An Improved Incremental/Decremental Delaunay
Mesh-Generation Strategy for Image Representation

Badr Eddine El Marzouki and Michael D. Adams
Dept. of Electrical and Computer Engineering, University of Victoria
Victoria, BC, V8P 5C2, Canada
marzouki@uvic.ca and mdadams@ece.uvic.ca

Abstract—Two highly effective content-adaptive methods for
generating Delaunay mesh models of digital images, known as
IID1 and IID2, are proposed. The methods are derived from the
incremental/decremental mesh-generation framework of Adams
by using a non-trivial initial mesh and an improved growth
schedule. The higher complexity IID2 method is shown to yield
mesh models of superior reconstruction quality compared to
competing methods, both in terms of squared error and subjective
quality, while the lower complexity IID1 method trades mesh
quality in return for a decrease in computational cost.

I. INTRODUCTION

Despite being the most common form of image sampling,
lattice-based sampling is far from optimal. Typically, images
are nonstationary, which inevitably leads to oversampling in
some regions of the sampled domain and undersampling in
others when uniform sampling is used. Nonuniform sampling
addresses this issue by adapting the sampling density to the
content of the image. A more intelligent placement of the
sample points leads to greater efficiency, thereby significantly
reducing the number of samples needed while keeping the
visual quality at acceptable levels.

Several approaches to image representation based on
nonuniform sampling have been proposed over the years.
Triangle mesh models in particular have garnered significant
interest from researchers in the past few years, due to their
simplicity and their ability to model a wide range of image
content as well as some features inherent in images such
as sharp edges. With mesh models, the image domain is
partitioned into triangle faces whose vertices are the sample
points, and then an interpolant is constructed over each face.
This approach takes advantage of the geometric structure in
images and the correlation between adjacent image pixels. The
so called mesh-generation problem is concerned with creating,
for a given image, a mesh approximation that minimizes some
error criteria. Such problems are often NP hard [1], which
highlights the importance of finding good computationally
efficient methods for the solution of these problems.

Over the years, a great number of methods have been
developed for generating Delaunay-triangulation-based mesh
models of images. In mesh-simplification schemes, such as
GPR [2] and GPRFS [3], sample points are gradually re-
moved from the mesh until the desired number of samples
or approximation error has been reached. This can be done
with one or more sample points removed at a time, starting

from a mesh containing many or all of the sample points in
the image domain. Conversely, mesh refinement methods start
with a low-density mesh consisting of the extreme convex-hull
points of the image domain, and possibly a few additional
sample points as well. The mesh is then refined by adding
one or more points at a time until some termination criteria,
such as mesh size or mesh approximation error, is satisfied.
Mesh-generation methods that use refinement, such as the
error-diffusion scheme of Yang et al. [4], generally have lower
computational and memory costs than simplification methods,
but at the expense of mesh quality. A better balance between
approximation quality and computational cost compared to
the above approaches is achieved by the IDDT [5], ID1, and
ID2 [3] schemes of Adams by using a combination of mesh
refinement and simplification. The methods alternate between
phases where points are added to the mesh and phases where
points are removed from the mesh.

In this paper, we propose two new mesh-generation meth-
ods, known as IID1 and IID2, which are based on a common
algorithmic framework. These two methods make different
trade-offs between mesh quality and computational cost, with
the IID2 method favouring mesh quality while the IID1
method favours computational cost. Through experimental
results, we show our methods to outperform other state-of-the-
art approaches, when mesh quality and computational cost are
both considered.

The remainder of this paper is organized as follows. In
Sections II and III, we introduce background material on tri-
angle mesh models for image representation, Floyd-Steinberg
error diffusion, and the mesh-generation framework of Adams
on which our methods are based. Then, our proposed mesh-
generation methods, IID1 and IID2, are presented in Sec-
tion IV. The performance of the IID1 and IID2 methods
in terms of approximation quality and computational cost
is evaluated in Section V and compared to state-of-the-art
methods. Finally, Section VI concludes with a summary of
the key results of our work.

II. BACKGROUND

In what follows, we introduce some background material
necessary for understanding our proposed mesh-generation
methods. As a matter of notation, the cardinality of a
set S is denoted as |S|. In the context of our work,

an image ¢ of width W and height H is a func-
tion defined on the truncated 2-dimensional integer lattice
A={0,1,..., W -1} x {0,1,..., H — 1}. A triangle mesh
model of ¢ is characterized by: 1) a set P = {p;} C A of
sample points, 2) their corresponding sample values {z; =
o¢(p;)}, and 3) a triangulation T of P. The triangulation
T is uniquely determined from P using preferred-directions
Delaunay triangulation. In order to ensure that all of A is
covered by the triangulation, P is chosen to always include the
extreme convex-hull points of the image domain. A continuous
piecewise-linear function ép that approximates ¢ is associated
with the mesh model. The function ép is constructed from
{pi} and {z;} by combining the linear interpolants over each
of the faces in 7. The integer-valued image approximation
function ng p is obtained from ¢p using rounding as gbp =

round ((bp). As a matter of terminology, the size and the

sampling density of the mesh model are defined as |P| and
|P|/|A|, respectively.

With the mesh model defined above, the mesh-generation
problem addressed in our work can be stated as follows: given
a target number N of sample points (where N € [4,|A]]),
choose P C A with |P| = N such that the mesh approxi-
mation error is minimized. The error metric used to measure
the quality of the approximation is the mean squared error
(MSE) ¢ defined as ¢ = |A|7! ZpeA(é(p) — ¢(p))?, which
is typically expressed in terms of the PSNR for convenience.
The PSNR is given by PSNR = 201og;, (
the sample precision in bits.

The maximum-magnitude second-order directional deriva-
tive (MMSODD) [4] d for a function f defined on R? is
defined as

d(w,y) = max {Ja(z,y) + Bz,y)], [a(e,y) = A,y }, (D
where a(z,y) = % [%f(x,y) + %f(%l/)] and

B(z,y) = \/ i [a‘%
The partial-derivative operators in the preceding equation are
formed from the tensor product of one-dimensional derivative
operators, where the discrete-time approximations of the one-
dimensional first- and second-order derivative operators are
computed using the filters with transfer functions %z — %z‘l
and z — 2 4 21, respectively.

Error diffusion is a technique commonly used for halftoning.
Yang et al. [4] proposed using Floyd-Steinberg error diffusion
with a feature map based on the MMSODD of an image to
adaptively distribute points in the image domain. The set of
points generated have a spatial density that is approximately
proportional to the amount of detail in a given region of the
image. Given an image ¢ of width W and height H sampled
on the set A of points (where |A] = WH), and a desired
number N of points, error diffusion selects a subset Py from
A, where |Py| = N, as follows:

1) Compute the MMSODD d of the image using (1).

2) Compute the feature map o from the MMSODD as

o(x,y) = (%)W, where A = max [d(¢)] and 7 is

/z;) where p is

@) - fptw)] + [)]

a (positive constant) sensitivity parameter.

3) In order to select approximately N sample points,
compute the error diffusion threshold p as p =
ﬁ fz Z] =0 J(Z J)l

4) Generate a binary image b defined on the same image
domain as ¢ from the feature map o using error diffusion
with the threshold value p.

5) Select each point (x,y) of the image b that satisfies the
condition b(z,y) # 0 as a sample point in Py .

III. MESH-GENERATION FRAMEWORK

Given that the computational framework of [3] constitutes
the foundation of our work, an introduction to the framework
is worthwhile. The framework is iterative in nature, alternating
between a mesh refinement phase and a mesh simplification
phase according to a predetermined sequence of setpoints
{mi Z-L:_Ol of length L, referred to as a growth schedule. As
the mesh-generation process proceeds, the mesh size tracks
the values in the growth schedule.

Before we can proceed further, some additional notation
and terminology need to be introduced. The face f to which a
point p € Z? is uniquely mapped is denoted face(p). The set
of all points in Z? that are mapped to a face f (i.e., the points
satisfying face(p)=f) is denoted points(f). For the mesh with
sample points S, let qASS be the corresponding interpolant and
let rs(p) denote the approximation error at the point p (i.e.,
rs(p) = ¢s(p) — ¢(p)). Let P denote the sample points in
the current mesh approximation of ¢ and let r(p) denote the
corresponding approximation error at the point p (i.e., 7(p) =
ép(p) — ¢(p)). Consequently, the error over a face f, denoted
faceErr(f), is the sum of the errors at the points contained
in f (i.e., faceErr(f)= ZpeAﬁpoimS(f) r(p)), and the total mesh
model approximation error is Zpe 47(p). A point is said to
be immutable if it is not allowed to be removed from or added
to the mesh during the mesh-generation process; otherwise it
is mutable. The subset of mutable points in a given set S is
denoted mutable(S). A point p € A that is mutable but is not
currently in the mesh is said to be a candidate point. The set
of candidate points for a given face f are denoted cands(f)
(i.e., cands(f) = mutable((A \ P) N points(f)).

With the necessary background in place, we can now
describe the computational framework. Given an image ¢, a
subset I' of the sample points from which to construct the
initial mesh, a growth schedule {m il 0 , and a desired mesh
size N (where N € [4, |I']]) as input, the framework generates
a triangle-mesh model of ¢ of the specified size such that the
corresponding total approximation error is as small as possible.
The framework consists of the following steps:

1) Select initial mesh points. Obtain the initial subset P of
the sample points as P :=TI'.

2) Initialize mesh. Create a mesh consisting of the extreme
convex-hull points of A and mark the points as immutable
so that they cannot be removed from the mesh. Then
insert the points in P (from step 1) into the mesh and
mark them as mutable.

3) If + = L (i.e., no more points in the growth schedule
remain), go to step 7; otherwise, proceed. If |P| < 7;41,
2o to step 4 to increase the mesh size. If |P| > n;11, g0
to step 5 to decrease the mesh size. If |P| = 7,41, go to
step 6 (bottom of the main loop).

4) Increase mesh size. While |P| < 1,11, add a point to the
mesh by performing an optimal add (optAdd) operation
which consists of the following steps:

a) Select a face f* in which to insert a new point as given
by f* = arg max faceErr(f), where U is the set of
fev

all faces that have at least one candidate point.

b) Select a point p* in the face f* to add to the mesh,
as given by p* = selCand(f*), where selCand is a
function that embodies the candidate-selection policy,
and is a free parameter of the framework.

¢) Add p* to the mesh (i.e., let P := P U {p*}).

d) Go to step 6.

5) Decrease mesh size. While |P| > n;41, delete a point
from the mesh by performing an optimal delete (optDel)
operation, which consists of the following steps:

a) Let the significance (with respect to deletion) of a
(mutable) point p € P, denoted sigDel(p), be defined

as sigDel(p) = 3 (rp\ (1 (@) — 75(q)), Where
ge(RNA)
R is the region in the triangulation affected by the

deletion of p. That is, sigDel(p) is the amount by which
the squared error increases if p were deleted from the
mesh. The point p* to delete from the mesh is then

selected as p* = arg min sigDel(p).
pEmutable(P)
b) Delete p* from the mesh (i.e., let P := P\{p*})

¢) Go to step 6.

6) Proceed to next iteration. Let ¢ := ¢ + 1. Go to step 3
(i.e., the top of the main loop).

7) Postprocess mesh. Optionally, perform some postprocess-
ing steps; then stop.

Before proceeding further, some comments regarding the
above computational framework are in order. First, this frame-
work is fundamentally greedy in that it only considers the
current state and the immediate consequences of actions when
selecting points to add to, or remove from, the mesh. As a
result, the meshes generated by methods that are based on
this framework are not guaranteed to be globally optimal. This
is an acceptable compromise given that the mesh-generation
problem addressed in our work is known to be NP hard.
Moreover, performance is greatly influenced by the choice
of the initial mesh. Both computational cost and the quality
of the result are affected by the size and the choice of the
initial mesh. Seen from an optimization perspective, when the
starting point for the search process is close to a good optimal
solution, the optimal solution will be reached faster and the
probability of the algorithm becoming trapped in a bad local
minimum is greatly reduced. The above observations led to
the motivation for our work to place a strong emphasis on the
selection of the initial mesh and growth schedule.

IV. PROPOSED MESH-GENERATION METHODS

Having introduced the background material and the mesh-
generation framework, we can proceed to define our proposed
methods. The methods, named IID1 and IID2, offer different
trade-offs between mesh quality and computational cost. In
particular, the IID1 method aims for shorter execution times,
while the IID2 method prioritizes mesh quality. These methods
can be viewed as improved versions of the ID1 and ID2
methods from [3], which are based on the same computational
framework used herein. Unlike the cases of the ID1 and ID2
methods, our methods use a non-trivial initial mesh as well as
a novel growth schedule. Additionally, our IID1 method uses
a different candidate-selection policy.

The IID1 and IID2 methods use a new growth schedule
A’, which is a contribution of our work. Similar to growth
schedule A employed in the ID1 and ID2 methods, the mesh
size in growth schedule A’ oscillates between the target mesh
size N and exponentially decaying values above N. The
new growth schedule was developed to be more flexible than
growth schedule A and to overcome some of its limitations.
One of the main differences is that the definition of growth
schedule A’ does not consider the size of the initial mesh.
Additionally, its length is manually set and determines the
number of alternations between sequences of point insertions
and deletions before convergence to the target mesh size. The
L setpoints {n;}2} of growth schedule A’ are given by

N + LNAeL_*—MiJ 1 even
T\ i odd,
where A is a positive real constant. The lower complexity
IID1 method uses A = 3 and L = 4, while the IID2 method,
which favours approximation quality, uses the values A = 3
and L = 6.

The initial point set in step 1 of the framework is selected
using non-leaky Floyd-Steinberg error diffusion with a sam-
pling density of 1%. The serpentine scan order is used, and
the feature map sensitivity parameter is set to v = 1. Prior
to the MMSODD calculation in step 1 of the error-diffusion
algorithm, the image is smoothed using a 7th-order binomial
filter. The transfer function H,,(z) of a one-dimensional nth
order binomial filter with unity DC gain and zero phase is

=R (3 + %z‘l)n_l, where n is an odd

given by H,(z) = 272
integer. The two-dimensional binomial filter is constructed
from the tensor product of two one-dimensional binomial
filters.

In step 4b of the framework, the candidate-selection policy
used for the IID1 method is based on the MMSODD. It
selects, for insertion, the candidate point that has the highest
MMSODD value in the face f*. With d(p) denoting the
(nonnegative-valued) MMSODD at point p, the selCand func-
tion (which specifies the candidate-selection policy) is defined

selCand(f) = arg max

as
p€Ecands(f) {d(p)} '

In the case of the IID2 method, the approximate local squared-
error minimizer (ALSEM) [3] is employed for the candidate-

selection policy. The function selCand that embodies this
policy is given by

gE€points(f)

selCand(f) = arg max

e 11 r5(a) — rhugpy (@), @)

where S is a subset of cands(f). With d(p) denoting the
MMSODD at point p, S is chosen as follows:

o If |cands(f)| > 18, S is chosen as the 9 points p €
cands(f) for which d(p)|¢p(p) — ¢(p)| is greatest, in
addition to 9 other randomly-chosen (distinct) points.

o Otherwise, S = cands(f).

The summation in (2) corresponds to the reduction in the
squared error if p were inserted into the mesh, computed
only locally over the points that are in points(f) (i.e., with
the assumption that no changes to the mesh occur outside the
face f).

As for the face-selection policy in step 4a of the mesh-
generation algorithm, it is chosen to be the sum of squared-
errors (SSE). The policy selects the face f* in which to insert
a new point as given by

f* = arg max [faceErr(f)},
fev

where O is the set of all faces that have at least one candidate
point, and the face error faceErr is given by)
faceBrr(f) = ¥ (60) - 6(0)) -

pEpoints(f)
In the post-processing step of the framework, a technique

named bad point replacement (BPR), which was introduced
in [3], iteratively replaces bad points in the mesh with new
ones so that the total number of points in the mesh remains
unchanged. A bad point is a mutable point in the mesh whose
deletion from the mesh does not cause the approximation
error to increase (i.e., sigDel(p) < 0). Bad point replacement
consists of the following steps:

1) Let ngyq := oo and let ¢ := 0.

2) Let n := 0; while the point p that would be deleted
from the mesh by the next optDel operation satisfies
sigDel(p)< 0, perform an optDel operation (to delete p),
mark p as immutable, and let n :=n + 1.

3) If n > 0, perform n optAdd operations.

4 If n > nyg, let c:=c+ 1.

5) Let ngq :=n; if n =0 or ¢ > 3, stop; otherwise, go to
step 2.

V. RESULTS

With our proposed IID1 and IID2 mesh-generation methods
introduced, we now evaluate their performance in terms of
mesh quality and computational cost by comparing them to
other well-known schemes. The implementations used for this
purpose were developed by the authors and were written in
C++. Our performance comparison focuses, in particular, on
the GPR [2], IDDT [5], ID1, and ID2 [3] methods because
they produce Delaunay meshes and use a linear interpolant,
similar to our methods. In passing, we note that the ID1 and
ID2 methods have a parameter o for adjusting the length
of the growth schedule, thereby increasing or decreasing the

computational cost with a corresponding increase or decrease
in mesh quality. In our comparison, we use the value oo = 0.4
advocated in [3]. We also note that, by comparing the per-
formance of our methods against that of the state-of-the-art
IDDT, ID1, and ID2 schemes, we are also indirectly showing
that our methods outperform schemes such as the ED [4],
MGH, OMGH, OED [5], and GPRFS-ED [3] methods, to
which the IDDT, ID1, and ID2 methods have been shown
to be superior [3], [5].

Mesh Quality. In order to evaluate mesh quality, we employ
a set of 50 test images, including images from several popular
test sets (such as lena from the USC image database). For
all 50 images in our test set and 7 sampling densities per
image (between 0.125% and 4%), we used each of the methods
under consideration to generate a mesh, and then measured
the resulting approximation error in terms of PSNR. The
individual results for a representative subset of the images
are shown in Table I(a). For each of the 50 x 7 = 350 test
cases (i.e., 50 images with 7 sampling densities per image), the
PSNR performance of the six methods (i.e., [ID1, 1ID2, IDI,
ID2, IDDT, and GPR) was ranked from 1 (best) to 6 (worst).
The average and standard deviation were then calculated for
each sampling density as well as overall with the results
presented in Table I(b). The best and second best result in
each case are typeset in bold and italic, respectively.

Proposed vs. IDDT. We begin by comparing the IID1 and
[ID2 methods to the IDDT scheme. The overall statistical
results in Table I(b) show that our IID1 and IID2 methods
outperform the IDDT scheme at all sampling densities. In
fact, the IDDT method has the worst average rank of 5.69
amongst all six methods. Looking at the full results in more
detail, we find that our IID1 and IID2 methods beat the IDDT
scheme in 332/350 (95%) and 342/350 (98%) of the test cases,
respectively.

Proposed vs. GPR. Next, we compare the performance of
the proposed IID1 and IID2 methods to the GPR method.
Examining the statistical results in Table I(b), we observe that
our IID2 method outperforms the GPR method consistently
across all of the sampling densities, whereas our IID1 method
ranks similarly or better on average than the GPR scheme for
target densities of 0.5% and higher. More detailed analysis
of the results shows that our IID2 and IID1 methods beat
the GPR method in 346/350 (99%) and 221/350 (63%) of
the test cases, respectively. Now, we consider the individual
results in Table I(a). We see that these individual results are
consistent with the overall statistical results. Our IID2 method
outperforms the GPR scheme in all cases, while our IID1
method has mixed results in comparison but typically performs
better at higher densities and with medical and photographic
images. Such performance from our IID1 and IID2 methods is
particularly impressive considering that, as we will see later,
they are substantially less computationally expensive than the
GPR method.

Proposed vs. ID1 and ID2. Now, let us compare our IID1
and IID2 methods to the ID1 and ID2 methods. To do this,
we examine the statistical results in Table I(b). The IID2

TABLE I: Comparison of the mesh quality for the various
methods. (a) PSNRs for three specific images. (b) Rankings
averaged across 50 images.

()

Tmage Sampling PSNR (dB)
Density (%)||1ID1 [IID2 [ID1 [ID2 [IDDT |GPR
bull 0.125 31.14 [34.18 |34.90 [34.56 |33.85 [33.51
0.250 37.63 (39.15 |38.87 |38.76 |37.51 |38.18
0.500 4145 |42.24 |41.84 |42.24 |40.42 |41.89
1.000 43.81 |44.22 |43.91 |44.27 [42.50 |43.97
2.000 45.73 [46.09 |45.79 |46.13 [44.46 |45.83
3.000 47.08 |47.37 |47.15 |47.37 |45.78 |47.14
4.000 48.23 |48.44 |48.26 |48.44 |46.97 |48.24
ct 0.125 27.71 |28.88 |28.62 [28.60 |27.52 [28.22
0.250 32.30 (33.09 |33.27 [32.99 |32.43 [32.38
0.500 37.77 |37.87 |38.20 |37.88 |37.44 |37.44
1.000 42.07 [41.79 |41.97 |41.74 |41.37 |41.45
2.000 45.62 |45.59 |45.83 |45.69 [45.25 |45.32
3.000 47.96 [48.10 |48.30 |48.17 |47.74 |47.88
4.000 4991 149.99 (50.16 |50.07 [49.63 |49.80
lena 0.125 20.43 |22.76 |22.03 [22.50 |20.39 |22.08
0.250 2373 |24.90 |24.68 |24.84 |23.18 |24.38
0.500 26.75 |27.19 |26.93 |27.10 |25.82 |26.59
1.000 29.40 (29.58 |29.44 |29.62 |28.46 |29.09
2.000 32.10 |32.22 |32.15 [32.17 |31.05 [31.78
3.000 33.63 |33.73 |33.59 |33.64 |32.50 |33.37
4.000 34.66 (34.71 |34.62 |34.72 |33.49 |34.42
(b)
Sampling Mean Rank*
Density (%)||1ID1 D2 |ID1 1D2 IDDT |GPR
0.125 4.92 1.36 3.72 2.08 5.64 3.28
(0.57) [(0.94) [(0.86) [(0.57) |(1.16) |(0.83)
0.250 4.74 1.38 3.68 2.06 5.70 3.44
(0.69) [(0.81) |(1.04) [(0.68) |(1.04) |(0.93)
0.500 4.02 1.42 3.70 2.04 5.78 4.02
(0.84) [(0.84) |(1.36) ((0.70) |(0.91) |(0.94)
1.000 3.58 1.38 3.46 2.02 5.70 4.46
(0.95) [(0.67) |(1.28) [(0.74) |(1.20) |(0.99)
2.000 3.12 1.32 3.38 1.96 5.68 4.64
(0.77) [(0.65) |(1.18) {(0.73) |(1.20) |(1.05)
3.000 3.10 1.40 322 1.98 5.68 4.70
(0.81) {(0.83) |(1.23) [(0.65) |(1.20) |(0.99)
4.000 3.18 1.38 3.20 1.96 5.68 4.70
(0.80) [(0.67) |(1.26) [(0.67) |(1.20) |(0.99)
Overall |[3.81 1.38 3.48 2.01 5.69 4.18
(1.06) [(0.77) |(1.19) [(0.67) |(1.13) |(1.11)

* The standard deviation is given in parentheses.

method is clearly best overall with a rank of 1.38 and a
relatively small standard deviation of 0.77. The competing
ID2 method is second best with a rank of 2.01 and a small
standard deviation as well (0.67). The results for the IID2
and ID2 methods are consistent across all sampling densities.
The ID1 method is third best overall followed closely by the
IID1 method in fourth position, with average ranks of 3.48
and 3.81, respectively. The performance of the ID1 and IID1
methods varies with sampling density. The average ranking
of both is typically worse at low sampling densities and
then gradually improves as the density increases, eventually
superseding the GPR method. A more detailed analysis of
the results shows that the IID2 method beats the ID1 and

ID2 methods in 310/350 (89%) and 281/350 (80%) of the
test cases, respectively. The IID1 method performs better
than the ID1 method in 165/350 (47%) of the test cases,
which improves to 65% for densities of 2% and higher. This
performance from the IID1 method is deemed acceptable given
that, as will be seen later, it typically has a lower computational
cost. The individual PSNR results in Table I(a) are consistent
with the conclusions from the statistical analysis. They also
show that in the test cases where the ID2 method is able to beat
our IID2 method, the difference in mesh quality is typically
marginal. For instance, in the individual PSNR results, out of
the ten test cases where the ID2 method yields better results,
the margin does not exceed 0.08 dB in 8/10 (80%) of such
test cases.

Summary of results. Based on the preceding analysis, we
conclude that, in terms of mesh quality measured by PSNR,
our IID2 method consistently performs best compared to the
other methods in our evaluation. On the other hand, our
IID1 method, which trades off mesh quality for computational
cost, has performance that is on a par with that of the ID1
method. As we will see later, our proposed IID1 and IID2
methods compare even more favorably to the other methods
under evaluation when computational cost is considered. That
is, as it turns out, our proposed methods are often able to
produce higher quality meshes than other schemes for a given
computational cost.

In the above evaluation, PSNR was found to correlate
reasonably well with subjective quality. For the benefit of the
reader, however, we include some examples illustrating the
subjective quality achieved by the four best-ranking methods
overall. Fig. 1 shows a set of examples which are for the
photographic lena image with a sampling density of 2%. The
PSNR values for these test cases, which are fairly close, are
consistent with the subjective quality since the results appear
similar visually. The execution times that correspond to these
test cases, however, are quite different as we will see shortly.

Computational Cost. Next, we briefly evaluate the compu-
tational cost (i.e., execution time) of the methods in our com-
parison. For this purpose, we provide a representative subset
of timing measurements collected using a 5 year old laptop
with a 2.4GHz Intel Core i7 processor and 4GB of RAM.
For three representative images and six sampling densities per
image, the time required for mesh generation for each of the
methods was measured. Then, the median value of five runs
for each test case was determined. The results are presented
in Table II.

Examining the results, we see that the computational cost
of our two methods is typically lower than that of competing
methods. For example, in the case of the lena image with a
sampling density of 2%, the execution time of the IID1 method
is 47%, 13%, 52% and 89% lower than that of the IID2,
ID1, ID2 and GPR methods, respectively, but the PSNR of the
corresponding approximation is only marginally lower (0.05—
0.12 dB) compared to the first three methods, and 0.32 dB
higher compared to the GPR method. As for the IID2 method,
its computational cost is lower than that of the competing ID2

Al

P
=

]
1\

.

\

TaVAY

7
K
i

7ZXN
ﬂ‘,‘“’g%

S

(e)

R i,
»4;,@5} v

(2 (b)

®
Fig. 1: Part of the image approximation obtained for the lena image at a sampling density of 2% with (a) our proposed IID1
method (32.1 dB), (b) the ID1 method (32.15 dB), (c) our proposed IID2 method (32.22 dB), and (d) the ID2 method (32.17 dB),

and (e), (f), (g), and (h) their corresponding triangulations.

TABLE II: Comparison of the computational cost for the
various methods.

Tmage Sampling Execution Time (s)
Density (%)||{IID1 [IID2 [ID1 [ID2 |IDDT |GPR
bull 0.125 4.0 8.8 5.0 11.5 |32 125.4
0.250 5.4 11.1 (8.0 163 |43 117.5
0.500 7.2 16.0 |16.1 |26.7 |7.5 116.1
1.000 9.9 226 (240 (385 (114 |115.2
2.000 14.8 |314 (303 |454 |16.1 [1123
4.000 244 412 |29.6 |45.2 (22.0 |109.7
ct 0.125 1.1 2.7 14 3.4 0.9 389
0.250 1.2 32 1.8 4.0 1.1 39.2
0.500 1.8 4.0 2.4 52 1.5 36.6
1.000 2.7 5.4 3.0 6.0 1.9 37.4
2.000 42 72 4.1 7.6 2.6 36.8
4.000 7.1 122 |6.7 11.1 |40 353
lena| 0.125 1.1 3.0 1.6 3.6 1.2 39.1
0.250 1.2 2.9 1.7 4.1 1.2 39.1
0.500 1.6 3.9 2.5 4.9 14 38.7
1.000 2.5 53 33 6.3 2.0 375
2.000 4.1 7.8 4.7 8.6 2.7 37.3
4.000 7.1 127 |76 119 |43 36.8

and GPR methods in the vast majority of the test cases.

VI. CONCLUSIONS

In this paper, we proposed two new methods for generating
mesh models of images, namely IID1 and IID2. Through ex-
perimental results, the IID1 and IID2 methods were shown to

outperform state-of-the-art mesh-generation methods, namely
the ID1, ID2, IDDT, and GPR methods, when mesh quality
and computational cost are both considered. In particular, we
demonstrated that our proposed methods produce higher qual-
ity image approximations for a given computational cost. The
higher complexity IID2 method was shown to achieve better
quality approximations than the ID2 and GPR methods, with
lower or similar computational cost. The lower complexity
IID1 method was shown to trade a typically small penalty
in image approximation for lower computational cost. As a
result, the [ID2 method may be used in applications where
mesh quality is prioritized, whereas the IID1 method is more
suitable when execution times need to be optimized.

REFERENCES

[1] P. K. Agarwal and S. Suri, “Surface approximation and geometric
partitions,” SIAM Journal on Computing, vol. 27, no. 4, pp. 1016-1035,
1998.

[2] L. Demaret and A. Iske, “Advances in digital image compression by
adaptive thinning,” Annals of the Marie-Curie Fellowship Association,
vol. 3, pp. 105-109, Feb. 2004.

[3] M. D. Adams, “A highly-effective incremental/decremental Delaunay
mesh-generation strategy for image representation,” Signal Processing,
vol. 93, pp. 749-764, 2013.

[4] Y. Yang, M. N.Wernick, and J. G. Brankov, “A fast approach for
accurate content-adaptive mesh generation,” IEEE Transactions on Image
Processing, vol. 12, no. 8, pp. 866-881, 2003.

[5] M. D. Adams, “An incremental/decremental Delaunay mesh-generation
framework for image representation,” Proceedings of IEEE International
Conference on Image Processing, pp. 189-192, Sep. 2011.

