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Abstract—A highly effective method for generating Delaunay
mesh models of RGB (i.e., red-green-blue) color images, known
as CMG, is proposed. This method builds on ideas from the
previously-proposed GPRFSED method of Adams for grayscale
images to produce a method that can handle RGB color images.
The key ideas embodied in our CMG method are Floyd-Steinberg
error diffusion with improved initial-condition selection and
greedy-point removal. Through experimental results, our CMG
method is shown to outperform several competing methods that
are based on a straightforward extension of grayscale mesh
generators to color, with our method yielding meshes of vastly
better quality at lower or comparable computational/memory
cost.

I. INTRODUCTION

Despite being the most straightforward and commonly used
method for representing images, uniform (i.e., lattice-based)
sampling is far from optimal. Due to the fact that most images
are nonstationary, such sampling inevitably leads to over-
sampling in some regions and undersampling in others. This
motivates an interest in nonuniform (i.e., content-adaptive)
sampling for image representation. In nonuniform sampling,
by intelligently choosing the sample points based on image
content, the number of sample points used for representing
the image can be greatly reduced while still maintaining
good fidelity. Nonuniform sampling has shown to be useful
in many applications, including pattern recognition [1] and
feature detection [2] amongst others.

Many approaches to nonuniform sampling have been pro-
posed over the years. Of these approaches, the ones based
on triangle meshes have proven to be particularly effective
and are the focus of our work herein. With triangle mesh
models, the image domain is partitioned into triangles using
a process known as triangulation, and then an interpolant is
formed over each (triangle) face of the triangulation to form
an approximating function. Triangle meshes are particularly
well suited to capturing the geometric structure in images (i.e.,
edges and corners).

Many methods for generating mesh models of images have
been proposed over the years. In our work, we focus only on
mesh-generation methods based on Delaunay triangulations.
Among them, three very popular methods are the error dif-
fusion (ED) scheme of Yang et al. [3], the greedy point-
removal (GPR) scheme of Demaret and Iske [4], and the
GPRFSED scheme of Adams [5]. The ED method employs
Floyd-Steinberg error diffusion (FSED) [6] to select all of the
sample points of the mesh in one shot, and then triangulates

them using a Delaunay triangulation. The GPR method starts
with a triangulation containing all sample points from the
image sampling grid as vertices (i.e., sample points), and then
repeatedly removes vertices until the desired mesh size is
achieved. The GPRFSED method combines the ideas of the
ED and GPR methods. That is, the GPRFSED method employs
the ED scheme to select the sample points for an initial mesh
whose size is larger than desired, and then performs mesh
simplification using the GPR scheme until the desired mesh
size is achieved.

Although the ED, GPR, and GPRFSED methods are very
effective, they are only capable of generating mesh models
of images that are grayscale (i.e., have a single component).
In many applications, however, the images involved are color.
Since the above three methods are very effective, it would
be highly desirable if we could find a good way to extend
these methods to handle RGB (i.e., red-green-blue) color im-
ages. Obviously, we can trivially extend any mesh-generation
method for grayscale images to handle RGB color images
as follows. Given a color image as input, first convert the
color image to grayscale using a standard RGB-to-grayscale
conversion [7], and then generate a mesh for the resulting
grayscale image. Then, after obtaining a mesh model for this
grayscale image, replace the grayscale sample values in the
generated mesh by their corresponding RGB values. In the
remainder of this paper, we refer to the trivial extensions
of the ED, GPRFSED, and GPR methods to color using
the preceding strategy as the CED, CGPRFSED, and CGPR
methods, respectively. As one might expect, however, this
trivial solution of using the CED, CGPRFSED, and CGPR
methods in order to handle color images is not the most
effective. This motivated us to seek a better way to extend
the ideas embodied in the ED, GPRFSED, and GPR methods
to allow the handling of RGB color images.

In this paper, we propose a highly effective mesh-generation
method for RGB color images known as CMG, which is based
on ideas from the GPRFSED scheme. Amongst other things,
our CMG method includes a novel technique for reducing the
undesirable start-up effects that can result from the use of
classical FSED at low sampling densities. With our CMG
method, by varying the initial mesh size, one can easily
tradeoff between mesh quality and computational/memory
cost. Through experimental results, our proposed method is
shown to yield meshes of higher quality in terms of PSNR than
the CED, CGPRFSED, and CGPR methods, while requiring



either lower or comparable computational/memory cost.
The remainder of this paper is organized as follows. In

Section II, we present some background information related to
(triangle) mesh models for image representation. In Section III,
we introduce our proposed mesh-generation method, known as
CMG. Then, in Section IV, we evaluate the performance of
our CMG method in terms of mesh quality and computation-
al/memory cost by comparing to the CED, CGPRFSED and
CGPR methods. Finally, Section V concludes the paper with
a summary of our work.

II. BACKGROUND

In what follows, we introduce some background information
that is essential for understanding the work presented herein.
The sets of integers and real numbers are denoted as Z and R,
respectively. The cardinality of a set P is denoted as |P |. For
a, b ∈ Z, we define the following notation for integer ranges:
[a..b] = {x ∈ Z : a ≤ x ≤ b} and [a..b) = {x ∈ Z : a ≤
x < b}. A triangulation of a finite set P of points in R2 is
a set T of (non-degenerate) triangles satisfying the following
conditions: 1) the set of all vertices of triangles in T is P ;
2) the union of all triangles in T is the convex hull of P ; and
3) the interiors of any two triangles in T are disjoint.

An M -component image of width W and height H is a
vector-valued function φ defined on D = [0,W−1]×[0, H−1]
and sampled on the truncated integer lattice Λ = [0..W −
1] × [0..H − 1]. The ith component of the image φ (where
i ∈ [0..M)) is denoted as φi. In the case of RGB color images
(which are of primary interest herein), M = 3. A triangle
mesh model of φ is characterized by: 1) a set P = {pi}|P |−1

i=0

of sample points, where P ⊂ Λ; 2) a triangulation T of
P ; and 3) a set Z = {zi}|P |−1

i=0 of function values, where
zi = φ(pi). As a matter of terminology, we define |P | and
|P |/|Λ| as the size and sampling density of the mesh model,
respectively. In order to ensure that all points of Λ are covered
by the triangulation T , the set P must always include all of
the extreme convex hull points of the image domain.

The above mesh model is associated with a function φ̂ that
approximates φ, where the ith component of φ̂ is denoted
φ̂i. Since φ has integer-valued components {φi}M−1

i=0 , the
approximating function φ̂ is also defined to have integer-valued
components {φ̂i}M−1

i=0 . For i ∈ [0..M), let φ̃i denote the
function that linearly interpolates φi over each face f in T .
Then, φ̂i is defined as φ̂i = round

(
φ̃i

)
, where round denotes

an operator that rounds to the nearest integer (i.e., φ̂i is simply
the function φ̃i rounded to integer values).

In our work, the particular mesh-generation problem that
we address can be stated as follows: given an image φ and
a desired number N of sample points, choose a set P of
sample points where P ⊂ Λ and |P | = N such that the error
between the original image φ and the approximating image φ̂
reconstructed from the mesh model with the sample points
P is minimized. The error between φ and φ̂ is measured
by the mean squared error (MSE), which is defined as
MSE = 1

M |Λ|
∑M−1
i=0

∑
p∈Λ[φ̂i(p)− φi(p)]2, where M is the

number of image components. The MSE is typically expressed
in terms of the PSNR, which is defined as

PSNR = 20 log10

(
2ρ − 1√
MSE

)
, (1)

where ρ is the number of bits/sample in each of the compo-
nents of φ.

An important quantity used in our work is the
maximum-magnitude second-order directional derivative
(MMSODD) [3]. The MMSODD σ(x, y) of a function f
defined on R2 is defined as

σ(x, y) = max
{
|α(x, y)+β(x, y)|, |α(x, y)−β(x, y)|

}
, (2)

where α(x, y) = 1
2

[
∂2

∂x2 f(x, y) + ∂2

∂y2 f(x, y)
]

and β(x, y) =√
1
4

[
∂2

∂x2 f(x, y)− ∂2

∂y2 f(x, y)
]2

+
[
∂2

∂x∂yf(x, y)
]2

. In prac-
tice, the 1-dimensional (1-D) second-order derivative operators
∂2

∂x2 and ∂2

∂y2 can be computed using the filter with the transfer
function z−2+z−1. The derivative operator ∂2

∂x∂y is computed
as the tensor product of two 1-D first-order derivative operators
with the transfer function 1

2z −
1
2z
−1. In order to reduce the

influence of noise, a third-order binomial lowpass filter is used
to smooth each image component when computing any first-
or second-order derivatives in our work.

III. PROPOSED METHOD

As mentioned earlier, a key component of our proposed
method is Floyd-Steinberg error diffusion (FSED), a well-
known technique originally proposed for digital halftoning.
FSED selects points on a rectangular grid such that the selected
points are distributed with a density that (approximately)
matches that of a given function d, with the total number of
selected points being controlled by a threshold τ .

In the context of our work, we use FSED to select a set P of
sample points having the desired size N to within a tolerance
ε (i.e., ||P | −N | ≤ ε). The mapping of the threshold τ to the
selected number of points is approximately monotonic. Thus,
a binary search can be used to determine the value of τ that is
needed to achieve a particular desired number N of selected
points. Since it may not always be possible to find a value of τ
that exactly satisfies |P | = N , we allow |P | to differ from N
by up to a small tolerance ε. In our work, we choose ε = 10.
More specifically, the binary search method finds the value to
use for τ as follows. Find two choices τ1, τ2 of τ such that τ1
results in |P | > N and τ2 results in |P | < N . Then, perform
a binary search in [τ1, τ2] to find a value of τ that results in
||P | −N | ≤ ε.

FSED also requires a diffused-in error ẽ(i) for i ∈ [0..W )
to be specified as initial conditions for the algorithm. In
halftoning, the initial diffused-in error is normally chosen as
zero. In our application, choosing the initial diffused-in error
as zero can lead to an undesirable startup effect that results
in poor point selection near the start of the algorithm. Thus,
we propose a new way to choose the initial diffused-in error
to mitigate this startup effect. For a given a density function
d for an image φ of width W and height H and a threshold



τ , we propose that the diffused-in error ẽ(i) for i ∈ [0..W )
be computed as follows:
1) Let dm(x, y) = d(x,H − 1 − y) for (x, y) ∈ Λ (i.e., the

function dm is the function d flipped vertically);
2) Invoke FSED with density function dm, threshold τ , and

zero for the diffused-in error (where FSED starts from
the 0th row of dm). For the last (i.e., (H − 1)th) row
processed by FSED, record the diffused-out error ẽo(i) for
i ∈ [0..W ).

3) Let ẽ(i) = ẽo(i) for i ∈ [0..W ).
With the above said, we can now introduce our proposed

mesh-generation method, known as CMG. Although we only
consider the generation of mesh models of RGB color images
herein, it turns out that our CMG method can handle images
with any arbitrary number M of components. So, in the
interest of generality, we will initially present our method
for arbitrary M , and then focus exclusively on the case that
M = 3 (i.e., the RGB color case) in our subsequent analysis.
Given an M -component image φ sampled on a truncated 2-
D integer lattice Λ of width W and height H and a desired
mesh size N , our method produces a mesh model of φ having
a set P of sample points, where |P | = N , and the associated
triangulation T . More specifically, our method consists of the
following steps (in order):
1) Initial sample-point selection. Select a set P of N0 =

min{γN,WH} sample points, where γ is a real constant
satisfying γ ≥ 1, by proceeding as follows (in order):

a) For each i ∈ [0..M), let σi be the MMSODD of the
image component φi, where MMSODD is as defined
earlier in (2).

b) Compute the density function d, given
by d(x, y) = a(x, y)/(amax + ε), where
a(x, y) = max

{
σ0(x, y), σ1(x, y), ..., σM−1(x, y)

}
,

amax = max(x,y)∈Λa(x, y), and ε is a small positive real
constant (e.g., 10−12).

c) Invoke FSED with the binary search method and the new
initial condition selection approach that we introduced
previously, by taking d as the input density function and
N as the desired number of sample points. Let P be the
set of sample points output by FSED.

2) Initial mesh construction. Construct the Delaunay triangu-
lation T of P , where T can be uniquely determined from
P by using the preferred-directions technique [8].

3) Top of mesh-simplification loop. If |P | ≤ N , output P and
the associated triangulation T , and stop.

4) Choose a point p∗ to delete from the mesh, as given by

p∗ = arg min
p∈P\H

∆e(p),

where H is the set of the (four) extreme convex hull points
of Λ, ∆e(p) is defined as

∆e(p) =

M−1∑
i=0

∑
q∈Λ∩R

[r2
i,P\{p}(q)− r

2
i,P (q)],

R is the set of points belonging to the region of the
triangulation affected by the deletion of p, and ri,S(p)
denotes the approximation error at p for the component
i for a mesh with the set S of sample points. Remove p∗

from the triangulation T (i.e., let P := P \ {p∗}).
5) Go to step 3 (i.e., the beginning of the mesh-simplification

loop).
Our above method has a single parameter γ that appears
in step 1. Based on experimentation and other analysis, we
advocate two possible choices for γ: 1) γ = 1; or 2) γ = 4.
The choice γ = 1 yields lower computational/memory cost at
the expense of lower mesh quality, whereas the choice γ = 4
yields greatly improved mesh quality at a modest increase in
computational/memory cost. For convenience in the remainder
of this paper, we use CMG(x) to denote our CMG method
with the γ parameter chosen as x (e.g., CMG(1) denotes our
CMG method with γ = 1).

IV. RESULTS

Having introduced our proposed CMG method, we now
evaluate its performance in terms of mesh quality and com-
putational/memory cost by comparing it to the CED, CG-
PRFSED, and CGPR schemes introduced in Section I (i.e.,
the trivially color-extended versions of the ED, GPRFSED,
and GPR methods). In order to offer the reader some further
insights into our CMG method, we also present and comment
on some experimental results relating to the choice of the
γ parameter in this method. Lastly, we also include some
results to show the effectiveness of our proposed approach for
selecting the initial diffused-in error for FSED. The software
implementations of the various methods used in this evaluation
were developed by the authors of this paper and are written
in C++.

A. Mesh Quality

In order to evaluate mesh quality, we employed a set of 45
RGB color images, taken mostly from the well-known JPEG-
2000 [9], USC [10], and CIPR [11] test sets. For each of
the 45 RGB color images in our test set and five sampling
densities per image, we generated a mesh using each of the
methods under consideration. In each test case, the difference
between the reconstructed image obtained from the mesh and
the original image was measured in terms of PSNR as defined
in (1). The methods were ranked for each test case from best to
worst, with a value of 1 corresponding to the best result. The
average and standard deviation of the ranks were computed
across each sampling density as well as overall with the results
shown in Table I(a). A representative subset of the results for
some of the individual test cases is shown in Table I(b). In
what follows, we make various comparisons based on data in
these tables.

CMG(1) vs. CED. Since our CMG(1) approach (i.e., our
CMG method with γ = 1) can be viewed as an extension
of the ED method to RGB color images with some additional
improvements, we compare our CMG(1) approach to the CED
scheme (i.e., the trivially color-extended version of the ED



TABLE I
COMPARISON OF THE MESH QUALITY OBTAINED WITH THE VARIOUS

METHODS. (A) RANKINGS AVERAGED ACROSS 45 IMAGES.
(B) APPROXIMATION ERRORS FOR INDIVIDUAL TEST CASES.

(a)
Samp.

Density Average Rank∗
(%) CED CMG(1) CGPRFSED CMG(4) CGPR
0.5 4.88 4.12 2.83 1.36 1.81

(0.32) (0.32) (0.37) (0.48) (0.70)
1.0 4.90 4.10 2.50 1.12 2.38

(0.29) (0.29) (0.50) (0.39) (0.65)
2.0 4.90 4.10 2.24 1.05 2.71

(0.29) (0.29) (0.48) (0.21) (0.50)
3.0 4.81 4.17 2.19 1.05 2.79

(0.39) (0.43) (0.45) (0.21) (0.51)
4.0 4.81 4.19 2.14 1.07 2.79

(0.39) (0.39) (0.41) (0.26) (0.51)
Overall 4.86 4.13 2.38 1.13 2.50

(0.34) (0.35) (0.51) (0.35) (0.69)
∗Standard deviations are given parentheses.

(b)
Samp.

Density PSNR (dB)
Image (%) CED CMG(1) CGPRFSED CMG(4) CGPR
lena 0.5 17.48 19.18 25.63 26.04 26.09

1.0 21.31 22.12 28.02 28.38 28.09
2.0 25.54 25.77 30.33 30.48 30.13
3.0 27.42 27.73 31.44 31.68 31.29
4.0 28.82 28.83 32.13 32.49 32.04

pens 0.5 13.96 15.78 22.49 24.05 23.60
1.0 17.24 19.27 25.95 26.77 26.40
2.0 21.98 23.48 29.08 29.43 29.12
3.0 25.05 25.91 30.59 31.16 30.77
4.0 27.05 27.92 31.97 32.45 32.01

bluegirl 0.5 19.73 21.17 27.10 29.37 29.68
1.0 22.49 25.30 31.99 32.67 32.54
2.0 25.29 29.40 34.97 35.38 34.98
3.0 29.49 31.90 36.39 36.85 36.33
4.0 32.67 33.40 37.29 37.86 37.23

method introduced in Section I). Examining Table I(a), we can
see that our CMG(1) approach clearly ranks better than the
CED method at all sampling densities. More detailed analysis
shows that our CMG(1) approach beats the CED method in
190/225 (84.4%) of the test cases by up to 7.08 dB. The
individual results shown in Table I(b) are consistent with the
overall ranking results, where our CMG(1) approach beats
the CED method in 15/15 of the test cases by up to 4.11 dB.
Consequently, in terms of mesh quality, our CMG(1) approach
is clearly superior to the CED method.

CMG(4) vs. CGPRFSED. Since our CMG(4) approach
(i.e., our CMG method with γ = 4) can be viewed as an exten-
sion of the GPRFSED method to RGB color images with some
additional improvements, we compare our CMG(4) approach
to the CGPRFSED scheme (i.e., the trivially color-extended
version of the GPRFSED method introduced in Section I).
Examining the overall results of Table I(a), we can see that our
CMG(4) approach clearly ranks better than the CGPRFSED
method at all sampling densities. More detailed analysis shows
that our CMG(4) approach beats the CGPRFSED method in
220/225 (97.8%) of the test cases by up to 7.05 dB. The
individual results shown in Table I(b) are consistent with the

overall ranking results, where our CMG(4) approach beats
the CGPRFSED method in 15/15 of the test cases by up to
2.88 dB. Consequently, our CMG(4) approach is superior to
the CGPRFSED method in terms of mesh quality.

CMG(4) vs. CGPR. Since the CGPR method (i.e., the
trivially color-extended version of the GPR method introduced
in Section I) has an extremely high computational cost and
our CMG(4) approach has higher computational cost than
CMG(1), as will be seen later, we compare the performance of
the CGPR method to our CMG(4) approach (in the interest of
fairness). Examining Table I(a), we can see that, our CMG(4)
approach has a better overall rank than the CGPR method,
ranking clearly better than the CGPR method at all sampling
densities. More detailed analysis shows that, our CMG(4)
approach vastly outperforms the CGPR method, beating it in
200/225 (89.0%) of the test cases by up to 5.15 dB. Thus, our
CMG(4) approach is vastly superior to the CGPR method in
terms of mesh quality.

Subjective Quality. In the above evaluation, PSNR was
found to correlate reasonably well with subjective quality. For
the benefit of the reader, however, we provide an example
illustrating the subjective quality achieved by the various
methods considered. The set of reconstructed images obtained
for one of the 225 test cases associated with Table I(a) is
shown in Fig. 1. Examining Figs. 1(a) and (b), we can see
that our CMG(1) approach (in Fig. 1(b)) yields a better image
reconstruction than the CED method (in Fig. 1(a)). Examining
Figs. 1(c), (d) and (e), we can see that the reconstructed
image obtained from our CMG(4) approach (in Fig. 1(d)) is
superior in quality compared to the images produced by the
CGPRFSED and CGPR methods (in Figs. 1(d) and (e)), due
to the difference in visual quality along the top boundary of
the bull’s head.

B. Remarks on the Choice of the γ Parameter

At this point, we would like to make a few comments
concerning the choice of the γ parameter in our CMG method.
As can be seen by the results of Table I, increasing γ from
1 to 4 significantly improves mesh quality. That is, CMG(4)
typically yields meshes of much higher quality than CMG(1).
Therefore, one might expect that choosing γ = ∞ (i.e.,
choosing the initial mesh to contain all WH sample points
of the original image) would yield even better results than
CMG(4). As it turns out, however, this is not the case. That
is, choosing γ as large as possible does not typically yield the
best mesh quality. In fact, experimentation has shown that the
highest mesh quality is usually obtained when γ ∈ [4, 5.5].

To better illustrate the above relationship between γ and
mesh quality, we consider a representative example. In what
follows, let D denote the sampling density of the (final) mesh
to be generated and let D0 denote the sampling density of
the initial mesh (i.e., D0 = N0

WH ) to be used during mesh
generation. For one of our test images with a target sampling
density D = 2%, we measured the mesh quality (in terms
of PSNR) as a function of the initial sampling density D0,
and present the result in Fig. 2. From Fig. 2, we can see



(a) (b)

(c) (d)

(e)

Fig. 1. Part of the reconstructed image obtained for the bull image at a
sampling density of 0.5% with the (a) CED (25.23 dB), (b) CMG(1) (26.17
dB), (c) CGPRFSED (36.98 dB), (d) CMG(4) (39.61 dB), and (e) CGPR
(36.53 dB) methods.

that as D0 increases, the PSNR initially increases rapidly to a
maximum value and then slowly decreases thereafter. In this
particular case, the maximum value is achieved when D0 ≈
5D (i.e., for a γ value of 5). By considering many other test
cases, we were able to determine that the best choice of γ
typically lies in the range [4, 5.5]. In the interest of minimizing
computational/memory cost, we elected to limit γ to 4 in our
proposed method, leading us to propose CMG(4) (in addition
to CMG(1)).

C. Computational and Memory Complexity

Earlier, we made several claims about the computational
and memory costs of the various methods considered. Now,
we present some results to substantiate those claims.

Computational Complexity. To begin, we consider the
computational cost of the various methods under evaluation.

Fig. 2. Effect of varying the initial sampling density D0 on mesh quality for
the CMG method for the peppers image at a desired sampling density of 2%.

TABLE II
COMPARISON OF COMPUTATION TIME NEEDED BY THE VARIOUS

METHODS FOR THE LENA IMAGE

Samp.
Density Time (s)

Image (%) CED CMG(1) CGPRFSED CMG(4) CGPR
lena 0.5 0.16 0.35 0.68 1.72 29.97

1.0 0.18 0.46 1.03 2.09 29.62
2.0 0.23 0.58 2.31 2.79 29.33
3.0 0.30 0.73 3.15 3.49 29.19
4.0 0.38 0.80 4.32 5.04 29.00

For this purpose, we measured the execution times required for
the various methods considered for the test cases in Table I,
using a three-year-old laptop with a 1.60 GHz Intel Core i5
processor and 4 GB of RAM. A representative subset of these
execution times is given in Table II.

Examining the results of Table II, we can see that the
execution times required for our CMG(1) and CMG(4) ap-
proaches are quite similar to their main competitors CED and
CGPRFSED, respectively. Moreover, for the results shown in
Table II, our CMG(4) approach requires about 6 to 17 times
less execution time than the CGPR method. In other words,
although (as seen previously) our CMG(4) approach yields
meshes with quality better than (or occasionally comparable
to) the CGPR method, this is achieved at a significantly lower
computational cost.

Memory Complexity. Next, we compare the memory com-
plexities of the various methods considered. For each of
the CED, CGPRFSED, CGPR, and CMG methods, memory
usage is approximately proportional to the mesh size (i.e.,
the number of vertices in the mesh). Consequently, the peak
memory usage of each method is approximately proportional
to the peak mesh size. For an image of width W , height H , and
sampling density D: the CMG(1) and CED methods each have
a peak mesh size of DWH , which is the lowest of the methods
considered; the CMG(4) and CGPRFSED methods each have
a peak mesh size of 4DWH , which is the next lowest; and
finally, the CGPR method has a peak mesh size of WH , which
is the highest of all of the methods. Thus, our CMG(1) and
CMG(4) approaches requires similar memory costs to their
main competitors CED and CGPRFSED, respectively. Clearly,



TABLE III
COMPARISON OF THE MESH QUALITY OBTAINED WITH THE DIFFERENT

INITIAL-CONDITION SELECTION APPROACHES FOR FSED. (A) FRACTION
OF CASES IN WHICH THE PROPOSED APPROACH BEATS THE CLASSICAL
APPROACH (I.E., WIN RATIO) ACROSS 45 IMAGES. (B) APPROXIMATION

ERRORS FOR INDIVIDUAL TEST CASES.

(a)
Samp.

Density (%)
Win Ratio (%)

CMG(1) CMG(4)
0.5 77.8 82.2
1.0 80.0 68.0
2.0 68.9 53.3
3.0 64.4 48.9
4.0 66.7 44.4

Overall 71.6 59.6

(b)

Image Samp.
Density (%)

PSNR(dB)
CMG(1) CMG(4)

Proposed Classical Proposed Classical

lena

0.5
1.0
2.0
3.0
4.0

19.18
22.12
25.77
27.73
28.83

18.00
21.66
25.56
27.39
28.57

26.04
28.38
30.48
31.68
32.49

25.83
28.23
30.50
31.71
32.49

pens

0.5
1.0
2.0
3.0
4.0

15.78
19.27
23.48
25.91
27.92

15.02
18.17
22.68
25.80
27.20

24.05
26.77
29.43
31.16
32.45

23.37
26.30
29.45
31.15
32.44

bluegirl

0.5
1.0
2.0
3.0
4.0

21.17
25.30
29.40
31.90
33.40

19.49
22.65
25.72
29.08
31.82

29.37
32.68
35.38
36.85
37.86

27.08
31.38
35.28
36.84
37.85

our CMG(4) approach requires much less memory than the
CGPR method. For example, for D in the range 0.5% to 4.0%,
our CMG(4) approach requires 6 to 50 times less memory
than the CGPR method. Thus, our CMG method compares
very favorably to other methods in terms of memory cost.

D. Evaluation of Proposed Initial-Condition Selection Strat-
egy for FSED

As mentioned earlier, our CMG method employs a new
strategy for selecting the initial diffused-in error for FSED.
We now show this new strategy to be more effective than
the classical approach of setting the diffused-in error to zero.
In the case of each of the CMG(1) and CMG(4) methods,
for each of the 45 images with five sampling densities per
image, we generated a mesh using each of the proposed and
classical strategies for selecting the diffused-in error for FSED,
and we measured the mesh quality in terms of PSNR. In
the case of each of the CMG(1) and CMG(4) methods, for
each sampling density as well as overall, we calculated the
fraction of cases that our proposed strategy beats the classical
approach. The overall results are shown in Table III(a). A
representative subset of the results for individual test cases
is shown in Table III(b).

Examining Table III(a), we can see that, in the case of both
CMG(1) and CMG(4), our proposed initial-condition selection
strategy for FSED beats the classical one in terms of overall
performance. A more detailed analysis shows that, in the case

of CMG(1), our proposed approach beats the classical one at
all sampling densities in 161/255 (71.6%) of the test cases
by up to 3.87 dB. Moreover, in the case of CMG(4), our
proposed approach beats the classical approach at sampling
densities of 1.0% and lower in 68/90 (75.6%) of the test cases
by a margin of 0.02 to 2.29 dB, and behaves similarly to the
classical approach at higher sampling densities. Consequently,
our proposed strategy for selecting the initial diffused-in error
for FSED is superior to the classical one, especially at lower
sampling densities.

V. CONCLUSIONS

In this paper, we proposed a new method for generating
mesh models of RGB color images, known as CMG, which
is based on ideas from the GPRFSED scheme. By varying
the initial mesh size (through the γ parameter), our proposed
method can easily tradeoff between mesh quality and com-
putational/memory complexity. Based on experimentation and
analysis, we recommended two particular choices of γ for
selecting initial mesh size, where the higher choice of γ yields
better mesh quality with a modest increase in computation-
al/memory cost. Through experimentation, our CMG method
was shown to outperform the CED, CGPRFSED, and CGPR
methods in terms of mesh quality, while requiring lower or
comparable computational and memory costs. In addition, our
proposed method can also be directly used to generate mesh
models for images with an arbitrary number of components.
As part of our work, we also proposed a new initial-condition
selection strategy for FSED, which can be used to mitigate
undesirable startup effects in the algorithm. Our CMG method
can benefit the growing number of applications that employ
mesh models of images.
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