A Novel Fully Progressive Lossy-to-Lossless Coder for Arbitrarily-Connected Triangle-Mesh Models of Images and Other Bivariate Functions

Jiacheng Guo

University of Victoria

jiacheng@uvic.com

August 2, 2018

Overview

1

Introduction and Background

- Mesh Modeling of Bivariate Function
- Mesh Coding
- Background

Proposed Mesh-Coding Method

- Bivariate-Function Description (BFD) Tree
- Encoding Algorithm
- Decoding Algorithm

3 Evaluation

- Test Data
- Evaluation of Proposed Mesh Coding Method
- Evaluation of the Mesh-based Image Coding System

Conclusion

Mesh Modeling of Bivariate Function

- one class of representation for bivariate functions
- constructed using a triangulation
- information in mesh
 - geometry information
 - connectivity information
 - function value information
- 2.5-D vs 3-D
- usually very large, compression needed

• 2.5-D vs 3-D mesh coding method

- 2.5-D meshes more constrained
- 3-D mesh coder far from ideal
- progressive coding
 - no need to wait for entire bitstream
 - more bitstream received, better approximations obtained
- motivation
 - 3-D mesh coding methods: inefficient
 - 2.5-D mesh coding methods: cannot code meshes with arbitrary connectivity
 - objectives: 2.5-D mesh coder; progressive; and arbitrary connectivity.

Triangulation

Triangulation

(Triangulation) A triangulation T of the set P of points in \mathbb{R}^2 is a set T of non-degenerate triangles that satisfies the following conditions:

- the union of all triangles in T is the convex hull of P;
- 2 the set of the vertices in all triangles of T is P; and
- Ithe interiors of any two triangles faces in T do not intersect.

(a)

Coding Triangulation with Arbitrary Connectivity I

- naive way: code information of all edges
 - inefficient
- solution:
 - given a triangulation T of a set P of points
 - compute a triangulation T_1 of certain connectivity (preferred Delaunay triangulation)
 - find difference between T and T_1 , set E as constrained edges
 - arbitrary connectivity to triangulation with edge-constraint

Coding Triangulation with Arbitrary Connectivity II

- E is minimal set such that CPDT(P, E) has same connectivity as T
- E normally less than 25%, can not exceed 50%

Bivariate-Function Description (BFD) Tree I

- captures all of information needed to characterize a 2.5-D mesh dataset
- a cell is a rectangle region might or might not contain one or more sample points
- a cell is said to be occupied if it contains at least one sample point
- node is present only if its corresponding cell is occupied

Bivariate-Function Description (BFD) Tree II

- geometry information:
 - corresponding cell
 - representation vertex: approximate sample point
- connectivity information:
 - leaf node contains node's set of constraint-connected neighbors
- function value information:
 - approximation coefficient: approximate function value
 - detail coefficient if has two children

Child-configuration and edge-constraint (CCEC) Coding Procedure

Child-configuration coding

- for a given node, CCEC adds any children and grandchildren of this node
- 2 potential children, 4 potential grandchildren
- Information to code:
 - a count *n* of how many grandchildren present
 - which n grandchildren present

Child-configuration and edge-constraint (CCEC) Coding Procedure

Edge-constraint Coding

- vertex split: add two child nodes v_0 and v_1 to node v
- let N denote the set of constraint-connected neighbors of v.
- information to code for each $u \in N$:
 - whether u is connected to both v_0 and v_1
 - if not, which of one of v_0 or v_1 is *u* connected to.
- whether v_0 and v_1 constraint connected

- only need to code detail-coefficient for node has two children
- function value, n-bit unsigned integer
- detail-coefficient, (n + 1)-bit signed integer
- start from most significant magnitude bit
- each time code a magnitude bit, code sign bit after coding first nonzero magnitude bit

- encoding and decoding mostly symmetric
- reconstruct tree progressively based on received information
- when decoding terminated:
 - current leaf nodes represented as their representative vertices
 - edge-constraints generated based on constraint-connected relationships of leaf nodes

Test Data

- meshes generated from a variety of bivariate functions, which include images and elevation map
- 40 PD (preferred Delaunay) meshes and 58 non-PD (non-preferred Delaunay) meshes
- 2.5-D coders: ADIT, IT, and SDC. 3-D coders: Edgebreaker and Wavemesh.

				Fraction of	Unpadded	Bits	
				Non-LPD [†]	Bounding	Per	
Name	V [†]	E [†]	F [†]	Edges (%)	Box	Sample	Туре
kodim15@0.02	7864	23583	15720	20.5	768×512	8	image
lena@0.03	7864	15578	23441	21.0	512×512	8	image
ct@0.01	2621	7840	5220	19.9	512×512	12	image
cr@0.005	17858	53419	35562	19.8	1744×2048	10	image
muttart@0.0025	3637	10858	7222	21.7	1912×761	8	image
question2@0.02	38400	115193	76794	19.8	1200×1600	8	image
checkerboard@0.01	2621	7753	5133	19.1	512×512	8	image
n27@0.0025	3606	10711	7106	13.9	1201×1201	13	EM [†]
n35@0.0025	3606	10715	7110	13.8	1201×1201	12	EM
n49@0.01	14424	43132	28709	13.0	1201×1201	12	EM
animal@0.005	7397	22146	14750	0	1238×1195	8	image
bull@0.02	15728	47073	31346	0	1024×768	8	image
peppers@0.04	10485	31297	20813	0	512×512	8	image
wheel@0.04	3451	10346	6896	0	512×512	8	image
n45@0.01	14424	43036	28613	0	1201×1201	10	EM

	Bit rate (bits/vertex)				
Mesh	Proposed	Edgebreaker	Wavemesh		
n49@0.01	21.30	25.90	34.39		
kodim15@0.02	18.32	21.67	27.71		
lena@0.03	17.92	20.80	25.65		
ct@0.01	22.90	25.52	36.36		
cr@0.005	21.16	24.29	29.02		
n27@0.0025	24.41	28.70	43.00		
n35@0.0025	23.18	26.64	35.52		
question2@0.02	15.42	18.35	23.00		
muttart@0.0025	22.78	31.24	43.74		
checkerboard@0.01	17.10	20.18	23.79		

Table: lossless results for non-PD meshes

• outperforms Edgebreaker by margins of 2.04 to 12.05 bits/vertex

 $\bullet\,$ outperforms Wavemesh by margins of 7.09 to 25.46 bits/vertex

Jiacheng Guo (UVic)

Table: lossless results for PD meshes

	Bit rate (bits/vertex)					
Mesh	Proposed	SDC	IT	ADIT	Edgebreaker	Wavemesh
animal@0.005	14.28	14.25	14.39	14.34	20.00	24.15
bull@0.02	12.79	12.83	12.89	12.84	18.90	19.86
peppers@0.04	13.15	13.18	13.19	13.11	18.94	20.85
wheel@0.04	12.10	11.92	12.16	12.06	19.25	25.67
n45@0.01	15.47	15.75	15.54	15.54	21.30	27.34

ADIT, IT, and SDC can not code meshes with arbitrary connectivity

• comparable to ADIT, IT, and SDC; margin less than 0.1 bits/vertex

		PSNR (dB)				
Mesh	Rate (bytes)	Proposed	SDC	IT	ADIT	Wavemesh
animal@0.05	1000	25.70	15.75	23.31	23.44	12.46
	4000	30.01	19.71	28.42	27.92	19.14
	7000	35.02	22.70	31.10	30.61	24.65
	10000	41.43	29.53	33.13	36.74	27.00
	13000	43.56	38.01	40.49	43.56	33.80
bull@0.02	1100	25.23	13.34	23.52	23.67	15.55
	5600	29.66	18.83	27.57	28.23	24.23
	10100	31.50	22.38	30.19	30.64	27.03
	15600	36.50	25.94	32.52	34.02	30.69
	20600	42.08	30.99	36.28	40.25	34.88
peppers@0.04	1000	21.02	11.62	19.69	19.68	10.58
	4900	24.46	13.02	22.58	23.02	17.51
	8500	26.77	17.77	24.98	25.29	19.18
	12400	32.93	22.66	26.37	30.23	21.75
	16300	34.35	28.11	29.70	34.25	26.02

- outperforms Wavemesh (7.08 to 13.28 dB)
- outperforms SDC (5.55 to 11.90 dB), IT (0.81 to 8.58 dB), ADIT (0 to 4.29 dB)

Evaluation of the Mesh-based Image Coding System

- can be combined with a mesh generator to achieve a mesh-based image coding system
- also depends on performance of mesh generator

Figure: The image coding system consisting of the proposed coding method and a mesh generator

Evaluation of the Mesh-based Image Coding System

	Comp.	PS	NR (dB)
Image	Ratio	Mesh	JPEG 2000
bull	40:1	44.63	45.67
	100:1	42.51	41.20
	200:1	39.41	38.00
	250:1	39.08	37.22
animal	114:1	43.22	42.83
	241:1	41.84	40.28
	435:1	40.47	37.63
	526:1	39.84	35.68
wheel	71:1	∞	39.42
	121:1	52.20	34.22
	200:1	46.98	30.13
	250:1	39.63	28.30

• outperforms JPEG 2000 by average margin of 1.93 dB

• for image wheel: 11.33 to 17.98 dB

Jiacheng Guo (UVic)

Evaluation of the Mesh-based Image Coding System

(a)

(b)

Figure: (a) proposed (39.63 dB) and (b) JPEG 2000 (28.30 dB) methods at compression ratio 250:1.

- outperforms JPEG 2000 for images nearly piecewise smooth
- JPEG 2000: very blurry

- proposed a new progressive lossy-to-lossless coding method for 2.5-D meshes with arbitrary connectivity
- reduced connectivity coding cost by encoding edges not locally PD
- performance of proposed method:
 - outperforms 3-D coders in terms of lossless bit rate
 - outperforms both 2.5-D coders and 3-D coder in terms of progressive coding performance
 - can be combined with a mesh generator to form a mesh-based image coding system
 - mesh-based image coding system outperforms JPEG 2000 for images nearly piecewise smooth

THANK YOU! Q&A

э

3