e ~ � �g� are com-
pletely characterized by their samples at indices

2 [#E{[ k�k�k [ H �����= J
and the u|�{v � �g� x =?H%�.�v 	 � and e � � �b� are completely characterized by
their samples at indices

2 ['E{[ kCk�k [ H � ��== J . Consequently, for even�
, we require

� = samples to represent each of e+~{� �g� and e � � �g� , and
for odd

�
, we require

� � �= samples to represent e%~ � �g� and
�����=

samples to represent e � � �g� . In either case, regardless of the parity
of
�

, a total of
�

samples is required, and the resulting transform
is, therefore, nonexpansive.

5. OLASF FAMILY

Any perfect-reconstruction (PR) linear-phase FIR (2-channel) fil-
ter bank with odd-length analysis/synthesis filters has a correspond-
ing OLASF parameterization, provided that the analysis and syn-
thesis filters are normalized appropriately (via a scaling and shift
of their impulse responses). (For example, the lowpass and high-
pass analysis filters must have impulse responses centered about2

and
4 E , respectively.) The proof is constructive by a matrix

Euclidean algorithm (e.g., by using an algorithm based on that de-
scribed in [8]).



6. ELASF FAMILY

Only a subset of all PR linear-phase FIR (2-channel) filter banks
with even-length analysis/synthesis filters have corresponding ELASF
parameterizations. Moreover, this subset is quite small, as there are
many such filter banks that cannot be realized in this way. In what
follows, we examine some of the characteristics of transforms in
the ELASF family, and in so doing, demonstrate some of the rea-
sons for the incompleteness of this parameterization.

6.1. Transform Properties

Consider the linear version of a filter bank of the form shown in
Fig. 1(a) that is constrained to be of the ELASF type as defined
by (2). (By “linear version”, we mean the filter bank obtained by
simply setting all of the u|l v x equal to the identity.) Let us de-
note the corresponding lowpass and highpass analysis filter trans-
fer functions as � ~  #"%$ and � �  #"+$ , respectively. Further, we define
the transfer matrix for part of the polyphase filtering network as
follows:�  #"%$ ������ ��� � 8	� > � ��� � 8	� >� � � � 8	� > � � � � 8	� >�
 (3)

�� H+����
v 	 � � ���� � <�� � 8�� >~ � 
 � � ~�� � < 8	� >.� 
�� � � �� � 8	� >~ � 


Using noble identities and straightforward algebraic manipulation,
we can show��� � 8	� >� � 8	� >�
 � �  #" = $ � � �=~ � 
�� � ~���n���n� �� � � �  #" = $ � �= 8	� � �Q>� ��� 

For convenience, can rewrite the preceding equation as follows:� ~  #"%$ � �=  #"8A E $>� ~ C ~  #" = $�A  #" 4 E $>� ~ C �  #" = $ (4a)� �  #"%$ �  #" 4 E $>� � C �  #" = $�A �=  #" A E $>� � C ~  #" = $ (4b)

A detailed analysis of (3) reveals that
�  #"+$ has the following im-

portant properties:

1. � ~ C ~  #"%$ and � � C �  #"%$ both have coefficient sequences that
are symmetric about

2
;

2. � ~ C �  #"%$ and � � C ~  #"%$ both have coefficient sequences that
are antisymmetric about

2
;

3. For � � 2 ['E and � � 2 [#E , &('�)*� � C �  #"%$ is even, except when� � C �  #"%$ 3 2
; &@'C)D� ~ C ~  #"%$ � 2 and &@'�)*� � C �  #"%$ � 2 .

4. If at least one of the u M9 v@ #"%$Ux is not identically zero, we
have that either: &('�)*� ~ C ~  #"%$! 6&('�)*� ~ C �  #"%$ and &@'C)D� � C ~  #"%$! &('�)D� � C �  #"%$ ; or &@'�)D� ~ C ~  #"%$ � &@'�)*� ~ C �  #"+$ and &('�)*� � C ~  #"%$ �&('�)D� � C �  #"%$ ;

5. &('�)D� ~ C ~  #"%$ 0� &('�)*� ~ C �  #"%$ , &@'C)D� � C ~  #"%$ 0� &('�)D� � C �  #"%$ ,&('�)D� ~ C ~  #"%$ 0� &@'�)*� � C ~  #"%$ , and &('�)*� ~ C �  #"%$ 0� &@'�)*� � C �  #"%$ ;
6. � ~ C ~  E $ � E and � � C �  E $ � E .

The above properties will be used extensively in what follows. To
begin, however, we will examine the form of � ~  #"%$ and � �  #"%$ , in
light of the above properties.

For convenience, let us denote the first and second terms in
the expression for � ~  #"%$ in (4a) as ;< #"%$ and "� #"%$ , respectively.

That is, we define ;< #"%$ �� �=  #"tA E $>� ~ C ~  #" = $ and "� #"%$ ��  #" 4E $>� ~ C �  #" = $ . Due to the form of � ~ C ~  #" = $ (which is implied by
property 1 of

�  #"%$ ), ;m #"%$ has a coefficient sequence # � �b� that is
symmetric about

4 �= with adjacent pairs of samples being equal
in value (i.e., # � y �g� � # � y � 4 EC� ). Likewise, due to the form of� ~ C �  #" = $ (which is implied by property 2 of

�  #"%$ ), "� #"%$ has a co-
efficient sequence $ � �g� that is symmetric about

4 �= with adjacent
pairs of samples being equal in magnitude but opposite in sign
(i.e., $ � y �g� � 4 $ � y � 4 E � ). Suppose that � ~ C �  #"%$ 03 2

. In this

case, from properties 3 and 5 of
�  #"%$ , we know that &('�)D� ~ C ~  #" = $

and &('�)D� ~ C �  #" = $ must differ by a nonzero integer multiple of 4.
Since � ~  #"+$ � ;< #"%$MA%"� #"%$ , � ~  #"+$ must have a coefficient se-
quence that is symmetric about

4 �= and begins and ends with pairs
of coefficients that are either equal or equal in magnitude but op-
posite in sign. In the degenerate case, in which � ~ C �  #"+$ 3 2

, we
simply have � ~  #"%$ � �=  #" A E $ . By considering the degrees of;< #"%$ and "� #"+$ , we can also see that&('�)!� ~  #"%$ � E ABysN \�&  #&('�)�� ~ C ~  #"%$ [ &('�)*� ~ C �  #"%$?$ (5)
Since, by property 3 of

�  #"%$ , &('�)D� ~ C ~  #"%$ is always even and&('�)*� ~ C �  #"%$ is even (except when � ~ C �  #"%$ 3 2
), we have that&('�)'� ~  #"%$ is odd. Thus, as had been suggested earlier, � ~ is an

even-length filter.
For convenience, let us denote the first and second terms in

the expression for � �  #"%$ in (4b) as ;m #"+$ and "� #"%$ , respectively.

That is, we define ;m #"+$ ��  #" 4 E $>� � C �  #" = $ and "� #"%$ �� �=  #"}AE $>� � C ~  #" = $ . Due to the form of � � C �  #" = $ (which is implied by
property 1 of

�  #"+$ ), ;< #"%$ has a coefficient sequence # � �g� that
is antisymmetric about

4 �= with adjacent pairs of samples being
equal in magnitude but opposite in sign (i.e., # � y �b� � 4 # � y � 4 EC� ).
Likewise, due to the form of � � C ~  #" = $ (which is implied by prop-
erty 2 of

�  #"%$ ), "� #"%$ has a coefficient sequence $ � �g� that is an-
tisymmetric about

4 �= with adjacent pairs of samples being equal
(i.e., $ � y �g� � $ � y � 4 E � ). Suppose that � � C ~  #"+$ 03 2

. In this case,
from properties 3 and 5 of

�  #"%$ , we know that &@'C)D� � C �  #" = $ and&('�)*� � C ~  #" = $ must differ by a nonzero integer multiple of 4. Since� �  #"%$ � ;m #"+$MA("� #"%$ , � �  #"%$ must have a coefficient sequence
that is antisymmetric about

4 �= and begins and ends with pairs of
coefficients that are either equal or equal in magnitude but oppo-
site in sign. In the degenerate case, in which � � C ~  #"%$ 3 2

, we
simply have � �  #"%$ � " 4 E . By examining the degrees of ;m #"%$
and "� #"%$ , we can see that&('�)!� �  #"%$ � E ABysN \�&  #&('�)�� � C �  #"%$ [ &('�)*� � C ~  #"%$?$ (6)
Since, by property 3 of

�  #"%$ , &('�)D� � C �  #"%$ is always even and&('�)*� � C ~  #"%$ is even (except when � � C ~  #"%$ 3 2
), we have that&('�)'� �  #"%$ is odd. Thus, as had been suggested earlier, � � is an

even-length filter.
The above results are significant as they show that � ~  #"%$ and� �  #"%$ both have a highly structured form (i.e., their coefficient

sequences are each the sum of two highly structured sequences).
Examining the expression for &('�)'� ~  #"+$ and &('�))� �  #"%$ , we can
make one further observation regarding the analysis filters. That
is, except in the degenerate case in which all of the u M9 v( #"%$Ux are
identically zero, the analysis filters cannot have the same length.
To see why this is so, we proceed as below.

Since, by assumption, at least one of the u M9}v( #"+$Ux is not iden-
tically zero, property 4 of

�  #"+$ implies that two cases are possible:
1) &('�)*� ~ C ~  #"%$! &@'�)*� ~ C �  #"+$ and &@'C)D� � C ~  #"%$! 6&('�)*� � C �  #"%$ ; or
2) &@'�)*� ~ C ~  #"+$ � &('�)*� ~ C �  #"%$ and &('�)D� � C ~  #"%$ � &@'�)*� � C �  #"+$ .
In the first case, we have from (5) and (6) that &@'�)!� ~  #"%$ �E Awys&@'�)*� ~ C ~  #"+$ and &('�)!� �  #"%$ � E A:ys&@'C)D� � C ~  #"%$ . From prop-
erty 5 of �! #"%$ , however, we know that &('�)*� ~ C ~  #"%$ 0� &@'C)r� � C ~  #"+$ .
Therefore, &('�)!� ~  #"+$ 0� &('�)!� �  #"%$ . In the second case, we have
from (5) and (6) that &@'C)!� ~  #"%$ � E Atyn&@'�)*� ~ C �  #"+$ and &('�)'� �  #"%$ �E A�yn&@'�)*� � C �  #"%$ . From property 5 of

�  #"%$ , however, we know
that &('�)D� ~ C �  #"%$ 0� &@'�)*� � C �  #"%$ . Therefore, &('�))� ~  #"%$ 0� &@'C)!� �  #"%$ .
By combining the results for the above two cases, we have that&('�)'� ~  #"%$ 0� &('�)'� �  #"%$ , except in the degenerate case in which
all of the u M9}vQ #"%$Ux are identically zero. Consequently, the analysis
filters cannot have the same lengths, except in this degenerate case.

In order to belong to the ELASF family, a transform must have
analysis filters of the form described above. Obviously, the close
relationship between pairs of samples in the analysis filter impulse
responses is quite constraining. For this reason, the ELASF family



cannot be a complete parameterization of all PR linear-phase FIR
(2-channel) filter banks with even-length filters. Furthermore, an
even more basic reason exists for this lack of completeness. As
noted above, the analysis filters cannot be of equal length, except
in the degenerate case in which all of the u M9 v  #"%$Ux are identically
zero.

Consider now the DC and Nyquist gains of the analysis filters,� ~ and � � . From property 2 of
�  #"+$ , we know that � ~ C �  #"%$ and� � C ~  #"%$ both have antisymmetric coefficient sequences, and con-

sequently,� ~ C �  #" = $�� � 	�� � � 2 and � � C ~  #" = $�� � 	�� � � 2 k (7)
From property 6 of

�  #"%$ , we have that � ~ C ~  E $ � E and � � C �  E $ �E , and consequently,� ~ C ~  #" = $�� � 	�� � � E and � � C �  #" = $�� � 	�� � � E k (8)
Using (7) and (8), we can deduce from (4) that� ~  E $ � E [ � ~  4 E $ � 2 [� �  4 E $ � 4 y [ � �  E $ � 2 k
Thus, for any transform in the ELASF family, the associated low-
pass analysis filter must have DC and Nyquist gains of E and

2
, re-

spectively, while the associated highpass analysis filter must have
Nyquist and DC gains of y and

2
, respectively. This result is of

practical interest, since it is often desirable for a reversible integer-
to-integer wavelet transform to have a corresponding lowpass anal-
ysis filter with a DC gain of 1 (which typically results in a trans-
form with good dynamic range properties).

6.2. Swapping Analysis and Synthesis Filters

Assume that we have a filter bank from the ELASF family. Sup-
pose now that we swap the analysis and synthesis filters, allowing
the filters to be renormalized in the process. This renormaliza-
tion can always be performed in such a way that the resulting filter
bank also belongs to the ELASF family. (To date, this fact seems
to have been overlooked (e.g., as in [6]).) In what follows, we now
prove our above assertion regarding the exchange of analysis and
synthesis filters.

Consider the linear version of a filter bank of the form shown
in Fig. 1 that is constrained to be of the ELASF type as defined
by (2). Let us denote the analysis filter transfer functions as � ~  #"%$
and � �  #"%$ and the corresponding synthesis filter transfer functions
as � ~  #"%$ and � �  #"+$ . From the diagram, we can see that the analy-
sis polyphase matrix, �: #"%$ , is given by

�w #"%$ ��� � H+���v 	 � � � �� � <�� � 8	� >~ � 
 � � ~�� � <�8�� >�� 
	� � � �� � 8	� >~ � 
 (9)� � �=~ � 
 � � ~���n� �
Suppose that we now construct a new filter bank with the analysis
filters ��
~  #"+$ and ��
�  #"%$ where ��
~  #"%$ � E ~ "	� ~  #"+$ and ��
�  #"%$ �E � "	� �  #"+$ . In other words, the new analysis filters are chosen to
be renormalized versions of the synthesis filters from the original
filter bank. Further assume that we continue to employ the same
polyphase representation for the new filter bank. Let us denote the
new analysis polyphase matrix as � 
  #"+$ . From the definition of
the polyphase representation, we can show

� 
  #"%$ � �� � ~~ � � ��� � ���  #"%$����}� (10)

Substituting (9) in (10), we obtain

� 
  #"+$ � �� � ~~ � � � � � H%�.�v 	 ~ � � ~� �� � <�� � 8	� >.� 
 � �n� �� � <�8	� >~ � 
�� (11)� � ~� �� � 8	� >�� 
 � � ~� �= � 
 � �*�~ � � �
Suppose now that we choose E ~ � �= and E � � 4 y . In this case,

we can rewrite (11) as follows:

� 
  #"+$ � � �= ~~ �S= 
 � � H+���v 	 � � � ~� �� � <�� � 8	� >�� 
 � �n� �� � < 8	� >~ � 
��� � ~� �� � 8	� >�� 
 � � ~� �= � 
 � ���~ � � �� � �= ~~ �S= 
 � � H+���v 	 � � � ~� �� � <�� � 8	� >�� 
 � �n� �� � < 8	� >~ � 
��� � ~� �� � 8	� >�� 
 � = ~~ � �= 
 � � �=~ � 
 � � ~����� �� � � H+���v 	 � � � ~� �� � <�� � 8	� >b� 
 � � �� �� � < 8	� >~ � 
�� � � ~� �� � 8	� >�� 
� � �=~ � 
 � � ~���n� �
Thus, the new analysis polyphase matrix, � 
  #"%$ , has the same gen-
eral form as the original one. In other words, the new filter bank
also has a symmetry-preserving reversible integer-to-integer im-
plementation (which belongs to the ELASF family). The above re-
sult is practically useful, since, in some cases, the “transposed” fil-
ter bank (i.e., the one with the analysis and synthesis filters swapped)
may also be effective for coding purposes.

7. CONCLUSIONS

Two families of symmetry-preserving reversible integer-to-integer
wavelet transforms were introduced (i.e., the OLASF and ELASF
families), and we explained how transforms from these families
can be used in conjunction with symmetric extension in order to
handle signals of arbitrary length in a nonexpansive manner. The
characteristics of the two transform families and their constituent
transforms were then studied. For the more constrained of the two
families, we characterized the transforms belonging to this fam-
ily. That is, we showed that: 1) such transforms are associated
with analysis filters having transfer functions of a highly struc-
tured form; 2) the DC and Nyquist gains of the analysis filters are
fixed, independent of the choice of lifting step filters; and 3) if a
particular filter bank is associated with a transform in the ELASF
family, then so too is its “transposed” version. By better under-
standing the characteristics of this family of transforms, one can
hope to better utilize this family in signal coding applications.
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