
Effective Techniques for Generating Delaunay Mesh Models of Single- and

Multi-Component Images

by

Jun Luo

B.Eng., North China University of Technology, 2014

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

c© Jun Luo, 2018

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Effective Techniques for Generating Delaunay Mesh Models of Single- and

Multi-Component Images

by

Jun Luo

B.Eng., North China University of Technology, 2014

Supervisory Committee

Dr. Michael Adams, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member

(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Michael Adams, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member

(Department of Electrical and Computer Engineering)

ABSTRACT

In this thesis, we propose a general computational framework for generating mesh

models of single-component (e.g., grayscale) and multi-component (e.g., RGB color)

images. This framework builds on ideas from the previously-proposed GPRFSED

method for single-component images to produce a framework that can handle im-

ages with any arbitrary number of components. The key ideas embodied in our

framework are Floyd-Steinberg error diffusion and greedy-point removal. Our frame-

work has several free parameters and the effect of the choices of these parameters

is studied. Based on experimentation, we recommend two specific sets of parameter

choices, yielding two highly effective single/multi-component mesh-generation meth-

ods, known as MED and MGPRFS. These two methods make different trade offs

between mesh quality and computational cost. The MGPRFS method is able to pro-

duce high quality meshes at a reasonable computational cost, while the MED method

trades off some mesh quality for a reduction in computational cost relative to the

MGPRFS method.

To evaluate the performance of our proposed methods, we compared them to

three highly-effective previously-proposed single-component mesh generators for both

grayscale and color images. In particular, our evaluation considered the following

previously-proposed methods: the error diffusion (ED) method of Yang et al., the

greedy-point-removal from-subset (GPRFSED) method of Adams, and the greedy-

point removal (GPR) method of Demaret and Iske. Since these methods cannot di-

rectly handle color images, color images were handled through conversion to grayscale

as a preprocessing step, and then as a postprocessing step after mesh generation, the

iv

grayscale sample values in the generated mesh were replaced by their corresponding

color values. These color-capable versions of ED, GPRFSED, and GPR are henceforth

referred to as CED, CGPRFSED, and CGPR, respectively.

Experimental results show that our MGPRFS method yields meshes of higher

quality than the CGPRFSED and GPRFSED methods by up to 7.05 dB and 2.88

dB respectively, with nearly the same computational cost. Moreover, the MGPRFS

method outperforms the CGPR and GPR methods in mesh quality by up to 7.08 dB

and 0.42 dB respectively, with about 5 to 40 times less computational cost. Lastly,

our MED method yields meshes of higher quality than the CED and ED methods by

up to 7.08 and 4.72 dB respectively, where all three of these methods have a similar

computational cost.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures xi

Acknowledgments xv

Dedication xvi

1 Introduction 1

1.1 Mesh Representation of Images . 1

1.2 Historical Perspective . 2

1.3 Overview and Contribution of the Thesis 3

2 Preliminaries 6

2.1 Overview . 6

2.2 Notation and Terminology . 6

2.3 Image Processing . 7

2.4 Geometry Processing . 12

2.5 Mesh Models of Images . 17

2.6 Grid-Point to Face Mapping . 20

2.7 Floyd-Steinberg Error-Diffusion Algorithm 22

2.8 Methods for Generating Mesh Models of Grayscale Images 24

2.8.1 ED Method . 24

2.8.2 GPR Method . 25

vi

2.8.3 GPRFSED Method . 28

3 Proposed Mesh-Generation Methods and Their Development 30

3.1 Overview . 30

3.2 FSED Startup Policy . 31

3.3 Computational Framework for Mesh Generation 33

3.4 Different Modes in the Proposed Framework and Their Relationship

with Some Previous Methods . 40

3.5 Test Data and Experimental Comments 41

3.6 Impact on Different Parameter Choices for the ED-like Mode 42

3.6.1 RGB-Color Case . 42

3.6.2 Grayscale Case . 51

3.7 Impact on Different Parameter Choices for the GPRFSED-like Mode 55

3.7.1 RGB-Color Case . 55

3.7.2 Grayscale Case . 61

3.8 Impact on Different Parameter Choices for the GPR-like Mode 66

3.9 Proposed Methods . 67

4 Evaluation of the Proposed Methods 68

4.1 Mesh Quality . 69

4.2 Computational Complexity . 79

4.3 Memory Complexity . 82

5 Conclusions and Future Research 84

5.1 Conclusions . 84

5.2 Future Work . 85

A Image Datasets 86

B Software User Manual 89

B.1 Introduction . 89

B.2 Software Installation . 89

B.3 File Formats . 90

B.4 Detailed Program Descriptions . 91

B.5 The make_model Program . 91

B.6 The rasterize_model Program . 94

B.7 Examples of Software Usage . 95

vii

Bibliography 96

viii

List of Tables

Table 3.1 Images in the representative data set 41

Table 3.2 Comparison of using the various initial sample-point selection

policies in the ED-like mode for RGB-color images. (a) Average

ranking across the 45 images in the data set. (b) PSNR results

of some representative images. 43

Table 3.3 Comparison of using different startup policies in the ED-like mode

for RGB-color images. (a) Overall results for the change in PSNR

obtained by using the mirroring method compared to the classic

method, where win ratio is the fraction of cases the mirroring

method beats the classic method. (b) PSNR results for some

representative images, where the column diff shows the PSNR

differences in the margin by mirroring beats classic. 49

Table 3.4 Comparison of using different significance functions within the

PSA policy in the ED-like mode. (a) Overall results for the change

in PSNR obtained by using the MMSODD function compared to

the MoL function, where win ratio is the fraction of cases the

MMSODD function beats the MoL function. (b) PSNR results

for some representative images, where the column diff shows the

PSNR differences in the margin by MMSODD beats MoL. . . . 53

Table 3.5 Comparison of using different startup policies in the ED-like mode

for grayscale images. (a) Overall results for the change in PSNR

obtained by using the mirroring method compared to the classic

method, where win ratio is the fraction of cases the mirroring

method beats the classic method. (b) PSNR results for some

representative images, where the column diff shows the PSNR

differences in the margin by mirroring beats classic. 54

ix

Table 3.6 Comparison of using the various initial sample-point selection

policies in GPRFSED-like mode for RGB-color images. (a) Av-

erage ranking across the 45 images in the data set. (b) Some

representative images results. 58

Table 3.7 Comparison of using different startup policies in the GPRFSED-

like mode for RGB-color images. (a) Overall results for the change

in PSNR obtained by using the mirroring method compared to

the classic method, where win ratio is the fraction of cases the

mirroring method beats the classic method. (b) PSNR results

for some representative images, where the column diff shows the

PSNR differences in the margin by mirroring beats classic. . . . 60

Table 3.8 Comparison of using different significance functions within the

PSA policy in the GPRFSED-like mode. (a) Overall results for

the change in PSNR obtained by using the MMSODD function

compared to the MoL function, where win ratio is the fraction

of cases the MMSODD function beats the MoL function. (b)

PSNR results for some representative images, where the column

diff shows the PSNR differences in the margin by MMSODD beats

MoL. 64

Table 3.9 Comparison of using different startup policies in the GPRFSED-

like mode for grayscale images. (a) Overall results for the change

in PSNR obtained by using the mirroring method compared to

the classic method, where win ratio is the fraction of cases the

mirroring method beats the classic method. (b) PSNR results

for some representative images, where the column diff shows the

PSNR differences in the margin by mirroring beats classic. . . . 65

Table 4.1 Ranking of mesh quality obtained with the various mesh-generation

methods for (a) RGB-color and (b) grayscale images 70

Table 4.2 Comparison of mesh quality obtained with the various mesh-

generation methods for (a) RGB-color and (b) grayscale images 71

Table 4.3 Comparison of computational cost obtained with the various meth-

ods for (a) RGB-color and (b) grayscale images 80

Table 4.4 Comparison of the maximum mesh size for the various methods 83

Table A.1 JPEG 2000 images (photographic images) 86

x

Table A.2 USC SIPI miscellaneous images (photographic images) 87

Table A.3 RPI CIPR Canon images (photographic images) 87

Table A.4 Miscellaneous images (computer-generated images) 88

Table A.5 Kodak images (photographic images) 88

Table B.1 Choices of initial generator . 94

Table B.2 Choices of error diffusion strategy (Detail of each strategy can

refer to Section 3.3) . 94

xi

List of Figures

Figure 2.1 (a) A grayscale image and its (b) magnitude of Laplacian. . . . 9

Figure 2.2 (a) A grayscale image and its (b) MMSODD. 10

Figure 2.3 (a) A color image and its (b) magnitude of gradient. 12

Figure 2.4 Examples of (a) convex and (b) nonconvex sets. 13

Figure 2.5 Convex hull example. (a) A set P of points and (b) the convex

hull of P . 13

Figure 2.6 Triangulation example. (a) A set P of points, (b) a triangulation

of P , and (c) another triangulation of P 14

Figure 2.7 Delaunay triangulation example. (a) A set P of points. (b) The

Delaunay triangulation of P . 15

Figure 2.8 Example of the local effect of removing a vertex from the De-

launay triangulation. (a) A Delaunay triangulation of a set of

points, and the vertex p to be removed. (b) The updated Delau-

nay triangulation after removing the vertex p. 16

Figure 2.9 Example of a Delaunay triangulation with at least four cocircular

points. (a) A Delaunay triangulation of a set of points, and

(b) another Delaunay triangulation of the same set of points. . 17

Figure 2.10Mesh model of a single-component (i.e., grayscale) image. (a)

A single-component image, (b) image viewed as a surface, (c)

triangulation of the image domain, (d) resulting triangle mesh

model, and (e) reconstructed image obtained by rasterizing the

mesh model. 19

Figure 2.11Example of the grid-point to face mapping. (a) A triangulation

of a set of points on the rectangular grid, and (b) the mapping

of the grid points to faces of the triangulation. 21

xii

Figure 2.12Example of the sample points selected by using the ED method.

(a) A grayscale image φ and its (b) MMSODD. The resulting

(c) selected sample points, (d) image-domain triangulation, and

(e) reconstructed image (25.83 dB) obtained for φ at a sampling

density of 2%. 26

Figure 2.13Example of the results obtained by using the GPR method. (a)

A grayscale image φ. The resulting (b) image-domain triangula-

tion and (c) reconstructed image (31.80 dB) obtained for φ at a

sampling density of 2%. 28

Figure 2.14Example of the results obtained by using the GPRFSED method.

(a) A grayscale image φ. The resulting (b) image-domain trian-

gulation and (c) reconstructed image (31.86 dB) obtained for φ

at a sampling density of 2%. 29

Figure 3.1 Example of the startup effect in error diffusion. (a) A density

function of an image and (b) the resulting selected sample points

at a sampling density of 1% using the classic FSED algorithm. . 32

Figure 3.2 Example of mirroring a density function. (a) A density function

and its (b) mirrored version. 32

Figure 3.3 Comparison of using the classic and mirroring methods in error

diffusion. (a) A density function of an image. The resulting

selected sample points for the image at a sampling density of 1%

with the (b) classic and (c) mirroring methods. 33

Figure 3.4 Comparison of the PSC and PSD policies in the ED-like mode

for RGB-color images. (a) A color wheel image, showing a rect-

angular region of interest. (b) Region of interest under magni-

fication. The density function used for error diffusion with the

(c) PSC, (d) PSD(Max, D), and (e) PSD(Avg, D) policies; The

image-domain triangulations obtained at a sampling density of

1% by using the (f) PSC (g) PSD(Max, D) and (h) PSD(Avg, D)

policies, and the corresponding reconstructed images (i), (j), and

(k). 46

xiii

Figure 3.5 Comparison of the PSE(D) and PSD(Max, D) policies in the

ED-like mode for RGB-color images. The selected sample points

at a sampling density of 2% by using the (a) PSE(D) and (d)

PSD(Max, D) policy, the corresponding obtained image-domain

triangulations (b) and (e), and the corresponding reconstructed

images (c) (21.99 dB) and (f) (25.56 dB). 48

Figure 3.6 Triangulations obtained for the color bluegirl image at a sampling

density of 1% in the ED-like mode with error diffusion employing

the (a) classic and (b) mirroring methods. 51

Figure 3.7 Effect of varying the initial sampling density on mesh quality

the GPRFSED-like mode for RGB-color images.(a) The kodim23

image with a desired sampling density of 2.0%; and (b) The lena

image with a desired sampling density of 4.0%. 56

Figure 3.8 Effect of varying the initial sampling density on mesh quality

the GPRFSED-like mode for grayscale images.(a) The kodim23

image with a desired sampling density of 2.0%; and (b) The lena

image with a desired sampling density of 4.0%. 62

Figure 3.9 (a) The color lena image. (b) Triangulation obtained at the

sampling density of 2.0% in the GPR-like mode, and (c) the

reconstructed image. 66

Figure 4.1 (a) Part of the RGB cartoon bull image. Triangulations obtained

at a sampling density of 0.5% using the (b) CED, (c) MED,

and (c) CGPRFSED methods, and the reconstructed images ob-

tained using the (e) CED (25.23 dB), (f) MED (26.17 dB), and

(g) CGPRFSED (36.98 dB) methods. 75

Figure 4.2 Part of triangulations obtained for the RGB cartoon bull image

at a sampling density of 0.5% using the (a) MGPRFS, (b) CGPR,

and (c) MGPR methods, and the reconstructed images obtained

using the (d) MGPRFS (39.61 dB), (e) CGPR (36.53 dB), and

(f) MGPR (40.57 dB) methods. 76

Figure 4.3 (a) The grayscale bluegirl image. Triangulations obtained at a

sampling density of 1.0% using the (b) ED and (c) MED meth-

ods, and the reconstructed images obtained using the (d) ED

(22.72 dB) and (e) MED (26.24 dB) methods. 77

xiv

Figure 4.4 Triangulations obtained for grayscale bluegirl image at a sam-

pling density of 0.5% using the (a) GPRFSED, (b) MGPRFS,

and (c) GPR methods, and the corresponding reconstructed im-

ages obtained using the (d) GPRFSED (27.72 dB), (e) MGPRFS

(30.59 dB), and (f) GPR/MGPR (30.97 dB) methods. 78

xv

ACKNOWLEDGMENTS

This thesis would never have been written without the help and support from nu-

merous people. I would like to express my thanks to certain individuals in particular:

To my supervisor Dr. Michael Adams. Thank you for your mentorship, help,

and guidance throughout my graduate studies. Without your mentoring in my

research project coding, result analysis, and academic writing, this thesis would

not have been written. Thank you for your meticulous and earnest teaching in

C++, which really is an asset for my career. Your hard working, your dedication

to research and teaching have motivated me in my studies, and would continue

influencing me in the future. It has been such a pleasure and honor working

with you.

To my course instructors. I would like to express my sincere gratitude to the

course instructors during my graduate studies, Dr. Wu-Sheng Lu, Dr. Sue

Whitesides, Dr. Alexandra Branzan Albu, Dr. Wendy Myrvold, and Dr. Mihai

Sima. Thank you for offering all such interesting lectures. I have learnt a lot

related to image processing, signal processing, data structure and algorithms,

and programming skills, which developed my skills and expand my knowledge.

To my friends and group members Jiacheng Guo, Yue Fang, and some other

members. Thank you for all the help during my studies. I have learnt a lot

from all of you and I am grateful for being in the same research group with you.

To my dearest parents. I would like to thank my dearest parents, Guifeng Shen

and Fangneng Luo. Thank you for your unconditional love, support and trust.

Your encouragement and support have given me the strength to overcome the

difficulties.

xvi

DEDICATION

To my family.

1

Chapter 1

Introduction

1.1 Mesh Representation of Images

Digital images can be represented in various ways. Despite being the most straightfor-

ward and commonly used method for representing images, uniform (i.e., lattice-based)

sampling is far from optimal. Due to the fact that most images are nonstationary,

such sampling inevitably leads to oversampling in some regions and undersampling in

others. This motivates an interest in nonuniform (i.e., content-adaptive) sampling for

image representation. In nonuniform sampling, by intelligently choosing the sample

points based on image content, the number of sample points used for representing the

image can be greatly reduced while still maintaining good fidelity. Moreover, image

representations based on nonuniform sampling can also have the ability to better cap-

ture geometric image structure, such as edges. Nonuniform sampling has shown to

be useful in many applications such as: pattern recognition [1], feature detection [2],

computer vision [3], tomographic reconstruction [4, 5], restoration [6], filtering [7],

interpolation [8], and image/video coding [9–15].

Many approaches to nonuniform sampling have been proposed over the years, and

those based on triangle meshes [16–31] have shown to be particularly efficient, and are

the focus of our work herein. Triangle meshes are well suited to capturing geometric

structure in images (i.e., edges and corners). In a triangle mesh model, every single

triangle with only three sample points can cover a large region of an image, thus,

significantly reducing the number of samples required for representing the image.

Given a triangle mesh model, one can easily obtain the image approximation by

performing linear interpolation over each triangle face.

2

In order to use a triangle mesh model to represent an image, a scheme to select

a good subset of sample points from the original image to form the basis for a mesh

model (of the image) is of particular importance. This is the so called mesh-generation

problem and is of interest in this thesis.

1.2 Historical Perspective

As mentioned before, a great number of mesh-generation methods have been devel-

oped to date [16–31]. Based on how sample points are selected, most of the methods

can be classified into three categories: one-shot methods, mesh-refinement methods

and mesh-simplification methods. The first category of methods determine all sample

points in one shot based on image content, and then construct a triangulation using

the selected sample points [4–6, 17, 30, 31]. Among them, one of the most popular

and effective methods is the error diffusion (ED) scheme proposed by Yang et al. [17],

which employs Floyd-Steinberg error diffusion (FSED) [32] to select sample points

such that their density is approximately proportional to the maximum-magnitude

second-order directional derivative (MMSODD) of the image, and then triangulates

the selected sample points using a Delaunay triangulation. The mesh-refinement and

mesh-simplification methods can normally produce meshes with higher quality, but

require more computational cost. A mesh-refinement scheme normally begins with a

very coarse triangulation (typically with only the extreme convex hull points of the

image domain as the vertices), and then repeatedly adds vertices, until the desired

number of sample points is achieved. Some examples can be found in [16, 27, 29]. In

contrast, a mesh-simplification scheme starts with a refined triangulation (e.g., with

a large number of points on the sampling grid as the vertices), and then repeatedly

removes vertices, until the desired mesh size is reached [21,33]. One typical example

is the greedy point-removal (GPR) method of Demaret and Iske [21], which is capa-

ble of generating meshes with very high quality, but often requires extremely high

computational and memory cost.

In addition to how the sample points are selected, the various mesh-generation

methods can also be classified by how the triangulation connectivity (i.e., how the ver-

tices in the triangulation are connected by edges) is selected. The two most popular

types of triangulation employed in the various mesh-generation methods are Delaunay

triangulations and data-dependent triangulations (DDTs). In the case of Delaunay

triangulations, the vertices are connected such that the interior of each constructed

3

triangle’s circumcircle contains no other vertices. This behavior maximizes the min-

imum interior angle of each triangle in the triangulation, reducing the possibility of

sliver (i.e., long and thin) triangles appearing in the triangulation (which can led to

high approximation error). Consequently, Delaunay triangulations are particularly

favored in approximation applications [34]. The Delaunay triangulation of a set of

points is not guaranteed to be unique if four or more points in the set are cocircular.

In order to ensure the Delaunay triangulation of a set of points is uniquely determined,

the technique of preferred directions [35] can be applied. More examples of mesh-

generation methods using Delaunay triangulations can be found in [16–19,21–23]. In

contrast, with a DDT, the vertices can be connected in an arbitrary manner. Exam-

ples of mesh-generation methods based on DDT include [16,24–26,28,29]. Due to the

flexibility of connectivity offered by DDT, however, achieving good results comes at

the expense of a significantly higher computational cost. Consequently, (preferred-

direction) Delaunay triangulations are often preferred in practice over DDTs.

As mentioned before, many mesh-generation methods have been proposed over the

years, however, most of them are proposed only for single-component (i.e., grayscale)

images, with few (if any) methods for multi-component (e.g., RGB) images. This

brings our interest in developing a mesh-generation framework that is capable of

generating mesh models for multi-component images. In order to develop an efficient

mesh-generation method for multi-component images, it is reasonable to use ideas

from a good method for grayscale images as our starting point. Among the various

mesh-generation methods for grayscale images, the GPRFSED method of Adams [18],

which combines the ideas of the ED method of Yang et al. [17] and the GPR method

of Demaret and Iske [21], has proven to be particularly effective. Experimental results

have shown that the GPRFSED method is capable of generating meshes with quality

comparable to, and in many cases better than, the GPR method, while requiring

substantially less computational and memory cost. Consequently, the GPRFSED

method serves as the foundation of our work in this thesis.

1.3 Overview and Contribution of the Thesis

In this thesis, we modify the grayscale-image mesh-generation method GPRFSED of

Adams and propose a more general computational framework that is capable of gen-

erating mesh models for single- and multi-component images. Using our framework,

we propose two specific mesh-generation methods, known as MED and MGPRFS,

4

which can be seen as improved and extended versions of the ED and GPRFSED

methods, respectively. Our proposed two methods have different tradeoff between

mesh quality and computational cost. Both of them are applicable to images with

an arbitrary number of components. We study and evaluate our proposed mesh-

generation methods by focusing mainly on the two most common cases of single- and

multi-component images, namely, grayscale and RGB-color images. As we will show

later, for both RGB-color and grayscale images, our proposed methods are capable

of generating meshes with higher quality than various other methods, while requir-

ing similar or lower computational and memory costs. In addition, one optimality

algorithm to the startup policy of the classical FSED, called mirroring method, is pro-

posed and employed in our work, and is shown to improve the algorithm by addressing

the startup-effect problem in the algorithm.

The remainder of this thesis is organized as three chapters and two appendixes.

In what follows, we provide an overview of these chapters and appendixes.

In Chapter 2, we provide some background information to facilitate a better un-

derstanding of the work presented in this thesis. First, the notation and terminology

used are introduced. Next, some basic concepts regarding image processing (e.g.,

smoothing filter and gradient operator) and computational geometry (e.g., convex hull

and Delaunay triangulation) are presented. Subsequently, the triangle mesh model

and the mesh-generation problem addressed in this thesis are formally introduced.

In addition, the classical FSED algorithm is introduced. Lastly, we introduce three

well-known grayscale image mesh-generation methods, namely ED [17], GPR [21],

and GPRFSED [18]. Of these, the GPRFSED method of Adams [18], which derives

from the ED [17] and GPR [21] methods, serves as the foundation of our work herein.

In Chapter 3, we present our proposed mesh-generation method for single- and

multi-component images and the process by which the method was developed. First,

we introduce a new startup policy for FSED that will be employed in our work. Then,

we define our general mesh-generation framework for single- and multi-component

images, which has several free parameters and many possible choices are considered

for these parameters. Then, we introduce three modes that our framework can operate

in. We study the effect of parameter choices in each of the three modes in detail, by

exploring in depth the two most common cases of images, namely, RGB-color and

grayscale images. Finally, based on experimental results, we advocate two specific

mesh-generation methods, called MED and MGPRFS respectively, which correspond

to the best set of parameter choices in two of our operation modes. These two methods

5

make different tradeoffs between mesh quality and computational cost, and they are

both applicable to images with an arbitrary number of components.

In Chapter 4, we evaluate the performance of our proposed methods on the mesh

quality and computational cost by comparing with three highly-effective previously-

proposed single-component mesh generators for both grayscale and RGB-color images,

namely ED, GPRFSED, and GPR. Since these three methods cannot directly handle

RGB-color images, RGB-color images are handled through conversion to grayscale

as a preprocessing step, and then as a postprocessing step after mesh generation the

grayscale sample values in the generated mesh are replaced by their corresponding

RGB values. These color-capable versions of ED, GPRFSED, and GPR are henceforth

referred to as CED, CGPRFSED, and CGPR, respectively. Experimental results

show that our MGPRFS method can produce meshes with higher quality than the

CGPRFSED and GPRFSED methods in mesh quality by up to 7.05 dB and 2.88 dB,

where all three of these methods have a similar computational cost. Moreover, our

MGPRFS method is shown to yield meshes of higher quality than the CGPR and

GPR methods by up to 7.05 dB and 0.42 dB, while requiring about 5 to 40 times less

computational cost. Lastly, our MED method is shown to outperform the CED and

ED methods by up to 7.08 dB and 4.72 dB, with nearly the same computational cost.

In Chapter 5, we conclude the thesis by summarizing the key results of our work.

In addition, some recommendations for future research are made.

In Appendix A, we present the test images employed in our work in more detail.

Different images from various standard image test sets are presented.

In Appendix B, we provide an introduction to the software which implements the

mesh-generation framework proposed in this thesis and is used to collect experimental

results. The software is developed by the author of this thesis using C++, consists

of more than 6000 lines of code, and contains many complex data structures and

algorithms. The installation of the software is first presented, followed by introducing

the file formats used. Then, each of the programs are introduced in detail with their

available options. Lastly, some examples of how to use the software are provided.

6

Chapter 2

Preliminaries

2.1 Overview

In this section, we provide some background information that is essential for un-

derstanding the work presented in this thesis. To begin, we introduce the notation

and terminology used in the remainder of this thesis. Then, some basic concepts

from image processing and computational geometry are introduced. After that, the

triangle-mesh models for single- and multi-component images are discussed, followed

by introducing the mesh-generation problem addressed in this thesis in more de-

tail. The chapter concludes with a description of the Floyd-Steinberg error diffusion

(FSED) algorithm and three well-known grayscale-image mesh-generation methods,

namely, ED, GPR, and GPRFSED. Of these, the GPRFSED method, which is de-

rived from the ED and GPR methods, serves as the foundation of our work in this

thesis.

2.2 Notation and Terminology

Before proceeding further, some basic notation and terminology used throughout the

thesis is introduced. The sets of integers and real numbers are denoted as Z and R,

respectively. For a set P , the cardinality of P is denoted as |P |. When presenting

equations and algorithms, the symbol “:=” is used to denote variable assignment. For

two integers a and b, [a..b] = {x ∈ Z : a ≤ x ≤ b}, [a..b) = {x ∈ Z : a ≤ x < b}, and

(a..b) = {x ∈ Z : a < x < b}.

7

2.3 Image Processing

In this section, some basic knowledge relating to smoothing filters and gradient op-

erators employed in our work is introduced.

Binomial Filters. Binomial filters [36] are lowpass filters that approximate Gaussian

filtering [37]. They do not require multipliers and can therefore be implemented

efficiently in programmable hardware. Due to their simplicity and efficiency, binomial

filters are particularly useful for smoothing in image processing applications [38]. The

transfer function Hn of a one-dimensional (1-D) n-th order binomial filter (with zero

phase and unity DC gain) is given by

Hn(z) = z
n−1
2

(
1

2
+

1

2
z−1

)n−1

,

where n is an odd integer. A 2-D binomial filter can be defined as the tensor product

of two 1-D binomial filters. For example, the nonzero coefficients of the impulse

response of a third-order 2-D binomial filter are
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 ,
which is the tensor product of two 1-D third-order binomial filters with the coefficients[

1
4

1
2

1
4

]
. In order to reduce the influence of noise in the input image, a third-

order binomial smoothing filter is found to be particularly effective in our work, and

therefore, is always employed to smooth each image component when computing any

first- or second-order derivatives of the image.

Laplacian. The Laplacian operator is a second-order differential operator for single-

component images. For a function f defined on R2, the Laplacian [39] L(x, y) of f at

(x, y) is given by

L(x, y) =
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y). (2.1)

The second-order derivative operators are computed using the filter with the transfer

function z−2+z−1. Edges of the image can be obtained by thresholding |L| (i.e., the

magnitude of L at each point). The magnitude of Laplacian has the property that it

yields a double response to image edges, with the maxima being attained along the

8

two sides of an image edge. An example of a grayscale image and its magnitude of

Laplacian are provided in Figures 2.1(a) and (b), respectively.

MMSODD. The maximum-magnitude second-order directional derivative (MMSODD) [17]

is a quantity of interest for single-component (i.e., grayscale) images. For a function

f defined on R2, the MMSODD d̃(x, y) of f at (x, y) is given by

d̃(x, y) = max
{
|α(x, y) + β(x, y)|, |α(x, y)− β(x, y)|

}
, (2.2)

where

α(x, y) =
1

2

[
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y)

]

and

β(x, y) =

√
1

4

[
∂2

∂x2
f(x, y)− ∂2

∂y2
f(x, y)

]2

+

[
∂2

∂x∂y
f(x, y)

]2

.

The 1-D second-order derivative operators ∂2

∂x2
and ∂2

∂y2
are both computed using the

filter with the transfer function z − 2 + z−1. The derivative operator ∂2

∂x∂y
is formed

by computing the tensor product of two 1-D first-order derivative operators with the

transfer function 1
2
z − 1

2
z−1. The MMSODD also has the property that it yields

a double response to image edges, and its response to image edges is shown to be

stronger than the magnitude of Laplacian. This property turns out to be particularly

important in our work. An example of a grayscale image and its MMSODD are shown

in Figures 2.2(a) and (b), respectively.

Vector Gradient Operator. The vector gradient operator proposed by Di Zenzo [40]

is a derivative operator to compute a single gradient for a RGB-color image, which

has been widely used in color-image edge-detection applications [41]. Different from

the MMSODD and Laplacian (which are defined for single-component images), the

vector gradient operator is defined for 2-D three-component vector images. The vec-

tor gradient operator first obtains vector-space directional derivatives by computing

the tensor product of two tangent vectors with respect to the X and Y spaces (i.e.,

the horizontal and vertical coordinate spaces), and then computes the gradient of the

color image based on these derivatives. Let the RGB-color image be a vector function

f with f(x, y) = (R(x, y), G(x, y), B(x, y)) at (x, y), and let r,g,b be the unit vectors

9

(a)

(b)

Figure 2.1: (a) A grayscale image and its (b) magnitude of Laplacian.

10

(a)

(b)

Figure 2.2: (a) A grayscale image and its (b) MMSODD.

11

along the R,G,B axes, respectively. The two tangent vectors u and v with respect

to the X and Y spaces are given by

u =
∂R

∂x
r +

∂G

∂x
g +

∂B

∂x
b and

v =
∂R

∂y
r +

∂G

∂y
g +

∂B

∂y
b,

based on which, the vector-space directional derivatives are computed as

gxx = u · u =

∣∣∣∣∂R∂x
∣∣∣∣2 +

∣∣∣∣∂G∂x
∣∣∣∣2 +

∣∣∣∣∂B∂x
∣∣∣∣2 ,

gyy = v · v =

∣∣∣∣∂R∂y
∣∣∣∣2 +

∣∣∣∣∂G∂y
∣∣∣∣2 +

∣∣∣∣∂B∂y
∣∣∣∣2 , and

gxy = u · v =
∂R

∂x

∂R

∂y
+
∂G

∂x

∂G

∂y
+
∂B

∂x

∂B

∂y
.

Finally, the direction of the maximum contrast and the maximum rate of change of

f can be computed respectively, as

θ =
1

2
arctan

2gxy
gxx − gyy

and

F (θ) =

√
1

2

[
(gxx + gyy) + cos2θ(gxx − gyy) + 2gxysin2θ

]
.

(2.3)

All first-order derivative operators are computed using the filter with transfer function
1
2
z− 1

2
z−1. The color image edges can be obtained by thresholding F . An example of

a RGB-color image and its magnitude of gradient are shown in Figures 2.3(a) and (b),

respectively.

RGB to Grayscale Image Conversion. Given a RGB-image function f with

f(x, y) = (R(x, y), G(x, y), B(x, y)) at (x, y), we can convert f to a grayscale-image

function f̃ by forming a weighted sum of the R, G, B components. More specifically,

the grayscale image function f̃(x, y) at (x, y) is given by

f̃(x, y) = wrR(x, y) + wgG(x, y) + wbB(x, y), (2.4)

where wr, wg, and wb are real constants. In our work, the following standard choice

12

(a) (b)

Figure 2.3: (a) A color image and its (b) magnitude of gradient.

of weights based on Rec.ITU-R BT.601-7 [42], is used:

wr = 0.299, wg = 0.587, and wb = 0.144.

2.4 Geometry Processing

Since our mesh models are based on Delaunay triangulations, some fundamental

geometry concepts such as the notions of a triangulation and a Delaunay triangulation

need to be introduced. Before presenting the definition of a triangulation, we need

to first introduce the concepts of convex set and convex hull.

Definition 1. (Convex set). A set P of points in R2 is convex if for every pair of

points a, b ∈ P , every point on the line segment ab is also in P .

Two different sets are provided in Figure 2.4 to better illustrate the notion of a convex

set. The set P , in Figure 2.4(a), is convex since for every pair of points in P the line

segment that joins them is contained in P , such as the line segment ab. The set P ,

in Figure 2.4(b), is not convex since not every line segment that joints two points in

P is in P , such as the line segment ab. With the concept of convex set in place, we

can now introduce the definition of the convex hull.

13

a

bP

(a)

P

a

b

(b)

Figure 2.4: Examples of (a) convex and (b) nonconvex sets.

(a) (b)

Figure 2.5: Convex hull example. (a) A set P of points and (b) the convex hull of P .

Definition 2. (Convex hull). The convex hull of a set P of points in R2 is the

intersection of all convex sets that contain P .

An example of a convex hull is provided in Figure 2.5. Given a set P of points as shown

in Figure 2.5(a), the convex hull of P is shown as the shaded area in Figure 2.5(b),

which can be visualized as the area enclosed by a rubber band stretched around all of

the points in P . The resultant polygon formed by the rubber band is the boundary

of the convex hull of P . Having introduced the concept of convex hull, we can now

present the notion of a triangulation.

Definition 3. (Triangulation). A triangulation of a finite set P of points in R2 is a

set T of (non-degenerate) triangles satisfying the following conditions:

14

(a) (b) (c)

Figure 2.6: Triangulation example. (a) A set P of points, (b) a triangulation of P ,
and (c) another triangulation of P .

1. the set of all vertices of triangles in T is P ;

2. the union of all triangles in T is the convex hull of P ; and

3. the interiors of any two triangles in T are disjoint.

A set P of points can have many possible triangulations. An example to illustrate

this is given in Figure 2.6. Given a set P of points as shown in Figure 2.6(a), by

varying how the vertices are connected by edges, we can obtain the triangulations

shown in Figures 2.6(b) and (c) amongst others.

Many types of triangulation have been proposed over the years. One widely used

type is the Delaunay triangulation [43], which is of particular interest in our work.

Before introducing the Delaunay triangulation, we need to first introduce the concept

of a circumcircle of a triangle.

Definition 4. (Circumcircle of a triangle). The unique circle passing through all

three vertices of a triangle is called the circumcircle of the triangle.

Having introduced the concept of circumcircle, we can now define the concept of

Delaunay triangulation as below.

Definition 5. (Delaunay triangulation). A triangulation T of a set P of points in R2

is said to be Delaunay if each triangle in T is such that the interior of its circumcircle

contains no vertices of T .

An example of the Delaunay triangulation is shown in Figure 2.7. A set P of points

and its Delaunay triangulation are shown in Figures 2.7(a) and (b), respectively. In

15

(a)

(b)

Figure 2.7: Delaunay triangulation example. (a) A set P of points. (b) The Delaunay
triangulation of P .

the figure, the circumcircle of each triangle is displayed using dashed lines. As we

can see from figure, no vertex of the triangulation falls strictly inside any of the

circumcircles.

The Delaunay triangulation has the property that it maximizes the minimum

interior angle of all triangles in the triangulation, thus minimizing the incidence of

sliver (i.e., long and thin) triangles. This makes the Delaunay triangulation desirable

in many approximation applications [34]. Another advantageous property of the

Delaunay triangulation is that, the effect of point deletion is local [44]. That is, when

a vertex p is removed from a triangulation, only the faces incident to p are changed.

An example is shown in Figure 2.8, where Figure 2.8(a) shows the original Delaunay

triangulation with the vertex p marked for deletion, and Figure 2.8(b) shows the

updated Delaunay triangulation after removing the vertex p. The shaded areas in

the figure are the faces which are affected by the removal of p from the triangulation.

We can see that the deletion of p from the triangulation only affects the faces that

are incident to p (i.e., the faces in the shaded region). This property can sometimes

be exploited to obtain more efficient algorithms involving Delaunay triangulations.

Due to the fact that multiple (i.e., more than three) points may be cocircular,

the Delaunay triangulation of a set P of points is not guaranteed to be unique. This

behavior is illustrated by the example in Figure 2.9, where two different Delaunay

16

p

(a) (b)

Figure 2.8: Example of the local effect of removing a vertex from the Delaunay
triangulation. (a) A Delaunay triangulation of a set of points, and the vertex p to be
removed. (b) The updated Delaunay triangulation after removing the vertex p.

triangulations of the same set of points can be constructed, as shown in Figures 2.9(a)

and (b). In many applications, it is desirable that the Delaunay triangulation of a

set P of points is uniquely determined by P alone, since this avoids the need for

additional information during the triangulation process. To achieve the above goal,

the preferred-directions technique of Dyken and Floater [35] can be employed while

constructing the Delaunay triangulation of P , which forms the preferred-directions

Delaunay triangulation (PDDT) of P . In the PDDT of P , the triangulation con-

nectivity is determined solely by P and we are always guaranteed to get a unique

triangulation from P .

17

v0

v3

v2v1

(a)

v0

v3

v2v1

(b)

Figure 2.9: Example of a Delaunay triangulation with at least four cocircular points.
(a) A Delaunay triangulation of a set of points, and (b) another Delaunay triangula-
tion of the same set of points.

2.5 Mesh Models of Images

Having introduced the definition of the preferred-directions Delaunay triangulation,

we now introduce the concept of a triangle mesh model. In the context of this thesis,

an M -component image of width W and height H is an integer-vector-valued function

φ defined on D = [0,W − 1] × [0, H − 1] and sampled on the 2-D integer lattice

Λ = [0..W − 1]× [0..H − 1]. A triangle mesh model consists of:

1. a set P = {pi}|P |−1
i=0 of sample points, where P ⊂ Λ;

2. a PDDT T of P ; and

3. a set Z = {zi}|P |−1
i=0 of vector-integer-valued function values, where zi = φ(pi).

In order to ensure that all points of Λ are covered by the triangulation T , the set P

must always include all of the extreme convex hull points of the image domain D,

namely, the four points (0, 0), (W − 1, 0), (0, H− 1) and (W − 1, H− 1). As a matter

of terminology, we use |P | and |P |/|Λ| to denote the size and sampling density of the

mesh model, respectively.

The above mesh model is associated with a vector-integer-valued function φ̂ that

approximates φ. For each image component i ∈ [0..M), we first construct a function φ̃i

by doing linear interpolation over each face f in the triangulation T , where the linear

18

interpolant over each face f is constructed based on the three vertices of f and their

corresponding function values from Z. Since φi is integer-valued, we set φ̂i as integer-

valued as well. Thus, we define the approximation function φ̂ as φ̂i = round
(
φ̃i

)
,

where round denotes an operator that rounds to the nearest integer value.

To illustrate the triangle-mesh modeling process, an example is provided in Fig-

ure 2.10. In an M -component image, each component i ∈ [0..M) can be seen as

a single-component (i.e., grayscale) image φi as shown in Figure 2.10(a). We can

view φi as the surface shown in Figure 2.10(b), where the function value at each

sample point in the image domain corresponds to its height above the plane. By

selecting a subset P of the sample points in the image and triangulating them, we

form the unique triangulation T shown in Figure 2.10(c). Then, the triangle mesh

model can be constructed by combining the function values of each point in P with

the triangulation T . The mesh model of φi is presented in Figure 2.10(d). Lastly, the

approximation function φ̂i of φi can be obtained by rasterizing [45] the mesh model,

as shown in Figure 2.10(e).

In our work, we seek to minimize the error between the original image φ and the

reconstructed image φ̂. The error between φ and φ̂ is often measured by the mean

squared error (MSE), which is defined as

MSE =
1

M |Λ|

M−1∑
i=0

∑
p∈Λ

[φ̂i(p)− φi(p)]2,

where M is the number of components in the image. For convenience, we express the

MSE in terms of peak signal to noise ratio (PSNR), which is defined as

PSNR = 20 log10

(
2ρ − 1√
MSE

)
, (2.5)

where ρ is the number of bits/sample in each component of φ. The PSNR is a

logarithmic representation of the MSE relative to the dynamic range of the signal,

with a higher PSNR value corresponding to better quality.

19

(a)
(b)

(c)

(d)

(e)

Figure 2.10: Mesh model of a single-component (i.e., grayscale) image. (a) A single-
component image, (b) image viewed as a surface, (c) triangulation of the image do-
main, (d) resulting triangle mesh model, and (e) reconstructed image obtained by
rasterizing the mesh model.

20

2.6 Grid-Point to Face Mapping

Given an image φ defined on a rectangular grid and a triangulation T of the image

domain, let Γ(T) denote the set of all integer grid points falling inside or on the

boundary of T . For reasons that will become clear later, a mapping from points in

Γ(T) to faces in T is needed. A slightly modified version of the grid-points to face

mapping scheme proposed in [45] is applied in our work. More specifically, a grid

point p ∈ Γ(T) is uniquely mapped to a face f of the triangulation T as follows:

1. If p is strictly inside a face f , map p to the face f .

2. If p is on an edge e, excluding the endpoints of e:

(a) If e is horizontal, map p to the face below e unless no such face exists, in

which case p is mapped to the face above e.

(b) If e is not horizontal, map p to the face to the left of e. If no such face

exists, map p to the face to the right of e.

3. If p is a vertex:

(a) If p is the right endpoint of a horizontal edge e, map p to the face below

e, unless no such face exists, in which case map p to the face above e.

(b) If p is not the right endpoint of any horizontal edge, map p to the face to

the left of p, unless no such face exists, in which case map p to the face to

the right of p.

An example is provided in Figure 2.11 to illustrate the mapping rules described above.

In Figures 2.11(a) and (b), an image φ is defined on the rectangular grid [0..9]× [0..6],

and a triangulation T of the points {vi}7
i=0 is superimposed on the grid. In order to

better illustrate the mapping rules, the grid points in Figure 2.11(b) are marked with

different symbols, with the ones that are mapped to the same face sharing the same

symbol. For example, based on rule 1, the grid point p0 is mapped to the face f0

since p0 is strictly inside the face f0. According to rule 2a, since the grid point p1

is on the horizontal edge v0v6 but is not either of its endpoints, p1 is mapped to the

face that below edge v0v6, which is the face f0. The grid point p2 is on the horizontal

edge v1v2 but no face exists below v1v2, so p2 is mapped to the face above the edge

v1v2, which is the face f2. The points p3 and p4 are on the non-horizontal edges v2v7

and v0v1, respectively, and are mapped to the faces f2 and f1, respectively, according

21

v5
v6

f1

f2

f3 f5

f4

f6

v4

f0

v7

v0

v1 v2 v3

y

x
1 2

2

3

4

5

6

1

0
0 3 8 964 5 7

(a)

v0

p4

v1 p2 v2 v3

v4

v5p1

f0
f1
f2
f3
f4
f5
f6

p0

v7f1

f2

f5

f6

f4

f3

p3

f0

v6

(b)

Figure 2.11: Example of the grid-point to face mapping. (a) A triangulation of a set
of points on the rectangular grid, and (b) the mapping of the grid points to faces of
the triangulation.

to rule 2b. Rules 3a and 3b apply to the grid points v2 and v4, respectively. Thus, v2

and v4 are mapped to the faces f2 and f5, respectively.

22

2.7 Floyd-Steinberg Error-Diffusion Algorithm

Before preceding further, we need to introduce the Floyd-Steinberg error-diffusion

(FSED) algorithm [32], which is key to some of the mesh-generation methods dis-

cussed later. The FSED algorithm is a classic error-diffusion method used primarily

for digital halftoning [46]. The algorithm is aimed at distributing points in a region

so that their density is proportional to some prescribed density function. Given a

density function d of an image φ of width W and height H and a threshold τ , the

algorithm generates a binary-valued function b indicating the locations of selected

points. The algorithm has the following additional free parameters, namely, initial

diffused-in errors ẽ (of lengthW), a boundary weights mode boundMode (e.g., leaky or

nonleaky [17]), and a prescribed scan order scanOrder (e.g., raster or serpentine [17]).

More specifically, the algorithm generates a binary-valued function b as follows:

1. Initialize a function b as b = d.

2. Diffuse ẽ to the startup row of b. That is, b(x, 0) := b(x, 0) + ẽ(x), where

x ∈ [0..W).

3. For each point (x, y), using left bottom to right top order, perform the following:

(a) Record the value of b(x, y) as bold(x, y) = b(x, y).

(b) Update b by comparing bold(x, y) against the threshold τ as follows:

b(x, y) =

1, if bold(x, y) ≥ τ

0, otherwise,

where b(x, y) = 1 indicates the point (x, y) is a selected point.

(c) Compute the quantization error e(x, y) at position (x, y) as e(x, y) =

bold(x, y)− (2τ)b(x, y).

(d) Diffuse e at (x, y) to its four immediate neighbors in b. For example, if

serpentine scan order is selected, we diffuse the error e at (x, y) in the

23

following manner:

b(x+ 1, y) := b(x+ 1, y) +
w1

wsum

e(x, y),

b(x− s, y + 1) := b(x− s, y + 1) +
w2

wsum

e(x, y),

b(x, y + 1) := b(x, y + 1) +
w3

wsum

e(x, y), and

b(x+ s, y + 1) := b(x+ s, y + 1) +
w4

wsum

e(x, y).

where s = 1 if y is odd and s = −1 if y is even, w1, w2, w3, w4 are

real constants, and wsum =
∑4

i=1wi. The weights w1, w2, w3, and w4 are

nominally chosen as 7
16
, 3

16
, 5

16
, and 1

16
, respectively. For leaky mode, the

weights are fixed. For nonleaky mode, if any of the neighbors is out of the

boundary (i.e., weight W and height H) of b, the corresponding weight w

will be set as 0.

4. Output the function b.

In classic FSED, the initial diffused-in error ẽ is zero. Due to the feature of diffusing

errors to neighboring points, the FSED algorithm can be used to quickly select a set

of sample points whose density is proportional to a prescribed function, while at the

same time not leaving large areas with no points having been selected. Experimental

results have shown that the serpentine scan order and nonleaky error diffusion weights

(described in [17]) are particularly effective. For this reason, these choices are always

employed for the parameters boundMode and scanOrder in our work herein, unless

indicated otherwise.

The obtained binary-valued function b indicates which points are selected. That

is, points are selected at positions (x, y) where b(x, y) = 1. In our specific application,

for reasons mentioned earlier in Section 2.4, we force the (four) extreme convex hull

points H of φ to always be selected. That is, we always set b(0, 0) = 1, b(W−1, 0) = 1,

b(0, H−1) = 1, and b(W −1, H−1) = 1. In addition, for some applications, we want

to use the FSED algorithm to select a set P of N points. This can be achieved by using

binary search [47] to find an optimal threshold τ for error diffusion. The mapping

of the threshold τ to the selected number of sample points |P | is approximately

monotonic. Thus, in order to find an optimal τ , binary search can be exploited.

Since it may not be possible to find a value of τ that exactly satisfies |P | = N , a

size tolerance T is normally provided. In our application, we choose T = 10. More

24

specifically, the binary search method finds an optimal error diffusion threshold τ as

follows. Find a τ1 which results in |P | > N and a τ2 which results in |P | < N . Then

perform a binary search in [τ1, τ2] to find an optimal τ which results in
∣∣|P |−N ∣∣ ≤ T .

2.8 Methods for Generating Mesh Models of Grayscale

Images

We now introduce three highly-effective previously-proposed mesh-generation meth-

ods for grayscale images, namely, ED, GPR, and GPRFSED. Of these, the GPRFSED

method, which is derived from the ED and GPR method, serves as the foundation of

our work.

2.8.1 ED Method

One highly effective method for generating mesh models of grayscale images is the

error diffusion (ED) method proposed by Yang et al. [17]. Given a grayscale image φ

which is sampled on a truncated 2-D integer lattice Λ of width W and height H and

a desired number N of sample points, the ED method employs the FSED algorithm

to generate a set P of sample points, where |P | = N , and constructs a mesh model

of φ with P . The sample points in P are distributed with a density approximately

proportional to the MMSODD of φ. Some parameter choices (i.e., boundary handling

strategy, smoothing filter order, and scan order) of the ED method are discussed in

detail by Adams in [18]. The ED method consists of the following steps:

1. Compute the significance function σ0, which is the MMSODD of the image φ.

2. Compute the density function d by normalizing σ0. That is, d(x, y) = σ0(x, y)/(σmax+

ε), where σmax = max(x,y)∈Λσ0(x, y) and ε is a small positive constant (e.g.,

10−12).

3. Set the threshold τ to use for FSED to be τ0 = 1
2N

∑
(x,y)∈Λ d(x, y).

4. Convert d to a binary-valued function b using serpentine, nonleaky FSED with

the threshold τ .

5. Initialize P to the set of all points (x, y) for which b(x, y) 6= 0. Then, let

P := P ∪H, where H is the set of the (four) extreme convex hull points of Λ.

25

6. If
∣∣|P | − N

∣∣ ≤ T (where T is a tolerance), stop. Otherwise, adjust τ appro-

priately (i.e., if |P | > N , increase τ ; if |P | < N , decrease τ) and go to step 4.

(Note that, in order to find an optimal τ , a binary search approach as described

previously in Section 2.7 can be applied).

7. Triangulate P using a preferred-directions Delaunay triangulation.

In step 1 above, while computing the MMSODD of the image φ, a third-order binomial

filter is used to smooth the image, where zero extension is used to handle boundaries.

To demonstrate the results obtained by using the ED method, an example is pro-

vided in Figure 2.12. For a grayscale image φ in Figure 2.12(a), whose MMSODD is

shown in Figure 2.12(b), we generate a mesh at the sampling density of 2% using the

ED method. Figures 2.12(c) to (e) show the selected sample points, image-domain tri-

angulation, and reconstructed image, respectively. From the result of Figure 2.12(c),

we can see that the selected sample points have a higher density around image edges,

and lower density in other areas. The ED method has the advantage of having ex-

tremely low computational and memory costs. The quality of the mesh, however, is

not very good compared to some other methods with higher complexities, like the

GPR and GPRFSED methods.

2.8.2 GPR Method

The greedy point-removal (GPR) method of Demaret and Iske [21] (called “adaptive

thinning” in [21]), which is closely related to the adaptive thinning technique of Dyn

et al. [33], is the second mesh-generation method of interest herein. Before we can

proceed further, some additional notation and terminology need to be introduced.

The set of all points that are mapped to a face f is denoted points(f), based on the

rules described previously in Section 2.6. The set of faces in a triangulation T that

is affected by the deletion of a point p from T is denoted as affFaces(p), and the set

of points in T that is affected by the deletion of p from T is denoted as affPoints(p),

given by
⋃
f∈affFaces(p) points(f). Let rS(p) denotes the approximation error at the

point p for the mesh with sample points S. That is, rS(p) = φ̂S(p)− φ(p), where φ is

the original image and φ̂S is the image approximation obtained from mesh with the

set S of sample points.

With the necessary background in place, we can now introduce the GPR method.

The GPR method employs the idea of first constructing a mesh that contains all

26

(a) (b)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

XX

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

XX

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(c) (d) (e)

Figure 2.12: Example of the sample points selected by using the ED method. (a) A
grayscale image φ and its (b) MMSODD. The resulting (c) selected sample points,
(d) image-domain triangulation, and (e) reconstructed image (25.83 dB) obtained for
φ at a sampling density of 2%.

the sample points in the image, and then repeatedly removing the sample point that

yields the smallest increase in the squared error of the mesh approximation, until the

desired mesh size is reached. More specifically, given a grayscale image φ sampled on

a truncated 2-D integer lattice Λ of width W and height H and a desired number N

of sample points, the GPR method selects a set P of sample points, where |P | = N

as follows:

1. Initially, let P := Λ (hence, |P | = WH).

2. Construct the initial mesh, which is the preferred-directions Delaunay triangu-

lation T of P .

3. If |P | ≤ N , output P and stop.

27

4. For each point p ∈ P , compute the increase ∆e(p) in squared error of the mesh

approximation that is incurred if p is removed from the triangulation, given by

∆e(p) =
∑

q∈Λ∩affPoints(p)

[r2
P\{p}(q)− r2

P (q)].

5. Choose the point p∗ to delete from the mesh, given by

p∗ = arg min
p∈P\H

∆e(p),

where H is the set of the (four) extreme convex hull points of Λ. Let P :=

P \ {p∗} (i.e., remove p from the triangulation T).

6. Go to step 3 (i.e., the beginning of the loop).

Note that, since removing a vertex p from a Delaunay triangulation T can only

influence the faces incident to p (as described earlier in Section 2.4), in each iteration

with the exception of the first, step 4 of the above algorithm only needs to compute

the error increase ∆ep for the newly constructed faces resulting from p being removed

from the triangulation T . This fact is important from the viewpoint of computational

efficiency. To efficiently find the next vertex p to be removed from the triangulation

in step 5, the vertices can be placed in a heap-based priority queue sorted by ∆ep. For

further details regarding efficient implementation, the reader is referred to [21,33].

The GPR method can typically generate meshes with very high quality. This is

mainly attributable to the fact that, in the mesh-simplification process, the selected

point for removal from the mesh in each iteration is the one whose removal yields

the least increase in error. Thus, the selected point is always chosen optimally at

each iteration. To illustrate the results obtained by using the GPR method, an

example is provided in Figure 2.13. For a grayscale image in Figure 2.13(a), we

generate a mesh model at a sampling density of 2%, and present the resulting image-

domain triangulation and reconstructed image in Figures 2.13(b) and (c), respectively.

We can see that the reconstructed image in Figure 2.13(c) looks very close to the

original image in Figure 2.13(a). Although the GPR method has been shown to yield

meshes with outstanding quality, it has one major weakness, namely its extremely

high computational and memory costs, which is mainly due to the initial mesh size

being extremely large (i.e., containing all of the sample points of the original image).

28

(a) (b) (c)

Figure 2.13: Example of the results obtained by using the GPR method. (a) A
grayscale image φ. The resulting (b) image-domain triangulation and (c) recon-
structed image (31.80 dB) obtained for φ at a sampling density of 2%.

Lastly, one should note that, due to the greedy nature of the GPR method, the

algorithm is extremely unlikely to yield a globally optimal solution. This is because,

in each iteration, when determining the point to be removed from the mesh, the

algorithm does not consider how its removal can affect the evolution of the algorithm

in all subsequent iterations. That is, trying to minimize the increase of the squared

error in the current iteration may cause the error increment in later iterations to

become much larger.

2.8.3 GPRFSED Method

Having introduced the ED and GPR methods, we now introduce the GPRFSED

method of Adams [18]. The GPRFSED method is formed by combining the ideas of

the ED and GPR methods. That is, the GPRFSED method employs the ED scheme

to select initial mesh points, and then performs the mesh-simplification process as

proceeded in the GPR scheme. More specifically, given a grayscale image φ sampled

on a truncated 2-D lattice Λ of width W and height H and a desired number N of

sample points, the GPRFSED method selects a set P of N sample points as follows:

1. Initially, use the ED mesh-generation scheme to select a set P of points with

size N0 = min{γN,WH}, where γ is a constant satisfying γ ≥ 1 and is recom-

mended to be chosen nominally as 4.

2. Construct the initial mesh, which is the preferred-directions Delaunay triangu-

lation T of P .

29

(a) (b) (c)

Figure 2.14: Example of the results obtained by using the GPRFSED method. (a)
A grayscale image φ. The resulting (b) image-domain triangulation and (c) recon-
structed image (31.86 dB) obtained for φ at a sampling density of 2%.

3. Perform the mesh-simplification process as described in step 3 to 6 of the GPR

method.

Note that, the ED and GPR methods can be seen as special cases of the GPRFSED

method, with N0 = N and N0 = WH, respectively. In step 1 of the GPRFSED

method, when deciding the value of N0, a choice of γ ∈ [4, 5.5] can normally result

in optimal mesh quality. To achieve results comparable to the GPR method, it is

usually sufficient to choose γ = 4. For the remaining cases, choosing a larger value

of γ (e.g., 5.5) can normally lead to slightly better mesh quality, but requires greater

computational and memory costs. To illustrate the results obtained by using the

GPRFSED method, an example is provided in Figure 2.14. For the grayscale image

in Figure 2.14(a), we generated a mesh at the sampling density of 2% using the

the GPRFSED method, and present the resulting image-domain triangulation and

reconstructed image in Figures 2.14(b) and (c), respectively. We can see that the

subjective quality of the reconstructed image in Figure 2.14(c) is very high.

As noted in [18], for grayscale images, the GPRFSED method typically generates

meshes with quality comparable to, and in many cases better than, the GPR scheme.

Furthermore, this is achieved while requiring substantially less computational and

memory costs. In addition, by making a different choice for the parameter γ in

the GPRFSED method from the recommended nominal value of 4, one can easily

tradeoff between computational/memory cost and mesh quality. Due to its desirable

properties, we choose the GPRFSED method as the foundation of our work herein.

30

Chapter 3

Proposed Mesh-Generation

Methods and Their Development

3.1 Overview

In this chapter, we propose a more general computational framework for generat-

ing mesh models for single- and multi-component images, based on the GPRFSED

method. We begin by proposing a new startup policy for FSED that will be em-

ployed in our framework. Then, we introduce our general mesh-generation frame-

work for single- and multi-component images, which has several free parameters and

many possible choices are considered for these parameters. Next, we describe three

different modes in which our mesh-generation framework can operate, as well as the

relationship between theses modes and some previously-proposed mesh-generation

methods. After that, the test images used for evaluation and analysis purposes are

briefly introduced. Then, for each of the modes for our framework, we study the effect

of different choices of free parameters on mesh quality. Based on experimentation,

we advocate two specific sets of parameter choices, leading to the proposal of two

mesh-generation methods for both single- and multi-component images. Lastly, we

evaluate the performance of our proposed mesh-generation methods in terms of mesh

quality and computational cost.

31

3.2 FSED Startup Policy

As introduced earlier in Section 2.7, FSED is a well-known algorithm originally pro-

posed for digital halftoning. This algorithm can be used to select a certain number

of points on a rectangular grid, distributed in proportion to a given density function.

The error diffusion threshold τ plays an important role in the algorithm, which con-

trols the number of selected points. In the application of halftoning, τ is normally

quite small. In our application, we employ FSED for selecting sample points for a

mesh model, in which case, the threshold τ used for error diffusion can be quite large,

in order to achieve a relatively low sampling density. In the case of larger threshold

values, an undesirable startup effect can occur. In particular, at low sampling den-

sities, error diffusion can often result in an abnormally low number of sample points

being selected in the startup region for error diffusion (i.e., the bottom of the image,

since we scan from bottom to top). This abnormally low number of sample points can

lead to very bad distortion in the part of the image that corresponds to the startup

region for error diffusion, degrading overall performance of the algorithm.

To illustrate the startup effect, an example is provided in Figure 3.1. Figure 3.1(a)

shows an example of a density function typical of those used in our application, and

Figure 3.1(b) shows the resulting selected sample points at the sampling density of 1%

using classic FSED. Observe that, very few sample points are selected in the startup

region for error diffusion (i.e., bottom region). In particular, very few sample points

have been selected in the bottom scan line of the image. This often leads to high

approximation error in our mesh-generation application (to be considered shortly).

The above behavior of FSED can be explained as follows. In the error diffusion

process, if the density function d in the startup region is quite small relative to the

error-diffusion threshold τ , diffused error will accumulate very slowly, resulting in very

few (or no) sample points being selected in this region. At low sampling densities, the

density function d is often quite small in the startup region (relative to τ), resulting

in the above startup effect.

To reduce the above startup effect, we propose a method which adds diffused-

in errors to the startup row (i.e., first row) of error diffusion when running FSED.

Given a density function d of an image φ which is sampled on a truncated 2-D lattice

Λ of width W and height H, this method generates an array ẽ of length W which

stores the initial diffusion errors. This method can be seen as a preprocessing step

to FSED that selects the initial diffused-in errors. In this method, we need to first

32

(a)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(b)

Figure 3.1: Example of the startup effect in error diffusion. (a) A density function
of an image and (b) the resulting selected sample points at a sampling density of 1%
using the classic FSED algorithm.

(a) (b)

Figure 3.2: Example of mirroring a density function. (a) A density function and its
(b) mirrored version.

construct a mirrored version dm of the density function d, where dm is given by

dm(x, y) = d(x,H − 1 − y), and (x, y) ∈ Λ. To illustrate the results of mirroring a

density function, an example is provided in Figure 3.2. Figures 3.2(a) and (b) show

a density function and its mirrored version, respectively. Note that, the last row

(i.e., top row) of obtained mirrored version actually corresponds to the first row of

the original density function. More specifically, the mirroring method generates the

initially diffused-in errors as follows:

1. Construct a mirrored version dm of the density function d, given by dm(x, y) =

d(x,H − 1− y), where (x, y) ∈ Λ.

33

(a)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(b)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(c)

Figure 3.3: Comparison of using the classic and mirroring methods in error diffusion.
(a) A density function of an image. The resulting selected sample points for the image
at a sampling density of 1% with the (b) classic and (c) mirroring methods.

2. Take dm as the input density function, scan from row 0 to H − 2 (i.e., the

row before the last row), run the nonleaky, serpentine FSED as described in

Section 2.7.

3. Record and output the errors ẽ[i] (where i ∈ [0..W)) that have been diffused

from row H − 2 to row H − 1 (i.e., the last row).

In our work, experiments are conducted to compare the mirroring method with the

classic method (i.e., the initially diffused-in errors are all zero). To demonstrate

the benefit of applying the mirroring method, we provide an example in Figure 3.3.

Figure 3.3(a) shows a density function of an image, and Figures 3.3(b) and (c) show

the selected sample points at a sampling density of 1% using FSED with the classic

and mirroring methods, respectively. We can see that, in the case of using the classic

method, very few sample points are selected in the startup (i.e., bottom) region. In

contrast, in the case of using the mirroring method, the sample point distribution

does not suffer from this problem.

3.3 Computational Framework for Mesh Genera-

tion

Having introduced the necessary background for several mesh-generation methods

(i.e., ED, GPR, and GPRFSED) for grayscale (i.e., single-component) images in

34

Chapter 2, we now turn our attention to introducing the mesh-generation framework

for single- and multi-component images proposed in this thesis. Our framework has

several free parameters and numerous choices are considered for these parameters.

We study the proposed mesh-generation framework by exploring in depth the two

most common cases, namely grayscale and RGB-color images.

Before we can proceed further, some additional notation and terminology need to

be introduced. For each component i ∈ [0..M), let ri,S(p) denote the approximation

error on component i at the point p for the mesh with set S of sample points. That

is, ri,S(p) = φ̂i,S(p)−φi(p), where i is the component number, φ is the original image,

and φ̂i,S is the image approximation obtained from mesh with the set S of sample

points. Let points(f) denote the set of all points that are mapped to a face f , based

on the rules described in Section 2.6. The set of faces in a triangulation T that is

affected by the deletion of a point p from T is denoted as affFaces(p). The set of

points in T that is affected by the deletion of p from T is denoted as affPoints(p),

given by
⋃
f∈affFaces(p) points(f).

With the necessary background in place, we can now describe our framework.

Our general mesh-generation framework employs the idea of the GPRFSED method,

which first generates an initial mesh by using error diffusion and then applies a mesh-

simplification process to obtain the final mesh. Given an M -component image φ

(where M ≥ 1) sampled on a truncated 2-D integer lattice Λ of width W and height

H and a desired mesh size N , our general framework produces a mesh model of φ

having a set P of sample points, with |P | = N , and the associated triangulation T .

More specifically, our framework consists of the following steps (in order):

1. Initial sample-point selection. Select a set P of N0 sample points, by apply-

ing the initial sample-point selection policy initSampSelPolicy, which employs

FSED with the startup policy startupPolicy, where N0, initSampSelPolicy, and

startupPolicy, are three free parameters of our framework, and N0 ∈ [N..WH].

2. Initial mesh construction. Construct the preferred-directions Delaunay trian-

gulation T of P .

3. Top of mesh-simplification loop. If |P | ≤ N , output P and the associated

triangulation T , and stop; otherwise, proceed to step 4.

4. For each point p ∈ P , compute the increase ∆e(p) in squared error of the mesh

35

approximation that is incurred if p is removed from T , given by

∆e(p) =
M−1∑
i=0

∑
q∈Λ∩affPoints(p)

[r2
i,P\{p}(q)− r2

i,P (q)],

5. Choose point p∗ to delete from the mesh, given by

p∗ = arg min
p∈P\H

∆e(p),

where H is the set of the (four) extreme convex hull points of Λ. Let P :=

P \ {p∗} (i.e., remove p from the triangulation T).

6. Go to step 3 (i.e., the beginning of the mesh-simplification loop).

As shown above, our framework has three free parameters, namely, N0, initSampSelPolicy,

and startupPolicy. The parameter N0, which is size of the set of initial sample points,

plays an important role in the framework. The quantity N0 can be chosen as any

value in [N..WH], with larger values of N0 leading to higher computational cost but

often better mesh quality. For the parameter startupPolicy, the choices considered in

our work are the mirroring and classic methods discussed in Section 3.2.

Significance Function Options. Before proceeding to introduce the choices

considered for the initSampSelPolicy parameter in detail, we first introduce different

choices of the significance function, which describes the importance of each point in

each image component. In step 1 of the ED method (introduced in Section 2.8.1),

the choice of the significance function σ0 plays an important role, as it determines the

density function d used for error diffusion (i.e., d is obtained by normalizing σ0). As

will be shown later, a density function which has a double response to image edges is

particularly desirable in our work. Given an M -component image φ, where M ≥ 1,

we consider the following choices of significance function σi for each image component

φi, where i ∈ [0..M):

• MMSODD. The significance function σi is computed as the MMSODD of φi,

by using (2.2).

• MoL (Magnitude of Laplacian). The significance function σi is computed as the

magnitude of the Laplacian of φi, by using (2.1).

36

Initial Sample-Point Selection Policy. Recall that, in step 1 of our framework,

the parameter initSampSelPolicy selects the initial sample-point selection policy. The

choice of this policy is critical in our work, as it not only determines the selection

of the initial sample points, but also to a high degree determines the resulting mesh

quality. In what follows, we introduce all the choices considered for the parameter

initSampSelPolicy in our framework. As a matter of terminology, FSED with a binary

search method applied (as described in Section 2.7) is called the FSED point-selection

algorithm. The startup policy employed in the FSED point-selection algorithm is se-

lected based on the choice of the parameter startupPolicy in our proposed framework.

In our work, we consider five different initial sample-point selection policies,

namely, PSA, PSB, PSC, PSD, and PSE. Among them, some of the policies are ap-

plicable to only grayscale images or only RGB-color images. Given an M -component

image φ which is sampled on a truncated 2-D integer lattice Λ of width W and height

H and a desired number N of sample points, each of the initial sample-point selection

policies generates a set P of sample points, where
∣∣|P |−N ∣∣ ≤ T , and T is a tolerance

with a default value of 10. Some additional free parameters also exist in the various

initial sample-point selection policies, which have to be specified as well. In what

follows, we introduce each of our five initial sample-point selection policies.

PSA. The first initial sample-point selection policy to be considered is PSA. The

PSA policy is only applicable to grayscale images (i.e., M = 1). This policy employs

an idea similar to the sample-point selection scheme in the ED method to select the

initial sample points. The PSA policy has an additional free parameter, namely, the

significance function σ0. More specifically, the PSA policy selects a set P of sample

points as follows:

1. Compute the specified significance function σ0 of the image φ.

2. Compute the density function d, given by d(x, y) = σ0(x, y)/(σmax + ε), where

σmax = max(x,y)∈Λσ0(x, y) and ε is a small positive constant (e.g., 10−12).

3. Invoke the FSED point-selection algorithm to select a set P of sample points, by

taking d as the input density function and N as the desired number of sample

points.

In the remainder of this thesis, PSA(D) and PSA(L) denote the PSA policy with the

parameter σ0 chosen as MMSODD and MoL, respectively.

37

PSB. The second initial sample-point selection policy to be considered is PSB.

The PSB policy is only applicable to RGB-color images (i.e., M = 3). This policy

selects P by first converting the color image φ into a grayscale image φ̃. Then,

it applies the grayscale-image initial sample-point selection policy to φ̃. The PSB

policy also has an additional free parameter, namely, the significance function σ0.

More specifically, the PSB policy selects a set P of sample points as follows:

1. Convert the color image φ into a grayscale image φ̃, by using (2.4).

2. Compute the specified significance function σ0 of φ̃.

3. Compute the density function d, given by d(x, y) = σ0(x, y)/(σmax + ε), where

σmax = max(x,y)∈Λσ0(x, y) and ε is a small positive constant (e.g., 10−12).

4. Invoke the FSED point-selection algorithm to select a set P of sample points, by

taking d as the input density function and N as the desired number of sample

points.

In the remainder of this thesis, PSB(D) and PSB(L) respectively denote the PSB

policy with the parameter σ0 chosen as MMSODD and MoL.

PSC. The third initial sample-point selection policy to be considered is PSC. The

PSC policy is only applicable to RGB-color images (i.e., M = 3). This policy first

obtains a density function d of the image by normalizing a function g of the image

computed by using (2.3). Then, it invokes the FSED point-selection algorithm to

select the sample points. More specifically, the PSC policy selects a set P of sample

points as follows:

1. Compute the function g of the RGB-color image φ by using (2.3).

2. Compute the density function d, given by d(x, y) = g(x, y)/(gmax + ε), where

gmax = max(x,y)∈Λg(x, y) and ε is a small positive constant (e.g., 10−12).

3. Invoke the FSED point-selection algorithm to select a set P of sample points, by

taking d as the input density function and N as the desired number of sample

points.

PSD. The fourth initial sample-point selection policy to be considered is PSD.

The PSD policy is applicable to images with an arbitrary number M of components.

This policy first computes a significance function for each image component, and

38

then aggregates the significance functions to produce a density function for FSED.

The PSD policy has these additional free parameters: 1) a significance function σi

for each image component, where i ∈ [0..M); 2) an aggregation function F , where

F ∈ {Fmax, Favg}. The aggregation functions Fmax and Favg are defined as

Fmax(x1, x2, ..., xn) = max{x1, x2, ..., xn} and

Favg(x1, x2, ..., xn) =
1

n

n∑
i=1

xi.

More specifically, the PSD policy selects a set P of sample points as follows:

1. Compute the specified significance function σi for each image component φi,

where i ∈ [0..M).

2. Compute the aggregated significance function a of the image, given by a(x, y) =

F
(
σ0(x, y), σ1(x, y), ..., σM−1(x, y)

)
.

3. Compute the density function d, given by d(x, y) = a(x, y)/(amax + ε), where

amax = max(x,y)∈Λa(x, y) and ε is a small positive constant (e.g., 10−12).

4. Invoke the FSED point-selection algorithm to select a set P of sample points, by

taking d as the input density function and N as the desired number of sample

points.

In the remainder of this thesis, PSD(Max, D) denotes the PSD policy with the aggre-

gation function F chosen as Fmax and the significance function σi (where i ∈ [0..M))

chosen as MMSODD. Similarly, PSD(Max, L) denotes the PSD policy with F chosen

as Fmax and σi chosen as MoL; PSD(Avg, D) denotes the PSD policy with F chosen

as Favg and σi chosen as MMSODD; and PSD(Avg, L) denotes the PSD policy with

F chosen as Favg and σi chosen as MoL.

PSE. The last initial sample-point selection policy to be considered is PSE. The

PSE policy is also applicable to images with an arbitrary number M of components.

This policy selects P by first performing FSED on each image component separately to

generate M sets of sample points, and then taking the union of these sets to produce

one final point set. The PSE policy has the following additional free parameter,

namely, the significance function σi, where i ∈ [0..M). More specifically, the PSE

policy selects a set P of sample points as follows:

39

1. Compute the specified significance function σi for each image component φi,

where i ∈ [0..M).

2. For each i ∈ [0..M), compute the density function di, given by di(x, y) =

σi(x, y)/(σmax + ε), where σmax = max(x,y),i∈Λ×[0..M)σi(x, y) and ε is a small

positive constant (e.g., 10−12).

3. Set a single threshold τ to use for FSED to be τ0 = M
2N

∑
(x,y)∈Λ d0(x, y).

4. For each i ∈ [0..M), convert di to a binary-valued function bi using serpentine,

nonleaky FSED with the threshold τ . The employed FSED startup policy is

selected based on the choice of the parameter startupPolicy.

5. Initialize P to the set of all points (x, y) for which bi(x, y) 6= 0 for at least one

of i ∈ [0..M). Then, let P := P ∪H, where H is the set of the (four) extreme

convex hull points of Λ.

6. If
∣∣|P | − N ∣∣ ≤ T , where T is a size tolerance (with a nominal value 10), stop;

otherwise, if |P | > N , increase τ , or if |P | < N , decrease τ , and go to step 4.

In step 6, the mapping of the threshold τ to the selected number of sample points

|P | is approximately monotonic. Thus, in order to find an optimal τ , binary search

can be exploited in our work. That is, find a τ1 which results in |P | > N and a

τ2 which results in |P | < N , and then perform a binary search in [τ1, τ2] to find

an optimal τ . In the remainder of this thesis, PSE(D) and PSE(L) denote the PSE

policy with significance function σi (where i ∈ [0..M)) chosen as MMSODD and MoL,

respectively.

Some relationships exist between some of the policies introduced above. As men-

tioned earlier, the PSD and PSE policies are applicable to images with an arbitrary

number of components. For an image with only one component, averaging or taking

the maximum of the significance function across components is the same as taking the

original single significance function, and taking the union of all component-point sets

is the same as taking the original single point set. Thus, if M = 1, the PSA, PSD, and

PSE policies are equivalent if they use the same significance function. More specifi-

cally, if M = 1, the policies PSA(D), PSD(Max, D), PSD(Avg, D), and PSE(D) are

equivalent; and the policies PSA(L), PSD(Max, L), PSD(Avg, L), and PSE(L) are

equivalent.

40

3.4 Different Modes in the Proposed Framework

and Their Relationship with Some Previous

Methods

Our proposed framework can operate in three distinct modes which corresponds to N0

been chosen in N , (N..WH), and WH. These different modes result in fundamentally

different behavior in our framework. For example, the modes differ in whether mesh-

simplification is applied (or the extent to which the mesh-simplification is applied).

The first mode corresponds to N0 = N , in which case, no mesh-simplification is

performed. This mode selects all mesh sample points in one shot. Thus, the compu-

tational cost of this mode is extremely low, but the mesh quality is often not as good

as with other modes. For certain applications which require extremely low computa-

tional cost, the methods constructed from this mode can be particularly useful. In

this mode, if M = 1 and we select the free parameters such that initSampSelPolicy

is PSA(D) and startupPolicy is classic, we obtain the ED method proposed in [17].

In addition, if we vary the choices of initSampSelPolicy, and startupPolicy, we can

obtain a family of methods that includes the ED method as a special case. Thus, we

refer this mode as “ED-like”.

The second mode corresponds to N0 ∈ (N..WH), in which case, some mesh-

simplification is performed. In this mode, however, the initial mesh size N0 can be

chosen flexibly as any value in (N..WH). As will be shown later, if N0 is chosen

appropriately, we can achieve meshes with very good quality, but at a relatively low

computational cost. In this mode, if M = 1 and we select the free parameters such

that N0 = 4N , initSampSelPolicy is PSA(D), and startupPolicy is classic, we obtain

the GPRFSED method proposed in [18]. In addition, by varying the choices of N0,

initSampSelPolicy, and startupPolicy in the framework, we can obtain a family of

methods that includes the GPRFSED method as a special case. Thus, we refer to

this mode as “GPRFSED-like”.

The third mode corresponds to N0 = WH, in which case, a large amount of mesh-

simplification is performed (since the initial mesh contains all points in the sampling

grid). Methods constructed from this mode can normally obtain a mesh with very

good quality, but the computational cost is typically extremely high. In this mode,

if M = 1, we obtain the GPR method proposed in [21]. Thus, we refer to this mode

as “GPR-like”.

41

Table 3.1: Images in the representative data set

Image
Width

and
Height

Description

lena (4.2.04) 512×512 photographic, woman
pens 512×480 photographic, pens
bluegirl 480×512 photographic, girl with blue skirt
kodim23 768×512 photographic, birds
cartoon bull 1024×768 computer-generated, bull

3.5 Test Data and Experimental Comments

Before proceeding further, a brief digression is in order regarding the test images that

we used for analysis and evaluation purposes. In our work, we employed 45 RGB-

color images, taken mostly from standard data sets, such as the JPEG-2000 [48],

USC-SIPI [49], CIPR-Canon [50], and Kodak [51] test sets. A detailed description

of each image is presented in Appendix A. For reasons of consistency, our grayscale

image test set is simply formed by converting each of the above 45 color images into

grayscale versions using the standard RGB to luminance mapping given by (2.4).

We often focus on results for a representative subset of these images, namely, those

listed in Table 3.1. This subset was deliberately chosen to cover a variety of image

types (i.e., photographic and computer-generated imagery), image sizes, and subject

matter.

Only RGB-color (i.e., M = 3) and grayscale (i.e., M = 1) images are available

from the standard test sets. Thus, we study our proposed mesh-generation framework

by focusing on exploring these two cases. Between them, our main contributions focus

on mesh generation for RGB-color images. For the case of grayscale images, although

our contribution is relatively smaller, the work is still of practical benefit as it offers

some improvements compared to some other previously-proposed mesh-generation

methods for grayscale images.

42

3.6 Impact on Different Parameter Choices for the

ED-like Mode

As introduced earlier in Sections 3.3 and 3.4, our mesh-generation framework has

several free parameters and can operate in three different modes. In what follows,

we study how different choices of parameters affect the mesh quality in these three

modes. We start by discussing the impact of parameter choices in the ED-like mode

of the framework.

3.6.1 RGB-Color Case

First, we discuss the impact of the parameter choices on the mesh quality for RGB-

color images (i.e., M = 3). The selection of free parameters in the proposed frame-

work, including initSampSelPolicy and startupPolicy, will be discussed.

3.6.1.1 Initial Sample-Point Selection Policy

To begin, we consider how the choice of the initial sample-point selection policy af-

fects mesh quality. To do this, we select the free parameter startupPolicy as the

classic method. As mentioned earlier, we consider four initial sample-point selection

policies that are applicable to RGB-color images, namely, PSB, PSC, PSD, and PSE.

By varying the choice of additional parameters (i.e., significance function and aggre-

gation function) in the four initial sample-point selection policies, we have in total

nine combinations of possible choices for the parameter initSampSelPolicy, namely,

PSB(D), PSB(L), PSC, PSD(Max, D), PSD(Max, L), PSD(Avg, D), PSD(Avg, L),

PSE(D), and PSE(L). For each of the 45 color images and five sampling densities per

image (for a total of 225 test cases), we generated a mesh using each possible choice of

initSampSelPolicy, and measured the approximation error of the reconstructed image

in terms of PSNR. In each test case, the PSNR results obtained from different policies

were ranked from 1 (best) to 9 (worst). Then, the average and standard deviation of

the ranks were computed across each sampling density as well as overall. The overall

ranking results are given in Table 3.2(a). Some results for individual test cases are

shown in Table 3.2(b). For each of the above tables, the best result in each test case

is typeset in bold. We also conducted similar experiments by using other choices of

fixed parameters (i.e., using startup policy of mirroring), and obtained similar results

to those in Table 3.2.

43

Table 3.2: Comparison of using the various initial sample-point selection policies in
the ED-like mode for RGB-color images. (a) Average ranking across the 45 images
in the data set. (b) PSNR results of some representative images.

(a)

Samp.
Density

(%)

PSNR Average Rank
(Standard Deviation)

PSB
(D)

PSB
(L)

PSC
PSD

(Max,
D)

PSD
(Max,

L)

PSD
(Avg,

D)

PSD
(Avg,

L)

PSE
(D)

PSE
(L)

0.5
4.00

(1.80)
5.82

(1.45)
2.16
(2.01)

2.69
(1.28)

4.80
(1.63)

3.69
(1.60)

5.49
(1.90)

7.80
(1.17)

8.56
(1.09)

1.0
3.51

(1.67)
6.02

(1.36)
2.98

(2.29)
2.60
(1.61)

4.93
(1.55)

2.96
(1.23)

5.42
(1.48)

7.93
(1.14)

8.64
(0.85)

2.0
3.49

(1.73)
5.87

(1.54)
4.24

(2.44)
2.33
(1.48)

4.58
(1.67)

2.64
(1.23)

5.04
(1.28)

8.07
(0.71)

8.73
(0.49)

3.0
3.16

(1.40)
5.80

(1.45)
5.02

(2.47)
2.20
(1.24)

4.44
(1.63)

2.42
(1.06)

5.16
(1.23)

7.93
(0.68)

8.87
(0.34)

4.0
3.24

(1.69)
5.98

(1.29)
5.84

(2.04)
1.80
(0.91)

4.53
(1.42)

2.16
(0.76)

4.73
(0.90)

7.91
(0.78)

8.80
(0.40)

Overall
3.48

(1.69)
5.90

(1.42)
4.05

(2.63)
2.32
(1.36)

4.66
(1.59)

2.77
(1.32)

5.17
(1.43)

7.93
(0.93)

8.72
(0.70)

(b)

Image
Samp.

Density
(%)

PSNR Average Rank
(Standard Deviation)

PSB
(D)

PSB
(L)

PSC
PSD

(Max,
D)

PSD
(Max,

L)

PSD
(Avg,

D)

PSD
(Avg,

L)

PSE
(D)

PSE
(L)

pens

0.5
1.0
2.0
3.0
4.0

13.96
17.24
21.98
25.05
27.05

13.87
17.07
21.84
24.92
26.80

14.99
17.89
21.82
24.28
26.08

15.02
18.17
22.68
25.80
27.20

14.95
17.99
22.28
25.40
26.94

14.32
17.83
22.18
25.29
27.21

14.05
17.76
22.07
25.02
27.11

11.38
15.09
18.11
20.80
23.35

10.90
14.89
18.22
20.72
22.59

kodim23

0.5
1.0
2.0
3.0
4.0

20.35
24.69
29.19
31.27
32.65

20.41
24.73
28.98
30.98
32.44

21.02
25.11
28.34
29.98
31.12

20.61
25.52
29.74
31.68
32.86

20.52
25.17
29.56
31.44
32.75

20.49
25.00
29.55
31.50
32.77

20.20
24.75
29.21
31.29
32.56

16.86
21.06
26.00
29.05
31.26

16.75
20.95
25.79
28.98
31.01

cartoon
bull

0.5
1.0
2.0
3.0
4.0

25.23
32.64
37.00
39.51
40.69

25.22
32.52
36.98
39.30
40.52

25.00
31.79
37.36
39.26
41.06

25.26
32.89
38.00
40.01
41.43

25.52
32.83
37.60
39.95
41.15

25.45
32.87
37.56
39.99
41.29

25.88
33.16
37.50
39.74
41.09

20.28
25.98
33.80
36.88
38.57

20.21
26.50
33.85
37.46
39.03

44

Examining the results of Table 3.2(a), we can make several observations. First,

the PSD(Max, D) policy performs the best among all policies with an overall rank

of 2.32, followed by the PSD(Avg, D) policy with an overall rank of 2.77. As the

sampling density is increased, both PSD(Max, D) and PSD(Avg, D) become more

favored compared to other policies. That is, their average rank increases with sam-

pling density. Second, the worst performers are the PSE(D) and PSE(L) policies,

with overall ranks of 7.93 and 8.72, respectively. Lastly, within each of the PSB,

PSD, and PSE policies, in terms of the choice of significance function on mesh qual-

ity, the MMSODD function yields better results than the MoL function. For example,

in terms of overall rank, the PSB(D) policy outperforms the PSB(L) policy, and the

PSD(Max, D) policy outperforms the PSD(Max, L) policy. The results for individual

test cases in Table 3.2(b) are consistent with the above observations. That is, the

PSD(Max, D) policy performs the best and the PSE(L) performs the worst among

all policies, and the MMSODD function outperforms the MoL function within each

of the PSB, PSD, PSE policies.

Though the PSD(Max, D) policy performs the best among all policies, it is helpful

to the reader to understand why this is so. Thus, in what follows, we present a deeper

analysis of how each initial sample-point selection policy affects the mesh quality by

comparing with PSD(Max, D).

MMSODD versus MoL. Before studying the effect of different initial sample-

point selection policies on mesh quality in detail, we first analyze a common free

parameter among most of the policies, namely, the significance function. Our experi-

mental results show that, in each of the PSB, PSD, and PSE policies, the MMSODD

function outperforms the MoL function in about 90% of all test cases, by 0.01 to 2.22

dB. To explain this behavior, for each of the PSB, PSD and PSE policies, we ex-

amined the density functions obtained from different significance functions into more

detail. We found that, for each of these policies, the density function obtained from

the MMSODD usually has a stronger response to image edges than that obtained

from the MoL. This behavior is mainly attributable to the fact that, in the Lapla-

cian, the two second-order derivative operators ∂2

∂x2
and ∂2

∂y2
can have opposite signs,

which can result in cancellation. A density function having a stronger response to

image edges tends to result in a better point distribution along image edges, leading

to a higher mesh quality. For the above reason, in the remainder of the discussion in

this section, we consider the effect of using each of the PSB, PSD, and PSE policies

only based on the case of the using the MMSODD significance function.

45

PSB(D) versus PSD(Max, D). First, we analyze the effect of using the PSB(D)

policy on mesh quality by comparing with the PSD(Max, D) policy. Based on our

experimentation, we find that the PSD(Max, D) policy outperforms the PSB(D) in

157/225 (70%) of all test cases, by a margin of 0.01 to 7.07 dB. Based on further

analysis, we find the above behavior is mainly attributable to a major shortcoming

of the PSB(D) policy, namely, the loss of contrast during color conversion. When

converting a RGB-color image to a grayscale image, the conversion process can some-

times lead to the case that two pixels with different RGB values are converted to

similar or even the same gray value. This will cause the grayscale image lose contrast

in some places or even drop some important image details (e.g., lines or edges) that

exists in the original RGB image, which is undesirable. For example, two pixels with

the RGB values (255, 191, 0) and (128, 255, 0) will result in same grayscale value 188

by using (2.4).

PSC and PSD(Avg, D) versus PSD(Max, D). Next, we analyze the effect

of using each of the PSC and PSD(Avg, D) policies on mesh quality, by comparing

with the PSD(Max, D) policy. The key difference between these policies is the use

of different density functions before invoking the FSED algorithm. Our experimental

results show that the PSD(Max, D) policy beats the PSC policy in 138/225 (61.3%)

of test cases by 0.01 to 3.65 dB, and beats the PSD(Avg, D) in 144/225 (64.0%)

of test cases by 0.01 to 3.43 dB. Based on further experiments, we find that, the

density function obtained from the PSC policy has a single response to image edges,

while those obtained from the PSD(Max, D) and PSD(Avg, D) policies have a double

response to image edges. In addition, the response to image edges is stronger in the

density function obtained from the PSD(Max, D) policy. The density function having

a strong double response to image edges is shown to be particularly helpful in our

work.

To help illustrate the effect of using each of these policies on the mesh quality, an

example is provided in Figure 3.4. For the RGB-color image shown in Figure 3.4(a),

we generate a mesh using each of the PSC, PSD(Max, D) and PSD(Avg, D) policies.

In each case, for the small region of interest highlighted in Figure 3.4(a), shown

enlarged in Figure 3.4(b), we present the resulting sample-point density function σ,

image-domain triangulation, and reconstructed image. The density functions shown

in Figures 3.4(c) to (e) are displayed with the same brightness scale.

Examining the results of Figure 3.4, we can see that the density function in Fig-

ure 3.4(c) has a single response to an image edge, which results in many sample points

46

(a)
(b)

(c) (d) (e)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

(f)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

(g)

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

(h)

(i) (j) (k)

Figure 3.4: Comparison of the PSC and PSD policies in the ED-like mode for RGB-
color images. (a) A color wheel image, showing a rectangular region of interest. (b)
Region of interest under magnification. The density function used for error diffusion
with the (c) PSC, (d) PSD(Max, D), and (e) PSD(Avg, D) policies; The image-
domain triangulations obtained at a sampling density of 1% by using the (f) PSC (g)
PSD(Max, D) and (h) PSD(Avg, D) policies, and the corresponding reconstructed
images (i), (j), and (k).

47

being selected exactly on the image edges in Figure 3.4(f). This leads to a bad distor-

tion in the reconstructed image in Figure 3.4(i). In contrast, the density functions in

Figures 3.4(d) and (e) both have a double response to an image edge, and the response

to image edges is weaker in Figure 3.4(e). Due to the density function having a weak

response to image edges, not enough sample points are selected on those image edges

in the triangulation shown in Figure 3.4(h). This leads to a bad distortion in the

reconstructed image in Figure 3.4(k). The above behavior of density function having

weaker response to image edges is mainly attributed to the averaging effect in the

PSD(Avg, D) policy. By using the PSD(Avg, D) policy, its aggregated significance

function a can be influenced by the component with the minimum significance value.

In contrast, the density function in Figure 3.4(d) has a stronger double response to

all image edges and the reconstructed image in Figure 3.4(j) is of higher quality.

PSE(D) versus PSD(Max, D). Lastly, we analyze the effect of using the

PSE(D) policy on mesh quality by comparing with the PSD(Max, D) policy. Our

experimental results show that the PSD(Max, D) policy outperforms the PSE(D)

policy in 223/225 (99.1%) of all test cases by a margin of 0.14 to 8.18 dB. To explain

this behavior, we provide an example. In Figure 3.5, for a RGB-color image, we

generate a mesh using each of the PSE(D) and PSD(Max, D) policies, and present

the resulting selected sample points, image-domain triangulation, and reconstructed

image.

Examining the results in Figure 3.5(a), we can make a few observations. First,

many sample points are selected extremely close to each other. Second, many areas

have relatively low sampling density. This manner of selecting sample points is shown

to be ineffective and normally leads to a higher distortion in the reconstructed images.

The above behavior is mainly due to the fact that, during the FSED process, the

threshold τ is very high, which results in the selected sample points in each component

often corresponding to only some key image elements (i.e., edges). As shown in

the triangulation in Figure 3.5(b), many big sliver triangles exist, which results in

bad distortion in the reconstructed image in Figure 3.5(c). In contrast, the sample

points are distributed reasonably well in Figure 3.5(d) and the quality of the resulting

reconstructed image in Figure 3.5(f) is substantially better.

48

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

* *

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

(a) (b) (c)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

(d) (e) (f)

Figure 3.5: Comparison of the PSE(D) and PSD(Max, D) policies in the ED-like
mode for RGB-color images. The selected sample points at a sampling density of 2%
by using the (a) PSE(D) and (d) PSD(Max, D) policy, the corresponding obtained
image-domain triangulations (b) and (e), and the corresponding reconstructed images
(c) (21.99 dB) and (f) (25.56 dB).

3.6.1.2 FSED Startup Policy

Next, we study the effect of the choice of the FSED startup policy on mesh quality

in the ED-like mode for RGB-color images. To do this, we select the free parame-

ter initSampSelPolicy as PSD(Max, D). For each of the 45 RGB-color images with

five sampling densities per image, we generated a mesh using each of the startup

policies (i.e., mirroring and classic), and measured the approximation error of the

reconstructed image in terms of PSNR. For each sampling density as well as overall,

we calculated the fraction of cases where the mirroring method outperforms classic

method, in addition to the minimum, median, and maximum differences in PSNR by

which mirroring beats classic. The overall results are shown in Table 3.3(a). Results

for some individual test cases are shown in Table 3.3(b). We also conducted similar

49

Table 3.3: Comparison of using different startup policies in the ED-like mode for
RGB-color images. (a) Overall results for the change in PSNR obtained by using the
mirroring method compared to the classic method, where win ratio is the fraction of
cases the mirroring method beats the classic method. (b) PSNR results for some rep-
resentative images, where the column diff shows the PSNR differences in the margin
by mirroring beats classic.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -2.29 0.76 3.87 77.8
1.0 -0.57 0.38 2.65 80.0
2.0 -0.53 0.19 3.68 68.9
3.0 -3.45 0.09 3.32 64.4
4.0 -0.90 0.05 1.58 66.7

Overall -3.45 0.17 3.87 71.6

(b)

Image
Samp.

Density (%)
PSNR (dB)

mirroring classic diff.

lena

0.5
1.0
2.0
3.0
4.0

19.18
22.12
25.77
27.73
28.83

18.00
21.66
25.56
27.39
28.57

1.18
0.46
0.21
0.34
0.26

pens

0.5
1.0
2.0
3.0
4.0

15.78
19.27
23.48
25.91
27.92

15.02
18.17
22.68
25.80
27.20

0.76
1.10
0.80
0.11
0.72

bluegirl

0.5
1.0
2.0
3.0
4.0

21.17
25.30
29.40
31.90
33.40

19.49
22.65
25.72
29.08
31.82

1.68
2.65
3.68
2.82
1.58

experiments by using other choices of fixed parameters (i.e., using other choices of

initSampSelPolicy), and the results obtained were found to be similar to those in

Table 3.3.

Examining the results of Table 3.3(a), we can make several observations. First,

the mirroring method outperforms the classic method at all sampling densities. For

50

example, the mirroring method beats the classic method in more than 29/45 (64.6%)

of the test cases at each sampling density. Looking at the full results in more de-

tail, we find that the mirroring method outperforms the classic method in 161/225

(71.6%) of the test cases by a margin of 0.01 to 3.87 dB. Second, at lower sampling

densities, the fraction of cases in which the mirroring method outperforms the classic

method is higher, and the differences in PSNR by which mirroring beats classic are

larger. For example, at the sampling density of 0.5% and 1.0%, the mirroring method

outperforms the classic method in 35/45 (77.8%) and 36/45 (80.0%) of test cases, and

the PSNR differences in the margin by which mirroring beats classic have a median

value of 0.76 dB and 0.38 dB, respectively. Lastly, at higher sampling densities, the

mirroring method still outperforms the classic method, but the differences become

smaller. For example, at each of the sampling densities of 2.0%, 3.0%, and 4.0%,

the mirroring method beats the classic method in about 65% of test cases, and the

median differences in PSNR by which mirroring beats classic is less than 0.19 dB.

The results for some individual test cases shown in Table 3.3(b) are consistent with

the above observations, where the mirroring method outperforms the classic method

in all test cases, by a margin of 0.11 to 3.68 dB.

The reason that the mirroring method beats the classic method can be largely

attributed to the startup effect that exists in the classic method, as described earlier

in Section 3.2. In particular, at lower sampling densities, by using the classic method,

an abnormally small number of sample points are selected at the bottom region of the

image domain. The mirroring method, however, does not suffer from such a problem.

To illustrate the effect of the above behaviors on mesh quality, an example is provided

in Figure 3.6. For a RGB-color image, we generate a mesh using each of the classic

and mirroring methods and present the corresponding image-domain triangulations

in Figures 3.6(a) and (b), respectively. We can see clearly, in Figure 3.6(a), that the

number of sample points selected in the bottom region of the image domain is quite

small, resulting in many large sliver triangles. This leads to a high approximation

error when reconstructing the image using the mesh. In contrast, in the case of using

the mirroring method, a better point distribution is obtained at the bottom of the

image domain, as shown in Figure 3.6(b).

51

(a) (b)

Figure 3.6: Triangulations obtained for the color bluegirl image at a sampling density
of 1% in the ED-like mode with error diffusion employing the (a) classic and (b)
mirroring methods.

3.6.2 Grayscale Case

Having discussed the effect of parameter choices on the mesh quality in the ED-

like mode for RGB-color images, we now consider the case of grayscale images (i.e.,

M = 1). As mentioned earlier, if M = 1, the PSD and PSE policies are equivalent

to the PSA policy. Thus, in our work, though the PSA, PSD, and PSE policies

are all applicable to grayscale images, we only study the case of applying the PSA

policy in the framework for grayscale images. The impact of the choices of the other

free parameters on mesh quality, including the significance function within the PSA

policy (or equivalently, the significance function within the PSD or PSE policy), and

startupPolicy, will be discussed.

3.6.2.1 Significance Function

To begin, we study how the choice of the significance function in the PSA policy (or

equivalently, the PSD or PSE policy) affects mesh quality. To do this, we select the

parameter startupPolicy as classic. For each of the 45 grayscale images in the test

set and five sampling densities per image (for a total of 45 · 5 = 225 test cases), we

generated a mesh using each of the significance functions (i.e., MMSODD and MoL),

and measured the approximation error of the reconstructed image in terms of PSNR.

For each sampling density as well as overall, we calculated the fraction of cases where

52

the MMSODD function outperforms the MoL function, in addition to the minimum,

median, and maximum difference in PSNR by which MMSODD beats MoL. The

overall results are shown in Table 3.4(a). Results for some individual test cases are

shown in Table 3.4(b). In each of these tables, the best result for each test case is

shown in bold font. We also conducted similar experiments by using other choices of

fixed parameters (i.e., using a startup policy of mirroring), and the results obtained

were found to be similar to those in Table 3.4.

Examining the results of Table 3.4(a), we can see that the significance function

MMSODD outperforms MoL at all sampling densities. Looking at the full results

in more detail, we find that the MMSODD function outperforms the MoL function

in 208/225 (92.4%) of test cases by a margin of 0.01 to 5.37 dB. The results for

individual test cases shown in Table 3.4(b) are consistent with the overall results. For

example, the MMSODD function outperforms the MoL function in 14/15 (93.3%) of

the test cases. The reason for this behavior is similar to what we described earlier in

Section 3.6.1 for RGB-color images. That is, the density function obtained from the

MMSODD function has a stronger response to images edges than the density function

obtained from the MoL function.

3.6.2.2 FSED Startup Policy

Lastly, we study how the choice of the startup policy in the FSED algorithm affects

mesh quality. To do this, we select the parameter initSampSelPolicy as PSA(D). For

each of the 45 grayscale images and five sampling densities, we generated a mesh using

each of the startup policies (i.e., mirroring and classic), and measured the approxi-

mation error of the reconstructed image in terms of PSNR. For each sampling density

as well as overall, we calculated the fraction of cases where the mirroring method

outperforms the classic method, in addition to the minimum, median, and maximum

difference in PSNR by which mirroring beats classic. The overall results are shown

in Table 3.5(a). Results for some individual test cases are shown in Table 3.5(b).

We also conducted similar experiments by using other choices of fixed parameters

(i.e., using PSA(L) as initSampSelPolicy), and the results obtained were found to be

similar to those in Table 3.5.

Examining the results of Table 3.5(a), we can make similar observations as what

we saw previously for RGB-color images in Section 3.6.1. That is, the mirroring

method beats the classic method at all sampling densities. Looking at the full results

53

Table 3.4: Comparison of using different significance functions within the PSA policy
in the ED-like mode. (a) Overall results for the change in PSNR obtained by using
the MMSODD function compared to the MoL function, where win ratio is the frac-
tion of cases the MMSODD function beats the MoL function. (b) PSNR results for
some representative images, where the column diff shows the PSNR differences in the
margin by MMSODD beats MoL.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -0.53 0.47 2.13 82.2
1.0 -1.05 0.49 5.37 93.3
2.0 -0.20 0.36 1.27 91.1
3.0 0.02 0.38 1.94 100.0
4.0 -0.53 0.38 1.49 95.6

Overall -1.05 0.42 5.37 92.4

(b)

Image
Samp.

Density (%)
PSNR (dB)

MMSODD MoL Diff.

lena

0.5
1.0
2.0
3.0
4.0

17.17
21.13
25.83
28.06
29.59

17.12
20.96
25.40
27.78
29.40

0.05
0.17
0.43
0.28
0.19

pens

0.5
1.0
2.0
3.0
4.0

14.37
17.83
22.87
26.19
28.10

14.04
17.46
22.58
25.87
27.89

0.33
0.37
0.29
0.32
0.21

bluegirl

0.5
1.0
2.0
3.0
4.0

19..99
22.72
25.42
30.10
28.76

19.15
21.46
25.54
28.76
32.09

0.84
1.26
-0.12
1.34
1.49

in more detail, we find that the mirroring method outperforms the classic method

in 155/225 (68.9%) of test cases by a margin of 0.01 to 4.72 dB. In particular, at

lower sampling densities, the fraction of cases in which mirroring outperforms classic

is higher, and the differences in PSNR by which mirroring beats classic is larger. For

example, at sampling densities of 0.5% and 1.0% respectively, the mirroring method

54

Table 3.5: Comparison of using different startup policies in the ED-like mode for
grayscale images. (a) Overall results for the change in PSNR obtained by using the
mirroring method compared to the classic method, where win ratio is the fraction of
cases the mirroring method beats the classic method. (b) PSNR results for some rep-
resentative images, where the column diff shows the PSNR differences in the margin
by mirroring beats classic.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -1.63 0.61 2.40 84.4
1.0 -3.33 0.35 3.51 75.6
2.0 -2.72 0.10 4.72 55.6
3.0 -0.92 0.11 2.46 66.7
4.0 -1.81 0.03 3.08 62.2

Overall -3.33 0.16 4.72 68.9

(b)

Image
Samp.

Density (%)
PSNR (dB)

mirroring classic diff.

lena

0.5
1.0
2.0
3.0
4.0

17.96
21.83
26.14
28.43
29.76

17.17
21.13
25.83
28.06
29.59

0.79
0.70
0.31
0.37
0.17

pens

0.5
1.0
2.0
3.0
4.0

15.65
19.24
23.96
26.93
28.79

14.37
17.83
22.87
26.19
28.10

1.28
1.41
1.09
0.74
0.69

cartoon
bull

0.5
1.0
2.0
3.0
4.0

26.57
33.62
37.57
40.35
41.57

26.13
33.38
37.63
40.33
41.55

0.44
0.24
-0.06
0.02
0.02

beats the classic method in 38/45 (84.4%) and 34/45 (75.6%) of the test cases, and

the median differences in PSNR by which mirroring beats classic are 0.61 dB and

0.35 dB. The individual results in Table 3.5(b) shows that the mirroring method

outperforms the classic method in 14/15 of test cases by a margin of 0.02 to 1.41

dB. The above behavior can be attributed to the startup effect in the classic method,

55

similar to what we described earlier for the RGB-color image case in Section 3.6.1.

3.7 Impact on Different Parameter Choices for the

GPRFSED-like Mode

Having discussed the effect of the choice of the free parameters on mesh quality for

the ED-like mode in our framework, we now consider the impact of parameter choices

on mesh quality for the GPRFSED-like mode. First, we consider the effect of the

choice of free parameters on mesh quality for RGB-color images. Then, we consider

the case of grayscale images.

3.7.1 RGB-Color Case

We start by analyzing the impact of the parameter choices on mesh quality in the

GPRFSED-like mode in the case of RGB-color images. The impact of choices of free

parameters on mesh quality, including N0, initSampSelPolicy, and startupPolicy, will

be discussed.

3.7.1.1 Initial Mesh Size N0

In our work, we aim to find a good strategy to choose the initial mesh size N0, or

equivalently, the initial sampling density D0 = N0

WH
. To do this, we selected the

parameters such that initSampSelPolicy is PSD(Max, D) and startupPolicy is mir-

roring. For each of the 45 RGB-color images and five sampling densities, the following

experiment was conducted. For the given image and desired sampling density D, we

measured the mesh quality (in terms of PSNR) as a function of D0 while keeping D

fixed. Figure 3.7 shows the results obtained for two representative test cases. We

also conducted similar experiments by using other choices of fixed parameters (i.e.,

using different choices of initSampSelPolicy and startupPolicy), and found that most

results obtained were similar to the graphs shown in Figure 3.7. There were a few

exceptions, however. For some combinations of parameter choices the results ob-

tained were quantitatively different, but from a practical point of view, they are not

of our interest due to their poor performance. As we will show later, the choice of

PSD(Max, D) as initSampSelPolicy and mirroring as startupPolicy is still superior to

the other alternatives.

56

(a)

(b)

Figure 3.7: Effect of varying the initial sampling density on mesh quality the
GPRFSED-like mode for RGB-color images.(a) The kodim23 image with a desired
sampling density of 2.0%; and (b) The lena image with a desired sampling density of
4.0%.

From the results of Figure 3.7, we can see that, in both graphs, the PSNR increases

rapidly with D0 initially, and then gradually decreases. This shows that the best mesh

57

quality is not obtained at the point where the initial mesh sampling density is highest

(i.e., D0 = 100%). Instead, the best result is obtained at D0 chosen much smaller than

100%, where less computational cost is required. Based on further experimentation,

we found that, the GPRFSED-like mode can usually achieve a PSNR very close to,

and in many cases better than, the case that D0 = 100%, by choosing D0 in the

approximate range [4D, 5.5D]. Consequently, we propose that D0 be chosen using

a simple formula γD, or equivalently, that N0 be chosen as N0 = γN , where γ is

a real constant satisfying γ ∈ [4, 5.5]. Typically, for photographic imagery (except

at very low sampling densities), in order to achieve results comparable to the case

D0 = 100%, a choice of γ = 4 is sufficient, in the remaining cases, a choice of γ = 5.5

may be more appropriate. For the interest of minimizing computational and memory

costs, we propose γ nominally be chosen as 4.

3.7.1.2 Initial Sample-Point Selection Policy

Now, we study the effect of the choice of initial sample-point selection policy on mesh

quality in the GPRFSED-like mode in the case of RGB-color images. To do this, we

select the free parameters such that N0 = 4N and startupPolicy is mirroring. For

each of the 45 RGB-color images and five sampling densities, we generated a mesh

using each of the initial sample-point selection policies. In each test case, the PSNR

results obtained by different policies were ranked from 1 (best) to 9 (worst). Then,

the average and standard deviation of the ranks were computed across each sampling

density as well as overall. The overall ranking results are given in Table 3.6(a), with

the best result in each row typeset in bold. Results for some individual test cases are

shown in Table 3.6(b). We also conducted experiments using other choices of fixed

parameters (e.g., using different startup policy), and the results obtained were found

to be similar to those in Table 3.6.

Examining the results of Table 3.6, we can clearly see that the PSD(Max, D)

and PSD(Avg, D) policies perform best. More specifically, the PSD(Max, D) policy

performs slightly better at lower sampling densities, while the PSD(Avg, D) policy

performs slightly better at higher sampling densities. The above behavior can be at-

tributed to the fact that, the density function obtained from the PSD(Max, D) policy

results in a stronger response to image edges than the PSD(Avg, D) policy. Thus, at

higher sampling densities (e.g., 2.0% and higher), due to the larger initial mesh size,

having sample points been selected extremely close to each other along image edges is

58

Table 3.6: Comparison of using the various initial sample-point selection policies
in GPRFSED-like mode for RGB-color images. (a) Average ranking across the 45
images in the data set. (b) Some representative images results.

(a)

Samp.
Density

(%)

PSNR Average Rank
(Standard Deviation)

PSB
(D)

PSB
(L)

PSC
PSD

(Max,
D)

PSD
(Max,

L)

PSD
(Avg,

D)

PSD
(Avg,

L)

PSE
(D)

PSE
(L)

0.5
4.87

(1.87)
6.67

(1.26)
4.73

(2.32)
1.96
(1.05)

3.87
(1.39)

2.27
(1.34)

4.40
(1.40)

7.71
(0.96)

8.53
(0.83)

1.0
5.53

(2.00)
7.36

(1.55)
5.84

(2.29)
1.80

(0.91)
4.11

(1.48)
1.78
(0.89)

4.18
(1.35)

6.58
(1.47)

7.82
(1.22)

2.0
6.44

(1.98)
7.87

(1.48)
7.29

(2.03)
1.98

(1.04)
4.29

(1.26)
1.73
(1.00)

4.38
(1.18)

4.29
(1.72)

6.73
(1.40)

3.0
6.60

(1.89)
8.13

(0.93)
7.60

(1.84)
2.09

(1.11)
4.44

(1.34)
1.82
(0.93)

4.47
(1.26)

3.53
(1.67)

6.31
(1.31)

4.0
6.69

(1.82)
8.20

(0.88)
7.80

(1.56)
2.33

(0.94)
4.87

(1.13)
1.78
(1.05)

4.58
(1.04)

2.98
(1.76)

5.78
(1.65)

Overall
6.03

(2.04)
7.64

(1.38)
6.65

(2.35)
2.03

(1.03)
4.32

(1.37)
1.88
(1.07)

4.40
(1.26)

5.02
(2.39)

7.04
(1.65)

(b)

Image
Samp.

Density
(%)

PSNR Average Rank
(Standard Deviation)

PSB
(D)

PSB
(L)

PSC
PSD

(Max,
D)

PSD
(Max,

L)

PSD
(Avg,

D)

PSD
(Avg,

L)

PSE
(D)

PSE
(L)

pens

0.5
1.0
2.0
3.0
4.0

23.43
26.30
28.98
30.69
32.07

23.23
26.25
28.90
30.61
31.88

23.30
26.26
29.03
30.58
31.82

24.05
26.77
29.43
31.16
32.45

23.93
26.52
39.35
31.08
32.44

23.96
26.83
29.49
31.18
32.49

23.90
26.56
29.34
31.11
32.44

22.22
25.68
29.05
31.02
32.51

22.22
26.11
28.98
30.96
32.28

kodim23

0.5
1.0
2.0
3.0
4.0

28.21
30.86
33.71
35.45
36.66

27.78
30.95
33.70
35.41
36.61

28.40
30.96
33.76
35.65
37.01

29.11
31.89
34.71
36.43
37.69

28.97
31.85
34.60
36.35
37.62

29.00
31.88
34.65
36.41
37.68

28.91
31.71
34.54
36.32
37.60

28.14
31.66
34.60
36.35
37.66

28.30
31.47
34.50
36.20
37.54

cartoon
bull

0.5
1.0
2.0
3.0
4.0

36.30
39.55
42.40
44.37
45.89

36.45
39.39
42.24
44.14
45.50

38.80
42.08
44.66
46.05
47.18

39.61
42.60
44.92
46.24
47.37

39.61
42.28
44.66
45.95
47.07

38.96
42.59
44.82
46.23
47.34

39.08
42.47
44.58
45.92
47.05

36.87
40.49
44.55
46.03
47.23

37.51
40.38
44.37
45.85
47.00

59

more likely to happen, which leads to slightly poorer performance. Nevertheless, we

found that the PSNR difference between the PSD(Max, D) and PSD(Avg, D) policies

is usually quite small at sampling densities 2.0% and higher, and relatively large at

sampling densities 1.0% and lower. For example, for the individual results shown in

Table 3.6(b), the PSNR difference between PSD(Max, D) and PSD(Avg, D) is less

than 0.10 dB at higher sampling densities. While at lower sampling densities, the

PSD(Max, D) policy beats the PSD(Avg, D) policy by a margin of 0.01 to 0.57 dB.

Given the fact the PSD(Max, D) policy performs very well in the GPRFSED-like

mode and performs better than the PSD(Avg, D) policy in the ED-like mode, we

choose PSD(Max, D) nominally in the framework, though incurring a small mesh-

quality penalty relative to the PSD(Avg, D) policy at higher sampling densities.

3.7.1.3 FSED Startup Policy

Lastly, we study the effect of the choice of the FSED startup policy on mesh quality

in the GPRFSED-like mode. To do this, we select the free parameters such that

N0 = 4N and initSampSelPolicy is PSD(Max, D). For each of the 45 RGB-color

images with five sampling densities per image, we generated a mesh using each of the

startup policies (i.e., mirroring and classic), and measured the approximation error

of the reconstructed image in terms of PSNR. For each sampling density as well as

overall, we calculated the fraction of cases where the mirroring method outperforms

classic method, in addition to the minimum, median, and maximum differences in

PSNR by which mirroring beats classic. The overall results are shown in Table 3.7(a).

Results for some individual test cases are shown in Table 3.7(b). We also conducted

similar experiments by using other choices of fixed parameters (e.g., using different

initial sample-point selection policy), and the results obtained were found to be similar

to those in Table 3.7.

Examining the results of Table 3.7(a), we can see that the mirroring method still

outperforms the classic method in terms of overall performance. For example, the

overall results show that the mirroring method beats the classic method in 134/225

(59.6%) of test cases. More specifically, the mirroring method beats the classic method

at sampling densities of 1.0% and lower, and behaves similarly to the classic method at

sampling densities of 2.0% and higher. More detailed analysis shows that at sampling

densities of 1.0% and lower, the mirroring method beats the classic method in 68/90

(75.6%) of the test cases by a margin of 0.02 to 2.29 dB. At sampling densities of 2.0%

60

Table 3.7: Comparison of using different startup policies in the GPRFSED-like mode
for RGB-color images. (a) Overall results for the change in PSNR obtained by using
the mirroring method compared to the classic method, where win ratio is the frac-
tion of cases the mirroring method beats the classic method. (b) PSNR results for
some representative images, where the column diff shows the PSNR differences in the
margin by mirroring beats classic.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -0.28 0.21 2.29 82.2
1.0 -0.15 0.05 1.30 68.9
2.0 -0.05 0.01 0.20 53.3
3.0 -0.42 -0.01 0.14 48.9
4.0 -0.34 -0.01 0.06 44.4

Overall -0.42 0.01 2.29 59.6

(b)

Image
Samp.

Density (%)
PSNR (dB)

mirroring classic diff.

lena

0.5
1.0
2.0
3.0
4.0

26.04
28.38
30.48
31.68
32.49

25.83
28.23
30.50
31.71
32.49

0.21
0.15
-0.02
-0.03
0.00

pens

0.5
1.0
2.0
3.0
4.0

24.05
26.77
29.43
31.16
32.45

23.37
26.30
29.45
31.15
32.44

0.68
0.47
-0.02
0.01
0.01

bluegirl

0.5
1.0
2.0
3.0
4.0

29.37
32.68
35.38
36.85
37.86

27.08
31.38
35.28
36.84
37.85

2.29
1.30
0.10
0.01
0.02

and higher, the fraction of cases in which mirroring beats classic is close to 50%, and

the PSNR difference between these two startup policies is quite small (i.e., the median

difference in PSNR between them is less than 0.01 dB). The above behavior is mainly

due to the fact that, at higher sampling densities, the error diffusion threshold τ

employed is quite small in the GPRFSED-like mode. Thus the startup effect becomes

61

much less of an issue. At lower sampling densities, however, τ is still high and

the performance of the classic method is still influenced by the startup effect. The

individual results shown in Table 3.7(b) are consistent with the above observations.

That is, the mirroring method beats the classic method at lower sampling densities

in all test cases by 0.15 to 2.29 dB, and behaves similarly to the classic method at

higher sampling densities.

3.7.2 Grayscale Case

For the GPRFSED-like mode, we have discussed the impact of parameter choices on

mesh quality for RGB-color images. Now we consider the case of grayscale images.

For the initial sample-point selection policy, we still only consider the case of using

the PSA policy (which is equivalent to the PSD or PSE policy in this context). The

impact of the choice of free parameters on mesh quality, including N0, the significance

function within PSA, and startupPolicy, will be discussed.

3.7.2.1 Initial Mesh Size N0

We start by studying the effect of the choice of N0 on mesh quality in the GPRFSED-

like mode. Like what we did for the RGB-color image case in Section 3.7.1, we still

aim to find a good strategy to select N0, or equivalently, the initial sampling density

D0 = N0

WH
. To do this, we selected the parameters such that initSampSelPolicy is

PSA(D) and startupPolicy is mirroring. For each of the 45 grayscale images and five

sampling densities, we conducted experiments as follows. For the given image and

desired sampling density D, we measured the mesh quality (in terms of PSNR) as a

function of D0 while keeping D fixed. Figure 3.8 shows the results obtained for two

representative test cases. We also conducted similar experiments using other choices

of fixed parameters (i.e., using different the choices of significance function within the

PSA policy and FSED startup policy), and obtained results similar to the ones shown

in Figure 3.8.

Examining the results of Figure 3.8, we can see a similar behavior as earlier for

the RGB-color case in Section 3.7.1. That is, in both Figures 3.7(a) and (b), the

curve increases rapidly to a maximum and then slowly decreases. Furthermore, based

on our experiments, we notice that in most cases the maximum value is located at

D0 ∈ [4D, 5.5D]. Therefore, we still propose that D0 be chosen as D0 = γD, or

equivalently, that N0 be chosen as N0 = γN , where γ is a real constant satisfying

62

(a)

(b)

Figure 3.8: Effect of varying the initial sampling density on mesh quality the
GPRFSED-like mode for grayscale images.(a) The kodim23 image with a desired
sampling density of 2.0%; and (b) The lena image with a desired sampling density of
4.0%.

γ ∈ [4, 5.5]. In the interest of minimizing computational cost, we nominally chose γ

as 4.

63

3.7.2.2 Significance Function

Next, we study the effect of the choice of the significance function within the PSA

policy (or equivalently, the PSD or PSE policy) on mesh quality in the GPRFSED-

like mode for grayscale images. To do this, we select the free parameters such that

N0 = 4N and startupPolicy is mirroring. For each of the 45 grayscale images in the

test set and five sampling densities per image, we generated a mesh using each of the

significance functions (i.e., MMSODD and MoL), and measured the approximation

error of the reconstructed image in terms of PSNR. For each sampling density as

well as overall, we calculated the fraction of cases where the MMSODD function

outperforms the MoL function, in addition to the minimum, median, and maximum

difference in PSNR by which MMSODD beats MoL. The overall results are shown

in Table 3.8(a). Results for some individual test cases are shown in Table 3.8(b). We

also conducted similar experiments by using other choices of fixed parameters (e.g.,

using the FSED startup policy of classic), and the results obtained were found to be

similar to those in Table 3.8.

Examining the results of Table 3.8(a), we can clearly see that the MMSODD func-

tion outperforms the MoL function at all sampling densities. More detailed analysis

shows that our the MMSODD function outperforms the MoL function in 211/225

(93.8%) of test cases by a margin of 0.01 to 2.03 dB. The above behavior is still

due to the fact that the density function obtained from the MMSODD function has

a stronger response to image edges than the MoL function. The individual results

shown in Table 3.8(b) are consistent with the overall results, where the MMSODD

function beats the MoL function at all sampling densities.

3.7.2.3 FSED Startup Policy

Lastly, we study the effect of the choice of the startup policy in the FSED algorithm

on mesh quality. To do this, we select the free parameters such that N0 = 4N and

initSampSelPolicy is PSA(D). For each of the 45 grayscale images and five sampling

densities, we generated a mesh using each of the startup policies (i.e., mirroring and

classic), and measured the approximation error of the reconstructed image in terms

of PSNR. For each sampling density as well as overall, we calculated the fraction

of cases where the mirroring method outperforms the classic method, in addition to

the minimum, median, and maximum difference in PSNR by which mirroring beats

classic. The overall results are shown in Table 3.9(a). Results for some individual

64

Table 3.8: Comparison of using different significance functions within the PSA policy
in the GPRFSED-like mode. (a) Overall results for the change in PSNR obtained by
using the MMSODD function compared to the MoL function, where win ratio is the
fraction of cases the MMSODD function beats the MoL function. (b) PSNR results
for some representative images, where the column diff shows the PSNR differences in
the margin by MMSODD beats MoL.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -0.36 0.19 2.03 84.4
1.0 -0.18 0.16 0.56 91.1
2.0 -0.53 0.19 0.33 93.3
3.0 0.02 0.18 0.37 100.0
4.0 -0.07 0.17 0.36 100.0

Overall -0.53 0.17 2.03 93.8

(b)

Image
Samp.

Density (%)
PSNR (dB)

MMSODD MoL Diff.

lena

0.5
1.0
2.0
3.0
4.0

26.49
29.11
31.92
33.51
34.59

26.45
29.01
31.84
33.34
34.45

0.04
0.10
0.08
0.17
0.14

pens

0.5
1.0
2.0
3.0
4.0

24.79
27.79
30.73
32.64
34.20

24.71
27.60
30.69
32.56
34.12

0.08
0.19
0.04
0.08
0.08

cartoon
bull

0.5
1.0
2.0
3.0
4.0

43.36
43.54
45.67
46.94
48.03

40.20
43.45
45.35
46.58
47.67

0.16
0.09
0.32
0.36
0.36

test cases are shown in Table 3.9(b). We also conducted similar experiments by using

other choices of fixed parameters (e.g., using PSA(L) for initSampSelPolicy), and the

results obtained were found to be similar to those in Table 3.9.

Examining the results of Table 3.9(a), we observe a similar behavior as that seen

earlier in Section 3.7.1 for the RGB-color image case. That is, the mirroring method

65

Table 3.9: Comparison of using different startup policies in the GPRFSED-like mode
for grayscale images. (a) Overall results for the change in PSNR obtained by using
the mirroring method compared to the classic method, where win ratio is the frac-
tion of cases the mirroring method beats the classic method. (b) PSNR results for
some representative images, where the column diff shows the PSNR differences in the
margin by mirroring beats classic.

(a)

Samp.
Density (%)

PSNR Change (dB) Win Ratio
(%)Minimum Median Maximum

0.5 -3.27 0.19 2.88 77.8
1.0 -0.50 0.03 1.20 71.1
2.0 -0.82 -0.01 0.22 46.7
3.0 -0.40 0.01 0.27 68.9
4.0 -0.38 -0.01 0.10 48.9

Overall -3.27 0.01 2.88 62.7

(b)

Image
Samp.

Density (%)
PSNR (dB)

mirroring classic Diff.

lena

0.5
1.0
2.0
3.0
4.0

26.49
29.11
31.92
33.51
34.59

26.22
29.00
31.86
33.50
34.54

0.27
0.11
0.06
0.01
0.05

pens

0.5
1.0
2.0
3.0
4.0

24.79
27.79
30.73
32.64
34.20

24.10
27.43
30.77
32.69
34.21

0.69
0.36
-0.04
-0.05
-0.01

cartoon
bull

0.5
1.0
2.0
3.0
4.0

40.36
43.54
45.67
46.94
48.03

39.85
43.55
45.70
46.94
48.03

0.51
-0.01
-0.03

0
0

outperforms the classic method at lower sampling densities, and is comparable to

the classic method at higher sampling densities. Looking at the full results in more

detail, we find that at lower sampling densities, the mirroring method beats the

classic method in 67/90 (74.4%) of the test cases by a margin of 0.01 to 2.88 dB.

The individual results shown in Table 3.9(b) are consistent with the overall results.

66

(a) (b) (c)

Figure 3.9: (a) The color lena image. (b) Triangulation obtained at the sampling
density of 2.0% in the GPR-like mode, and (c) the reconstructed image.

That is, the mirroring method beats the classic method in 5/6 (83.0%) of test cases

at lower sampling densities, and performs similarly to the classic method at higher

sampling densities.

3.8 Impact on Different Parameter Choices for the

GPR-like Mode

Lastly, we consider the the GPR-like mode in our framework. In this mode, since the

initial mesh always contains all sample points from the sampling grid, the parame-

ters initSampSelPolicy and startupPolicy are not used. Thus, in this mode, no free

parameters can be chosen to affect the mesh quality. Experiments has shown that

the GPR-like mode in our framework can produce meshes with very high quality.

An example is provided in Figure 3.9. For the RGB-color image in Figure 3.9(a),

we generated a mesh at the sampling density of 2.0%. Figures 3.9(b) and (c) show

the resulting image-domain triangulation and reconstructed image, respectively. We

can see that quality of the reconstructed image is very high compared to the original

image.

Although the method constructed from the GPR-like mode has shown to yield

meshes with excellent quality, it has one major weakness, namely its very high com-

putational and memory costs. This is mainly due to fact that the initial mesh size

is very large, i.e., contains WH points. Thus the mesh-simplification process be-

comes extremely time consuming. In addition, as shown earlier in Sections 3.7.1.1

67

and 3.7.2.1, if N0 is chosen appropriately in the GPRFSED-like mode, the obtained

mesh quality (in terms of PSNR) can beat the case that D0 = 100%, the point at

which the result obtained is same as the GPR-like mode. This indicates that our

GPRFSED-like mode can yield meshes with higher quality than the the GPR-like

mode, while requiring substantially lower computational and memory costs. Thus,

the GPRFSED-like mode is more favored compared to the GPR-like mode.

3.9 Proposed Methods

In the preceding sections, we studied how various choices of free parameters affect

the performance of our mesh-generation framework in different modes. This leads us

to conclude that, in both the ED-like and GPRFSED-like modes, initSampSelPolicy

and startupPolicy are best chosen as PSD(Max, D) and mirroring, respectively. In

addition, in the GPRFSED-like mode, a choice of N0 = γN , where γ is a real con-

stant satisfying γ ∈ [4, 5.5] and nominally chosen as 4, was also found to be quite

effective compared to alternatives. As a result, we chose to propose two methods,

known as MED and MGPRFS, which corresponds to the methods with best parame-

ter choices in the ED-like and GPRFSED-like modes, respectively. More specifically,

the MED method is derived from the ED-like mode, and it selects the free param-

eters such that N0 = N , initSampSelPolicy is PSD(Max, D), and startupPolicy is

mirroring. The MGPRFS method is derived from the GPRFSED-like mode, and it

selects the free parameters such that N0 = γN with γ ∈ [4, 5.5] and nominally chosen

as 4, initSampSelPolicy is PSD(Max, D), and startupPolicy is mirroring. Both of the

MED and MGPRFS methods are applicable to images with an arbitrary number of

components M . The MED method simply selects the mesh sample points in one shot

based on FSED, which has extremely low computational cost, but the mesh quality

is not as good compared to the MGPRFS method. The MGPRFS method selects

an initial mesh with size larger than desired and then applies mesh-simplification to

obtain the final mesh, which can generate meshes with very good quality but requires

relatively more computational cost than the MED method.

68

Chapter 4

Evaluation of the Proposed

Methods

Having introduced our two proposed mesh-generation methods for single- and multi-

component images, we now evaluate their performance in terms of mesh quality and

computational cost. We evaluate these methods based on the two most representa-

tive cases of single- and multi-component images, namely, grayscale and RGB-color

images. We compare our methods to three highly-effective single-component mesh-

generation schemes, namely, ED, GPRFSED, and GPR. As mentioned earlier, in

terms of generating mesh models for images, the vast majority of the methods pro-

posed over the years are for single-component (i.e., grayscale) images, only few meth-

ods for multi-component (e.g., RGB) images. In addition, authors normally do not

want to make their software/code available due to the large effort required for imple-

mentation. Thus, approaches to evaluate the performance of our proposed methods

for color images is very limited. Ideally, we want to compare with mesh-generation

methods which are PDDT-based and having the function value of the mesh model

being continuous. To the knowledge of the author of this thesis, however, no such

methods for color/multi-component images have been proposed. Consequently, for

color case, in the absence of other mesh-generation methods for comparison, the most

obvious approach to compare is using single-component mesh generators adapted in

a very straightforward way to handle color images. We adapt the three effective

single-component mesh-generation methods, namely, ED, GPRFSED, and GPR, in

a straightforward way as follows. RGB-color images are handled through conversion

to grayscale as a preprocessing step, and then as a postprocessing step after mesh

69

generation, the grayscale sample values in the generated mesh were replaced by their

corresponding RGB values. The resulting color-capable versions of ED, GPRFSED,

and GPR are henceforth referred to as CED, CGPRFSED, and CGPR, respectively.

In addition, to better show the effectiveness of our MGPRFS method, we also com-

pare to the method that results from the GPR-like mode (i.e., N0 = WH) of our

framework, which we refer to as MGPR. For the case of grayscale images, the MGPR

method is equivalent to the GPR method. The software implementations of the var-

ious methods used in this evaluation were developed by the author of this thesis and

are written in C++. In what follows, we evaluate the performance of our proposed

MED and MGPRFS methods in terms of mesh quality, computational cost, and mem-

ory cost by comparing with the ED, CED, GPRFSED, CGPRFSED, GPR, CGPR,

and MGPR methods.

4.1 Mesh Quality

We first compare the mesh quality obtained from the various mesh-generation meth-

ods. For each of the 45 color images and 45 grayscale images in our test set (where

the grayscale images were generated from those color images) and five sampling den-

sities per image, we generated a mesh using each of the methods under consideration.

In each test case, the difference between the reconstructed image obtained from the

mesh and the original image was measured in terms of PSNR using (2.5). Note that,

competing methods to which we compare impose limitations on the type of data that

they can handle (i.e., restrictions on the number of components). For example, the

methods CED, CGPRFSED, and CGPR can only handle RGB-color images, and the

methods ED, GPRFSED, and GPR can only handle grayscale images. Thus, in order

to analyze the experimental results, we partition them into two subsets: 1) results for

RGB-color images for the methods CED, MED, CGPRFSED, MGPRFS, CGPR, and

MGPR; and 2) results for grayscale images for the methods ED, MED, GPRFSED,

MGPRFS, and GPR (or equivalently, MGPR). The results for each of the subsets

are analyzed separately. For each of the RGB-color and grayscale subsets, the meth-

ods were ranked for each test case from best to worst, where 1 is best. The average

and standard deviation of the ranks were computed across each sampling density as

well as overall with the results presented in Tables 4.1(a) and (b). Results for some

individual test cases are shown in Tables 4.2(a) and (b). In what follows, we make

various comparisons based on the data in these tables.

70

Table 4.1: Ranking of mesh quality obtained with the various mesh-generation meth-
ods for (a) RGB-color and (b) grayscale images

(a)

Samp.

Density

(%)

PSNR Average Rank

(Standard Deviation)

CED MED
CGPRFSED

γ = 4

MGPRFS

γ = 4
CGPR MGPR

0.5
5.88

(0.32)

5.12

(0.32)

3.81

(0.45)

2.24

(0.61)

2.67

(0.92)

1.29

(0.55)

1.0
5.90

(0.29)

5.10

(0.29)

3.40

(0.66)

1.57

(0.73)

3.36

(0.65)

1.67

(0.71)

2.0
5.90

(0.29)

5.10

(0.29)

3.12

(0.66)

1.36

(0.53)

3.69

(0.51)

1.83

(0.69)

3.0
5.81

(0.39)

5.17

(0.43)

3.07

(0.63)

1.33

(0.52)

3.76

(0.53)

1.86

(0.68)

4.0
5.81

(0.39)

5.19

(0.39)

3.02

(0.60)

1.33

(0.56)

3.79

(0.51)

1.86

(0.60)

Overall
5.86

(0.34)

5.13

(0.35)

3.29

(0.67)

1.57

(0.69)

3.45

(0.77)

1.70

(0.68)

(b)

Samp.
Density

(%)

PSNR Average Rank
(Standard Deviation)

ED MED
GPRFSED
γ = 4

MGPRFS
γ = 4

GPR/MGPR

0.5
4.83

(0.37)
4.17

(0.37)
2.79

(0.41)
2.12

(0.50)
1.10
(0.37)

1.0
4.76

(0.43)
4.24

(0.43)
2.38

(0.72)
1.71
(0.76)

1.90
(0.81)

2.0
4.57

(0.49)
4.43

(0.49)
1.76
(0.68)

1.90
(0.78)

2.33
(0.86)

3.0
4.64

(0.48)
4.36

(0.48)
2.10

(0.72)
1.52
(0.66)

2.38
(0.82)

4.0
4.62

(0.49)
4.38

(0.49)
1.71
(0.59)

1.79
(0.74)

2.50
(0.85)

Overall
4.69

(0.46)
4.31

(0.46)
2.15

(0.75)
1.81
(0.72)

2.04
(0.92)

71

Table 4.2: Comparison of mesh quality obtained with the various mesh-generation
methods for (a) RGB-color and (b) grayscale images

(a)

Image
Samp.

Density
(%)

PSNR (dB)

CED MED
CGPRFSED

γ = 4
MGPRFS
γ = 4

CGPR MGPR

lena
(color)

0.5
1.0
2.0
3.0
4.0

17.48
21.31
25.54
27.42
28.82

19.18
22.12
25.77
27.73
28.83

25.63
28.02
30.33
31.44
32.13

26.04
28.38
30.48
31.68
32.49

26.09
28.09
30.13
31.29
32.04

26.15
28.28
30.44
31.58
32.39

pens
(color)

0.5
1.0
2.0
3.0
4.0

13.96
17.24
21.98
25.05
27.05

15.78
19.27
23.48
25.91
27.92

22.49
25.95
29.08
30.59
31.97

24.05
26.77
29.43
31.16
32.45

23.60
26.40
29.12
30.77
32.01

24.31
26.76
29.42
31.15
32.44

bluegirl
(color)

0.5
1.0
2.0
3.0
4.0

19.73
22.49
25.29
29.49
32.67

21.17
25.30
29.40
31.90
33.40

27.10
31.99
34.97
36.39
37.29

29.37
32.67
35.38
36.85
37.86

29.68
32.54
34.98
36.33
37.23

29.67
32.74
35.42
36.82
37.75

(b)

Image
Samp.

Density
(%)

PSNR (dB)

ED MED
GPRFSED
γ = 4

MGPRFS
γ = 4

GPR/MGPR

lena
(grayscale)

0.5
1.0
2.0
3.0
4.0

17.17
21.13
25.83
28.06
29.59

17.96
21.83
26.14
28.43
29.76

26.22
29.00
31.86
33.50
34.54

26.49
29.11
31.92
33.51
34.59

26.55
29.10
31.80
33.33
34.40

pens
(grayscale)

0.5
10.
2.0
3.0
4.0

14.37
17.83
22.87
26.19
28.10

15.65
19.24
23.96
26.93
28.79

24.10
27.43
30.77
32.69
34.21

24.79
27.79
30.73
32.64
34.20

25.36
27.77
30.68
32.62
34.16

bluegirl
(grayscale)

0.5
1.0
2.0
3.0
4.0

19.99
22.72
25.42
30.10
33.58

20.76
26.24
30.14
32.55
34.34

27.72
33.43
37.40
39.21
40.52

30.59
34.18
37.51
39.31
40.55

30.97
34.31
37.49
39.21
40.47

72

MED versus CED and ED. As mentioned earlier, our MED method is an

improved and extended version of the ED method. Because of this, we compare

our MED method to the ED method and its color-capable version CED here. For

RGB-color images, examining the results of Table 4.1(a), we can see that our MED

method ranks clearly better than the CED method at all of the sampling densities.

For grayscale images, from Table 4.1(b), we can see that our MED method also out-

performs the ED method at all sampling densities. More detailed analysis shows that,

for RGB-color images, our MED method beats the CED method in 190/225 (84.4%)

of the test cases by up to 7.08 dB. For grayscale images, our MED method beats the

ED method in 155/225 (68.9%) of the test cases by up to 4.72 dB. Consequently, in

terms of mesh quality, our MED method is clearly superior to both the CED and ED

methods.

MGPRFS versus CGPRFSED and GPRFSED. As mentioned earlier, our

MGPRFS method is an improved and extended version of the GPRFSED method.

For this reason, we compare our MGPRFS method to the GPRFSED method and

its color-capable version CGPRFSED here. For RGB-color images, examining the

overall results of Table 4.1(a), we can see that our MGPRFS method ranks clearly

better than the CGPRFSED method at all sampling densities. For grayscale images,

examining the results of Table 4.1(b), we can see that, the ranking between our

MGPRFS method and the GPRFSED method are mixed at some sampling densities,

but overall our MGPRFS method ranks better than the GPRFSED method. Looking

at the full results in more detail, we find that, for RGB-color images, our MGPRFS

method beats the CGPRFSED method vastly in 220/225 (97.8%) of the test cases

by up to 7.05 dB. For grayscale images, our MGPRFS method beats the GPRFSED

method at sampling densities of 1.0% and lower in 67/90 (74.4%) of the test cases by

up to 2.88 dB, and performs similarly to the GPRFSED method at higher sampling

densities. The individual results shown in Tables 4.2 (a) and (b) are consistent with

the overall ranking results. For RGB-color images, our MGPRFS method beats the

CGPRFSED method in 15/15 of the test cases by 0.15 to 2.88 dB. For grayscale

images, our MGPRFS method beats the GPRFSED method in 12/15 of the test

cases by 0.03 to 2.86 dB. Consequently, in terms of overall performance on mesh

quality, our MGPRFS method is superior to both the CGPRFSED and GPRFSED

methods.

MGPRFS versus CGPR, MGPR, and GPR. We now compare our MGPRFS

method to the CGPR, MGPR and GPR methods. For reasons we shall see shortly,

73

such a comparison is quite interesting as the method with lower complexity also yields

the best result. For RGB-color images, examining the results of Table 4.1(a), we can

see that, our MGPRFS method has a better overall rank than both the CGPR and

MGPR methods. More specifically, our MGPRFS method ranks clearly better than

the CGPR method at all sampling densities. Our MGPRFS method outperforms the

MGPR method at most of the sampling densities (except 0.5%). For grayscale images,

examining the results of Table 4.1(b), we can see that, our MGPRFS method also

performs better than the GPR/MGPR method at most sampling densities (except

0.5%). Looking at the full results in more detail, we find that, for RGB-color images,

our MGPRFS method vastly outperforms the CGPR method in 200/225 (89.0%) of

the test cases by up to 5.15 dB. In addition, for RGB-color images, our MGPRFS

method yields meshes with quality comparable to, and in many cases better than,

the MGPR method. In particular, at the sampling densities of 1.0% and higher, our

MGPRFS method beats the MGPR method in 123/180 (68.3%) of the test cases by

0.01 to 0.29 dB. At the sampling density of 0.5%, our MGPRFS method performs

slightly worse than the MGPR method, typically, by less than 0.6 dB in most cases

(which is clearly still comparable). Nevertheless, at the sampling density of 0.5%, as

will be seen shortly, our MGPRFS method requires from about 16 to 40 times less

computational cost and about 50 times less memory cost than the MGPR method.

Thus, any small difference in mesh quality at the sampling density of 0.5% is arguably

a small price to pay, considering the reduction in computational and memory costs.

For grayscale images, in terms of the comparison between our MGPRFS method and

the GPR/MGPR method, we obtained similar results to our comparison between

the MGPRFS and MGPR methods for RGB-color images. That is, our MGPRFS

method outperforms the GPR/MGPR method at sampling densities of 1.0% and

higher in 125/180 (69.4%) of the test cases by up to 0.42 dB. At the sampling den-

sity of 0.5%, our MGPRFS method performs slightly worse than the GPR/MGPR

method, but is still competitive, especially when one considers the reduction in com-

putational/memory cost of our MGPRFS method. Consequently, in terms of mesh

quality, our MGPRFS method is superior to the CGPR method and is comparable

to, or better than, the MGPR and GPR methods.

MGPRFS versus MED. Lastly, to show the tradeoff between complexity and

mesh quality for our proposed MGPRFS and MED methods, we make a comparison

between them. As mentioned earlier, compared to the MED method, our MGPRFS

method trades off complexity for mesh quality. Detailed analysis shows that, for both

74

RGB-color and grayscale cases, our MGPRFS method beats the MED method in all

test cases, by a margin of 3.66 to 13.80 dB. Consequently, our MGPRFS method is

particularly beneficial for applications which require relatively higher mesh quality.

Subjective Quality. In the above evaluation, PSNR was found to correlate

reasonably well with subjective quality. For the benefit of the reader, however, to

illustrate the subjective quality achieved by the various methods, we provide an ex-

ample for each of the RGB-color and grayscale cases. All of the following examples

are selected from our 225 · 2 = 450 test cases for Table 4.1. We begin by examining

one of the test cases for RGB-color images, specifically for the cartoon bull image

at a sampling density of 0.5%. For the region of interest shown enlarged in Fig-

ure 4.1(a), we present the resulting image-domain triangulation and reconstructed

image obtained from each of the various methods considered. Examining the results

of Figures 4.1 and 4.2, we can clearly see that, the quality of the reconstructed images

obtained from our MGPRFS method is comparable to (if not better than) the MGPR

method, and is clearly superior to the CGPRFSED and CGPR methods. Also, the

quality of the reconstructed image produced by our MED method is superior to the

CED method. For grayscale images, we present another set of examples in Figures 4.3

and 4.4, specifically for the bluegirl image. Examining the results, we can see that, the

reconstructed image produced by our MGPRFS method is superior to the GPRFSED

method (in the bottom region of the image), and comparable to the GPR/MGPR

method. Moreover, the reconstructed image produced by our MED method is better

than the ED method (in the bottom region of the image).

75

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.1: (a) Part of the RGB cartoon bull image. Triangulations obtained at a
sampling density of 0.5% using the (b) CED, (c) MED, and (c) CGPRFSED methods,
and the reconstructed images obtained using the (e) CED (25.23 dB), (f) MED (26.17
dB), and (g) CGPRFSED (36.98 dB) methods.

76

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Part of triangulations obtained for the RGB cartoon bull image at a
sampling density of 0.5% using the (a) MGPRFS, (b) CGPR, and (c) MGPR methods,
and the reconstructed images obtained using the (d) MGPRFS (39.61 dB), (e) CGPR
(36.53 dB), and (f) MGPR (40.57 dB) methods.

77

(a)

(b) (c)

(d) (e)

Figure 4.3: (a) The grayscale bluegirl image. Triangulations obtained at a sampling
density of 1.0% using the (b) ED and (c) MED methods, and the reconstructed images
obtained using the (d) ED (22.72 dB) and (e) MED (26.24 dB) methods.

78

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Triangulations obtained for grayscale bluegirl image at a sampling density
of 0.5% using the (a) GPRFSED, (b) MGPRFS, and (c) GPR methods, and the
corresponding reconstructed images obtained using the (d) GPRFSED (27.72 dB),
(e) MGPRFS (30.59 dB), and (f) GPR/MGPR (30.97 dB) methods.

79

4.2 Computational Complexity

Next, we evaluate the computational cost (i.e., execution time) of the various methods

considered. For this purpose, we provide a representative subset of timing results

collected using a 3 year old laptop with a 1.60 GHz Intel Core i5 processor and

2GB of RAM. For three of the representative images in Table 3.1 with both RGB

and grayscale versions and five sampling densities per image, we measured the mesh-

generation time required for each of the applicable methods considered, and present

the results in Tables 4.3(a) and (b).

Examining the results of Tables 4.3(a) and (b), we can see that the execution

time required for the CED, ED, and MED methods are normally quite small, and

the execution time required for the CGPRFSED, GPRFSED, CGPR, GPR, MGPR,

and MGPRFS methods are relatively larger. This behavior is as expected, since the

CGPRFSED, GPRFSED, CGPR, GPR, MGPR, and MGPRFS methods all have

larger initial mesh size and perform mesh-simplification. Also, we would expect that,

at higher sampling densities, except for the GPR, CGPR and MGPR methods, most

methods require more execution time, since the initial mesh size is larger. Lastly,

for our MGPRFS and MED methods, we would also expect that, as the number of

input image components increases from 1 to M (e.g., M > 1), the execution time

will normally scale approximately by a factor of M (normally less than M) due to

the interpolation process operating on M components.

MGPRFS versus CGPR, MGPR, and GPR. The most important com-

parison to be made here is between our MGPRFS method and each of the CGPR,

MGPR, and GPR methods. As all of the CGPR, MGPR, and GPR methods have

higher complexity, and can normally yield a mesh quality that is comparable to our

MGPRFS method. For this reason, it is particularly meaningful to show how our

MGPRFS method outperforms these methods in computational cost. For the results

shown in Table 4.3(a) and (b), our MGPRFS method requires from about 5 to 40

times less execution time than the CGPR, MGPR, and GPR methods. The difference

is most distinct at the sampling density of 0.5%, where our MGPRFS method requires

from about 16 to 40 times less execution time than the CGPR, MGPR, and GPR

methods. In other words, although (as seen previously) our MGPRFS method yields

meshes with quality comparable, and in most cases better than, the CGPR, MGPR,

and GPR methods, this is accomplished with substantially less computational cost.

MGPRFS versus CGPRFSED and GPRFSED. As mentioned earlier, our

80

Table 4.3: Comparison of computational cost obtained with the various methods for
(a) RGB-color and (b) grayscale images

(a)

Image
Samp.

Density
(%)

Time (s)

CED MED
CGPRFSED

γ = 4
MGPRFS
γ = 4

CGPR MGPR

lena
(color)

0.5
1.0
2.0
3.0
4.0

0.16
0.18
0.23
0.30
0.38

0.35
0.46
0.58
0.73
0.80

0.68
1.03
2.31
3.15
4.32

1.72
2.09
2.79
3.49
5.04

29.97
29.62
29.33
29.19
29.00

41.03
40.46
38.66
37.32
37.18

bluegirl
(color)

0.5
1.0
2.0
3.0
4.0

0.14
0.16
0.25
0.26
0.31

0.40
0.45
0.62
0.66
0.72

0.62
0.94
1.79
2.96
3.37

1.66
2.28
2.91
3.89
5.45

26.90
26.78
26.40
25.82
25.29

36.65
42.76
38.46
35.59
35.05

cartoon
bull

(color)

0.50
1.0
2.0
3.0
4.0

0.50
0.60
0.80
1.02
1.29

1.38
1.54
1.97
2.40
2.84

2.49
4.20
6.64
10.28
15.64

4.23
6.06
9.12
11.90
17.38

125.86
114.16
104.15
100.82
97.68

150.07
146.56
140.98
133.59
125.38

(b)

Image
Samp.

Density
(%)

Time (s)

ED MED
GPRFSED
γ = 4

MGPRFS
γ = 4

GPR/MGPR

lena
(grayscale)

0.5
1.0
2.0
3.0
4.0

0.13
0.15
0.20
0.27
0.33

0.22
0.31
0.36
0.44
0.54

0.63
1.00
1.77
2.74
3.49

0.77
1.19
1.91
2.76
3.53

28.19
27.60
27.40
27.00
26.70

bluegirl
(grayscale)

0.5
1.0
2.0
3.0
4.0

0.10
0.12
0.18
0.24
0.29

0.23
0.27
0.32
0.39
0.47

0.56
0.92
1.68
2.50
3.22

0.71
1.06
1.74
2.48
3.30

25.42
25.35
24.79
24.55
24.61

cartoon
bull

(grayscale)

0.5
1.0
2.0
3.0
4.0

0.43
0.51
0.72
0.92
1.18

0.86
0.56
0.74
1.62
1.84

2.35
3.70
6.43
9.02
11.87

2.52
4.20
6.35
9.12
12.00

101.10
97.06
95.89
95.23
93.79

81

MGPRFS method is an improved and extended version of the GPRFSED method.

For this reason, we compare our MGPRFS method to the GPRFSED method and its

color-capable version CGPRFSED here. It makes sense that, for RGB-color images,

our MGPRFS method requires slightly more execution time than the CGPRFSED

method, as the CGPRFSED method performs mesh-simplification on only a single

component while our MGPRFS method operates on three components. Also, for

grayscale images, our MGPRFS method is expected to take slightly more execution

time than the GPRFSED method, as additional round of FSED is performed for

the mirroring method. Examining the results of Tables 4.3(a) and (b), we can see

that although our MGPRFS method takes about 1.1 to 2.7 times more execution

time than the CGPRFSED and GPRFSED methods, the absolute time difference

is less than 2 seconds in all test cases. Given the fact that our MGPRFS method

yields meshes of vastly superior quality relative to the CGPRFSED and GPRFSED

methods (typically, by a margin of up to 7.05 dB and 2.88 dB, respectively), our

MGPRFS method is still arguably quite competitive with the these two methods.

MED versus CED and ED. As mentioned earlier, our MED method is an

improved and extended version of the ED method. For this reason, we compare our

MED method to the ED method and its color-capable version CED here. Examining

the results of Tables 4.3(a) and (b), we can see that although our MED method takes

about 1.6 to 2.8 times more execution time than the CED and ED methods, the

absolute time difference is less than 1 second in most cases. Given the fact that our

MED method produces meshes of vastly superior quality relative to the CED and

ED methods (typically, by a margin of up to 7.08 dB and 4.72 dB, respectively), our

MED method is still arguably quite competitive with the CED and ED methods.

MED versus MGPRFS. Lastly, to show the tradeoff between computational

cost and mesh quality for our proposed MED and MGPRFS methods, we make a

comparison between them. Examining the results of Tables 4.3, our MED method

requires from about 4 to 8 times less execution time than the MGPRFS method in all

the test cases. Looking at the results in more detail, we can see that, the execution

time required for our MED method is extremely small, typically, within 1 second in

most cases. Consequently, our MED method is particularly beneficial for applications

which require extremely low computational cost.

82

4.3 Memory Complexity

Lastly, we compare the memory complexities of the various methods under evalua-

tion. In each the of CGPRFSED, GPRFSED, CGPR, GPR, MGPR, and MGPRFS

methods, the memory usage is largely determined by the triangulation data structure

and a vertex priority queue data structure (which has one entry per triangulation ver-

tex). Due to the similarity between these methods, we implemented all of the various

methods by using similar triangulation and priority queue data structures. For the

MED, CED, and ED methods, we still implemented them using the same triangula-

tion and priority queue data structures but leaving the priority queue as unused. In

addition, for reason of saving memory, the function value (e.g., RGB or gray value)

of each point was not stored directly in the vertex of the triangulation. Instead, we

stored the image data in a separate image object and looked up the function value

of each vertex by simply using the coordinates of the vertex. Thus, no matter if to

process a single- or multi-component image, the memory cost for representing the

triangulation and priority queue data structures does not change. For practical cases

of M -component images (e.g., grayscale and RGB images) and sampling densities,

the memory usage of each of the various methods considered is largely dominated

by the triangulation and priority queue data structures. The memory usage of the

triangulation and priority queue data structures are approximately proportional to

the number of vertices in the mesh. Consequently, the maximum memory usage of

each method is approximately proportional to the maximum number of vertices in

the mesh. Thus, we use the maximum mesh size as an indicator of maximum mem-

ory cost. Given a RGB or grayscale image of width W and height H, and a desired

sampling density D, we present the comparison of the maximum mesh size for the

various methods under consideration in Table 4.4

Examining the results of Table 4.4, we can see that the memory cost for our

MGPRFS method is nearly the same as the CGPRFSED and GPRFSED methods.

The most important comparison to be made here is between our MGPRFS method

and each of the CGPR, MGPR, and GPR methods. We can see that, at sampling

densities from 0.5% to 4.0%, the MGPRFS method requires from 25
4
≈ 6.2 to 200

4
= 50

times less memory than all of the CGPR, MGPR, and GPR methods. The difference

is most distinct at lower sampling densities. In particular, at the sampling density

of 0.5%, our MGPRFS method requires 200
4

= 50 times less memory than all of the

CGPR, MGPR, and GPR methods. Thus, we can see that our MGPRFS method

83

Table 4.4: Comparison of the maximum mesh size for the various methods

Method
Maximum
Mesh Size

Relative Maximum Mesh Size
General D = 0.5% D = 4%

CED DWH 1 1 1
ED DWH 1 1 1

CGPRFSED, γ = 4 4DWH 4 4 4
GPRFSED, γ = 4 4DWH 4 4 4

CGPR WH 1/D 200 25
GPR WH 1/D 200 25

MGPR WH 1/D 200 25
MED DWH 1 1 1

MGPRFS, γ = 4 4DWH 4 4 4

outperforms the CGPR, MGPR, and GPR methods substantially in terms of memory

cost.

Lastly, from Table 4.4, we can see that the memory costs of our MED method

and the CED and ED methods are nearly the same. All of these three methods

require extremely low memory cost, which is about 4 times less than the MGPRFS,

CGPRFSED, and GPRFSED methods, and 200 times less than the MGPR, CGPR,

and GPR methods. This also shows the favor of our MED method for the applications

which require extremely low memory cost.

84

Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, we have studied PDDT-based triangle mesh models for image repre-

sentation. In particular, we have proposed a general computational framework for

generating mesh models for images with an arbitrary number of components, based

on the GPRFSED method. As the proposed mesh-generation framework has several

free parameters, we studied how various choices of those parameters affect the mesh

quality. Based on experimentation and analysis, we recommended two particular sets

of parameter choices, leading to two specific mesh-generation methods for single- and

multi-component images, known as MED and MGPRFS.

We evaluated our proposed mesh-generation methods based on the two most com-

mon cases of single- and multi-component images, namely, grayscale and RGB-color

images. Through experimental results, our proposed methods MED and MGPRFS

were shown to outperform competing mesh-generation methods of similar or higher

complexity, namely the ED, CED, GPRFSED, CGPRFSED, GPR, and CGPR meth-

ods. The higher complexity MGPRFS method was shown to achieve meshes with bet-

ter quality than the GPRFSED, CGPRFSED, GPR and CGPR methods, with similar

or lower computational and memory costs. The lower complexity MED method was

shown to yield better quality meshes than the ED and CED methods, with similar

computational and memory costs. Our two proposed methods allow a different trade-

off to be made between mesh quality and computational cost, allowing our approach

to be useful in a wider range of applications. As part of our work, we proposed

better choices for some of the free parameters of the mesh-generation framework,

85

namely: a good significance function and a new startup policy for FSED, a good

initial sample-point selection policy, and a good strategy to choose the initial mesh

size. These choices were shown to lead to an increase in mesh quality or reduction in

computational and memory costs or both.

5.2 Future Work

Although this thesis has made a significant contribution to mesh-generation schemes

for single- and multi-component images, further work in this area could still be done.

In what follows, some potential areas for future work are discussed.

In our work, we evaluated the objective mesh quality by the PSNR. Thus, in

the mesh-simplification process of our proposed mesh-generation framework, we op-

timized the mesh by minimizing squared error. Other error metrics, however, also

would be worth considering. Some other popular error metrics for comparing images

include: structural similarity index measure (SSIM) and mean structural similarity

index (MSSIM). By changing the optimization error metric in our mesh-generation

framework correspondingly, a mesh model with better subjective quality might pos-

sibly be achievable.

Furthermore, although our initial sample-point selection policy based on error

diffusion has shown to produce a mesh reasonably well adapted to image content, one

might develop better sample-point selection policies for use in our proposed mesh-

generation framework to further enhance the mesh quality produced.

86

Appendix A

Image Datasets

In order to help analyze and evaluate our proposed mesh-generation methods, numer-

ous test images were used. In our work, we employed 45 RGB-color images, taken

mostly from the well-known JPEG-2000 [48], USC-SIPI [49], CIPR-Canon [50], and

Kodak [51] test sets. The images in each test set are listed in Tables A.1, A.2, A.3, A.4,

and A.5. The test images contain both photographic, and computer-generated im-

ages. All of these images contain three components (i.e., RGB) and have a precision

of 8 bits/sample. For reasons of simplicity and consistency, we formed our grayscale

image test set by converting each RGB-color image into its grayscale version using

the standard RGB to luminance mapping given by [42].

Table A.1: JPEG 2000 images (photographic images)

Image

Width

and

Height

Description

bike rgb 2048×2560 bike and fruits

woman rgb 2048×2560 woman with gray background

87

Table A.2: USC SIPI miscellaneous images (photographic images)

Image

Width

and

Height

Description

4.1.01 256×256 female with flower

4.1.03 256×256 female with gray background

4.1.04 256×256 female with red clothes

4.1.07 256×256 arranged jellybeans

4.1.08 256×256 scattered jellybeans

4.2.01 512×512 splash

4.2.02 512×512 woman with blond hair

4.2.04 512×512 lena

4.2.07 512×512 peppers

Table A.3: RPI CIPR Canon images (photographic images)

Image

Width

and

Height

Description

annnouncer 512×480 female announcer

beachgirl 480×512 girl on beach

bluegirl 480×512 girl with blue skirt

flower 512×480 flower with a bee

fruits 512×480 oranges and lemons

girl ldisk 512×480 girl with silver necklace

girl 480×512 girl with black hat

hustler 512×480 hustler playing pool

masuda1 512×480 girl with pink background

masuda2 512×480 girl with green background

model 512×480 female model

pens 512×480 pens

tanaka 512×480 woman

yacht 512×480 yachts

88

Table A.4: Miscellaneous images (computer-generated images)

Image

Width

and

Height

Description

3d cartoon character 1600×1200 cartoon animal

android apple jedi battle 2560×1600 cartoon jedis battle

carbon fiber tux by Cope57 1280×1280 cartoon penguin

cartoon bull 1024×768 cartoon bull

Table A.5: Kodak images (photographic images)

Image

Width

and

Height

Description

kodim01 768×512 walls

kodim02 768×512 part of a door

kodim03 768×512 hats and blue sky

kodim04 512×768 woman

kodim07 768×512 window and flower

kodim08 768×512 buildings

kodim09 512×768 yachts on ocean

kodim10 512×768 yachts on ocean

kodim12 768×512 couple on beach

kodim15 768×512 kid

kodim17 512×768 statue

kodim18 512×768 female model in front of trees

kodim19 512×768 gazebo

kodim20 768×512 aircraft

kodim23 768×512 birds

kodim24 768×512 house

89

Appendix B

Software User Manual

B.1 Introduction

As part of the work for this thesis, software that implements the mesh-generation

framework and methods proposed herein was developed by the author. The software

was written in C++, consists of more than 6000 lines of code, and contains many

complex data structures and algorithms.

The software package consists primarily of two executable programs:

1. make_model, which reads a RGB or grayscale image in PNM/PPM/PGM for-

mat from standard input, creates a mesh model of the image in MODEL format

and writes the mesh model to standard output.

2. rasterize_model, which reads a mesh model from standard input, creates a

raster image reconstruction, and writes the image to standard output.

In sections that follow, the installation and use of the software are described in

detail.

B.2 Software Installation

Since our program utilizes many features of C++17, in order to build and run the

program, the compiler should support C++17. We recommend the use of GCC with

a version 7.2.0 or higher as the C++ compiler. Our software implementation makes

heavy use of some C++ libraries, including the Computational Geometry Algorithm

Library (CGAL) [52], the Boost Library [53], the Signal Processing Library (SPL) [54]

90

and its extension library SPLEL. These libraries should be installed before building

the software. The following versions of these libraries have been verified to work

correctly with our software:

• Boost 1.58.0;

• CGAL 3.8.2;

• SPL 2.0.7; and

• SPLEL 2.0.9.

In what follows, $SOURCE_DIR denotes the top-level directory of the software dis-

tribution (i.e., the directory that contains the INSTALL file), $BUILD_DIR denotes a

directory (which is either empty or to be newly created) to be used for building the

software, and $INSTALL_DIR denotes the directory under which the software should

be installed. To build and install the software, perform the following:

1. Create the installation directory and the build directory. If the directories

$INSTALL_DIR and $BUILD_DIR do not exist, create them by using the command

sequence:

mkdir -p $INSTALL_DIR

mkdir -p $BUILD_DIR

2. Generate build files for the native build tool by using the command:

cmake -H$SOURCE_DIR -B$BUILD_DIR -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR

3. Build the software by using the command:

cmake --build $BUILD_DIR --clean-first

4. Install the software by using the command:

cmake --build $BUILD DIR --target install

B.3 File Formats

The input of the make_model program and the output of the rasterize_model pro-

gram are both images in PGM/PNM/PPM [55] [56] [57] format. A slightly mod-

ified version of the Object File Format (OFF) [58], called the MODEL format, is

91

used for representing a mesh model. A mesh in MODEL format is output by the

make_model program, and used as input by the rasterize_model program. Basi-

cally, the MODEL format consists of the following contents (in order), with each field

separated by whitespace:

1. the width of the image;

2. the height of the image;

3. the number of components in the image;

4. the precision of each component sample (i.e., bits/sample); and

5. the mesh model in OFF format.

B.4 Detailed Program Descriptions

As mentioned before, our software consists of two executable programs, namely

make_model and rasterize_model. In this section, we will give a detailed description

of the command line interface for each program:

B.5 The make_model Program

Synopsis

make_model [OPTIONS] < input_file > output_file

Description

This program reads an image in PNM format from standard input, generates and

writes a mesh model of the image in MODEL format to standard output. The

make_model program consists of three main functional blocks: the initial mesh gen-

eration block, the mesh simplification block, and a postprocessing block. The initial-

mesh-generation block will select the initial mesh points based on the specified initial

mesh generator (i.e. all, random, ed). The mesh simplification block will remove

sample points from the mesh until the desired mesh size is achieved. The postprocess-

ing block provides the ability to keep removing points if this will reduce the overall

approximation error. In order to run the make_model program, an image must be

92

provided from standard input, and the desired sampling density (or size) must be

specified by the option --density (or --size).

Options

--help

Print a help message listing all free parameters and the valid arguments for each

parameter.

--density $arg

Set the desired output mesh density as a percentage of the total number of samples

in the original image to $arg. Valid values for $arg are as follows: 0 < $arg ≤ 100.

--size $arg

Set the desired output mesh size (in number of samples) to $arg. If specified, the

value is required to be greater than 4 (at least 4 extreme convex hull points).

--relative-initial-density $arg

Set the initial density D0 relative to the target density D to D0 = 1
100×D× $arg.

--initial-density $arg

Set the initial mesh density (in percent). The default value for $arg is 100.

--initial-size $arg

Set the initial mesh size (in number of samples) to $arg.

--initial-generator $arg

Set the method used for selecting the initial mesh points to $arg. The default

value of $arg is ed. Valid values for $arg are listed in Table B.1.

--ed-size-tolerance $arg

Set the size tolerance of the mesh that generated by the error diffusion method to

$arg. The default value for $arg is 10.

--smooth-order $arg

Set the order of the smoothing filter to $arg. The value of $arg must be an odd

positive integer. The default value of $arg is 3.

--smooth-operator $arg

Set the smoothing operator to $arg. The default value for $arg is binomial.

93

Valid values of $arg are:

1. binomial: use a binomial filter as the smoothing filter.

2. mean: use a mean filter as the smoothing filter.

--derivative-bound-policy $arg

Set the boundary handling policy used for computing the partial derivatives to

$arg. The default value for $arg is zero_ext.

1. zero_ext: zero extension.

2. const_ext: const extension.

3. sym_ext: symmetric extension.

--ed-strategy $arg

Set the error diffusion strategy to $arg. The default value set for $arg is

max_comp_mmsodd_ed. Valid values of $arg are listed in Table B.2. If the in-

put image is a color image, each of the valid values corresponds to a color im-

age error diffusion strategy in Section 3.3. If the input image is a grayscale im-

age: if $arg is set as one of gray_comp_laplacian_ed, max_comp_laplacian_ed,

mean_comp_laplacian_ed, the program will use the MoL of the image as the den-

sity function for the error diffusion algorithm; otherwise, the program will use the

MMSODD.

--ed-scan-order $arg

Set the error diffusion scan order to $arg. The default value is for $arg is

serpentine. Valid values for $arg are:

1. raster: raster scan order.

2. serpentine: serpentine scan order.

--ed-leaky-mode $arg

Set the error diffusion scan order to $arg. The default value for $arg is no_leaky.

Valid values for $arg are:

1. leaky: leaky mode

2. no_leaky: no leaky mode

--ed-initial-error-mode $arg

Set the error diffusion startup error condition to $arg. The default value for $arg

is mirror. Valid values for $arg are:

94

Table B.1: Choices of initial generator

Generator Description

all
select all sample points on the sampling grid as the
initial mesh points

ed
use the error diffusion method to select the initial mesh
points

random
randomly select points on the sampling grid as the
initial mesh points

uniform
uniformly select points on the sampling grid as
the initial mesh points

Table B.2: Choices of error diffusion strategy (Detail of each strategy can refer to
Section 3.3)

Strategy Description
gray_comp_mmsodd_ed PSB(D)
gray_comp_laplacian_ed PSB(L)
vector_space_comb PSC
max_comp_mmsodd_ed PSD(Max, D)
max_comp_laplacian_ed PSD(Max, L)
mean_comp_mmsodd_ed PSD(Avg, D)
mean_comp_laplacian_ed PSD(Avg, L)
three_comps_union_mmsodd PSE(D)
three_comps_union_laplacian PSE(L)

1. zero: classic method for the startup policy of FSED

2. mirror: mirroring method for the startup policy of FSED.

--bad-point-removal $arg

Specify if bad point removal is enabled. If $arg is 0, then enable bad point

removal, otherwise, disable bad point removal. The default value for $arg is 1.

B.6 The rasterize_model Program

Synopsis

rasterize_model [OPTIONS] < input_file > output_file

Description

The rasterize_model program reads a mesh model in MODEL format from standard

95

input, reconstructs an image from the mesh, and writes the image to standard output.

The reconstructed image is written in PGM/PNM format for grayscale images, and

in PPM/PNM format for color images.

B.7 Examples of Software Usage

A few examples are provided in what follows to illustrate the use of our software.

Example A1. Given a color or grayscale image lena, one can generate a mesh model

with a sampling density of 2% using the MED method, by using command:

make_model --density 2 --initial-density 2 --initial-generator ed \

--ed-strategy max_comp_mmsodd_ed --ed-initial-error-mode mirror \

--bad-point-removal 0 < lena.pnm > output.model

Example A2. Given a color or grayscale image lena, one can generate a mesh

model with a sampling density of 2% using the MGPRFS method with γ = 4, by

using command:

make_model --density 2 --relative-initial-density 400 \

--initial-generator ed --ed-strategy max_comp_mmsodd_ed \

--ed-initial-error-mode mirror --bad-point-removal 0 \

< lena.pnm > output.model

Example A3. Given a color or grayscale image lena, one can generate a mesh model

with a sampling density of 2% using the MGPR method, by using command:

make_model --density 2 --initial-density 100 --initial-generator all \

--bad-point-removal 0 < lena.pnm > output.model

Example B. Given a mesh model input.model, one can generate the reconstructed

image, by using command:

rasterize_model < input.model > reconstructed_image.pnm

96

Bibliography

[1] M. Petrou, R. Piroddi, and A. Talebpour. Texture recognition from sparsely and

irregularly sampled data. Computer Vision and Image Understanding, 102:95–

104, 2006.

[2] S. A. Coleman, B. W. Scotney, and M. G. Herron. Image feature detection on

content-based meshes. Proceedings of IEEE International Conference on Image

Processing, 1:844–847, 2002.

[3] M. Sarkis and K. Diepold. A fast solution to the approximation of 3-D scattered

point data form stereo images using triangular meshes. Proceedings of IEEE-

RAS International Conference on Humaniod Robots, Pittsburg, PA, USA, pages

235–241, Nov 2007.

[4] J. G. Brankov, Y. Yang, and M. N. Wernick. Tomographic image reconstruc-

tion based on a content-adaptive mesh model. IEEE Transactions on Medical

Imaging, 23(1):202–212, 2004.

[5] Y. Yang, J. G. Brankov, and M. N. Wernick. Content-adaptive mesh model-

ing for fully-3D tomographic image reconstruction. Proceedings of International

Conference on Image Processing, 2:621–624, 2002.

[6] J. G. Brankov, Y. Yang, and N. P. Galatsanos. Image restoration using content-

adaptive mesh modeling. Proceedings of IEEE International Conference on image

Processing, 2:997–1000, 2003.

[7] M. A. Garcia and B. X. Vintimilla. Acceleration of filtering and enhancement

operations through geometric processing of gray-level images. Proceedings of

IEEE International Conference on image Processing, 1:97–100, 2000.

[8] D. Su and P. Willis. Image interpolation by pixel-level data-dependent triangu-

lation. Computer Graphics Forum, 23(2):189–201, 2004.

97

[9] M. D. Adams. Progressive lossy-to-lossless coding of arbitrarily-sampled image

data using the modified scattered data coding method. Proceedings of IEEE

International Conference on Acoustics, Speech and Signal Processing, Taipei,

Taiwan, pages 1017–1020, 2009.

[10] G. Ramponi and S. Carrato. An adaptive irregular sampling algorithm and its

application to image coding. Image and Vision Computing, 19:451–460, 2001.

[11] P. Lechat, H. Sanson, and L. Labelle. Image approximation by minimization of

a geometric distance applied to a 3D finite elements based model. Proceedings

of IEEE International Conference on image Processing, 2:724–727, 1997.

[12] Y. Wang, O. Lee, and A. Vetro. Use of two-dimensional deformable mesh struc-

tures for video coding, part II - the analysis problem and a region-based coder

employing an active mesh representation. IEEE Transactions on Circuits and

Systems for Video Technology, 6(6):647–659, Dec 1996.

[13] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud. Fractal image com-

pression based on delaunay triangulation and vector quantization. IEEE Trans-

actions on Image Processing, 5:383–346, Feb 1996.

[14] K.L. Hung and C.-C. Chang. New irregular sampling coding method for trans-

mitting images progressively. IEEE Proceedings - Vision, Image and Signal Pro-

cessing, 150(1):44–50, 2003.

[15] M. D. Adams. An efficient progressive coding method for arbitrarily-sampled

image data. IEEE Signal Processing Letters, 15:629–632, 2008.

[16] M. Garland and P. S. Heckbert. Fast polygonal approximation of terrains and

height fields. Technical Report CMU-CS-95-181, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, USA, Sep 1995.

[17] Y. Yang, M. N. Wemick, and J. G. Brankov. A fast approach for accurate content-

adaptive mesh generation. IEEE Transactions on Image Processing, 12(8):866–

881, 2003.

[18] M. D. Adams. A flexible content-adaptive mesh-generation strategy for image

representation. IEEE Transactions on Image Processing, 20(9):2414–2427, 2011.

98

[19] M. D. Adams. A highly-effective incremental/decremental delaunay mesh-

generation strategy for image representation. Signal Processing, 93(4):2414–2427,

Apr 2013.

[20] X. Tu and M. D. Adams. Image representation using triangle meshes with explicit

discontinuities. Proceeding of IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, pages 97–101, Aug 2011.

[21] L. Demaret and A. Iske. Advances in digital image compression by adaptive

thinning. Annuals of the Marie-Curie Fellowship Association, 3:105–109, 2004.

[22] L. Demaret and A. Iske. Scattered data coding in digital image compression.

Curve and Surface Fitting: Siant-Malo, 2003:107–117, 2002.

[23] L. Demaret and A. Iske. Adaptive image approximation by linear splines

over locally optimal delaunay triangulations. IEEE Signal Processing Letters,

13(5):281–284, 2006.

[24] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise

linear interpolations. IMA Journal of Numerical Analysis, 10(1):137–154, 1990.

[25] N. Dyn, D. Levin, and S. Rippa. Boundary correction for piecewise linear inter-

polation defined over data-dependent triangulations. Journal of Computational

and Applied Mathematics, 39:179–192, 1992.

[26] N. Dyn. Data-dependent triangulations for scattered data interpolation and finite

element approximation. Applied Numerical Mathematics, 12:89–105, 1993.

[27] S. Rippa. Long and thin triangles can be good for linear interpolation. SIAM

Journal on Numberical Analysis, 29(1):257–270, 1992.

[28] X. Yu, B. S. Morse, and T. W. Sederberg. Image reconstruction using data-

dependent triangulation. IEEE Computer Graphics and Applications, 21(3):62–

68, May 2001.

[29] P. Li and M. D. Adams. A tuned mesh-generation strategy for image repre-

sentation based on data-dependent triangulation. IEEE Transactions on Signal

Processing, 22(5):2004–2018, May 2013.

99

[30] M. A. Garcia and A. D. Sappa. Efficient generation of discontinuity-preserving

adaptive triangulations from range images. IEEE Transactions on Systems, Man,

and Cybernetics (Part B): Cybernetics, 34(5):2003–2014, Oct 2004.

[31] D.-M. Yang and P. Wonka. Gap processing for adaptive maximal poisson-disk

sampling. ACM Transactions on Graphics, 32:1–15, Oct 2013.

[32] R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial greyscale.

Proceedings of the Society for Information Display, 17(2):75–77, 1976.

[33] N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered

data. Journal of Computational and Applied Mathematics, 145:505 – 517, 2002.

[34] J. Shewchuk. What is a good linear finite element? interpolation, condition-

ing, anisotropy, and quality measures. In Proceedings of the 11th International

Meshing Roundtable, 73:115–126, 2002.

[35] C. Dyken and M. S. Floater. Preferred directions for resolving the non-uniqueness

of delaunay triangulations. Computational Geometry-Theory and Applications,

34:96–101, 2006.

[36] M. Aubury and W. Luk. Binomial filters. Journal of VLSI Signal Processing,

12(1):35–50, 1996.

[37] D. Douglas and T. Peucker. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica: The In-

ternational Journal for Geographic Information and Geovisualization, 10(2):112–

122, Oct 1973.

[38] R. A. Haddad and A. N. Akansu. A class of fast guassian binomial filters

for speech and image processing. IEEE Transactions on Signal Processing,

39(3):723–727, 1991.

[39] R. Gonzalez and R. Woods. Digital Image Processing. Addison Wesley, 1992.

[40] S. D. Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics,

and Image Processing, 33(1):116–125, 1986.

[41] K. N. Plataniotis and A. N. Venetsanopoulos. Color image processing and ap-

plications. 12(2):179–206, 2000.

100

[42] Recommendation: Studio encoding parameters of digital television for standard

4:3 and wide screen 16:9 aspect ratios. https://www.itu.int/rec/R-REC-BT.

601-7-201103-I/en, Mar 2011.

[43] B. Delaunay. Sur la s sphere vide. Bulletin of the Academy of Sciences of the

USSR, Classe des Sciences Mathematiques et Naturelle, 7(6):793–800, 1934.

[44] O. Devillers. On deletion in delaunay triangulations. International Jounal of

Computational Geometry and Applications, 12(3):193–205, 2002.

[45] K. Fleischer and D. Salesin. Accurate polygon scan conversion using half-open

intervals. In Graphics Gems III, pages 362–365, 1992.

[46] R. Ulichney. Digital Halftoning. MIT Press Cambridge, MA, USA, 1987.

[47] D. Knuth. The art of computer programming sorting and searching, volume 3.

Addison Wesley, 1998.

[48] JPEG-2000 test images. ISO/IEC JTC 1/SC 29/WG 1 N 545, Jul 1997.

[49] USC-SIPI image database. http://sipi.usc.edu/database, 2016.

[50] CIPR still images, Canon. http://www.cipr.rpi.edu/resource/stills/

canon.html, 2002.

[51] Kodak lossless true color image suite. http://r0k.us/graphics/kodak, 2016.

[52] CGAL - Computational Geometry Algorithm Library. http://www.cgal.org,

2018.

[53] Boost library. http://www.boost.org, 2018.

[54] M.D. Adams. Signal processing library. https://github.com/mdadams/SPL,

2018.

[55] PGM - Netpbm grayscale image format. http://netpbm.sourceforge.net/

doc/pgm.html, 2016.

[56] PNM - Netpbm superformat. http://netpbm.sourceforge.net/doc/pnm.

html, 2013.

https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
http://sipi.usc.edu/database
http://www.cipr.rpi.edu/resource/stills/canon.html
http://www.cipr.rpi.edu/resource/stills/canon.html
http://r0k.us/graphics/kodak
http://www.cgal.org
http://www.boost.org
https://github.com/mdadams/SPL
http://netpbm.sourceforge.net/doc/pgm.html
http://netpbm.sourceforge.net/doc/pgm.html
http://netpbm.sourceforge.net/doc/pnm.html
http://netpbm.sourceforge.net/doc/pnm.html

101

[57] PPM - Netpbm color image format. http://netpbm.sourceforge.net/doc/

ppm.html, 2016.

[58] OFF - Object file format. http://www.geomview.org/docs/html/OFF.html,

2018.

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/ppm.html
http://www.geomview.org/docs/html/OFF.html

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Mesh Representation of Images
	Historical Perspective
	Overview and Contribution of the Thesis

	Preliminaries
	Overview
	Notation and Terminology
	Image Processing
	Geometry Processing
	Mesh Models of Images
	Grid-Point to Face Mapping
	Floyd-Steinberg Error-Diffusion Algorithm
	Methods for Generating Mesh Models of Grayscale Images
	ED Method
	GPR Method
	GPRFSED Method

	Proposed Mesh-Generation Methods and Their Development
	Overview
	FSED Startup Policy
	Computational Framework for Mesh Generation
	Different Modes in the Proposed Framework and Their Relationship with Some Previous Methods
	Test Data and Experimental Comments
	Impact on Different Parameter Choices for the ED-like Mode
	RGB-Color Case
	Initial Sample-Point Selection Policy
	FSED Startup Policy

	Grayscale Case
	Significance Function
	FSED Startup Policy

	Impact on Different Parameter Choices for the GPRFSED-like Mode
	RGB-Color Case
	Initial Mesh Size N0
	Initial Sample-Point Selection Policy
	FSED Startup Policy

	Grayscale Case
	Initial Mesh Size N0
	Significance Function
	FSED Startup Policy

	Impact on Different Parameter Choices for the GPR-like Mode
	Proposed Methods

	Evaluation of the Proposed Methods
	Mesh Quality
	Computational Complexity
	Memory Complexity

	Conclusions and Future Research
	Conclusions
	Future Work

	Image Datasets
	Software User Manual
	Introduction
	Software Installation
	File Formats
	Detailed Program Descriptions
	The !makemodel! Program
	The !rasterizemodel! Program
	Examples of Software Usage

	Bibliography

