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ABSTRACT

The design and implementation of reversible wavelet/subband transforms and their application to
reversible embedded image compression are studied. Reversible embedded image coding provides a
natural way for building unified lossy/lossless image compression systems, and reversible transforms
are a key component in such systems.

A lifting-based method is examined as a means for constructing reversible versions of linear
M-band subband transforms. The method is shown to produce reversible transforms that well
approximate their parent linear transforms even when computed using fixed-point arithmetic. Also,
a simple and practical software algorithm for reversible transform construction is described. By
combining ideas from both lifting and the S+P transform, a more general framework for the design
of reversible transforms is proposed. This new framework generates a larger class of reversible
transforms than lifting alone, and includes all lifted transforms as a subset.

Several reversible transforms constructed using lifting are employed in a reversible embedded
image compression system based on the so called Embedded Zerotree Wavelet (EZW) coding scheme.
Both 2-band and M-band transforms are considered. Many practically useful observations as to
which transforms are most effective for various classes of images and what types of artifacts are
associated with the various transforms are made. The merits of full versus partial embedding and
periodic versus symmetric extension are also investigated.

Based on some of the observations made, a multi-transform approach to image compression is
proposed. With this scheme, the decorrelating transform employed by the image coder is selected
on a per image basis using image-specific information. Although the transform selection algorithm
i1s extremely simple and has only modest computational requirements, results show that this new
approach yields better compression performance than is possible with the use of a single fixed

transform such as the S+P transform.
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Chapter 1

Introduction

Those who educate children well are more to be honored than parents, for these only
gave life, those the art of living well.

—Aristotle

1.1 Historical Perspective

The first wavelet system was constructed by Haar [19] in 1910. The Haar wavelet system, as it is
now known, uses piecewise constant functions to form an orthonormal basis for L?(R). Although
wavelet theory has a relatively long history, it was not until the 1980s that the term “wavelet” came
into use. Consequently, much of the early work on wavelets was done under the guise of other names
such as Littlewood-Paley theory or Calderon-Zygmund operator theory. Although wavelet theory
has intimate ties with concepts from many diverse branches of mathematics and engineering, many
of these linkages were not discovered until the 1980s. Until that time, wavelet theory was really a
disjoint set of ideas from many areas that lacked a clear unifying framework. In some sense, wavelet
theory was only in its infancy until these linkages were first established.

In the mid-to-late 1980s, a revolution in wavelet theory occurred as a result of several important
discoveries. This revolution served to draw together concepts from many different areas of mathe-
matics and engineering resulting in a unified theory for the study of wavelet systems. In 1984, the
term “wavelet” was introduced by Grossman and Morlet [18]. In 1988, a tremendous breakthrough
in wavelet analysis was brought about by Daubechies. In her now classic paper [14], Daubechies
introduced a family of compactly supported orthogonal wavelet systems with arbitrarily high, but
fixed, regularity. The construction methods she employed were also closely related to filter banks.
Daubechies’ work stimulated a rapid development in wavelet theory. In 1989, Mallat [29] presented
the theory of multiresolution analysis and also what later became known as the Mallat algorithm.
This work provided a unifying framework for the study of wavelet systems tying together many
previously disjoint ideas. In 1992, Cohen, Daubechies, and Feauveau [11] established the theory of
biorthogonal wavelet systems. In the case of 2-band wavelet systems, biorthogonality has the advan-
tage that it allows for symmetric finitely-supported basis functions. This property is not possible to
have with orthogonal systems except in the trivial case of the Haar and other Haar-like transforms.
The symmetry property can offer significant benefits in many applications, image compression being

one example.
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In 1995, Sweldens [51] proposed lifting, a technique for the design and implementation of wavelet
systems. Subsequently, he has authored/coauthored many papers on the subject (e.g., [15], [49],
[51]). Later, in 1996, Calderbank, Daubechies, Sweldens and Yeo [10] proposed a systematic lifting-
based technique for constructing reversible versions of any 2-band wavelet transform. This method
is of great significance in the context of lossless signal compression.

There are many important linkages between wavelet and filter bank theory. Digital filter bank
methods have a somewhat shorter history than wavelet theory. Until the linkage between filter
bank theory and wavelet theory was established, filter bank theory evolved independently from
wavelet theory. Early contributions to (digital) filter bank theory and subband coding were made by
Crochiere, Webber, and Flanagan [12], and Croisier, Esteban, and Galand [13], and others. Later,
perfect reconstruction filter banks were studied in depth by many, with major contributions by
Mintzer [31], Smith and Barnwell [43], Vetterli [55], and Vaidyanathan [53].

Wavelet transforms have proven to be extremely useful for image coding as many have shown
(e.g., [6], [27], [9]). Consequently, many image compression schemes have adopted the use of such
transforms. In 1993, Shapiro [41] first introduced the notion of embedded coding. His coding scheme,
called Embedded Zerotree Wavelet (EZW) coding, was based on a wavelet decomposition. Due to the
obvious advantages of the embedding property in many applications, embedded coding quickly grew
in popularity—especially as a means to build unified lossy/lossless compression systems. In 1995,
Zandi et al. [60] proposed Compression with Reversible Embedded Wavelets (CREW), a reversible
embedded image compression system based on some of the ideas of Shapiro. Not long after, in 1996,
Said and Pearlman [37] introduced a new coding scheme known as Set Partitioning in Hierarchical
Trees (SPTHT) which is similar in spirit to EZW.

1.2 Overview and Contribution of the Thesis

This thesis studies reversible wavelet transforms and their application to reversible embedded image
compression. Reversible embedded image coding provides a very useful framework for building
unified lossy /lossless image compression systems. This thesis draws on ideas from all of the previously
described developments, but the two of most direct importance are the lifting-based method for the
design of reversible wavelet transforms proposed by Calderbank et al. [10] and the embedded coding
scheme proposed by Shapiro [41]. Many of the results presented are closely related to the ideas in
these two papers. Some of the topics addressed in detail by this thesis include:

e methods for constructing reversible versions of M-band subband transforms (of which wavelet
transforms are a special case)

e practical issues associated with the implementation of reversible transforms such as computa-

tional efficiency
o effectiveness of various transforms for both lossless and lossy image compression

e techniques for transform selection based on image-specific properties
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e modifications and enhancements to the EZW scheme to handle reversible coding, M-band

transforms, arbitrary-sized images, etc.

The thesis is divided into five chapters. The first two chapters provide introductory information
to put this work in context and background information necessary to understand the rest of the
work. The remaining chapters present a mix of research results and other fundamental concepts
required to understand these results.

In Chapter 2, multirate filter banks and wavelet systems are introduced. The chapter begins
by presenting the fundamentals of multirate systems. Then quadrature mirror-image filter (QMF)
banks are examined in some detail. Finally, the link between QMF banks and wavelet systems 1s
established.

In Chapter 3, reversible transforms are discussed in depth. First, the reversibility property is
defined and the reason why transforms with this property are desirable is explained. Next, lifting is
examined as a means to realize M-band subband transforms. This implementation technique extends
the ideas presented in [15] to the case of M-band transforms. Then lifting is examined as a means
for constructing reversible versions of transforms. Methods for handling finite-length signals and
multidimensional signals are examined. Next, reversible transforms derived using the lifting-based
method are shown to be well suited to implementation using only fixed-point arithmetic. That is, the
use of fixed-point arithmetic (instead of floating-point) does not significantly affect approximation
behavior of the reversible transform. The chapter also examines the problem of finding good lifting
factorizations using computer software. A simple method for producing a reversible version of any
M-band subband transform is described. Some good reversible transforms such as the S+P transform
do not quite fit into the lifting framework. This leads to the proposal of a new more general structure
for reversible transforms through extension of the ideas from lifting. Several examples of reversible
transforms are given in the chapter. Some of the work in this chapter also appears in [2].

In Chapter 4, both theoretical and practical aspects of embedded image compression are dis-
cussed. The chapter begins by introducing the basic ideas behind transform-based image com-
pression systems. Measures for compression performance are discussed. Then embedded coding
is defined and its benefits explained. Next, the EZW coding scheme is briefly introduced. The
chapter also evaluates the performance of several reversible transforms for both lossy and lossless
compression and identifies the classes of images for which the various transforms are most effective.
Based on these observations, a multi-transform approach to image compression is proposed in which
the decorrelating transform is selected on a per image basis using image-specific characteristics.
Modifications and enhancements to the EZW coding scheme are also discussed. Some of the work
described in this chapter also appears in [1] and [4].

Finally, Chapter 5 summarizes some of the more important results presented in this thesis along

with the contributions it makes. The chapter concludes by suggesting directions for future research.
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1.3 Notation

Before continuing further, a brief digression regarding the notation used in this thesis is appropriate.

Some of the notation and conventions used are as follows:

The symbols Z, R, C denote the sets of integers, real numbers, and complex numbers, respec-
tively.
The symbol j denotes the quantity v/—1.

Functions of a continuous variable are indicated with round brackets, for example, f(¢) where
teR.

Functions of a discrete variable are indicated with square brackets, for example, z[n] where

nez.
Boldface type is used to denote matrix and vector quantities.
The symbol I denotes the k& x k identity matrix.
The quantity AT denotes the transpose of A.
The quantity A* denotes the conjugate of A.
The quantity AT denotes the conjugate transpose of A.
For a function H(z), the notation H,.(z) denotes conjugation of the coefficients without con-
jugating z. Note that H*(z) = H.(z*). The notation H(z) stands for HI (z71). If z = /%,
then H(z) = H'(z).
The z-transform of a sequence z[n] is denoted as X (z) and is defined as
Z{z[n]} = X(2) = > a[n]e™"

The inner product of two functions is defined in the continuous variable case as
o) = [ ot
and in the discrete variable case as
(f[n], g[n]) =Y fln]g[n]
The delta function d[n] is defined as

N 1 forn=0
()[n] =
0 otherwise

The notation f * g stands for the convolution of f and g.

The notation |z] denotes the greatest integer not more than z (or equivalently,  rounded to

the nearest integer in the direction of —o0).

The notation n|m means that n is evenly divisble by m.
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e Filter coefficients are always assumed to be real-valued unless explicitly stated otherwise.

e The sampling period for all discrete sequences is assumed to be one. In other words, the
sampling period is always normalized to be one. Thus, if we are given a sequence z[n] with
z-transform X (z), the frequency spectrum associated with the signal is always obtained by
evaluating X (z) at z = e/%.

o A filter H has the transfer function H(z). That is, roman text is used to name a particular

filter while 1talics are used to indicate the transfer function associated with the filter.

... And that's why wavelets are so popular. Any idiot can use them.

—Anonymous professor



Chapter 2

Multirate Filter Banks and
Wavelet Systems

There is only one thing you should do. Go into yourself. Find out the reason that
commands you to write; see whether it has spread its roots into the very depths of
your heart; confess to yourself whether you would have to die if you were forbidden to
write. This most of all: ask yourself in the most silent hour of your night: must | write?
Dig into yourself for a deep answer. And if this answer rings with a strong, simple “I
must,” then build your life in accordance with this necessity; your whole life, even into
its humblest and most indifferent hour, must become a sign and witness to this impulse.

—Rainer Maria Rilke, “Letters to a young poet”

2.1 Introduction

Multirate systems and filter banks play an important role in the study of wavelet systems. In
particular, the class of systems known as quadrature mirror-image filter (QMF) banks are especially
significant in this regard. Not only can wavelet transforms be constructed through the design of
QMF banks, but they can also be implemented very efficiently in terms of these structures.

In order to study QMF banks, we must first understand the fundamentals of multirate systems.
This chapter begins by introducing some basic multirate system concepts, and then uses these
concepts to establish a general framework for the study of QMF banks. Lastly, the link between
QMF banks and wavelet systems is established.

In addition to the material presented in this thesis, the author recommends [54], [56], and [46]

for more detailed coverage of multirate filter banks and wavelet systems.

2.2 Multirate Systems

Depending on the number of different sampling rates it employs, a discrete-time system can be
classified as being either unirate or multirate. A system that processes signals at a single sampling
rate is referred to as unirate. Most of us are all too familiar with unirate systems as they are
traditionally studied in any introductory digital signal processing course. In contrast, a system that

processes signals at more than one sampling rate is referred to as multirate.
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Multirate systems are extremely useful for many signal processing applications. Often, a multi-
rate system can be used to perform a task more easily or efficiently than is possible with a unirate
system. Other times, a signal processing task inherently requires the use of multiple sampling rates.
In such cases, a multirate system must be used.

The basic building blocks of unirate systems are familiar to us all, namely, the unit delay /advance,
adder, and multiplier. Multirate systems have these same building blocks plus two additional ones:

the downsampler and upsampler. These two new building blocks are examined next.

2.3 Downsampler

One of the basic building blocks of multirate systems is the downsampler, sometimes also referred
to as a compressor!. The M-fold downsampler, shown in Figure 2.1, takes an input sequence z[n]

and produces the output sequence
y[n] = z[Mn] (2.1)

where M is an integer. The constant M is referred to as the downsampling factor. In simple terms,
the downsampling operation keeps every Mth sample and discards the others. From equation (2.1),
it follows that downsampling is a linear time-varying operation. The relationship between the input
and output of the downsampler in the z-domain is given by

M-1
1 .
Y(2) = o Y X (MM emarmhIM) (2.2)
k=0

Assuming that the sampling period before and after downsampling is normalized to one, this leads

directly to the frequency domain relation

Jwy LM_l jlw—2nk)/M o <
V()= 3 X (e ) (2.3)
k=0

Downsampling has a very simple frequency domain interpretation. The spectrum of the down-
sampled signal is simply a scaled sum (i.e., average) of M shifted versions of the original input
spectrum. Due to our convention of normalizing the sampling period after downsampling to one,
the spectrum is also stretched. It is important to understand, however, that this spectrum stretching
effect is only a consequence of the sampling period renormalization and is not caused by downsam-
pling itself.

As is evident from equation (2.3), downsampling can result in aliasing. That is, the downsampling
operation can result in multiple baseband frequencies in the input signal being mapped to a single

frequency in the output signal. If aliasing occurs, it is not possible to recover the original signal

IThe term “decimator” is also frequently employed as a synonym for “downsampler”. Unfortunately, “decimator”
can also be used to mean “a downsampler in cascade with an anti-aliasing filter”, as in the case of sampling rate
conversion applications. Thus, in order to avoid confusion, the author prefers to use the terms “downsampler” and

“compressor” instead of “decimator”.
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x[n] y[n]
+¢M —>—

Figure 2.1. M-fold downsampler.

from its downsampled version. Aliasing can be avoided if z[n] is a lowpass signal bandlimited to
|w| < w/M. This is equivalent to saying that the Nyquist criterion must not be violated if aliasing
is to be avoided.

To illustrate the frequency domain effects of downsampling, let us consider two examples. In the
first example, the input signal is chosen to be sufficiently bandlimited that aliasing will not occur.
In the second example, the input signal is selected to result in aliasing.

In the first case, suppose we take a signal with the spectrum shown in Figure 2.2(a) and apply
it to the input of a two-fold downsampler. The spectrum of the downsampled signal is formed by
the scaled sum of the two shifted versions of the original spectrum shown in Figure 2.2(b). Due
to the renormalization of the sampling period, these spectra also appear stretched. The resulting
spectrum is shown in Figure 2.2(c). Because the two spectra in Figure 2.2(b) do not overlap, there

is no aliasing. The shape of the original spectrum 1s clearly discernable in the final output spectrum.

1
\ /’Y VA
} } } } > W
—27 - 0 s 2T

A

/
\

Y

A

A A A
' ' 0 ; or

(c)

Figure 2.2. Effects of two-fold downsampling in the frequency domain (no aliasing case). (a) Spec-
trum of the input signal. (b) The two stretched and shifted versions of the original input spectrum
used to form the spectrum of the downsampled signal. (c) Spectrum of the downsampled signal.



2. Multirate Filter Banks and Wavelet Systems 9

In the second case, suppose we take a signal with the spectrum shown in Figure 2.3(a) and apply
it to the input of a two-fold downsampler. The spectrum of the downsampled signal is formed by
the scaled sum of the two shifted versions of the original spectrum shown in Figure 2.3(b). Again,
these spectra appear stretched due to the renormalization of the sampling period. The resulting
spectrum is shown in Figure 2.3(c). Because in Figure 2.3(b) the two spectra overlap, aliasing
occurs. Consequently, it is not possible to recover the original signal from its downsampled version.
This is also evident from the spectrum of the downsampled signal shown in Figure 2.3(c). Due to

aliasing, the spectrum has been distorted and no longer resembles that of the original input.

Figure 2.3. Effects of two-fold downsampling in the frequency domain (aliasing case). (a) Spectrum
of the input signal. (b) The two stretched and shifted versions of the original input spectrum used to
form the spectrum of the downsampled signal. (¢) Spectrum of the downsampled signal.

2.4 Upsampler

Another basic building block of multirate systems is the upsampler which is also sometimes referred

to as an expander?. The M-fold upsampler, depicted in Figure 2.4, takes an input sequence z[n]

2The term “interpolator” is also frequently employed as a synonym for “upsampler”. Unfortunately, “interpolator”
has many other different and conflicting meanings. For this reason, the author favors the use of the terms “upsampler”

and “expander” instead of “interpolator”.



2. Multirate Filter Banks and Wavelet Systems 10

and produces the output sequence

(2.4)

[n] { z[n/M] if n is an integer multiple of M
yin| =

0 otherwise

where M is an integer. The constant M is referred to as the upsampling factor. In simple terms,
upsampling results in the insertion of M — 1 zeros between the samples of the original signal.
From equation (2.4), it follows that upsampling is a linear time-varying operation. The relationship

between the input and output of the upsampler in the z-domain is given by
Y(2) = X(M) (2.5)

Assuming that the sampling period before and after upsampling is normalized to one, this directly

yields the frequency domain relation

Y (/) = X (ed¥M) (2.6)

x[n] y[n]
—— TM —>—

Figure 2.4. M-fold upsampler.

Upsampling has a very straightforward interpretation in the frequency domain. The upsampling
process simply serves to move the location of the sampling frequency on the frequency axis. Due
to our convention of normalizing the sampling period after upsampling to one, the spectrum is
also compressed. It is important to understand, however, that this compression effect is only a
consequence of the sampling period renormalization and is not caused by upsampling itself.

Since the shape of the spectrum is not altered by upsampling, there is no information loss and
the original signal can always be recovered from its upsampled version. Upsampling, however, does
result in the creation of multiple copies of the original baseband spectrum. These copies are referred
to as images. And this phenomenon is called imaging.

To illustrate the frequency domain effects of upsampling, let us consider an example. Suppose
we take a signal with the spectrum shown in Figure 2.5(a) and apply it to the input of a two-fold
upsampler. The spectrum of the upsampled signal is simply that shown in Figure 2.5(b). Due to the
sampling period renormalization, the spectrum appears compressed. Although multiple copies of the
original baseband spectrum appear, each copy has the same shape as the original input spectrum. As
a result, the original signal can always be recovered from the upsampled signal with the appropriate

use of filtering.

2.5 Noble Identities

Often a downsampler or upsampler appears in cascade with a filter. Although it is not always

possible to interchange the order of upsampling/downsampling and filtering without changing system
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: —I27r —I7r 0 7Ir 2I7r

(a)
1
AAW%A
~ —I27r —I7r 0 7Ir 2I7r ~

(b)

Figure 2.5. Effects of two-fold upsampling in the frequency domain. (a) Spectrum of the input
signal. (b) Spectrum of the upsampled signal.

behavior, it is sometimes possible to find an equivalent system with the order of these operations
reversed, through the use of two very important relationships called the noble identities. The first
identity allows us to replace a filtering operation on one side of a downsampler with an equivalent
filtering operation on the other side of the downsampler. This identity is illustrated in Figure 2.6
where the transfer function G(z) is a rational polynomial expression. The second identity allows us
to replace a filtering operation on one side of an upsampler with an equivalent filtering operation on
the other side of the upsampler. This identity is shown in Figure 2.7. It is important to emphasize

that these identities hold only if the transfer function G(z) is a rational polynomial expression.

x[n] y[n] _ xln] y[n]
M G(z) P— = = G:M) P>IMP>—

Figure 2.6. First noble identity.

——  G(2) M= = —>—{tMP G(ZM) —>—

Figure 2.7. Second noble identity.

In addition to their theoretical utility, the noble identities are of great practical significance. For
performance reasons, it is usually desirable to perform filtering operations on the side of an upsampler
(or downsampler) with the lower sampling rate. Using the noble identities, we can move filtering

operations across upsamplers (or downsamplers) and achieve improved computational efficiency.
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2.6 Polyphase Form of a Filter

The concept of a polyphase representation or realization is one of fundamental importance in the
study of multirate systems. The utility of polyphase methods is twofold. First, these methods
provide a mathematically convenient representation for filtering operations in a multirate frame-
work. This representation, known as the polyphase representation, is extremely useful as it greatly
simplifies many theoretical results allowing easier analysis of multirate systems. Second, polyphase
methods offer a desirable means for implementing filtering operations in a multirate framework.
This implementation strategy, known as the polyphase realization, leads to computationally efficient
structures for many multirate (and even some unirate) systems.

The polyphase representation of a filter is nothing more than the filter’s transfer function ex-
pressed in a special form. Suppose we are given a filter with the transfer function

(0]

G(z) = Z gln]z""

n=—0o0
The polyphase representation of this transfer function has the general form

M-1

G(z)= > z“Bi(M) (2.7)

=0

where

o0

Bi(z) = Z g[Mn —a;]z7"

n=—0o0

and the a; are integers chosen such that
a;mod M # ajmodM for all ¢,j with i # j

Functions B;(z) are called the polyphase components of G(z), and M denotes the number of phases
in the polyphase decomposition.

Although many different variations on the polyphase representation are possible, there are four
specific representations that are most frequently used in practice. Two of these representations are
commonly designated as type 1 and type 2 polyphase representations (e.g., as in [54], [46]). The
other two representations do not have standard names associated with them, and for convenience will
be referred to as type 3 and type 4 polyphase representations. In the case of these four commonly

used polyphase representations, the a; in equation (2.7) are chosen as

— type 1
—(M-1=-1) t 2
a; = ( ) ype (28)
l type 3
— type 4

Different choices of a; serve only to time shift and permute the polyphase components. For

example, the type 2 polyphase components of G(z) are simply a permutation of the type 1 polyphase
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components of G(z). More specifically, the order of the components are reversed with respect to one
another.

When realized in its type 1, 2, 3, or 4 M-phase polyphase form, a filter is implemented using a
delay/advance chain, adders, and M filters each having a transfer function that is a rational polyno-
mial expression in z¥ . The structures corresponding to the four types of polyphase representations

are presented in Figures 2.8, 2.9, 2.10, and 2.11.

—>—+—>— By (M) Bo(2M) —’—+

Y
v—b— B (M) _"'(‘D = Bi(z") "'%)

Y

>
P>

Y

*—»—BM_I(ZM)—»@—:J—[n] —»BM_l(ZM)—»—é—ﬂn]

Figure 2.8. Type 1 polyphase realization of Figure 2.9. Type 2 polyphase realization of
a filter. a filter.

~+~
ju]
i
1
o]

LBM—l(ZM)_"@_’y_ +BM—1(ZM)_’_+

Figure 2.10. Type 3 polyphase realization of Figure 2.11. Type 4 polyphase realization of
a filter. a filter.

Although the type 1 and type 4 polyphase representations appear mathematically identical,
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there is a subtle distinction between the two. Each representation is also associated with a par-
ticular implementation structure. The type 1 and type 4 polyphase representations look the same
mathematically, but their implied realization structures are different.

In multirate systems, filters are often connected in cascade with upsamplers/downsamplers. For
reasons of computational efficiency, it is usually preferable to perform any filtering on the side of the
upsampler/downsampler with the lower sampling rate. We have seen how the noble identities can be
used to move a filtering operation across upsamplers/downsamplers, but in order to move filtering
to the side with the lower sampling rate, the transfer function of the filter must be an expression
in z™ which is not generally the case. The polyphase representation, however, provides us with a
means to express any filter as a set of filters with transfer functions in z™ so that filtering can be
moved to the more desirable side of an upsampler/downsampler.

Suppose a filter realized in either its type 1 or type 3 polyphase form is immediately followed by an
M -fold downsampler. In such a case, the first noble identity can be used to move the downsampling
operation before the polyphase filtering operations. Likewise, suppose a filter realized in either
its type 2 or type 4 polyphase form is immediately preceded by an M-fold upsampler. In such a
case, the second noble identity can be used to move the upsampling operation after the polyphase
filtering operations. In this way, we can use the polyphase implementation of filters to obtain efficient

multirate structures.

2.7 Filter Banks

A filter bank is a collection of filters having either a common input or common output. When the
filters share a common input, they form what is called an analysis bank. When they share a common
output, they form a synthesis bank. These two types of filter banks are depicted in Figures 2.12
and 2.13. Each of the filter banks shown consists of M filters. The filters Hg belonging to the analysis
bank are called analysis filters and the filters Fy comprising the synthesis bank are referred to as
synthesis filters. The signals ug[n] and vg[n] are called subband signals. The frequency responses of
the analysis/synthesis filters may be non-overlapping, marginally overlapping, or greatly overlapping

depending on the application.

z[n] ug [n] vg [n
Ho(z) [ > Fo(2)
u1 [n] 1 [n]
H, (Z) —>— —— F (Z)
L’_ upr—1[n] var—1[n] &[n]
Hpro1(2) = > (2)

Figure 2.12. Analysis bank. Figure 2.13. Synthesis bank.
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2.8 M-Channel QMF Banks

Although many filter bank configurations exist, an extremely useful one is the so called M-channel
quadrature mirror-image filter (QMF) bank. Such a system is more correctly referred to as a
uniformly maximally decimated filter bank, but the term QMF bank is often used for historical
reasons. The general structure of such a system is shown in Figure 2.14. The input signal z[n]
is split into M channels, processed by the analysis filters Hg, downsampled by M, upsampled by
M, transformed by the synthesis filters Fg, and then summed to produce the output signal z[n].
Since each of the M channels is downsampled and upsampled by A, the filter bank is referred to as

uniformly maximally decimated.

x[n]
> > Ho(Z) +.LM > |M — F()(Z)
A
> Hi(z) IM > tM Fi(z)
A
Hpyo1(z) 4 M > TM> Fau—1(2)
[ —— [ —
Analysis Bank Downsamplers  Upsamplers Synthesis Bank

Figure 2.14. M-channel QMF bank.

2.9 Perfect Reconstruction QMF Banks

For the QMF bank of Figure 2.14 to be of practical use, the output #[n] is usually required to be
an accurate reproduction of the input z[n]. If the system is such that z[n] = z[n — ng] for all z[n]
and for some integer ng, the system is said to have the perfect reconstruction (PR) property. In
other words, a PR system can reproduce the input signal exactly except for a time shift. Generally,
there are three reasons® that the reconstructed signal #[n] can differ from z[n]: aliasing distortion,
amplitude distortion, and phase distortion. The analysis and synthesis filters can be designed in
such a way so as to eliminate some or all of these distortions depending on what is required by the

application.

2.10 Polyphase Form of a QMF Bank

Although the structure for the M-channel QMF bank shown in Figure 2.14 may be intuitively

appealing, it is often not the most convenient structure with which to work. This leads us to

3Coding/quantization of the subband signals can also introduce distortion, but this distortion cannot be corrected

and is therefore not considered.
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examine the polyphase representation of a QMF bank. The polyphase representation has many
advantages, but most importantly it simplifies many theoretical results and suggests an efficient
means by which to implement filter banks.

The polyphase form of a QMF bank is based on the polyphase representation discussed earlier
in the context of individual filters. Although many different variations on the polyphase form of a
QMF bank exist, two particular variants are most commonly used. Since no standard terminology
exists in the literature to distinguish between these two variants, the author introduces his own at
this point. The first variant is referred to as the type 1/2 polyphase representation. It involves
representing the filters of the analysis bank in their type 1 polyphase form and the filters of the
synthesis bank in their type 2 polyphase form. The second variant is called the type 3/4 polyphase
representation. It involves representing the filters of the analysis bank in their type 3 polyphase
form and the filters of the synthesis bank in their type 4 polyphase form.

Suppose we have an M-channel QMF bank with analysis filters Hy and synthesis filters F. For

notational convenience, we define the quantities

Ho(2) Fo(z) 1 1
Hy(z Fi(z z L1
h(Z) = ( ) ) f(Z) = ( ) ) ea(z) = s ed(z) =
Hpyr—1(2) Frar—1(2) LM-1 L= (M—1)

First, let us consider the analysis filters of the QMF bank. We can express the transfer functions

Hp(z) in polyphase form as

M-1

H(z) = > 2" Era(z™)

=0

This equation can be rewritten in matrix form as

HQ(Z) Eoyo(ZM) Eoyl(ZM) EOyM_l(ZM) z40
Hl(Z) Elyo(ZM) Elyl(ZM) ElyM_l(ZM) z%
Hyr—1(2) Eym—10ZM) Em-11(zM) - Epm—im—1(2M) zOM-1

or more compactly as

h(z) = B(=V)a(z) (2.9)
where
Foo(z)  Foi(z) -+ Eoam-1(2) 200
B(z) = E10(2) E11(2) _ El,M.—l(Z) afe) = %

Em-10(2) Em—11(2) -+ Ewm—1,m-1(2) z0M-1
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From equation (2.8), for type 1 and type 3 polyphase decompositions of the analysis bank, we have

alz) = { eq(z) typel

eq(z) type3

Equation (2.9) completely characterizes the analysis bank and is called the polyphase representation
of the analysis bank. Matrix E(z) is referred to as the analysis polyphase matrix.

Now, let us consider the synthesis filters of the QMF bank. We can express the transfer functions
Fi(z) in polyphase form as

M-1

Fe(z) = > 2" Ris(z™)

=0

In matrix form, this becomes

| Fo(z) Fi(2) Fyoi(2) | =
Ro,o(zM) Roa(zM) -+ Rom-1(z")
Lo b Lbao } Rio(2™) Ry (2M) Ry p-1(z™)
Rar—1,0(z™)  Rar—11(zM) Rar—1,m-1(z")

F1(z) = b () R(z") (2.10)
where
Rool)  Roa(s) -+  Rowr1(2) -
R(:) = Rly‘:)(z) Rlyzl(Z) RI,M:—l(Z) R
Ruro1o(z) Rar—11(2) -+ Ruoraros(2) -

From equation (2.8), for type 2 and type 4 polyphase decompositions of the synthesis bank, we have

b(2) 2= M=Dg,(2)  type 2
z) =
el (z) type 4

Equation (2.10) completely characterizes the synthesis bank and is called the polyphase representa-
tion of the synthesis bank. Matrix R(z) is referred to as the synthesis polyphase matrix.

Notice that equations (2.9) and (2.10) provide an alternative way in which to express the analysis
and synthesis banks of the QMF bank. Suppose now that we have a QMF bank where the analysis
and synthesis banks have been decomposed using type 1 and type 2 polyphase representations,
respectively. In this case, these equations give us the transformed, but mathematically equivalent,
system shown in Figure 2.15(a). Using the noble identities, however, we can move the analysis

polyphase filtering to the right of the downsamplers and the synthesis polyphase filtering to the left
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of the upsamplers. This gives us the polyphase form of the filter bank shown in Figure 2.15(b).
Given a QMF bank where the analysis and synthesis banks have been decomposed using type 3 and
type 4 polyphase representations, respectively, we can use the same process to obtain the structures

in Figures 2.16(a) and 2.16(b).

z[n] I
M > M —D—*
»—1 »—1
4
—— | M > TM >
Y
—1 —1

—>—+—>—¢M—>— > > TM—’—*
o

4
——| M > TM*é
Y

Y

*—D—¢M—>— > {1+ A ag

(b)

Figure 2.15. Type 1/2 polyphase form of an M-channel QMF bank. (a) Before simplification.

(b) After rearrangement using the noble identities.
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+—>—¢M—>— > > TM—J

(b)

Figure 2.16. Type 3/4 polyphase form of an M-channel QMF bank. (a) Before simplification.

(b) After rearrangement using the noble identities.

2.11 Effects of Filter Normalization

Sometimes it is desirable to transform the filters of a QMF bank by adding a constant gain and phase
delay to them. Of course, such an transformation changes the underlying polyphase matrices. The
effects of such a change are summarized by the theorem below. This theorem will prove extremely

useful in later developments.

Theorem 2.1 Suppose we are given an M -channel QMF bank having analysis and synthesis filters
with transfer functions Hy(z) and Fy(z), respectively. Further, assume that the QMF bank is repre-
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sented in either type 1/2 or type 3/4 polyphase form with analysis and synthesis polyphase matrices
E(z) and R(z), respectively.
Consider now a second set of analysis and synthesis filters with transfer functions Hj(z) and

Fl(z), respectively, related to the original filters as

o]
o~
=3

™0
X

I

ﬁoz_L”Hk(z)
ﬁlz_Lle(z)

el
ol
™
X
I

where the [B; are nonzero constants, and the L; are integers. In other words, the new filters are ob-
tained by adding a constant gain and constant phase delay to the original filters. This transformation
results in the new analysis and synthesis polyphase matrices E'(z) and R'(z), respectively. Given
the relationship between the original and transformed filters, the original and transformed polyphase

matrices are related as follows:

Lo
Bo E(2) l (_)1 - ] type 1/2
, z 0
E (Z) = 1 Lo
x| © 7 type 3/4
Bo Iyt O yp

Ly
Ty
I l Z(_)1 Mt ] R(z) type 1/2

0 21 b
/31[ ] R(z) type 3/4

Proof. See Appendix A. |

2.12 Conditions for PR System

Since it is often desirable to have a filter bank with the PR property, it is only natural to wonder
what conditions the filter bank must satisfy in order to have PR. Fortunately, there is a very simple
and practical answer to this question. The answer lies in the polyphase matrices and is given by the

following theorem.

Theorem 2.2 An M-channel QMF bank in either type 1/2 or type 3/4 polyphase form with analysis
polyphase matriz E(z) and synthesis polyphase matriz R(z) has the PR property if and only if the
product P(z) 2 R(z)E(z) has the form
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for some integer K. If this condition is satisfied, the relationship between the input signal z[n] and

the reconstructed signal &[n] is given by

z[n] = z[n — ng)

where

K+ M-—1 type 1/2
ng =
’ K type 3/4

This theorem holds regardless of whether the analysis/synthesis filters are of the FIR or IIR type.

Proof. See Appendix A. |
The preceding theorem has some interesting implications—the most important of which is stated

in the following corollary:

Corollary 2.3 Any M-channel PR QMF bank in either type 1/2 or type 3/4 polyphase form with
analysis polyphase matriz E(z) and synthesis polyphase matriz R(z) must be such that the product
P(z) = R(z)E(z) has a determinant of the form

det P(z) = (—=1)K(M-1)—K

where K 1s an integer. Moreover, if the analysis and synthesis filters of the QMF bank are of the
FIR type, this condition implies that the polyphase matrices must have determinants of the form

det E(z) = gz Lo
det R(z) = arz~

where the a; are nonzero constants and the L; are integers. That 1s, the determinants of the polyphase

matrices must be monomaials.

Proof. See Appendix A. |

One comment is in order concerning Theorem 2.2. If we let K = 0, P(z) becomes the M x M
identity matrix. Since the identity matrix is sometimes an attractive matrix with which to work,
one might wonder what degree of freedom is lost by constraining K to be zero. As it turns out, not
much is sacrificed. This quantity only serves to introduce additional delay into the analysis/synthesis
filters. For this reason, we often only consider the case of P(z) = I when designing PR filter banks.
Delay (or advance) can always be added to the analysis and synthesis filters after the fact if required.
Finally, with P(z) = I, the problem of designing PR filter banks, in some sense, reduces to a problem

of factorizing the identity matrix.

2.13 Octave-Band Filter Banks

The analysis side of an M-channel QMF bank decomposes the input signal z[n] into M subband
signals vg[n]. The synthesis side then recombines these subband signals to obtain #[n], the recon-

structed version of the original signal. There is nothing, however, to prevent the use of additional



2. Multirate Filter Banks and Wavelet Systems 22

QMF banks to further decompose some or all of the subband signals vg[n]. Of course, some or all
of the resulting subband signals can again be decomposed with even more QMF banks. In other
words, this idea can be applied recursively, and the final result is a filter bank with a tree structure.

If a tree structured QMF bank is such that

1. only the lowpass subband signal is decomposed at each level in the tree,
2. the same basic QMF bank building block is used for decomposition at all levels, and

3. this basic block has PR and satisfies certain regularity conditions

then the filter bank can be shown to compute a wavelet decomposition of some continuous-time
signal associated with the input signal z[n]. Such a tree-structured filter bank is called an octave-
band filter bank. The analysis side of the octave-band filter bank calculates the forward wavelet
transform and the synthesis side calculates the inverse wavelet transform.

At this point, our motivation for studying M-channel PR QMF banks becomes apparent. Under
the conditions stated above, an M-channel PR QMF bank can be directly linked to an AM-band
wavelet decomposition. Thus, QMF banks can be used to both design and implement M-band

wavelet transforms.

2.14 QMF Bank Implementation

In principle, the design of a PR QMF bank amounts to decomposing the identity matrix into two
factors with desired properties. These two factors are simply the polyphase matrices of the filter
bank. Once we have the analysis and synthesis polyphase matrices E(z) and R(z), respectively, we
are ready to proceed to the implementation of the filter bank. Of course, the filter bank could be
realized by directly implementing the filtering operations in each of the polyphase matrices, but it is
often beneficial to break the filtering process into a number of smaller and simpler cascaded stages.

Consider for a moment the analysis side of the filter bank. Instead of implementing E(z) directly,

we further decompose E(z) as follows
B(:) = Bai(2) -+ () Eo2)

Each of the E;(z) can then be taken to represent a single filtering stage in the final implementation

as depicted in Figure 2.17. Similarly, R(z) can be decomposed to produce
R(z) = Rpn1(2) - Ra(2) Ro(2)

This corresponds to the cascade realization of the synthesis polyphase matrix shown in Figure 2.18.
In the event that R(z)E(z) = I, we have R(z) = E~*(z). Thus, we could choose R(z) as

R(z) = By (2)E7 ' (2) - E; L (2)

This factorization results in a certain symmetry between the analysis and synthesis sides of the filter

bank which can often be advantageous.
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Assuming that we want to realize the polyphase matrices with a number of cascaded blocks,
what type of polyphase matrix factorization might we use? Also, given that we would like to
construct reversible transforms, are there particular factorizations that help to achieve this goal?

These questions will be addressed at length in the next chapter.

—>— —>— —>— —>—] —>—
—>— —>— —>— - —>—] ——
Eo (Z) El(z) En_l(z)

—>— —>— —>— - —>—] —>—

—>— —>— —>— - —>—] —>—
—>— —>— —>— - —>—] —>—
RO (Z) R1 (Z) Rm—l (Z)

—>— —>— —>— —>—] —>—

Figure 2.18. Block cascade realization of synthesis polyphase matriz.

2.15 QMF Banks and Series Expansions of Signals

Recall the structure of the M-channel QMF bank as shown in Figure 2.19. Assume now that the

QMF bank has PR, and therefore, performs an invertible transformation. Mathematically, there are
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two different ways to interpret the action of such a QMF bank:

1. First, the QMF bank can be interpreted as calculating the coefficients for a series expansion of
the discrete-time input signal z[n]. The subband signals y;[n] then represent the coefficients

for this series expansion of z[n].

2. Second, the QMF bank can be viewed as computing the coefficients for a series expansion of
a continuous-time signal g(¢) from the coefficients of a related series expansion of the same
signal. In this case, the input sequence z[n] is interpreted as expansion coefficients for the
original series, and the subband signals y;[n] represent the expansion coefficients for the new

series expansion.

From a mathematical standpoint, both of these interpretations are equally valid. Which interpreta-
tion one chooses often depends on the application at hand. In many cases, however, valuable insights
can be gained by considering both viewpoints. For the application of image compression discussed
later in this thesis, the author believes that the first interpretation is probably more realistic. In
this application, the input sequence z[n] is typically the sampled values of some continuous-time
signal (and not expansion coefficients). For this reason, the second interpretation (in which the
input sequence is assumed to represent expansion coefficients) is somewhat artificial. Nevertheless,

some useful insights can still be gained by considering the second interpretation.

x[n] ug[n] yo [n] vo[n] wo [n]
> > HO (Z) > \LM > TM > FO (Z)
| wi 1] ne v [n] wi [n]
> H(2) M ——t M [—> Fi(2)
4

&
=)

{ ups—1[n] ym—1[n] vapr—1[n] war—1[n]
HM—I(Z) > \LM > TM > FM—I(Z)

Figure 2.19. M -channel QMF bank (revisited).

Consider the M-channel QMF bank shown in Figure 2.19. For the purposes of this discussion, the
reader is again reminded that the QMF bank is assumed to have PR. Denote the input to the QMF
bank z[n], the subband signals y;[n], and let u;[n], v;[n], and w;[n] denote the various intermediate
signals as shown in the diagram. Further, denote the analysis and synthesis filter impulse responses
as h;[n] and f;[n], respectively.

The QMF bank takes the input sequence z[n], and transforms it into M new sequences y;[n]
using the analysis filters Hg. Although the number of sequences increases, due to downsampling
there is no net growth in the number of samples. We now claim that the subband signals y;[n] can

be viewed as the coefficients of a series expansion of z[n]. To see why this is the case, we proceed as
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follows. First, we express the output of the analysis filters as
u;[m] = z[m] * h;[m]
= Z z[n)h;[m — n]
= (z[n], hilm — n])
for i =10,1,...,M — 1. From this, we can easily express the subband signals as

ilm] = wi[Mm] (2.11)
= (z[n], hy[Mm — n])

fori =0,1,..., M — 1. Thus, the analysis side of the QMF bank computes the inner products of

the input signal z[n] with the analysis basis functions
@r[n] = hi[Mm—n] fori=0,1,... M—1, meZ

where & = Mm + i. These basis functions are nothing more than time-reversed shifted M-fold
downsampled versions of the analysis filter impulse responses. Now, considering the synthesis side

of the QMF bank, we can express the outputs of the upsamplers as

] yi[n/M] if n is an integer multiple of M
vi|n| =
0 otherwise

for i =0,1,..., M — 1. From this, the outputs of the synthesis filters are given by

(2.12)

fori=0,1,...,M — 1. Using (2.12) and (2.11), we can write
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where k = Mm+1i and ¢g[n] = fi[n — Mm]. Thus, we can see that the QMF bank computes a series
expansion of z[n] where the synthesis basis functions are ¢k [n] and the analysis basis functions are
@k [n]. The synthesis basis functions are simply M-shifts of the synthesis filter impulse responses.
Since the QMF bank has the PR property, it follows that the analysis and synthesis bases are
biorthogonal. In a strict mathematical sense, the bases are only biorthogonal if the reconstruction
delay of the QMF bank is zero, although for the purposes of this discussion we need not worry about
this. In the more general case, we simply have that shifted versions of the analysis basis functions
are biorthogonal to the synthesis basis functions.

Although a QMF bank can be viewed as a structure that computes a series expansion of a
discrete-time signal, this is not the only interpretation. In fact, another very useful interpretation
exists.

Again, let us consider the M-channel QMF bank of Figure 2.19. Such a QMF bank can also be
viewed as a structure that calculates a series expansion of a continuous-time signal. Moreover, this
type of expansion corresponds to a single-level M-band wavelet decomposition (or wavelet transform)
of a signal. To see why this is so, we proceed as follows. Suppose that solutions to the following two

dilation equations exist:
o(t) = Y _ ho[n]@o(Mt — n) (2.13)

eolt) = Z foln]eo(Mt —n) (2.14)

As a matter of terminology, $o(?) and ¢q(t) are called the analysis and synthesis scaling functions,
respectively. In what follows, we assume without loss of generality that both scaling functions have

unit norms. That i1s, we assume

/00 wo(t)dt =1
Further, let us define the functions
Bi(t) =D hi[n]go(Mt —n) fori=1,2,... M—1 (2.15)
goi(t):ifi[n]goo(Mt—n) fori=1,2,...,M—1 (2.16)
The quantities @1 (t), @2(t),...,Pm—1(t) are called analysis wavelet functions, and the quantities

e1(t), pa(t), ..., em—1(t) are called synthesis wavelet functions. Since the QMF bank has the PR
property, it computes an invertible transform and thus the analysis and synthesis bases are biorthog-

onal. In other words, we have

(@it = 1), o (t —m)) = d[i — k]6[l — m] for all i,k,I,m
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Moreover, as the analysis and synthesis scaling functions are solutions to dilation equations this
signal decomposition corresponds to a multiresolution analysis (MRA).
Consider now a continuous-time function g(¢) that can be expressed in the form
g(t) = anpo(t —n) (2.17)
n

Such a function can also be written as

E meM Y20t/ M — n) (2.18)

Assume now that we wish to decompose the signal

g(t) = zlnleo(t —n)

n

into an expansion of the form given by (2.18). In other words, we want to represent the signal using
rescaled versions of the original basis functions. How can this be accomplished? We begin with the

original formula for g(¢) and use the fact that we have an MRA to write

Z Ex[n Z<%@0 (t—n), M~ 2¢i(t/M—l)>goi(t/M—l) (2.19)

The inner product in the above formula can be computed by using the dilation equation for @ (%)

given by (2.13), the equation for the analysis wavelet functions given by (2.15), and biorthogonality

as

o0

(polt = n), M= 25,(t/M — 1)) = / ot —n)M th ot — Ml — k)dt

— 00

=M 1/72}1 / wo(t —n)@o(t — Ml — k)dt

M‘l/ZZhikék—fﬂ—Ml]
k

(2.20)

= M~ 2hi[n — Ml

Substituting this result in

—

2.19) and rearranging, we have

)= 3 Y |3l = M3 =
>

(Z zlnlhiln — Mz]) (M= 2gi(t/ M — 1)

= 3 S wl) (M gu(eM 1))
; l

In other words, the new expansion coefficients that we seek in equation (2.18) are given by the
subband signals y;[n]. Thus, a QMF bank can also be seen as a structure for computing series

expansions of continuous-time signals.
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As a practical matter, we normally use sampled values of some continuous-time signal as direct
input to the QMF bank instead of the true series expansion coefficients ay given by (2.17). Provided
the signal g(¢) does not change too rapidly with respect to the initial scale of the MRA, the expan-
sion coefficients will be reasonably close to the sampled values of the function. It is important to
emphasize, however, that in the case where the true expansion coefficients differ from the sampled
values, the continuous-time function being decomposed no longer corresponds to the true original
continuous-time signal.

Further to the sample value versus expansion coefficient issue, there is another important fact

worth mentioning. Before proceeding, however, we need the following definition:

Definition 2.4 A continuous-time function A(t) is said to be interpolating if
A(n) =é8[n] forallneZ

Suppose we have a continuous-time signal g(¢) that is scale-limited and can consequently be

represented by the expansion

g(t) = arpo(M7t — k) (2.21)

k
where ar = (g(t),$o(M7t — k)) and J is an integer. Further, assume that the synthesis scaling
function g (#) is interpolating. Given this assumption, we now evaluate the function g(-) at M-adic

points of the form M~7n to yield
g(M~Tn) =" appo(M7[M~n] — k)
E
= Z agpo(n — k)
E
= Z and[n — kj
E

= dan

Thus, if the function g(-) is sampled at points M ~7n, the resulting sample values are exactly the
coefficients ay of the series expansion given in equation (2.21). Consequently, if the synthesis scaling
function is interpolating, one does not introduce any error by using the sample values as expansion
coefficients as they are one and the same. As we shall see later, some of the more performant wavelet
transforms used for image compression, indeed, have interpolating synthesis scaling functions.

As we have seen in this section, PR QMF banks compute series expansions of signals using
basis functions of a particular form. In other words, such a system simply performs a change of
basis. This amounts to nothing more than a linear transform. Thus, the PR QMF bank provides a

computationally efficient way to implement a particular class of linear transforms.
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2.16 Octave-Band Filter Banks and Series Expansions of Sig-

nals

Having seen the relationship between PR QMF banks and signal expansions, we are now in a position
to consider the relationship between octave-band filter banks and signal decompositions.

An octave-band filter bank can be viewed as a system that computes a series expansion of
the input signal z[n]. This follows directly from the single QMF bank case studied in the previous
section. The only difference with a tree structure is that the series expansion is performed recursively.
This, of course, results in different basis functions from the single QMF bank case, but the idea is
fundamentally the same.

It is particularly interesting to note what happens to the analysis and synthesis basis functions as
the number of levels in the tree increases. As the tree depth increases, the basis functions associated
with the last level in the tree more and more closely resemble sampled versions of the scaling and
wavelet functions associated with the QMF bank. In fact, if the axes are rescaled appropriately, in
the infinite limit the discrete-time basis functions associated with the last level of the tree become
continuous-time functions and converge to the scaling and wavelet functions. This argument, of
course, presupposes that the scaling and wavelet functions exist. Otherwise, this iterative process
will not converge.

In many cases, the tree depth need not be very large in order to begin obtaining basis functions
that closely resemble sampled versions of the scaling and wavelet functions. Typically, a depth of
three or four is sufficient for many sets of filters used in practice. In this sense, the scaling and
wavelet functions are very important as they provide a good indication of the shape of the basis
functions used in the series expansion of the discrete-time input signal z[n].

We can also view an octave-band filter bank as computing a series expansion of a continuous-time
signal. In particular, such a filter bank computes a wavelet decomposition of a signal. Again, this
follows directly from the single QMF bank case as described in the previous section. Each time the
lowpass coefficients are successively decomposed, some of the basis functions in the series expansion
are replaced with rescaled versions. As we descend deeper into the tree, the corresponding basis
functions become increasingly stretched.

In an earlier section, it was stated without justification that an octave-band filter bank computes

a wavelet transform. This claim has now been substantiated.

2.17 Appropriate Basis Selection

The series expansion interpretations of filter banks are very important. Typically, linear transforms
are used to obtain alternative representations of signals that are more convenient for the application
at hand. In signal compression applications, we seek more compact representations of signals. To
obtain more compact representations, however, it 1s necessary to choose a set of basis functions that

can efficiently represent a signal. That is, we seek a basis that allows us to accurately represent
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a signal with as few expansion coefficients as possible. As one might expect, better results are
achieved when the synthesis basis functions are similar in shape to the function being represented.
For example, if a signal is very smooth, it is advantageous to employ very smooth synthesis basis
functions. Similarly, if a signal has many sharp transitions, the synthesis basis functions should also
have a similar behavior.

When octave-band filter banks are employed as in the case of wavelet transforms, the shape of
the scaling and wavelet functions is of interest. These functions provide a good indication of the
type of signal that can be most efficiently represented with a particular transform. As we have seen,
the choice of basis functions is determined by the QMF bank filter coefficients. For this reason, the

filter coefficients must be chosen appropriately in order to obtain effective transforms.

2.18 Multidimensional Signals

The signals of interest in this thesis are images. Since images are two-dimensional signals, clearly
two-dimensional transforms are needed. Fortunately, two-dimensional transforms can be easily con-
structed from one-dimensional ones. In the case of images, we can simply apply a one-dimensional
transform first to the rows and then to the columns of an image (or vice versa). This amounts to
nothing more than forming a two-dimensional transform using tensor products of the basis func-
tions of the one-dimensional transform. To express this in mathematical terms, suppose we have a
one-dimensional transform with analysis and synthesis basis functions @; and ¢;, respectively. If we
apply this one-dimensional transform to each dimension of a two-dimensional signal separately, this

is equivalent to expressing the signal g(z,y) as
g, y) =Y gz, v), Gik(®,9)) ein(z,v)
ik
where the basis functions @; x(z,y) and ¢; x(z,y) are given by

Gik(z,y) = Gi(z)Pr(y)

eik(2,y) = pi(®)er(y)
By construction, a transform of this form can always be expressed as two separate one-dimensional
transforms. Such a transform is said to be separable. Although separable transforms have axial
dependencies that can sometimes be undesirable, they are more efficient to compute than their
nonseparable counterparts. For this reason, separable transforms are most commonly used today,
and this thesis considers only such transforms. For more details on transforms for multidimensional

signals, the reader is referred to [56] and [17].

2.19 Finite-Length Signals

Until now, we have ignored the fact that images are usually only defined on some finite region. That

is, such signals are not infinite in extent. Unfortunately, such finite-length signals introduce problems
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when being processed by a filter bank. The difficulty is how to handle filtering at the boundaries of
the signal. Since the outputs of the filters (in the filter bank) depend on past and/or future sample
values, once we get close enough to a signal edge the filters need sample values that are not defined.
There are two general approaches that can be used to address this problem. The first approach is to
extend the signal so it is defined for all possible sample indices. Such an approach is referred to as
an extension method. The second approach is to change the filters at the boundaries of the signal
in order to avoid needing undefined sample values. This type of approach is referred to as boundary
filtering. In what follows, we consider two commonly used extension methods (i.e., periodic and
symmetric extension) and make a few comments concerning boundary filtering methods.

Periodic extension is the simplest approach to handling finite-length signals. With this method,
the original finite-length signal is repeated indefinitely to yield a periodic signal. If the original signal
is defined over N sample indices, periodic extension results in an infinite-length signal of period N.
Assume now that we process the extended signal with an M-channel QMF bank. Provided N is
evenly divisible by M, the subband signals will all have period N/M. Therefore, only N/M samples
are required to completely characterize each subband signal. Therefore, only N samples in total are
required to completely characterize all of the subband signals. Thus, we have a transform that maps
N values to N new values. That is, there is no net growth in the number of nonredundant sam-
ples. This property is desirable in many applications especially signal compression. Unfortunately,
periodic extension has the potential disadvantage that the extended signal may possess very large
jumps at the splice points between periods. Moreover, if NV is not evenly divisible by M, periodic
extension cannot be employed as described above. Of course, we can always pad the signal with
extra samples so that divisibility is achieved, but doing this is often not desirable.

Symmetric extension is another relatively simple approach to handling finite-length signals. With
this approach, the original signal is extended so that it is both symmetric and periodic. A signal
can either be symmetric about one of its samples or about a point midway between two samples.
These two cases are referred to as whole-sample symmetry (WS) and half-sample symmetry (HS),
respectively, and examples of both are given in Figure 2.20. The centers of symmetry of periodic
signals always come in pairs. If the period of the signal is even, both symmetry centers will be WS.
If the period is odd, one will be WS and the other HS.

There is more than one way in which to symmetrically extend a signal. The main difference is
in the number of times the first and last sample of the original signal are repeated in the extended
signal. Here, we will only consider (1,1)-symmetric extension. In this case, the first and last sample
of the original signal appear once (i.e., they are not repeated). An example of this type of extension
is depicted in Figure 2.21. Notice that in the extended signal, the first and last sample appear
only once in each period. Given a signal of length N, (1, 1)-symmetric extension always yields a
WS signal of period 2N — 2. If a signal extended in this way 1s used as the input to a 2-channel
QMF bank with certain properties, the subband signals will all be symmetric and (N — 1)-periodic.
Regardless of the parity of N (i.e., whether N is odd or even), it is always true that only N samples

are required in total to completely characterize the subband signals. Thus, such a transform maps
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N values to N new values. In other words, the transform is not expansive. There is no net growth in
the number of samples required to represent the original signal. Also, note that this holds regardless
of the parity of N. Consequently, in the case of 2-channel QMF banks, symmetric extension yields
nonexpansive transforms for input signals of arbitrary length. As we have seen, however, periodic
extension does not always yield nonexpansive transforms. Also, symmetric extension has the added

advantage that it does not introduce any jumps in the extended signal.
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Figure 2.20. Types of signal symmetries. (a) Whole-sample symmetry. (b) Half-sample symmetry.
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Figure 2.21. (1,1)-symmetric extension example. (a) Original signal. (b) Extended signal.

A much more sophisticated approach to handling finite-length signals is boundary filtering (i.e.,
time-varying filter banks). In this scheme, the filter bank actually processes a finite-length signal. To
avoid needing undefined sample values, the filtering structure and/or filters are changed at the signal
boundaries. Unfortunately, boundary filtering is inherently much more complicated than either
periodic or symmetric extension. As a consequence, the software algorithms or circuits required to
implement such schemes tend to be more complex and costly.

For more information on handling finite-length signals the reader is referred to [8], [7], [30], [33],
[25], and [20].

2.20 Summary

In this chapter, we began by introducing the fundamentals of multirate systems. We studied the

two key building blocks of such systems: the downsampler and upsampler. Then we proceeded



2. Multirate Filter Banks and Wavelet Systems 33

to examine the time-domain, z-domain, and frequency-domain effects of the downsampling and
upsampling operations. Next, the noble identities were introduced as a means for interchanging
upsampling /downsampling and filtering operations. The polyphase form of a filter was also presented
as a convenient theoretical tool in addition to offering a means for efficiently implementing filtering
in a multirate framework.

After considering multirate systems in some depth, filter banks were introduced, and in particular,
a type of multirate filter bank called a QMF bank was studied in detail. Next, the PR property
was defined in the context of QMF banks, and necessary and sufficient conditions for PR were
given. Also, the polyphase form of a QMF bank was discussed as a theoretical tool and a means
for efficiently implmenting such filter banks. Next, a particular type of tree-structured filter bank
called the octave-band filter bank was described.

Having studied QMF banks and octave-band filter banks, the relationship between such filter
banks and linear series expansions of signals were discussed. In so doing, we showed that under
certain conditions these types of filter banks are associated with wavelet decompositions. More
specifically, a QMF bank and octave-band filter bank compute single-level and multi-level wavelet
decompositions of a signal, respectively.

The chapter concluded by briefly examining techniques for handling multidimensional signals
and finite-length signals. The former i1s handled by using separable transforms, and the latter by

signal extension and boundary filtering methods.

2.21 Conclusions

All of the results presented in this chapter are well known. Perhaps, one distinguishing feature
of this presentation is that it chooses to discuss both type 1/2 and type 3/4 polyphase forms of
QMF banks together. Often, for reasons of convenience, authors prefer to discuss only one of the
two commonly-used polyphase forms. Also, although for the most part, the theorems presented in
this chapter are well-known results, the author has not seen some of them presented in quite the
same fashion. For example, the author feels that his presentation of Theorem 2.2 is somewhat more

convenient than the way it is often expressed (e.g., [54]). Notice the appearance of matrices of the

K K
0 Iy_; 0 271
and
271 0 Iy, O

Matrices of this form appear in many places in this thesis, and lead to more compact notation than

form

the alternatives that the author has seen in the available literature.

Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke
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Chapter 3

Reversible Transforms

A programmer is a person who passes as an exacting expert on the basis of being able to
turn out, after innumerable punching, an infinite series of incomprehensive answers cal-
culated with micrometric precisions from vague assumptions based on debatable figures
taken from inconclusive documents and carried out on instruments of problematical
accuracy by persons of dubious reliability and questionable mentality for the avowed
purpose of annoying and confounding a hopelessly defenseless department that was un-
fortunate enough to ask for the information in the first place.

—IEEE Grid newsmagazine

3.1 Introduction

Reversible transforms are useful for many lossless and hybrid lossy /lossless signal coding applications.
In particular, such transforms are especially well suited for reversible embedded image compression,
the application of interest in this thesis. As reversible transforms are a key component in reversible
embedded image compression systems, this chapter studies such transforms in depth.

This chapter begins by introducing the concept of reversibility and the motivation for the use of
transforms with this property. Then, we discuss reversible transforms which are generally nonlinear,
and are usually designed to approximate linear transforms with desirable properties. Techniques for
handling multidimensional and finite-length signals are briefly revisited in the context of nonlinear
reversible transforms.

Next, lifting is presented as a general framework for the design and implementation of invertible
transforms. We then examine how lifting can be used in conjunction with M-band subband trans-
forms. This leads to a discussion of the lifting realization of M-channel PR QMF banks. Next, we
show how the lifting realization leads naturally to reversible transforms. Numerous practical issues
relating to reversible transforms are also discussed in some detail.

This chapter introduces some new results relating to the lifting-based design of reversible trans-
forms. In our discussion of the lifting realization of QMF banks, we consider the M-band case and

also for completeness both type 1/2 and type 3/4 polyphase decompositions.
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3.2 Reversible Transforms

Although any non-singular linear transform is invertible, this invertibility often depends on the
fact that the transform is calculated using exact arithmetic. In practice, however, finite-precision
arithmetic 1s usually employed, and such arithmetic is inherently inexact due to errors introduced by
rounding. Unfortunately, transforms that are invertible in exact arithmetic are often not invertible in
finite-precision arithmetic. Sometimes, however, it is possible to introduce finite-precision arithmetic
without destroying invertibility. A transform that is invertible in finite-precision arithmetic is said
to be reversible.

Reversible transforms are ideally suited to applications in which it is undesirable to employ
transforms that can result in information loss, even when the transforms are computed using finite-
precision arithmetic. For this reason, transform reversibility is often a requirement in applications

such as lossless and hybrid lossy/lossless signal compression.

3.3 Reversible Transforms from Linear Transforms

Countless design techniques for linear wavelet/subband transforms have been developed over the
years, and through the use of these methods many transforms with a variety of desirable properties
have been produced. Unfortunately, most of these transforms lack reversibility, and in some ap-
plications this property is often a requirement. Although we could simply limit ourselves to using
the small subset of linear transforms that are reversible, such an approach is extremely restrictive.
Moreover, most linear transforms that are reversible are not practically useful. In order to exploit
the large body of nonreversible linear transforms, a means for constructing reversible versions of
these transforms is needed.

In principle, the idea behind creating a reversible version of a nonreversible linear transform is
simple: Through the clever use of quantization (e.g., rounding), modify the original transform so that
it can be computed using finite-precision arithmetic while preserving invertibility. Due to the use of
quantization, the resulting reversible transform is generally nonlinear and only serves to approximate
the linear transform from which it was derived. The degree to which the reversible transform is able
to successfully approximate its parent transform is extremely important. If the approximation error
is small, all 1s well. If, however, the reversible transform fails to mimic the behavior of its parent
transform, the desirable properties of the parent transform will likely be lost and poor results will
be obtained when the new transform is used. For this reason, the approximation characteristics
of a reversible transform are a key consideration in the design process. Although the principles
underlying reversible transform construction are easily stated, generating useful transforms is by no
means a straightforward task.

In the past, reversible transforms have been developed largely by ad hoc methods that are
difficult to generalize. Consequently, reversible transforms tended to be difficult to design, and few
good transforms were known. In spite of these difficulties, however, some good transforms were

developed. The S transform [28], RTS transform [60], and S+P transform [36] are three examples
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of such transforms. These are all nonlinear approximations to well-known linear transforms, and
were devised using ad hoc methods. Fortunately, a systematic method for constructing reversible
transforms has been recently proposed. This design approach is based on lifting and is discussed at

length later in this chapter.

3.4 Multidimensional Signals

In this thesis, the signals of interest are images. Since such signals are two-dimensional, clearly
two-dimensional transforms are needed. As is the case with linear transforms, we can construct
two-dimensional reversible transforms from one-dimensional ones. In the case of images, we first
apply a one-dimensional transform along the rows of the image and then along the columns (or vice
versa). This, in effect, creates a two-dimensional transform. There is, however, one subtlety. With
linear transforms, the order in which rows and columns are transformed does not matter. Due to
linearity, the order can be switched and the transform remains the same. Reversible transforms,
however, are generally nonlinear. As a result, with reversible transforms the order in which the rows
and columns are transformed is important. If the forward transform acts first on rows and then on
columns, the inverse transform must act first on columns and then on rows. That is, the inverse
transform must operate on rows and columns in the reverse order from that used in the forward

transform.

3.5 Finite-Length Signals

In the context of linear transforms, three methods were discussed for handling finite-length signals,
namely, periodic extension, symmetric extension, and boundary filtering (see Section 2.19). All
of these approaches are also applicable in the context of nonlinear reversible transforms. As one
might expect, however, there are a number of caveats introduced by the nonlinearity of the systems
involved.

Periodic extension is the most straightforward approach to handling finite-length signals. With
some basic assumptions on the filtering structure used, if the filters are all of the FIR type, periodic
extension can be employed. That 1s, despite the nonlinearities, the system will still have a periodic
steady-state response to a periodic input. If IR filters are employed, however, many problems arise.
This is a consequence of the fact that the behavior of an IIR filter depends not only on its input,
but also on its output (past and/or future). Due to the nonlinearities in the feedback paths, it is
not clear that such a system will have a periodic steady-state response to a periodic input (with the
same period in both cases). Moreover, even if such a steady-state response exists, finding it is very
problematic. This involves solving for the steady-state conditions of the IIR filters. Unfortunately,
in order to do this, one would have to solve a system of highly nonlinear equations that grows linearly
with the length of the signal.

Symmetric extension also involves making the input signal periodic. As a consequence, one
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is faced with the same problems mentioned above when IIR filters are used. The issue of IIR
filters aside, other complications exist. Although a nonlinear reversible transform may approximate
a symmetry-preserving linear transform, the approximation error is inevitably nonzero. In most
cases, it is highly likely that this error will lead to a reversible transform that does not preserve
symmetry. To maintain the symmetry-preserving property of a transform when making it reversible
requires very clever cancellation of quantization error. Not only must quantization error be cancelled
in such a way that invertibility is not affected, but it must also cancel in such a way as to not affect
the symmetry-preserving nature of the transform. Although this is generally difficult to do, it is
certainly possible and one approach is discussed later.

As mentioned previously, the design of transforms based on boundary filtering (i.e., time-varying
filter banks) is not considered in this thesis. However, one example of a transform employing this

strategy (i.e., the S+P transform) is presented in a later section.

3.6 S Transform

The classic example of a reversible transform is the Sequential (S) transform as inspired by Lux [28].
Since its first introduction, the S transform has become quite popular for lossless signal compression
(especially lossless image compression) and has been discussed by many (e.g., [60], [36], [38]).

The S transform is reversible and maps integers to integers. Several slightly different definitions of
this transform exist in the literature. Here, we consider one of the more commonly used definitions.
The forward transform splits the input signal z[n] into the lowpass component s[n] and highpass

component d[n] as follows:

sln] = | $(z[2n] + z[2n + 1])| (3.1a)
d[n] = z[2n] — z[2n + 1] (3.1b)

The inverse transform combines the lowpass and highpass components to yield the original signal as

follows:

z[2n] = s[n] + | 3(d[n] + 1)] (3.2a)
z[2n+ 1] = z[2n] — d[n] (3.2b)

The filtering structures associated with the forward and inverse transforms are shown in Fig-
ures 3.1(a) and 3.1(b), respectively. In these diagrams, the blocks labelled Q7 are quantizers with
the transfer characteristic Qr(z) = |z|. Although the transform, as defined, assumes the signal z[n]
to be infinite in length, finite-length signals can be easily handled by using periodic extension.

The development of the S transform is based on two key observations. First, any two numbers can
be unambiguously determined from their sum and difference. And second, the sum and difference
of any two integers always have the same parity (i.e., the sum and difference are either both odd or

both even). The first observation leads us to formulate a transform that simply computes pairwise
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Figure 3.1. Filtering structure for S transform. (a) Forward transform. (b) Inverse transform.

sums and differences of samples. Although such a transform is reversible, we can use the second
observation to further refine the transform. Because the sum and difference of two integers have
the same parity, the least significant bit of either the sum or difference is redundant and may be
discarded without losing information. Thus, we can choose to divide the sum by two and discard
the fractional part of the result without information loss. This is exactly what the S transform does.
Moreover, this explains why the S transform is invertible.

Although the above explanation is probably more enlightening than a formal proof of invertibility,

such a proof is almost trivial. To assist in the proof, we rely on the following lemma:

Lemma 3.1 For any two integers a and b, the following identities hold:

[s(a+b)] +[5(a=b+1)]=a [50+a)]-[50-0)]=a

Proof. See Appendix A.
We are now in a position to show that the S transform is invertible. Let #[n] denote the recon-

structed signal. We start with equation (3.2a), and then use equation (3.1) and the above lemma to
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Thus, the even samples are reproduced exactly. Next, we look at equation (3.2b). Using equa-

tion (3.1) and the previous result, we have

Thus, the odd samples are also reproduced exactly. Hence, the S transform is invertible.

The S transform is a nonlinear approximation to a scaled version of the Haar transform. The
Haar transform itself 1s one of the simplest 2-band subband transforms and corresponds to a 2-
channel QMF bank having analysis and synthesis filters with transfer functions Hy(z) and Fy(z),

respectively, where
Hy(z) = %(1 +z), Hi(z)=1—2, Fo(z) =142, Fi(z)= %(1 —z)

This transform is a scaled version of an orthogonal transform. Therefore, the coefficients of the S
transform must be weighted on a per subband basis in order to approximate an orthogonal transform.

It is worth noting that the lowpass signal s[n] has the same dynamic range as the original signal
z[n]. This property is particularly useful in pyramidal schemes in which the lowpass channel is
successively decomposed. The S transform has very low computational complexity relative to other
subband transforms. Unfortunately, it is also somewhat primitive, and has numerous shortcomings.
It is known for producing undesirable blocking artifacts when used for lossy image compression,
a behavior inherited from its parent linear transform. In addition, the S transform is also not
particularly well suited to smoothly varying signals.

Unfortunately, the ideas on which the S transform is based do not generalize to transforms using
more complicated relationships than simple pairwise sums and differences. Consequently, the S
transform does not provide any further insight into how other classes of reversible transforms might

be constructed.

3.7 Lifting

A new philosophy for the design and implementation of invertible transforms, called lifting, was
first proposed by Sweldens in [51]. Lifting was initially conceived as an alternative method for

constructing biorthogonal 2-band wavelet transforms. Since that time, numerous other papers have
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been written on lifting (e.g., [48], [50], [49], [15]), and it has proven to be useful in a number of other
contexts as well. In fact, as will be seen later, lifting can be used for reversible transform design.
In its most abstract sense, lifting provides a means to generate invertible mappings between
sequences of numbers. With lifting, the forward transform maps a single sequence into two or more
new sequences. The inverse transform then maps the new sequences back into the original sequence.
Suppose that we have a sequence which we wish to transform. With lifting, the forward transform

is calculated in three stages:

1. Split. The input sequence is decomposed into two or more new sequences.

2. Predict. The numbers from one sequence are used to modify the values in another sequence.
This process may be repeated a number of times involving different pairs of sequences each

time.

3. Scale. A final normalization is applied to each sequence.

The input to the inverse transform is now several sequences. Like the forward transform, the inverse

transform is also computed in three stages:

1. Scale.
2. Predict.
3. Join.

The join stage corresponds to the sequences being combined to yield a single sequence. Each stage
in the inverse transform calculation simply undoes the effects of the corresponding stage in the
forward transform calculation. This type of computational structure conveniently leads to invertible
transforms. As a matter of terminology, a transform calculated using this framework is called a

lifted transform.

3.8 Lifted Subband Transforms

Subband transforms can be easily cast in a lifting framework. Here, we consider the large class of
subband transforms that can be computed using an M-channel PR QMF bank with FIR filters. This
class of transforms includes, as a subset, all wavelet transforms associated with finitely-supported
scaling/wavelet functions. As it turns out, implementing subband transforms as lifted transforms
requires nothing more than implementing the transform using a QMF bank in polyphase form with
the polyphase matrices realized in a special way.

In [15], Daubechies and Sweldens consider the case of 2-band wavelet transforms computed by
a QMF bank in type 3/4 polyphase form, but here we extend the concepts to general M-band
transforms and also consider both type 1/2 and type 3/4 polyphase decompositions. Some of the
ideas presented here are intimately related to those discussed by Kalker and Shah in [23] and [24].
In these works, ladder network realizations of polyphase matrices are studied in depth. Since the
primary focus of these papers was not lifting and the construction of reversible transforms, there are

still some new ideas in our treatment of the subject.
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In the next section, the lifting realization of a QMF bank is described in detail. A lifted subband

transform is simply a transform calculated using such a QMF bank implementation.

3.9 Lifting Realization of a QMF Bank

Suppose we have an M-channel PR QMF bank with FIR filters. Denote the transfer functions of
the QMF bank’s analysis and synthesis filters as Hy(z) and Fj(z), respectively. Further, assume
that the system is represented in either type 1/2 or type 3/4 polyphase form with analysis and
synthesis polyphase matrices E(z) and R(z), respectively. In a lifting realization, a QMF bank is
implemented in its polyphase form. The distinguishing characteristic of this realization is the type
of network used to realize the polyphase matrices.

Fundamental to the idea of the lifting realization is the lifting factorization which decomposes a

matrix into two types of factors:

1. Scaling (Type S). This type of matrix is square (M x M), diagonal, and corresponds to an
elementary row/column operation that multiplies row/column i by the quantity k. Such a
matrix has all diagonal elements equal to one except the (,i) entry which is &£ and all off-
diagonal elements equal to zero. This type of matrix is completely characterized by the pair
(4, k) and is denoted Sas(%; k). In cases where the size of the matrix is clear from the context,
the subscript M is omitted.

2. Adding (Type A). This type of matrix is square (M x M) and corresponds to an elementary
row/column operation that adds k times row j to row i or adds k times column ¢ to column j.
Such a matrix has all ones on the diagonal, k at position (4, j), and all other entries zero. This
type of matrix is completely characterized by the triple (7, j, k) and is denoted A (4,7, ; k).
Again, the subscript M may be omitted in cases where the size of the matrix is clear from the

context.

More specifically, the lifting factorization decomposes a matrix into zero or more constant Type S
factors that either premultiply or postmultiply zero or more Type A factors.

In a lifting realization, the polyphase matrices are implemented directly from their lifting fac-
torizations. More specifically, the analysis polyphase matrix E(z) is decomposed using a lifting

factorization as
E(Z) = So_l~~~5150A)\_1(Z)'~~A1(Z)A0(Z) (33)

where the S; are Type S elementary matrices with all constant entries and the A;(z) are Type A
elementary matrices which can depend on z. In a lifting realization, the decomposition of the
synthesis polyphase matrix R(z) is completely determined by the decomposition used for the analysis

polyphase matrix E(z) and is given by

R(z) = A (2) AT (2) - AL (2)Sg ' STt S L (3.4)

o—1
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Furthermore, this choice of decomposition for R(z) implies that R(z) = E_l(z). Note that
A=Y(i, 5 k) = A(i,j;—k) and S71(i;k) = S(4;k~1). That is, the inverse of a Type A matrix is
another Type A matrix, and the inverse of a Type S matrix is another Type S matrix. Thus, in
equation (3.4) the Ai_l(z) are Type A matrices and the 5;1 are Type S matrices. Hence, the de-
composition given for R(z) is, in fact, a lifting factorization of the matrix. Moreover, each pair of
corresponding matrices A;(z) and Ai_l(z) are identical except for one element which differs only in
sign. Similarly, each pair of corresponding matrices S; and ,S'Z-_1 are identical except for one element
which differ in a reciprocal relationship.

From the definition of the lifting realization, it follows that such a realization exists if and only
if a lifting factorization of E(z) exists and R(z) = E~'(z). We shall revisit this issue later, but for
the time being it suffices to say that any QMF bank can be made to satisfy these conditions through
an appropriate normalization of its analysis and synthesis filters.

The decompositions in (3.3) and (3.4) correspond to block cascade realizations of the analysis
and synthesis polyphase matrices, respectively. Since the QMF bank has M channels, each filtering
block has M inputs and M outputs and is characterized by an M x M matrix. Each of the Type A
factors corresponds to a block that adds a filtered version of a signal in one channel to a signal
in another channel. This corresponds to a single ladder step in a ladder network as depicted in
Figure 3.2. To simplify the diagram only the ¢th and jth inputs and outputs are shown. All other
inputs pass directly through to their corresponding outputs unchanged. Each of the Type S factors
corresponds to a block that scales the signal in a single channel. Such a scaling unit is shown in
Figure 3.3. Only the ¢th input and output are shown as all other inputs pass directly through
to their corresponding outputs without modification. Since the lifting factorization consists of only
Type A and Type S factors, this decomposition yields a ladder structure with some additional scaling
elements. The ladder structure is followed by a scaling on the analysis side and preceded by a scaling
on the synthesis side of the filter bank. Due to the similarities between the factors in both of these
decompositions, the structures used to perform the analysis and synthesis filtering possess a certain

degree of symmetry. This symmetry has important consequences as will become evident later.

zi[n] yi[n]
; zi[n] I >, il
G(z)
xj[n] y;[n]

Figure 3.3. Scaling unit.
Figure 3.2. Ladder step.

The resulting structure for the general 2-channel case is shown in Figure 3.4 (where some of the
a;(z) may be zero). Notice the symmetry between the forward and inverse transform structures. By
inspection, 1t is obvious that the filter bank has PR. The synthesis side simply undoes step-by-step
each operation performed on the analysis side.

Now the correspondence between lifting and the lifting realization of a QMF bank becomes
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Figure 3.4. General two-band lifting structure. (a} Analysis side (forward transform). (b) Synthe-

sis side (inverse transform).

apparent. Indeed, we have a lifted transform. The analysis side of the QMF bank computes the
forward transform where:
e The decomposition of the input signal into its polyphase components corresponds to the split
stage in the calculation of a forward transform using lifting.
e The ladder network portion of the analysis polyphase matrix realization corresponds to the
predict stage in the calculation of a forward transform using lifting.
e The scaling portion of the analysis polyphase matrix realization corresponds to the scale stage
in the calculation of a forward transform using lifting.
The synthesis side of the QMF bank calculates the inverse transform where:
e The scaling portion of the synthesis polyphase matrix realization corresponds to the scale stage
in the calculation of an inverse transform using lifting.
e The ladder network portion of the synthesis polyphase matrix realization corresponds to the
predict stage in the calculation of an inverse transform using lifting.
e The recombination of the various polyphase components that yields the reconstructed signal

corresponds to the join stage in the calculation of an inverse transform using lifting.

In the M-channel case, the lifting realization is completely analogous to the 2-band case, and

has the general form shown in Figure 3.5. The S; and ,S'Z»_1 blocks corresponds to scaling operations.
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The A;(z) and A;'(z) blocks correspond to ladder steps. Moreover, the scaling and ladder steps

on the analysis side are simply the inverses of the scaling and ladder steps on the synthesis side.

yo[n]
y1[n]
> —>— - > > —>— H— —>— —>—
z[n]
— Pha’se Ao(z) A1 (Z) Ak—l(z) SO Sl Sa_l
Splitter
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> —>— - > > —>— H— —>— —>—
——
Split Predict Scale
(a)
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—>— - > —>— > - —> > B
y1[n]
—>— - > > > - —> > >
Phase &[n]
-1 1 -1 -1 1 -1
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—>— - > > > - —> B >
——
Scale Predict Join

(b)

Figure 3.5. General M -band lifting structure. (a) Analysis side (forward transform). (b) Synthesis

side (inverse transform).

Having decided to use a lifting realization, we must now concern ourselves with the existence
of such a realization. That is, can any QMF bank be implemented using lifting? To answer this

question, we must revisit the conditions for existence stated earlier. That 1s, a QMF bank can be
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realized using lifting if and only if the following conditions are satisfied:

a lifting factorization of E(z) exists (3.5)
R(z) = E7'(2) (3.6)

Assuming that the realization exists, its uniqueness is also of concern.
First, let us consider condition (3.5). That is, what conditions must hold in order for the analysis
polyphase matrix E(z) to have a lifting factorization? To help us answer this question, we rely on

the following theorem:

Theorem 3.2 Any M x M Laurent polynomial matriz U(z) admits a factorization of the form
U(z) = So(2)S1(2) -+ Sq-1(2) Ao(2) A1(2) - - - Ap-1(2)

where the S;(z) are Type S elementary matrices and the A;(z) are Type A elementary matrices and
all factors are Laurent polynomial matrices. For any particular set of S;(z), a set of A;(z) can be

found to complete the factorization if and only if
Q-1
H det S;(z) = det U(z)
i=0

When the factorization can be completed, the choice of A;(z) is not unique.

Proof. See Appendix A.

Recall, the form of the lifting factorization of E(z) is given by equation (3.3). Clearly, this
factorization is a special case of the decomposition considered in Theorem 3.2. That 1is, the lifting
factorization is a special case where the Type S matrices are constrained to be constant (i.e., inde-
pendent of z). If in the theorem, we assume that the S; are constant, this implies that det U(z)
must also be constant in order for the decomposition to exist. Relating this back to the original
problem, a lifting factorization of the analysis polyphase matrix exists if and only if det E(z) is a
nonzero constant. Moreover, the theorem also tells us that the factorization is never unique when 1t
exists. Since the lifting factorization of E(z) determines the structure of the lifting realization, the
nonuniqueness of the factorization also implies the nonuniqueness of the lifting realization structure.

For a lifting realization to exist, we therefore require

det E(z) = « (¢

w w
[0¢] -~1
— —

where a is a nonzero constant. Since we are considering FIR PR QMF banks, the analysis and
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synthesis polyphase matrices must satisfy the conditions

det E(z) = az= Ko (3.9)
- - K,
0 Iy_
) M-t E~'(2) type 1/2
z- 0
R(z)={ ¢ S K (3.10)
0 271 1
E™'(z) type 3/4
Iy v O

where « is a nonzero constant and the K; are integers. From (3.9) and (3.10), we can see that
conditions (3.7) and (3.8) are not generally satisfied. In order for the conditions to be satisfied, we
must have Ky = K; = 0. Fortunately, it is always possible to normalize the analysis and synthesis

filters so that these constraints are met. To show this, we rely on the following theorem:

Theorem 3.3 Suppose we are given an M-channel PR QMF bank with FIR filters. Denote the
transfer functions of the analysis and synthesis filters of the QMF bank as Hy(z) and Fy(z), re-
spectively. Assume the system is represented in either type 1/2 or type 3/4 polyphase form and has
analysis and synthesis polyphase matrices E(z) and R(z), respectively. Since the system is PR and
has FIR filters, we have

det E(z) = gz Ko

and
- - K,
0 Ipro
Mt E~'(2) type 1/2
271 0
R(Z) = - J K,
0 271 1
E™ (2) type 3/4
Iyrq 0

where aqg s a nonzero constant, and the K; are integers.
Suppose we normalize the analysis and synthesis filters to obtain a new set of analysis and

synthesis filters with transfer functions Hj(z) and F}(z), respectively, where this normalization is

defined as follows:
Hp(2) = foz o Hi(2)
Fi(2) = prz " Fi(2)

Denote the analysis and synthesis polyphase matrices associated with the new filters as E'(z) and

R/(z), respectively. Given the above normalization, the following assertions are true:

det E'(2) = apfM (—1)LoM=1) LotKo
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Lo+Li+Ky
Bo [ z(‘)l Ij‘f)_l (E'(z))"' type 1/2
R(z) = 0 ) Lo+Li+K,
Bofr l Iy 0© ] (E'(2))~" type 3/4

This implies that with an appropriate normalization, we can force det E'(z) to be any arbitrary

nonzero constant up to sign while simultaneously satisfying the constraint R'(z) = [E'(z)]7 1.

Proof. See Appendix A.
Let us now normalize the filters of the system to obtain new analysis and synthesis filters with

transfer functions Hj (z) and F(z), respectively, as specified by

H(2) = foz 0 Hy(2) (3.11)
Fl(2) = g5 Ko Fy(2) (3.12)

where By = 1/81. Denote the new analysis and synthesis polyphase matrices obtained from this
normalization as E’(z) and R'(z), respectively. From the above theorem, this normalization will

always yield a new system satisfying

det E'(z) = ag B (—1)H0M-1) (3.13)
R'(z) = [E'(z)]"" (3.14)

Clearly, this new system satisfies conditions (3.7) and (3.8). Therefore, a lifting realization of the
new system must always exist. Moreover, we can see from above that it is always possible to further
force det E'(z) € £1 by choosing By = |a|~'/M. If we can always force det E’(z) € £1, this implies
we can always choose the scaling factors on the analysis side in the lifting realization to be +1. This
turns out to be useful later when we use lifting to construct reversible transforms.

It is important to note that the normalization process does not affect the fundamental behavior of
the QMF bank. The relative magnitude and phase responses of the analysis filters remain unchanged
since all have an equal gain and equal phase shift added. The same statement also holds true for
the synthesis filters. PR is not affected although the reconstruction delay will generally change as
the normalization process forces a particular reconstruction delay. In terms of the linear transform
calculated by the QMF bank, this normalization simply scales and translates the basis functions, but
does not change their shape. Since the shape of the basis functions largely determines the transform’s
behavior, this normalization does not affect the fundamental behavior of the underlying transform.
By performing the above normalization, we ensure that the filter bank under consideration can
always be implemented using lifting.

The normalization suggested above is not the only one possible. Another possibility is suggested
by Daubechies and Sweldens in [15]. In this case, they propose changing the phase delay and gain of
a single analysis filter. The author felt that in some cases it might be more desirable to distribute the
phase delay and gain change equally across all of the analysis filters—hence, the reason for proposing

the above normalization scheme.
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By using the lifting realization of a QMF bank, we obtain a transform with several desirable

properties:

The transform can be calculated in place without the need for auxiliary memory.

Even in the presence of coefficient quantization error (for the ladder step filters), the PR
property is retained.

The inverse transform has exactly the same computational complexity as the forward trans-
form.

Asymptotically, for long filters, the lifting realization yields a more computationally efficient
structure than the standard realization [15].

The lifting realization can be used to easily construct reversible transforms (as will be seen

later).

3.10 Lifting Factorization Algorithm

Lifting factorizations can be computed using a matrix Euclidean algorithm. To compute the lifting

factorization of the analysis polyphase matrix E(z), we proceed as follows:

1.

Assume that the filter bank has been normalized (as described previously) so that det E(z) is

a nonzero constant.

Choose any S; for i =0,1,...,0 — 1 from §(-) that satisfy

o—1

H det S; = det E(z)

=0
For example, if det E(z) = d, we can simply select ¢ = 1, S¢ = §(0; d).
Calculate the quantity B(z) as

B(z) = E(z)

o—1

-1
IIs
=0

Perform operations from A(-) (i.e., Type A row/column operations) on B(z) until it is reduced
to an identity matrix. The idea here is similar to Gaussian elimination except that division
of arbitrary Laurent polynomials is avoided and replaced by division with remainder (via the

Euclidean algorithm). This process yields
D,_i(z)---D1(2)Do(2)B(2)Co(2)C1(z) - - Cp_1(2) =1

where the D;(z) and C;(z) correspond to Type A elementary row and column operations on

B(z), respectively. From this, we can write the factorization of B(z) as

B(z) = D;'(2)D7'(2)--- D; 2,

(2)CLLi(2) - CTH(2)Cq  (2) (3.15)

p—1
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5. The lifting factorization of E(z) is then

where B(z) is given by (3.15).

Since the choice of §;(z), C;i(z), and D;(z) are not unique for a given E(z), the factorization is
also not unique. In particular, the C;(z) and D;(z) are influenced by the terms cancelled during
Euclidean division and the sequence of rows and columns operated on during the reduction of B(z).

It is important to emphasize that in a lifting decomposition all factors are Laurent polynomial
matrices. Although the factorization algorithm is similar in spirit to Gaussian elimination, Gaus-
sian elimination cannot be used since it requires closure on division. Laurent polynomials are not
closed on division. That is, the quotient of two Laurent polynomials is generally a rational poly-
nomial expression and not another Laurent polynomial. For more information on matrix Euclidean

algorithms, the reader is referred to [16] (see Theorem 22.8).

3.11 Lifted Transform Example

To demonstrate the technique for finding lifting realizations of subband transforms, a simple but
useful example is now provided. Consider the subband transform computed by the QMF bank

having analysis and synthesis filters with transfer functions Hy(z) and Fj(z) respectively, where
Ho(z) = %(1 +z), Hi(z)=1—2, Fo(z) =142, Fi(z)= %(1 —z)

This is nothing more than a scaled version of the Haar transform. Suppose we want to implement
the QMF bank using the lifting realization in conjunction with the type 3/4 polyphase form. First,

we calculate the analysis polyphase matrix E(z) and its determinant. This yields
T3
ol
det E(z) = —1

Since det E(z) is a constant, a lifting realization exists and no re-normalization of the analysis filters

is required. Using Euclid’s algorithm, we find
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Thus, we immediately have the following decomposition for the synthesis polyphase matrix R(z):

R<z>=t ﬂ Ll) ﬂ Ll) —01]

= A(1,0;1).A(0,1; —%)S(l; —1)

These lifting factorizations yield the realization shown in Figure 3.6. By inspection, it is obvious

that the QMF bank is PR. The synthesis side undoes step-by-step each operation performed on the

z[n] 12 ; ) yo[n]
L_ _._é)_._+_._>_ﬁi[”]
12 -1
yo[n] : ; &[n]
- 1 12 "'(;)—’—
=1
yl[f]b—y > > é—»— 12 —>—+

analysis side.

[N

Figure 3.6. Ezample lifting realization. (a) Analysis side (forward transform). (b) Synthesis side

(inverse transform).

3.12 Symmetry-Preserving Transforms

Although we can construct PR QMF banks with linear-phase filters that yield symmetric subband
signals for a symmetric input, it would be convenient for a number of reasons if symmetry could also
be preserved by each and every filtering step in the QMF bank. That is, it would be convenient if all
intermediate signals were also symmetric. Fortunately, it is possible to achieve this goal under certain
circumstances. The idea of such symmetry-preserving transforms is suggested by Daubechies and
Sweldens in [15]. In what follows, we further elaborate on the idea in order to aid in understanding.

Here, we consider transforms computed by 2-channel PR, QMF banks with FIR filters. Further-
more, the QMF banks are assumed to be implemented in type 3/4 polyphase form using lifting. In
other words, we have a transform computed using the structure depicted in Figure 3.7. For conve-

nience (in what follows), the ladder step filters have been labelled differently from previous sections,
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but the system is clearly of the same form presented before. Our goal here is to devise a scheme

that preserves symmetry at all points in the circuit.

zn o[n]
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Figure 3.7. Symmetry-preserving lifting realization.  (a) Analysis side (forward transform).

(b) Synthesis side (inverse transform).

Obviously, it is only meaningful to speak of symmetry preservation in the case that the input
signal z[n] is, in fact, symmetric. Therefore, we begin by assuming that this is the case. In antici-
pation of things to come, we further assume that z[n] is symmetric about n = 0. As it turns out,
this additional assumption does not impose any serious practical limitations.

Denote the even and odd polyphase components of z[n] as sg[n] and dg[n], respectively. Since
z[n] is symmetric about n = 0, it is not difficult to convince oneself that sq[n] and dg[n] are

symmetric about n = 0 and n = —%, respectively. Therefore, the two inputs to the ladder network
in Figure 3.7(a) are symmetric signals. Now we want to devise a scheme that preserves the symmetry
in these two channels as they are processed by the ladder steps. In order to achieve this goal, we

need to make the following observations:

1. If a linear-phase filter is presented with a symmetric input, the output of the filter will also
be symmetric. Moreover, the center of symmetry of the output signal is equal to the center of

symmetry of the input signal shifted by the group delay of the filter.

2. If two symmetric signals with the same center of symmetry are added, the result is another

symmetric signal with the same center of symmetry.

From these two observations, we can see that a ladder step will preserve symmetry if the ladder step
filter has linear phase and its group delay is such that the symmetry points of the two signals being
added align. From above, the two polyphase components of z[n] have centers of symmetry differing

by % This implies that ladder step filters must be chosen such that their group delays are :l:% with
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the sign depending on which channel is being modified by the ladder step. To be more precise, the

ladder steps can be forced to preserve signal symmetry if they are chosen such that

1. filters A; have linear phase with group delay —% (i.e., impulse responses a;[n] are symmetric

about n = —%), and

2. filters B; have linear phase with group delay % (i.e., impulse responses b;[n] are symmetric

about n = %)

Of course, the final scaling on the analysis side of the QMF bank does not affect symmetry. Thus, the
above conditions are all that is required in order to preserve symmetry at all points on the analysis
side of the filter bank. The subband signals s[n] and d[n] are obtained with centers of symmetry at
—%, respectively. Due to the structural similarities between analysis and synthesis
sides of the QMF bank, it is evident that symmetry is also preserved at all points on the synthesis

n=0and n=

side.

Given that it is possible to generate symmetry-preserving transforms in the above manner, the
next natural question is what conditions are required in order for a lifting realization of the above
form to exist. It can be shown that in order for such a realization to exist, the analysis filters Hy

and H; must satisfy the following conditions:
1. The filters Hy and H; must be filters of odd length with impulse responses symmetric about
—% and %, respectively.
2. An appropriate scaling of the filter gains is required.
Clearly, it is not always possible to realize a QMF bank in this form, even if the filters all have linear

phase. Fortunately, however, many practically useful sets of filters do satisfy the conditions given

above. Consequently, this type of realization is of great practical value.

3.13 Symmetry-Preserving Transform Example

For illustrative purposes, we now generate a symmetry-preserving lifting realization of the CDF22
transform (described later in Table 4.1). This 2-band transform is associated with the QMF bank

having analysis and synthesis filters with transfer functions Hy(z) and Fj(z), respectively, where
Ho(z) = (2" + 2z + 6+ 227" —277), Hy(z) = 1(—2" + 22— 1),
Fo(z) = z_lHl(—z), Fi(z) = —z_lHo(—z)
We begin by noting that the analysis filters satisfy the conditions stated in the previous section.

Therefore, a realization of the desired form exists. Next, we compute the analysis polyphase matrix

E(z) to be
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This matrix can be decomposed into a lifting factorization of the desired form given by

1 Lyl 1 0
E(Z): 4 4 )
0 1 -1z

1
2
=A0,1; 1 4+ 327 A(L,0; -3 — 12)

b=

This factorization yields the filtering structure shown in Figure 3.8. Clearly, the analysis side of the
QMF bank will yield symmetric subband signals for a symmetric input with center of symmetry at

n = 0. Such a system can be used in conjunction with symmetric extension.
12 —>—+—>—?—>—>—»
12 —>—é—>—>—+—>—>—>—
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Figure 3.8. Ezample symmetry-preserving transform. (a) Analysis side (forward transform).

(b) Synthesis side (inverse transform).

3.14 Reversible Transforms from Lifted Transforms

As suggested previously, lifting can be used to construct reversible versions of linear subband trans-
forms. The basic idea was initially proposed by Calderbank et al. in [10] and is based on the lifting
realization of a QMF bank. Although presented in the context of wavelet transforms, the method
presented in [10] is directly applicable to any 2-band subband transform. Moreover, the approach
is easily extended to the case of M-band transforms with arbitrary M by considering the lifting
realization of M-channel QMF banks as was presented earlier. In what follows the more general
case of arbitrary M is considered.

Suppose we have a linear subband transform that is computed by an M-channel PR QMF bank
with FIR filters. Denote the transfer functions of the QMF bank’s analysis and synthesis filters as

Hy(z) and Fj(z), respectively. Further, assume that the system when represented in either type
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1/2 or type 3/4 polyphase form has the analysis and synthesis polyphase matrices E(z) and R(z),
respectively.

As discussed previously, we can always find a lifting realization of a QMF bank after applying
an appropriate normalization to its analysis and synthesis filters. Such a realization has the general
form shown in Figures 3.4 and 3.5 for the 2-band and M-band cases, respectively. Suppose now
that we find a lifting realization such that all scaling factors on the analysis side of the QMF bank
are integers. Previously, we showed that the analysis and synthesis filters could be normalized so
that det E(z) can be forced to be any nonzero constant up to sign. Consequently, we can always
normalize the filters so that det E(z) is an integer. Moreover, if det E(z) is an integer, we can always
choose the Type S factors in the lifting factorization of E(z) to be all integer matrices. For example,
if det E(z) = a, we can always choose one Type S factor of the form S(-; ). Thus, by normalizing
the analysis and synthesis filters appropriately, a lifting realization of the desired form can always
be obtained.

Suppose now that we modify the above lifting structure as follows. First, on the analysis side we
add a quantizer at the output of each ladder step filter. In other words, we apply the transformation
shown in Figure 3.9(a) to each of the ladder steps on the analysis side of the QMF bank. Second, on
the synthesis side we modify each ladder step by negating the transfer function of the ladder step
filter, adding a quantizer at the output of the resulting filter, and inverting the sign again at the input
to the adder. That is, for each ladder step on the synthesis side, we apply the transformation depicted
in Figure 3.9(b). After applying these transformations, we obtain the filtering structure shown in
Figure 3.10 for the 2-band case. In the M-channel case, the structure is completely analogous, but
it is not illustrated since it is difficult to represent pictorially. As an optimization, however, in the
M-band case, one would probably want to group adjacent ladder steps with the same destination
channel together where possible, summing their result and then performing quantization only once
for the whole group. This will likely lead to reversible transforms that better approximate their
parent linear transforms.

Examining the new filtering structure, it is easy to see that the PR property is maintained. In
fact, the system remains PR for any (reasonable) choice of quantization operator Q(-). For example,

rounding to the nearest integer where
Q(z) = [|z[+ 3] sgnz

and truncation where

are two possible choices of quantization operators. As long as the same quantization scheme is
employed on both the analysis and synthesis sides of the QMF bank, PR is not affected. Of course,
the resulting system is nonlinear, and the new subband signals (i.e., the outputs of the analysis
side) serve only to approximate the original subband signals. Provided the error introduced by the
quantization operator Q(-) is not too large, the new nonlinear system will well approximate the

input-output behavior of the original linear system.
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(b)

Figure 3.9. Ladder step transformations. (a) For analysis side. (b) For synthesis side.

Assume now that the input to the filter bank consists only of integers. This imposes no serious
practical limitations since in most applications the input sequence can be easily made integer with
an appropriate scaling. Now suppose we choose either rounding or truncation as the quantization
strategy. Since the inputs to the analysis side of the filter bank are integers, and only integer
adjustments are made by the ladder steps, the outputs of all ladder steps are integer. Furthermore,
as the final scaling on the analysis side is by an integer (by assumption), the outputs of the analysis
side consist only of integers. Thus, we have a transform that maps integers to integers. Also, it is
not difficult to see that this whole process is invertible. The synthesis side of the filter bank will
reproduce the original signal exactly despite the nonlinearities introduced by rounding. Moreover,
by introducing rounding, we have limited the precision with which the transform must be calculated
in order to remain invertible. Thus, we have obtained a reversible transform.

At this point, it becomes apparent why the final scaling on the analysis side is restricted to be
by integers. Scaling by a non-integer would cause the precision required for the transform calcu-
lation to grow (assuming that invertibility must be preserved). If we try to combat this precision
growth problem by rounding the outputs of the scaling units, the transform’s invertibility would be
compromised.

Although scaling by any integer on the analysis side is possible, it 1s usually most desirable to use
scaling factors of £1. A lifting realization with such factors can always be obtained by normalizing
the analysis filters such that det E(z) € +1. This choice is due to the fact that we are usually

interested in using orthogonal or near-orthogonal transforms. If scaling factors other than +1 are
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Figure 3.10. General structure for reversible two-band transforms.

transform). (b) Synthesis side (inverse transform).

used, the resulting transform will not be close to being orthogonal.
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Using the lifting-based technique described in this section, it is possible to construct a reversible

version of any linear transform from the large class of transforms under consideration. This method

results in a reversible transform with the following desirable properties:

The transform approximates the original linear transform from which it was derived.

The transform maps integers to integers provided the quantization operator employed always

yields integer values.

The transform can be calculated in place.

The transform is well suited to computation using only fixed-point arithmetic.

The inverse transform has exactly the same computational complexity as the forward trans-

form.

The transform is invertible even in the presence of numerical overflow.

As a final note, it i1s important to emphasize that the introduction of quantization results in

nonlinear transforms. Consequently, different lifting factorizations of the same filter bank lead to

distinct reversible transforms with approximation characteristics that can vary considerably.
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3.15 Reversible Transform Example

To demonstrate the method used to construct a reversible version of a subband transform, an
example is now presented. Consider the 2-channel QMF bank with analysis and synthesis filters Hg

and Fyg, respectively, where
Ho(z) = %(1 +z), Hi(z)=1—2, Fo(z) =142, Fi(z)= %(1 —z)

This corresponds to a scaled version of the Haar transform. Suppose now that we want to implement
the QMF bank using a lifting realization in conjunction with the type 3/4 polyphase form. We begin

by calculating the analysis polyphase matrix E(z) and its determinant as

so=[} )
det E(z) = —1

Since det E(z) € +1, a lifting factorization of the form desired for constructing reversible transforms
exists. For the decomposition, we choose a single Type S factor of §(1;—1). Note that det E(z) =

det S(1;—1), so this choice is valid. Using Euclid’s algorithm to complete the factorization, we obtain

too]fs
o=y 014

Thus, we immediately have the decomposition

R<z>=t ﬂ Ll) ﬂ LlJ —01]

= A(1,0;1)A4(0,1;—3)8(1; —1)

for the synthesis polyphase matrix R(z). These polyphase matrix decompositions yield the reversible
transform shown in Figure 3.11. Note that this transform approximates the same linear transform
as the S transform. The reversible transform constructed in this example, however, has the added

advantage that it can be calculated in place (unlike the S transform).

3.16 Symmetry-Preserving Reversible Transforms

In an earlier section, we alluded to the fact that it is possible to design symmetry-preserving reversible
transforms. Now, this idea is explored in more detail.
Here, we consider transforms computed by 2-channel PR QMF banks with FIR filters. Suppose

it is possible to realize the QMF bank of interest using a lifting realization of the form shown in
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Figure 3.11. FEzample reversible transform realization. (a) Analysis side (forward transform).

(b) Synthesis side (inverse transform).



8. Reversible Transforms 59

Y

r[n]= 12 . + . ?_’_ N o b yo[n]
) Q

Ap(z) Q A Az_1(z
: 1 t 1 t
! Q Bo(2) Q Ba_1(2)

Q Ax—1(2)
! 1
Byg(z) Q
S

Q
1 [n] _ +E— i E
811 > + > + T?

(b)

F»— O
——
0
|

Figure 3.12. Symmetry-preserving reversible transform realization. (a) Analysis side (forward

transform). (b) Synthesis side (inverse transform).

Figure 3.7 where the ladder step filters are constrained as described in Section 3.12. It has already
been demonstrated that such a realization will preserve symmetry at all points in the filtering
structure. Although we are dealing with a specific type of lifting realization, it is a lifting realization
nevertheless. Consequently, we can make this transform reversible by adding quantizers as discussed
earlier. This results in the new filtering structure shown in Figure 3.12. The only question now
is whether or not the symmetry-preserving property remains after adding quantization. It is not
difficult to see that in order for symmetry to be maintained, the quantization operator employed
must have the property that quantizing a symmetric signal always results in a symmetric signal with
the same center of symmetry. Clearly, any reasonable choice of quantization operator will satisfy
this constraint. For example, one could choose the quantization operator to be rounding (to the
nearest integer) or truncation. Thus, we can construct a symmetry-preserving reversible version of

any transform that can be realized in the manner described in Section 3.12.

3.17 Symmetry-Preserving Reversible Transform Example

To illustrate the concepts behind the previous section, a symmetry-preserving reversible transform

is now constructed. Again, we consider the CDF22 transform as presented in Section 3.13. In the
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Figure 3.13. Fzample symmetry-preserving reversible transform realization. (a) Analysis side (for-

ward transform). (b) Synthesis side (inverse transform).

same section, it was also shown that this transform can be computed using the lifting realization
shown in Figure 3.8. In order to construct a reversible version of this transform, we simply add
quantizers to yield the structure shown in Figure 3.13. For the reasons mentioned in the previous

section, this transform is symmetry preserving.

3.18 Approximation Accuracy

Previously, it was claimed that the lifting-based reversible transform design method can yield trans-
forms that well approximate their parent linear transforms. Moreover, it was also stated that trans-
forms obtained from this method are well suited to implementation using only fixed-point arithmetic.
Both of these claims will now be substantiated with numerical results.

In order to demonstrate the accuracy with which reversible transforms approximate their parent
linear transforms, the approximation error was studied for numerous transforms. Here the results
for two transforms are presented: reversible versions of the BCW3 and CDF97 transforms. These
transforms and the particular scalings used were deliberately chosen to obtain arbitrary (i.e., non-
dyadic rational) filter coefficients. To support the above claims, a six-level wavelet decomposition

of two well-known 8 bit/pixel (bpp) grayscale test images (i.e., lena and barb) was computed using
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both the reversible transform and its parent linear transform. The transform coefficients obtained
with the reversible transform were then compared to those obtained from the parent transform
in each case. In particular, the mean absolute error, maximum absolute error, and percentage of
coeflicients that are in error by one or less were used for comparison purposes. Tables 3.1 and 3.2
show the results obtained for the BCW3 and CDF97 transforms, respectively. In both cases, we
can see that quantization does not introduce appreciable error when floating-point arithmetic is
employed for the reversible transform. Moreover, we also see that using fixed-point arithmetic in
the reversible transform does not introduce significantly more error than floating-point provided at

least 8 bits of fraction are used.

Table 3.1. BCWS fized-point results (6-level wavelet decomposition)

Fraction Mean Absolute | Maximum Absolute Percent
Image Bits Error Error Within One
lena | floating-point 0.51828 5.9091 87.901
4 1.4866 1410.6 66.399
5 1.0333 552.31 71.872
6 0.64407 340.68 86.840
7 0.66702 148.16 82.142
8 0.51922 6.5028 87.879
10 0.51922 6.5028 87.879
12 0.51843 6.6594 87.956
14 0.51835 6.6594 87.903
16 0.51829 5.9091 87.900
barb | floating-point 0.51997 5.4138 87.830
4 1.5277 1631.9 64.749
5 1.0418 638.01 70.951
6 0.64937 393.98 86.281
7 0.66214 150.01 82.074
8 0.51988 5.2079 87.818
10 0.51988 5.2079 87.818
12 0.52050 7.0792 87.819
14 0.52032 6.0319 87.817
16 0.51998 5.4138 87.830

In the case of some transforms, the filter coefficients may all be dyadic rational. That is, the
coefficients may all be of the form x/2V. Clearly, in such cases, using fixed-point arithmetic with N

bits of fraction will introduce no further error beyond that caused by quantization.
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Table 3.2. CDF97 fized-point results (6-level wavelet decomposition)

Fraction Mean Absolute | Maximum Absolute Percent
Image Bits Error Error Within One
lena | floating-point 1.0899 8.7263 54.973
4 4.4392 212.90 20.783
5 3.8618 57.396 19.477
6 1.9570 28.568 32.958
7 1.5588 19.913 39.862
8 1.0965 9.0052 54.731
10 1.1038 9.9013 54.395
12 1.0925 9.1511 54.918
14 1.0902 8.1978 54.976
barb | floating-point 1.0939 9.7654 54.862
4 4.9282 294.71 18.408
5 3.9689 63.518 18.439
2.0283 30.281 31.525
1.5377 24.718 40.243
8 1.1015 9.0794 54.519
10 1.1126 9.4053 54.022
12 1.0932 9.3577 54.838
14 1.0951 9.7654 54.765

3.19 Practical Design Method

Given any linear transform computed by an FIR PR QMF bank, we can construct a reversible
version of the transform using lifting. As we have seen, this process is equivalent to finding a lifting
factorization of the analysis polyphase matrix of the QMF bank (with integer scaling factors). Since
the lifting factorization is not unique, this raises the question of which factorization to select. In
fact, we might want to compute many factorizations and then select one based on some particular
criteria.

Although lifting factorizations can be computed by hand, this process can be very tedious and
error prone (especially for the M-band case). This motivates us to calculate these factorizations using
computer software. Unfortunately, the factorization problem can become numerically ill-conditioned.
In order to address this difficulty, a simple iterative technique can be employed. Rather than using a
complex factoring algorithm, a simple factoring algorithm can be employed iteratively until a good
factorization is obtained.

In order to quickly determine if a factorization is a good one, a simple metric is employed. This
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goodness metric is defined in terms of the lifting factorization coefficients as

Y= largest coefficient magnitude (3.16)

smallest coefficient magnitude

where a smaller value corresponds to a better factorization. When the value of the metric exceeds
some prespecified threshold, a factorization is deemed to be poorly conditioned and is discarded.
Typically, a value of about 100 to 1000 was found to work reasonably well. Once any bad fac-
torizations have been discarded, some other criteria can be used to choose from the remaining
factorizations. For example, one might choose the factorization with the fewest (Type A) factors.

This leads to the following algorithm for designing reversible transforms:

1. Input the number of channels M, the analysis filter transfer functions Hy(z), the goodness
threshold p, and the number of iterations N.

2. Normalize the transfer functions Hy(z) to obtain the new analysis filter transfer functions
H/(z). This normalization should yield a new analysis polyphase matrix E’(z) such that
det E’(z) is an integer.

3. Using the method described in Section 3.10, compute a lifting factorization of E’(z). This step
should be randomized so as to produce a different factorization on each iteration.

4. Calculate the goodness metric v for the factorization obtained in step (3) as given by (3.16).
If v < p, then add the factorization to the list of feasible solutions.

5. Decrement N. If N > 0, then go to step (3).

6. Select a factorization from the feasible list based on some user-specified criteria, and output

this factorization. This lifting factorization of E’(z) directly yields a reversible transform.

Typically, 100 iterations are sufficient to obtain a good design, although this value depends on the
number of channels and length of the analysis filters involved.

To demonstrate the effectiveness of this method, a reversible version of the BCW3 transform
(see Table 4.1) was constructed. The transform is based on a 2-channel QMF bank in type 1/2
polyphase form. The steps in the forward transform are given in Table 3.3. The inverse transform
is obtained by performing the inverse of these steps in reverse order. The transform is intended to

be calculated using fixed-point arithmetic with 15 bits of fraction.

Table 3.3. Forward transform lifting factorization

Step Operation
0 | A[L0;55055(204827% — 18432271 — 4859 + 2048z)]
1 A0, 1; 550 (32768)]
2 AL, 0; 35525 (—9598)]
3 | A0, 1; 5555 (—2048271 — 27909 + 18432z — 20482?)]

Since the BCW3 transform is known to be effective for image compression, the new reversible

transform was tested in this context. To evaluate the resulting transform, the two standard test
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images barb and lena were used. Both images are 512x512 and 8 bpp grayscale. The mean and
maximum absolute difference between the reversible and nonreversible versions of the transform for
these images are given in Table 3.4. As can be seen, the error is quite small; indeed, the reversible
transform does an excellent job at approximating its parent transform. This demonstrates the

effectiveness of the design method.

Table 3.4. Transform approrimation accuracy

Mean Absolute | Maximum Absolute
Image Error Error
barb 0.5202 6.149
lena 0.5182 6.659

3.20 S+P Transform

Initially proposed by Said and Pearlman [36], the S+P transform is a reversible transform that
maps integers to integers and is parameterized by two sets of filter coefficients. This transform is a
further refinement of the S transform where the highpass coefficients are adjusted by an additional
prediction step. The forward transform splits the input signal z[n] into the lowpass and highpass

signals s[n] and d[n], respectively, as given by

s[n] = L%(I[Z’Il] + z[2n + 1])J
d[n] = do[n] — V[n] + 1/2J

where

do[n] = z[2n] — z[2n + 1]
L,

dn]= > ai(s[n—i—1]— s[n—i]) — i Bido[n — i]
i=K

i=Lg

where Ly, L1, and K are integers satisfying Ly < L; and K < —1. The inverse transform uses the

lowpass and highpass signals s[n] and d[n] to reconstruct the original input signal z[n] as given by

z[2n] = s[n] + |1(do[n] +1)]
z[2n + 1] = z[2n] — dg[n]

where

and d[n] is as given above.
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Table 3.5. S+P transform predictor coefficients

Predictor | a_y | ag | a3 B_1
A T3]0 0
3 2 2
B s | s | O 3
8 4 1 6
C % | 16| —16 | 15

Three sets of predictor coefficients have been suggested [36] as listed in Table 3.5. Of these,
predictor A has the smallest computational complexity and yields a reversible version of the well-
known TS transform. In the degenerate case where all of the predictor coefficients are zero (i.e.,
a; = f; = 0), the S transform is obtained.

The filtering structure for the S+P transform is shown in Figure 3.14 where A(z), B(z), Qr(z),
and Q(z) are defined as

Ly -1
A) = (1427 DY z™, Bla) =Y fiz™", Qr(x)=|z], Q)= |v+3]
i=Lo i=K

Observe that the first part of the forward transform structure and last part of the inverse transform
structure are nothing more than the S transform. As we saw earlier (in Section 3.15), it is possible
to realize the S transform using lifting. Replacing the S transform with its lifted version, we obtain
a transform that can be calculated in place. With this filter structure, it i1s important to note that
the synthesis side has a feedback path if any of the 3; coefficients are nonzero. In such a case, the
synthesis side of the filter bank is no longer associated with FIR filters.

If we disregard the effects of the truncation in the S+P transform, we have a linear subband
transform that corresponds to a QMF bank having analysis filters with transfer functions Hy(z)

where
Ho(2) = 5(1+2), Hi(2) = —5(1 4 2)A(z*) + (1 = 2)[1 + B(2*)]

Assuming that predictor A, B, or C is used, this linear transform is not orthogonal. Moreover,
the transform must be scaled to be near-orthogonal. Thus, the S4+P transform does not directly
approximate an orthogonal or near-orthogonal transform. By weighting the transform coefficients
associated with each subband by an appropriate constant, however, a near-orthogonal transform is
obtained. As it turns out, in the two-dimensional case, these weighting factors are integer powers of
two which 1s convenient for computational reasons.

So far, it has been assumed that we are dealing with signals of infinite length. The S+P transform,
however, is easily adapted to handle finite-length signals if we assume the signal is defined for
n=20,1,..., N—1where N is even. This assumption is required so that when the input signal is split
into its two polyphase components, both signals will be defined for the same range of indices, namely
n=20,1,...,N/2 — 1. The only remaining problems are due to the filters A and B. Fortunately,

the transform remains invertible independent of the choice of A(z) and B(z). As a consequence, we
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Figure 3.14. Filtering structure for the S+P transform. (a) Forward transform. (b) Inverse trans-

form.

can use shorter filters at the signal boundaries to avoid needing undefined sample values. Note that
changing the filters A and B is equivalent to altering the predictor d[n]. For example, in [36] it is
suggested that for predictor B, the predictor be changed at the boundaries as follows

(s[0] = s[1]) forn=0

(s[E—2]—s[F—1]) forn=%—

d[n] =

o Ll o L

Although the above approach assumes that NV is even, it is possible in principle to define further
boundary filters to handle the case of odd N. Doing so, however, would significantly increase the
complexity of the transform. An alternative solution is to simply pad a signal by one sample if it is
not of even length. Then the S+P transform as defined above can be applied. Periodic extension is
not used with the S+P transform due the potential for IIR filters in the synthesis bank.

The S+P transform is typically applied in a pyramidal fashion such that the lowpass signal is suc-
cessively decomposed. In this case, we have a reversible wavelet transform. The S+P transform does
have one peculiarity. Most wavelet systems employed today are associated with finitely-supported

scaling and wavelet functions. The S+P transform, however, approximates a system associated with
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infinitely-supported scaling/wavelet functions. The S+P transform trades off some time localization
to achieve better frequency localization.

Since its introduction, the S4+P transform has become very popular for lossless image compres-
sion. In image compression applications, predictor B is best suited for natural images and predictor C

is best suited for very smooth medical images.

3.21 More General Framework for Reversible Transforms

As stated previously, the S4+P transform is nothing more than the S transform with an additional
prediction step. If, in the S+P transform, we replace the traditional implementation of the S
transform with a lifted implementation, we obtain a new structure that is almost in lifting form.
The only difference is that one of the building blocks of the ladder network has been modified.
This new block uses the signals in both channels to modify the highpass channel whereas a true
lifting realization only ever uses the signal in one channel to modify the other. This idea can be
generalized, leading to a more flexible structure for reversible transform construction. (A similar
idea is suggested by an example in Calderbank et al. [10], but is not quite as general as the idea
proposed here.) Instead of using a ladder step as a basic building block on the analysis side of
the QMF bank, one could use the modified building block shown in Figure 3.15(a). The operation
performed by such a building block is inverted by the structure in Figure 3.15(b). We can use these
new building blocks to generalize the idea of lifting.

The general structure used to compute a 2-band lifted transform is shown in Figure 3.4. Sup-
pose now that we replace each ladder step on the analysis side with a block of the form shown in
Figure 3.15(a), and replace each ladder step on the synthesis side with a block of the form shown
in Figure 3.15(b). In the case where all By (z) and C(z) are zero, this structure reduces to a lifting
realization. Obviously, we can choose these filters to have nonzero transfer functions, and in this case
a more general structure capable of realizing an even larger class of subband transforms is obtained.
Before continuing further, it is important to understand that there are some constraints that must
be placed on Bj(z) and Cy(z). These transfer functions must both be polynomials in strictly z or
271 with a constant term of zero. The zero constant term is required in order to avoid delay-free
loops which are physically unrealizable. The filters must be strictly causal or anti-causal in order
for inversion to be possible. As one might anticipate, there are no constraints on the Ag(z). Also,
with the above constraints on the filters, in-place calculation is still generally possible.

Assuming that some of the By (z) and Cj(z) are nonzero, the resulting filtering structure contains
feedback paths. Due to this recursion, it is not practical to use periodic extension in order to handle
finite-length signals. Boundary filtering must be used instead. Stability can also be a concern due
to the presence of feedback. Moreover, stability is difficult to analyze due to the nonlinear nature
of the system. Fortunately, we are often only concerned with finite-length signals, and in such cases
stability is less of a concern. One still needs to be somewhat careful, however. Even in the case

of finite-length signals, instability can cause large amplitude signals for relatively small amplitude
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Figure 3.15. Building blocks for generalized lifting realization. (a) Building block for analysis side.
(b) Building block for synthesis side.

input signals which can lead to numerical overflow.

The obvious advantage of this more general filtering structure is that it can be used to construct
reversible versions of transforms based on QMF banks with IIR analysis/synthesis filters. This
additional degree of freedom can be beneficial as demonstrated by the effectiveness of the S+P
transform which employs IIR filters.

It 1s not difficult to see that this approach can be easily extended to the M-band case. In
such a case, the filtering blocks shown in Figures 3.15(a) and 3.15(b) would have M inputs and M
outputs. Since there are more channels, the top adder in both figures would have M — 2 more inputs
corresponding to the filtered versions of the other M — 2 channels.

As more blocks are used, more boundary filters are required, and therefore complexity increases.
Also, error introduced by quantization will tend to be worse for recursive structures as error can
accumulate indefinitely. For this reason, one would probably not want to use an excessive number
of blocks with Bg(z) and Cj(z) nonzero, but there may be advantages to using a small number of

such blocks. This idea has potential for further development in future research.
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3.22 Summary

In this chapter, we began by introducing the concept of reversibility, and explaining why transforms
with this property are desirable. Then, we pointed out that reversible transforms are generally
nonlinear, but are usually designed to approximate linear transforms with desirable properties.
Next, we revisited multidimensional and finite-length signals in the context of nonlinear reversible
transforms. For the most part, the methods previously discussed in the context of linear transforms
are still applicable, but with some caveats due to the nonlinear nature of the reversible transforms.

Lifting was presented as a general framework for the design and implementation of invertible
transforms. Then, it was shown how the lifting philosophy can be applied to M-channel PR QMF
banks, yielding the lifting realization of a QMF bank. Next, we demonstrated how quantization can
be introduced into the lifting realization of a QMF bank in order to obtain a reversible transform.
This yields a systematic method for constructing reversible versions of any subband transform com-
puted using an M-channel PR, QMF bank with FIR filters. Reversible transforms constructed in
this way have many desirable properties which make their use attractive. Moreover, this lifting-
based design method allows us to also construct symmetry-preserving reversible transforms. The
symmetry-preserving property is advantageous as it allows such transforms to be used in conjunction

with symmetric extension.

3.23 Conclusions

In this chapter, several new results were presented relating to reversible transforms. We now sum-
marize briefly these contributions.

By considering the generalization of the lifting realization to M-channel QMF banks, we were
able to extend the reversible transform construction method of Calderbank et al. [10] to the case
of M-band transforms. Also, for completeness, we formally considered lifting realizations based on
both the type 1/2 and type 3/4 polyphase forms of a QMF bank. In our treatment of the subject,
we suggested another possible way to normalize the analysis and synthesis filters in order to obtain a
QMF bank that can be realized using lifting. This normalization is different from the one suggested
by Daubechies and Sweldens in [15] (p. 7).

Through numerical results, we demonstrated that the reversible transforms obtained through the
lifting-based design method well approximate their parent linear transforms. Although a relatively
small approximation error is key to an effective reversible transform, this error has not been studied
in the literature to date. From our experimental results, we were able to demonstrate that the lifting-
based reversible transform filtering structure is well suited to implementation using only fixed-point
arithmetic. For the case of arbitrary filter coefficients, typically, fixed-point arithmetic with 8 to 12
bits of fraction is sufficient to obtain results comparable to those obtained with floating-point. This
observation is important as it implies that we can use lifting to build reversible integer-to-integer
transforms that require only integer arithmetic for filters with arbitrary coefficients. Also, we suggest

another practically useful property of these reversible transforms, namely, that they are invertible
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even in the presence of numerical overflow.

The lifting-based reversible transform design method is really nothing more than a matrix factor-
ization problem. In this chapter, we proposed a simple lifting factorization algorithm that addresses
numerical ill-conditioning problems. Although the algorithm is not the most elegant, it does yield
reasonably good results for practically useful filter sets.

The S+P transform can be viewed as an example of a more general form of lifting. Based on
this observation, we suggested a more general framework for constructing reversible transforms that
combines ideas from both lifting and the S+P transform. This new framework has the advantage

that it generates an even larger class of reversible transforms than lifting alone.

Beware of bugs in the above code; | have only proved it correct, not tried it.

—Donald Knuth
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Chapter 4

Reversible Embedded Image

Compression

To the engineer, all matter in the universe can be placed into one of two categories:
(1) things that need to be fixed, and (2) things that will need to be fixed after you've
had a few minutes to play with them. Engineers like to solve problems. If there are no
problems handily available, they will create their own problems. Normal people don't
understand this concept; they believe that if it ain't broke, don’t fix it. Engineers believe
that if it ain't broke, it doesn't have enough features yet.

—Scott Adams, “The Dilbert Principle”

4.1 Introduction

The particular application of reversible transforms considered in this thesis is reversible embedded
image compression. In this chapter, topics relevant to this application are discussed at length. Then,
research results obtained in this context are discussed.

The chapter begins with a brief introduction to image coding and image compression. Then,
transform-based image compression is discussed along with the motivation for its use. Performance
measures for both lossy and lossless compression are also described. Next, we formally specify what
is meant by “reversible” and “embedded” in the context of image compression. This is followed by
a brief description of the EZW coding scheme. Then, we proceed to describe the modified EZW
coder used to obtain most of the results presented in this thesis. Wavelet transforms are discussed
in the context of image compression, and it is explained why they are particularly effective for this
purpose.

Several linear wavelet transforms are introduced, and then reversible versions of these trans-
forms are constructed using the lifting-based method presented in the previous chapter. These
new reversible transforms are then used in our EZW-based image coder and their effectiveness for
compression evaluated. Some other issues such as the relative merits of periodic versus symmetric
extension and full versus partial embedding are also examined. Based on some of the observations

made in this chapter, a new multi-transform approach to image compression is proposed.
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4.2 Image Coding and Compression

Image coding is essentially the process of finding an alternative representation of an image with
some specific purpose in mind. The goal may be to find a representation with less redundancy so
that fewer bits are required to encode the image, or to add redundancy in order to facilitate error
detection/correction for information transmitted over noisy channels. The former type of coding is
referred to as image compression. Since image compression has become such a popular research area,
many use the term “image coding” to be synonymous with “image compression”. Strictly speaking,
however, this is an abuse of terminology.

There are two general approaches to image compression. In the first approach, the sample values
of the original image are used directly to generate the compressed bitstream. Such an approach is
often referred to as a spatial-domain approach. In the second method, a transformation is applied to
the samples of the original image and then the transform data are used to produce the compressed
bitstream. A compression system employing this philosophy is said to be transform-based. For
lossy compression, transform-based coders are almost exclusively used as they tend to have much
better performance for fixed complexity. On the other hand, in the case of lossless compression,
spatial-domain coders are employed.

In this chapter, we consider the application of reversible embedded image compression which deals
with both lossy and lossless compression. As it turns out, transform-based coders are superior for this
particular application. Ultimately, the choice of a transform-based coder is driven by the fact that
lossy compression needs to be handled. Although lossless compression can be handled reasonably
well with either spatial-domain coders or transform-based coders, it is exceedingly difficult to handle
lossy compression with a spatial-domain coder. Due to the importance of transform-based coders
for the application at hand, such systems will be discussed in more detail in the next section.

For a more detailed background on image compression and signal coding techniques, the reader
is referred to [34] and [22].

4.3 Transform-Based Image Compression Systems

The general structure of a transform-based image compression system is shown in Figure 4.1. In
this diagram, z[i, j] represents the original image, y[i] denotes the compressed image, and i, j]
represents the reconstructed image obtained from decompression. The goal, of course, is to design a
system so that the coded signal y[i] can be represented with fewer bits than the original signal z[3, j].
Although images are two dimensional signals, the coded signal y[-] is shown as being one-dimensional
since it often makes more sense to view the coded signal in this manner. The reasoning behind this
is simply that the notion of horizontal and vertical dimensions is usually completely lost after coding
is performed. As indicated by the diagram, the compressed bitstream may be stored or transmitted.
In the case of storage, compression has the benefit of reducing disk or memory requirements, and in
transmission scenarios, compression reduces the bandwidth (or time) required to send the data.

Rather than attempt to code the sample values of the original image directly, a transform-based
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Figure 4.1. General structure of transform-based image compression system.

coder first applies a transform to the image and then codes the resulting transform coefficients
instead. The transform is used in an attempt to obtain coefficients that are easier to code.

Many signals of practical interest are characterized by a spectrum that decreases rapidly with
increasing frequency. Images are a good example of a class of signals with this property. By
employing transforms that decompose a signal into its various frequency components, one obtains
many small or zero-valued coefficients which correspond to the high-frequency components of the
original signal. Due to the large number of small coefficients, the transformed signal 1s often easier
to code than the original signal itself. As a practical matter, in order for a transform to be useful,
it must be effective for a reasonably large class of signals and efficient to compute.

Consider now the compression process. First, the transform of the image is calculated. The
transform serves to decorrelate the samples of the original signal. That is, the transform packs
the energy from the original signal into a small number of coefficients that can be more efficiently
coded. The next step in the compression process is to quantize and code the transform coefficients.
Quantization is used to discard transform coefficient information that is deemed to be insignificant.
In the case of lossless compression, no quantization is performed since all transform coefficient bits
are equally important. Finally, the quantized coefficients are coded to produce the compressed
bitstream. The coding process typically exploits a statistical model in order to code symbols with a
higher probability of occurrence using fewer bits. In so doing, the size of the compressed bitstream is
reduced. Assuming that the transform employed is truly invertible, the only potential for information
loss is due to coefficient quantization, as the quantized coefficients are coded in a lossless manner.

The decompression process simply mirrors the process used for compression. First, the com-
pressed bitstream is decoded to obtain the quantized transform coefficients. Then, the inverse of the

transform used during compression is employed to obtain the reconstructed image [z, j].

4.4 Compression Performance Measures

Obviously, in order to evaluate the performance of image compression systems, we need a way to
measure compression. For this purpose, the compression ratio (CR) metric is often employed and is

defined as

original image size in bits

CR =

compressed image size in bits
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Sometimes compression is instead quantified by stating the bit rate (BR) achieved by compression

in bpp (bits per pixel). The bit rate after compression and compression ratio are simply related as
BR = (bits/pixel for original image)/CR

In most cases, the author prefers to use the compression ratio measure since in order for bit rate
measures to be meaningful one must also state the initial bit rate. The compression ratio measure,
however, 1s meaningful if stated in isolation.

In the case of lossy compression, the reconstructed image is only an approximation to the original.
The difference between the original and reconstructed signal is referred to as approximation error or
distortion. Although many metrics exist for quantifying distortion, it is most commonly expressed
in terms of mean-squared error (MSE) or peak-signal-to-noise ratio (PSNR). These quantities are

defined as

1 M—-1N-—
MSE = M— Z Z L5 — éi‘i’j)2

ey

PSNR = 10 logw TSE

where z[-] is the original image with dimensions M x N and having P bits/pixel, and z[-] is the
reconstructed image. Evidently, smaller MSE and larger PSNR values correspond to lower levels of
distortion. Although these metrics are frequently employed, it is important to point out that the
MSE and PSNR metrics do not always correlate well with image quality as perceived by the human
eye. This is particularly true at high compression ratios (i.e., low bit rates). For this reason, one
should ideally supplement any objective lossy performance measurements with subjective tests to
ensure that the objective results are not misleading.

Generally speaking, distortion varies with the amount of compression. In other words, distortion
is implicitly a function of compression ratio (or bit rate). For this reason, plots (or tables) of distor-
tion versus compression ratio are often used to analyze lossy compression performance. Obviously,
for any given compression ratio, the lowest possible distortion is desired.

In the case of lossless compression, the reconstructed image is an exact replica of the original
image. In other words, the distortion is always zero. Since the distortion is zero, we only need to
consider the amount of compression achieved when analyzing lossless compression performance. In
this context, compression is usually quantified by the compression ratio measure. Obviously, the

larger the compression ratio, the better is the compression performance.

4.5 Reversible Embedded Image Compression

Although we have referred to reversible embedded image compression several times in this thesis,
we have yet to formally define this term. In this section, we now explain more precisely, what 1t

means for a compression system to be “embedded” and “reversible”.
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The idea of embedded coding was first popularized by Shapiro in his now well-known paper on
EZW coding [41]. A coder is said to be embedded if it is such that for any given signal and any given
bit rate, all encodings of the signal at lower bit rates are found at the beginning of the bitstream
for the signal coded at the given bit rate. In other words, the information in the coded bitstream is
generated in order of importance. As the bit rate increases, the bitstream grows in length, but all
of the previously coded bits (generated at lower bit rates) remain unchanged. As a consequence of
embedding, the decoder can stop decoding at any point (e.g., when a target bit rate has been met,
or a distortion metric satisfied) and the same image is obtained as would have been at the bit rate
corresponding to the truncated bitstream. If an embedded coder has the additional property that it
exactly reproduces the original input signal at some sufficiently high bit rate, then the coder is said
to be reversible.

Since EZW was first proposed, numerous other embedded coding schemes have been developed
(e.g., CREW [60], SPTHT [37]). Over time, interest in embedded image compression has continued
to grow, due mainly to the large number of applications that can benefit from the embedding
property. In particular, embedded compression is ideally suited for image browsing over low bit
rate channels. Moreover, reversible embedded image compression systems provide a convenient
framework for building hybrid lossy/lossless compression systems. With the numerous benefits of
embedded coding, it is likely that this approach will continue to gain favor in the future.

As a last note, the embedding property does impose serious constraints on the coded bitstream.
For this reason, embedded coding generally leads to sub-optimal compression results. In practice,
however, the compression performance is not usually degraded too significantly. And ultimately,
the advantages offered by embedding more than compensate for the small performance penalties

incurred by its use.

4.6 EZW Coding Scheme

The Embedded Zerotree Wavelet (EZW) coding scheme was proposed by Shapiro and is described
in [39], [41], [40], and [42]. As the name suggests, this coding method has the embedding property.
Essentially, there are three key elements to the EZW scheme:

1. The wavelet transform is used to form a hierarchical subband decomposition of an image.

2. The absence of significant information across scales is predicted by exploiting the self-similarity

inherent in images.

3. Successive approximation quantization is combined with arithmetic coding (see [59], [26], [35],

[32]) to produce the compressed bit stream.

The second point above is arguably the most important. The EZW scheme encodes the wavelet
transform coefficients in bit significance order. Normally, this would also require that the coefficient
positions be explicitly coded. By predicting the absence of significant information across scales,

however, the EZW scheme is able to avoid encoding individual coefficient positions explicitly. Not
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having to explicitly encode the position of each coefficient saves bits and leads to excellent compres-
sion results.

Although the EZW scheme was designed for use in lossy image coders, the method can also
be applied to hybrid lossless/lossy image coders by replacing the transform used with a reversible

wavelet transform.

4.7 Reversible Embedded Image Compression System

A reversible embedded image compression system based on the EZW coding scheme was used to
obtain various results presented in the remainder of this thesis. This codec is a reasonably faithful re-

production of the system originally proposed by Shapiro with the following modifications/extensions:

1. The codec was extended to allow the use of M-band wavelet transforms (for arbitrary M). As
originally proposed, the EZW scheme employs a 2-band wavelet transform for decorrelation.

Extension to the M-band case is straightforward.

2. The codec was generalized to handle arbitrary-sized images (i.e., non-square images and images
with non-M-adic dimensions).

3. Reversible wavelet transforms are employed for decorrelation purposes instead of a nonre-
versible linear wavelet transform. This change was made to facilitate reversible (i.e., lossless)
compression.

4. The EZW coding scheme was only used to code the most significant bits (MSBs) of the trans-
form coefficients. The three least significant bits (LSBs) of the transform coefficients were
coded directly using a simple context model and entropy coding. In many cases, this leads to
improved compression performance in lossless (or near-lossless) operation. This change typi-
cally has no affect on the bitstream generated for compression ratios greater than 8. Thus, in
lossy operation, the bitstream remains completely embedded. This approach is similar to that
used in the SPTHT codec of Said and Pearlman [36] and is described in more detail in [3].

For more details regarding the codec software, the reader is referred to Appendix C.

4.8 Wavelet Transforms for Image Compression

Wavelet transforms have proven extremely effective for transform-based image compression. Since
many of the wavelet transform coefficients for a typical image tend to be very small or zero, these
coefficients can be easily coded. Thus, wavelet transforms are a useful tool for image compression.

The main advantage of wavelet transforms over other more traditional decomposition methods
(like the DFT and DCT) is that the basis functions associated with a wavelet decomposition typically
have both long and short support. The basis functions with long support are effective for representing
slow variations in an image while the basis functions with short support can efficiently represent

sharp transitions (i.e., edges). This makes wavelets ideal for representing signals having mostly
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low-frequency components mixed with a relatively small number of sharp transitions. With more
traditional transforms techniques like the DFT and DCT, the basis functions have support over the
entire image, making it difficult to represent both slow variations and edges efficiently.

The wavelet transform decomposes a signal into frequency bands that are equally spaced on a
logarithmic scale. The low-frequency bands have small bandwidths, while the high-frequency bands
have large bandwidths. This logarithmic behavior of wavelet transforms can also be advantageous.
Since human visual perception behaves logarithmically in many respects, the use of wavelet decom-
positions can sometimes make it easier to exploit characteristics of the human vision system in order
to obtain improved subjective lossy compression results.

Although wavelet transforms with many different characteristics are possible, orthogonal trans-
forms with symmetric finitely-supported basis functions are ideally most desirable for image compres-
sion. Orthogonality is beneficial as it ensures that transform coefficients do not become unreasonably
large and also because it easily facilitates the selection of the most important transform coefficients
in the sense of minimizing mean squared error. Symmetric basis functions are desirable in order
to avoid undesirable phase distortion as a result of compression. If phase is not preserved, edges
and lines can become severely distorted, resulting in poor subjective image quality. Moreover, the
symmetric extension method for handling finite-length signals can only be applied to transforms
with symmetric basis functions. This is yet another incentive for using transforms with symmetric
basis functions.

Unfortunately, in the case of 2-band wavelet transforms, orthogonality, symmetry, and finite
support can only be achieved in the trivial case of the Haar and other Haar-like transforms. For this
reason, we usually choose to sacrifice orthogonality, and use near-orthogonal transforms instead. In
practice, this concession does not pose any serious problems.

To date, most research has focused exclusively on 2-band wavelet systems. There are good
reasons, however, for believing that M-band systems (where M > 2) may be able to yield improved
results for image compression. First, in the M-band case there is the obvious advantage that it is
possible to construct orthogonal transforms with symmetric finitely-supported basis functions. As
mentioned above, this is not possible (except for trivial counterexamples) in the 2-band case. Also,
Zou and Tewfik [61] have shown that for any finite energy signal, the M-band wavelet transform
coefficients decrease exponentially fast with scale at a rate roughly proportional to M ~*F where k is
the scale and the M — 1 wavelets have P vanishing moments. Thus, M-band wavelets (with M > 2)
yield better energy compaction than 2-band wavelets (for a fixed number of scales). Better energy
compaction, however, may lead to transform coefficients that can be more efficiently coded. This
suggests that M-band wavelets may be able to offer superior performance for image compression

purposes.
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4.9 Examples of Wavelet Transforms

In the last decade, many 2-band wavelet transforms have been developed that work quite well for
image compression. In this thesis, several of the more performant wavelet transforms are considered,
namely the Haar, TS, CDF22, CDF24, CDF97, V610, MIT97, and BCW3 transforms. In addition
to these 2-band transforms, two 4-band transforms are also studied: the V4 and A4 transforms.
A brief synopsis of all ten of these transforms is given in Table 4.1. In the case of the 2-band
transforms, the notation z/y indicates that the lowpass and highpass analysis filters have lengths =
and y, respectively. Similarly, the notation (z, y) indicates that the analysis and synthesis wavelet
functions have z and y vanishing moments, respectively. The analysis filter coefficients for each
of the 2-band transforms are given in Table 4.2. The reader is referred to the references cited in
Table 4.1 for the filter coefficients for the V4 and A4 transforms. The synthesis scaling and wavelet
functions for each of the ten transforms are shown in Figures 4.2 to 4.11. These plots will prove
useful later as the types of artifacts obtained in lossy compression are determined largely by the

shape of these functions.

Table 4.1. Brief synopsis of wavelet transforms

Name Description References

Haar Haar Transform < 2-band, orthogonal, symmetric, inter- | [19], [36], [60], [38]
polating, 2/2, (1,1)
TS Two-Six Transform ¢ 2-band, biorthogonal, symmetric, | [60], [36], Transform 5 in
2/6, (3,1) [57]

CDF22 || Cohen-Daubechies-Feauveau (2,2) Transform < 2-band, | Transform 4 in [57]

biorthogonal, symmetric, interpolating, 5/3, (2,2)
CDF24 || Cohen-Daubechies-Feauveau (2,4) Transform ¢ 2-band, | Table T in [6], Trans-
biorthogonal, symmetric, interpolating, 9/3, (2,4) form 6 in [57]

CDF97 || Cohen-Daubechies-Feauveau 9/7 Transform < 2-band, | Table 2 in [9]

biorthogonal, symmetric, 9/7, (4,4)
V610 Villasenor 6/10 Transform <> 2-band, biorthogonal, sym- | Transform 3 in [57]
metric, 6/10
MIT97 || MIT 9/7 Transform 4 2-band, biorthogonal, symmetric, | Section 4 (Item 3) in [45]
interpolating, 9/7, (4,2)
BCW3 || Biorthogonal Coifman Transform (Order 3) < 2-band, | Table 3.1 in [52], [58]
biorthogonal, symmetric, interpolating, 13/7, (4,4)

V4 Vaidyanathan 4-Band Transform < 4-band, orthogonal, | Table IT in [44]
symmetric
A4 Alkin 4-Band Transform ¢ 4-band, orthogonal, symmetric | Table IT in [5]

At this point, we note that the V4 transform has highly discontinuous synthesis scaling and
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Table 4.2. Analysis filters for 2-band transforms

Ho(z) = (14271
Haar { o(z) \_/f( 2_1)
Hy(z) = \/—5(1 —z77)
Ho(z) = (14 27)
5 Hi(z2)=—2=(1—27%) = 2oz =27+ B (272 — 279
N NG 82 82
_ 1 —4 2 -1 -3 6 -2
Ho(2) = 221 +278) - 827 4 277) - 182 (;72 4275 4 3B2(,73 4 »79)
CDF24 + 202 -4
Hi(z) = Y2(1+4272) - 22,1
Ho(2) = 0.03783(1 4+ 27%) —0.02385(2 7" + 277) — 0.1106(2 =% 4 27)
0.3774(272 + 27°) + 0.85272~*
CDFY7 08T+ 270 + 0852720 .
Hi(z) = 0.06454(14 27°) — 0.04069(z~" + 27°) — 0.4181(272 4 27*)
+0.78852 73
Ho(z) = —0.1291(1 4+ 27%) + 0.04770(2 ™1 + 27*) + 0.7885(z 7% + 2 7%)
V610 Hi(2) = —0.01891(1 — 27%) 4 0.006989(2~ — 273) 4+ 0.06724 (2% — 277)
+0.1334(272 — 27%) — 0.6151(2* — 277)
Ho(2) = Y2(1+427%) = BL2(:72 4 275) 4 1842(;73 4 ,=5) 4 46424
MIT97 b\/i -6 O9\/5 -2 —4 b16\/5 -3 ’
Ho(z) = _255\/5(1 +27) 4+ 252‘?/5(2_2 +271%) - 252‘?/5(2_3 +277)
BCW3 — —2525\3/5(2'_4 + 278+ —251?\4/5(,2_5 + z_7) + 2:?352_6
Hy(z) = ——161/5(1 + 275+ 16?/5(2_2 + 274 — —161\6/5z_3

wavelet functions. The A4 transform is somewhat better behaved in this regard, but still the func-
tions are somewhat rough. In the case of the 2-band transforms, the CDF97, V610, MIT97, and
BCW3 transforms have very smooth synthesis scaling and wavelet functions, and the functions for
the CDF22 and CDF24 transforms are continuous (although their first-order derivatives are discon-
tinuous). The Haar transform has very sharp discontinuities in its scaling and wavelet functions,
and the functions for the TS transform are rather rough.

It is important to note that the two 4-band transforms considered in this thesis serve primarily to
provide a preliminary indication of the type of results one might hope to obtain with M-band trans-
forms. There is little doubt that better M-band transforms (e.g., with smoother scaling functions)
could be designed, but such work i1s beyond the intended scope of this research. Also, as a practi-

cal matter, some M-band transforms were required in order to demonstrate that the lifting-based
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Figure 4.2. Synthesis scaling and wavelet functions for Haar transform. (a) Scaling function.

(b) Wavelet function.

15

Figure 4.3. Synthesis scaling and wavelet functions for TS transform. (a) Scaling function.
(b) Wavelet function.
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Figure 4.4. Synthesis scaling and wavelet functions for CDF22 transform. (a) Scaling function.
(b) Wavelet function.
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Figure 4.5. Synthesis scaling and wavelet functions for CDF24 transform. (a) Scaling function.
(b) Wavelet function.
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Figure 4.6. Synthesis scaling and wavelet functions for CDF97 transform. (a) Scaling function.
(b) Wavelet function.

0.5r b

Figure 4.7. Synthesis scaling and wavelet functions for V610 transform. (a) Scaling function.
(b) Wavelet function.

Figure 4.8. Synthesis scaling and wavelet functions for MIT97 transform. (a) Scaling function.
(b) Wavelet function.

Figure 4.9. Synthesis scaling and wavelet functions for BCW3 transform. (a) Scaling function.
(b) Wavelet function.
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Figure 4.10. Synthesis scaling and wavelet functions for V4 transform. (a) Scaling function.
(b) First wavelet function. (¢} Second wavelet function. (d) Third wavelet function.

Figure 4.11. Synthesis scaling and wavelet functions for A4 transform. (a) Scaling function.
(b) First wavelet function. (¢} Second wavelet function. (d) Third wavelet function.

reversible transform design method is applicable to M-band transforms (where M > 2).
Although none of the transforms in Table 4.1 are reversible, the lifting-based technique described
earlier can be used to construct reversible versions of these transforms as is considered in the next

section.
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4.10 Examples of Reversible Wavelet Transforms

At this point, we now construct reversible versions of each of the ten transforms discussed in the
previous section. As described earlier, this is accomplished by computing a lifting factorization of the
analysis polyphase matrix associated with each transform. The lifting factorizations corresponding
to the various transforms are given in Tables 4.3 and 4.4. In the case of the 2-band transforms,
the factorizations have been chosen to yield symmetry-preserving reversible transforms whenever
possible. The reversible versions of the transforms follow directly from the lifting factorizations as
described previously. Although some of these lifting factorizations have non-integer scaling factors,
this is not a problem. We can simply omit the scaling operation during the transform calculation,
and then assume an implicit per subband weighting of the transform coefficients. In instances where
the weighting factors are /2 and 1//2, for the two-dimensional separable transform case, the per

subband weights will be integer powers of two which is convenient from a computational perspective.

Table 4.3. Lifting factorizations for 2-band transforms

Haar! { E(z) = A(1,0;1 = V2) - A0, 1; 75) - A(1,0;1 = V2)
Tt { EB(z) = S(0:v2) - S(1: &) - AL 0, =2[1 = =77)) - A0, 15 1 2) - A(1L, 0 =)
cpF22t { B(2) = S(0: V) - (15 Z5) - A(0, 1 1L+ 271) - A(L, 0: =L [z + 1))
COF24t { B(a) = S(0,v) - S(1i ) - AW, Ll + 27+ B+ 271 - AL 05 =31+ 2)
E(z) = S(0; 1.1496044) - S(1; 0.86986445)
CDFT! - A(0,1;0.44350685[1 + 2~1]) - A(1,0;0.88291108[z + 1])
L A0, 15-0.052980119[1 + =~ 1]) - A(L, 0; — 1.5861343[z + 1])
E(z) = S(0;1.4142136) - S(1; —0.70710678) - A(L, 0; —0.29306679[z — =~'] — 0.39453543)
vé10t - A(0, 1;0.87491869) - A(1,0; —0.090074735z — 0.27022385)
- A(0, 1;—0.42797992 — 0.119532142"1) - A(1, 0; —0.36953625)
MITOT  { B(2) = $(0;v3) - S(L; 25) - A0, 131+ 27 ]) - A(L 0 &[22 + 1] = [z + 1))
sowat | BC) =8OV 805 ) A0, Ll + ]+ A+ )
CA(L 0 [+ 27 = 2+ 1])

1 type 1/2 polyphase system
1 type 3/4 polyphase system

At this point, we again point out that these reversible transforms are nonlinear. Consequently, we
cannot speak of basis functions in a strict mathematical sense. In spite of this, however, the scaling

and wavelet functions still continue to be quite useful. Because these transforms well approximate
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Table 4.4. Lifting factorizations for J-band transforms

E(z) = A(1,3;0.23529533z) - A(3,1;1.3819615 — 0.222951852"") - A(0, 2; —0.235295332)
- A(2,3;—0.68564896) - A(2, 0;0.64968013 + 0.222951852~")
3

vat -~ A(2,3;-1.6691273) - A(: ,2; 0. 59911547) - A(0,1;—1.4584722)
~A(0,2;-0.72011243) - A(1,2; —0.29432479) - A(2,1;1) - A(1, 2; 1.4343758)
“A(2,1;—-0.41078290) - A(2, 0 0.83456365) - A(0,2; —1.1982309) - A(1,2; 1)
- A(2,3; -0.36818635) - A(1,3; —1.5664173) - A(0, 3; 1.8215658)
E(2) = A(1,3;—1.7651533) - A(3, 1; —0.415908242~ " 4 0.103543992~?)
- A(0,2; —0.56652300z) - A(1,3; 1.1837342 + 0.943969532)
- A(3,1;0.13754027 — 0.794638552) - A(2, 0; —0.322618892~" + 0.42887598)
A4t

- A(3,2;0.71041770) - A(3, 1; 1.0750472) - A(1,3; —0.93019170)
- A(0,3;0.41745501) - A(0, 2; 0.93213776) - A(2, 3; 2.6856408)

A3
A3

,z, —0.65408237) - A(2, 3;3.5494754) - A(3,0;1) - A(0, 3; —0.24336963)
—0.32164931) - A(3,1;—1.1916059) - A(2,1; —1) - A(0, 1;1.1916059)

3
(
(
- A(0,2;0.37991750 + 0.47641511z2) - A(2, 0; —0.524511932~ " — 0.272522472 %)
(
(
(3
(3,

1 type 1/2 polyphase system

their parent linear transforms, they still behave very much like linear transforms with the same set

of basis functions.

4.11 Transform Performance Evaluation Methodology

In order to assess which of the ten new reversible transforms presented in Section 4.10 are most
effective for image compression, they were employed in a real image coding system. The system used
for evaluation was a reversible embedded image codec based on the EZW coding scheme (as described
in Section 4.7). Using each of the new transforms in the coder, approximately 75 grayscale images
of different types and dimensions were compressed in both a lossy and lossless manner. The results
obtained with each transform were then examined. In the case of lossy compression, performance
was evaluated using the PSNR metric and further supplemented by subjective image quality tests.
As usual, lossless compression performance was assessed based on the compression ratio measure.
To gain further insight into the effectiveness of the new transforms, the results obtained with these
transforms were also compared to those obtained using the S+P transform, a transform considered
to be state-of-the-art by many.

In the next section, we present a representative subset of the compression results obtained with
the new reversible transforms. Various compression results for about two dozen test images are

considered. For the most part, the images employed were taken from standard test sets. More
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information about the test images is available in Appendix B. This appendix provides details for
each image such as: the origin of the image when known, its dimensions and depth, a textual

description of the image, and in some cases a depiction of the image itself.

4.12 Transform Performance Evaluation

First, we present the results obtained with the new 2-band reversible transforms. Table 4.5 shows
the results obtained in the lossless compression of 25 test images for each of the transforms under
consideration. For comparison purposes, results for the S+P transform are also provided. As a
visual aid, the best result for each image has been highlighted. Evidently, the best results tend
to be obtained from the Haar, CDF22, MIT97, BCW3, and S+P transforms. Which transform is
best for a particular image, however, depends on the characteristics of the image in question. In
particular, these results indicate that uniformity and smoothness of intensity variations in an image
largely determine which transform is most effective.

For images characterized by smooth intensity variations and a lack of very large regions of uniform
intensity, e.g., photographs, x-rays, the BCW3, S4+P, and MIT97 transforms tend to perform quite
well, followed by the CDF97 and V610 transforms. Of the test images employed, ct, finger,
lena, and xrayl are good examples of images of this type. Although the BCW3, S4P, and MIT97
transforms are relatively close in terms of performance, the BCW3 and S+P transforms appear to
be marginally better. Since the BCW3 transform is also nonexpansive, it is more desirable than
the S4P transform when arbitrary-sized images are involved. It is not surprising that the BCW3
and MIT97 transforms are effective for very smooth images. Their synthesis scaling and wavelet
functions shown in Figures 4.9 and 4.8 are also very smooth.

For images with moderate amounts of nonsmooth variation, e.g., some computer generated im-
ages, and smoothly varying images with very large regions of uniform intensity, e.g., a photograph
with a large proportion of sky, the CDF22 transform performs very well, and the CDF24 and TS
transforms yield reasonable but less impressive results. Of the test images used, chart_s is a good
example of the first type of image, and airplane and molecule are good examples of the second
type. The CDF22 and CDF24 transforms have continuous, piecewise linear synthesis scaling and
wavelet functions as shown in Figures 4.4 and 4.5. Thus, one would expect them to work well for
moderately smooth images. Due to the discontinuities in the first-order derivatives of these func-
tions, however, the CDF22 and CDF24 transforms are better able to represent images with sharp
transitions than transforms with smoother basis functions. The TS transform is associated with
synthesis scaling and wavelet functions that have no large jumps but are somewhat rough. Thus, it
also performs reasonably well for images in this class.

For images characterized by much nonsmooth variation and large regions of uniform intensity,
e.g., some computer generated images, images consisting mostly of text, and some compound images,
the Haar transform is quite effective. Of the test images employed, cmpndil, cmpnd2, eafbcmpnd,

expressl, france, and library are good examples of such images. Again, this behavior is con-
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Table 4.5. Lossless compression results for 2-band transforms

CR
Image Haar TS CDF22 | CDF24 | CDF97 | V610 | MIT97 | BCW3 S+P
airl 1.403 1.447 1.468 1.461 1.468 1.464 1.476 1.476 1.480
air2 1.726 1.810 1.869 1.860 1.819 1.796 1.891 1.889 1.881
airplane 2.317 2.326 2.409 2.401 2.264 2.318 2.385 2.389 2.389
barb 1.556 1.657 1.686 1.692 1.710 1.708 1.724 1.733 1.712
bike3 1.651 1.688 1.728 1.719 1.706 1.695 1.725 1.725 1.715
chart_s 2.320 2.329 2.433 2.412 2.272 2.283 2.388 2.385 2.402
cmpnd1 4.490 3.559 3.714 3.407 2.946 2.988 3.103 3.041 3.504
cmpnd2 4.272 3.457 3.713 3.395 2.949 2.853 3.117 3.057 3.431
cr 1.864 1.909 1.930 1.928 1.919 1.924 1.924 1.928 1.911
ct 2.495 2.906 2.975 2.941 3.037 2.991 3.191 3.179 3.120
eafbcmpnd 2.445 1.701 1.851 1.706 1.475 1.480 1.524 1.501 1.697
expressi 3.133 2.239 2.515 2.388 2.003 1.953 2.187 2.161 2.263
finger 1.272 1.431 1.439 1.432 1.451 1.432 1.477 1.475 1.445
france 5.328 3.245 3.759 3.452 2.527 2.561 2.945 2.900 3.228
gold 1.588 1.633 1.675 1.670 1.655 1.658 1.675 1.676 1.662
hotel 1.623 1.639 1.687 1.684 1.667 1.665 1.686 1.687 1.672
lax 1.358 1.358 1.371 1.368 1.366 1.368 1.366 1.368 1.360
lena 1.740 1.835 1.875 1.870 1.875 1.859 1.891 1.893 1.881
library 1.460 1.371 1.401 1.382 1.337 1.337 1.352 1.347 1.359
mandrill 1.283 1.315 1.329 1.327 1.330 1.331 1.333 1.335 1.332
medical_93 2.588 2.768 2.941 2.920 2.706 2.775 3.004 2.998 2.953
molecule 3.903 3.808 4.030 4.004 3.610 3.445 3.927 3.930 3.960
mri 1.722 1.809 1.845 1.838 1.850 1.860 1.879 1.879 1.885
us 2.567 2.424 2.539 2.484 2.202 2.253 2.429 2.415 2.507
xrayl 2.696 2.857 3.103 3.088 2.812 2.751 3.156 3.155 3.092

86

sistent with the synthesis scaling and wavelet functions associated with the Haar transform. These

functions have sharp discontinuities allowing the Haar transform to represent images with many

sharp transitions.

Table 4.6 shows lossy compression results for six of the test images. Again, the best result for

each image has been highlighted. As can be seen, the above observations on transform effectiveness

also hold for the most part in the case of lossy compression. Although at very low bit rates, i.e.,

very high compression ratios, the best transform in terms of PSNR is difficult to predict, subjective

testing usually indicates little perceived difference in image quality in these cases since the distortion

is so high. For these reasons, we are mainly concerned with the lossless compression results in our

performance evaluation.

To further evaluate the lossy compression results, subjective image quality tests were performed.
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Table 4.6. Lossy compression results for 2-band transforms
PSNR (dB)

Image CR Haar TS CDF22 | CDF24 | CDF97 | V610 | MIT97 | BCW3 S+P
barb 8 32.78 34.63 34.40 34.61 35.28 35.13 35.15 35.34 34.89
16 28.69 29.98 30.21 30.47 30.62 30.81 30.62 30.91 30.13

32 25.43 26.36 26.46 26.76 26.93 26.99 26.59 26.83 26.36

64 23.56 24.13 24.04 24.17 24.77 24.22 24.08 24.23 24.38

128 22.60 23.19 23.40 23.51 23.39 23.49 23.27 23.39 23.27

chart_s 8 40.22 40.69 41.30 41.27 40.07 40.29 41.04 41.11 40.95
16 33.21 34.17 34.02 33.81 34.98 33.88 34.30 34.39 35.09

32 28.52 29.80 29.41 29.46 30.43 29.73 29.81 29.90 30.40

64 25.05 26.98 26.62 26.65 27.53 26.72 26.97 27.07 27.42

128 23.13 24.45 23.92 24.03 24.35 24.08 24.40 24.51 24.32

cmpndi 8 45.98 41.01 41.31 40.74 39.40 39.46 39.88 39.73 40.97
16 36.61 32.80 30.75 30.36 31.96 31.40 30.67 30.61 32.16

32 25.42 25.06 24.43 24.43 24.98 24.50 24.29 24.41 24.75

64 21.19 20.91 20.45 20.58 21.15 20.40 20.54 20.64 20.78

128 18.32 18.60 19.42 19.66 19.23 19.34 19.43 19.45 18.90

finger 8 26.56 30.70 29.63 29.56 31.01 29.97 30.94 31.00 30.33
16 23.74 26.93 26.08 26.17 27.06 26.55 26.80 26.94 26.81

32 22.08 23.74 22.92 23.02 23.44 23.43 23.41 23.55 23.40

64 20.28 21.02 21.21 21.20 21.16 21.74 21.36 21.53 21.04

128 19.51 20.03 19.49 19.67 19.83 19.83 19.40 19.54 20.05

lena 8 37.07 38.76 39.03 39.02 38.51 38.63 39.15 39.22 39.02
16 33.34 35.49 36.00 36.04 35.66 35.78 36.15 36.23 35.79

32 30.50 32.31 33.03 33.14 32.79 32.93 33.17 33.27 32.84

64 27.98 29.36 30.21 30.41 29.91 30.19 30.24 30.35 30.02

128 25.59 26.95 27.52 27.72 27.54 27.49 27.45 27.57 27.60

molecule 8 43.49 48.43 47.86 47.85 44.89 45.31 47.94 47.97 48.24
16 39.60 43.66 44.25 44.24 42.24 42.24 44.08 44.09 43.69

32 35.12 40.14 41.00 41.00 39.94 38.94 41.05 41.09 40.66

64 31.42 36.25 37.64 37.30 36.54 35.86 37.59 37.70 36.81

128 28.23 32.55 33.04 33.01 33.00 32.32 34.00 33.99 32.86

Of the transforms under consideration, no clear winner was identified. In most cases, the CDF22,
CDF24, CDF97, V610, MIT97, and BCW3 transforms produce comparable results. The notable

exceptions, however, are the Haar and TS transforms. The Haar transform often produces very

disturbing blocking artifacts. Also, although not as bad as the Haar transform, the TS transform

was frequently found to produce undesirable blocking artifacts. To illustrate the types of artifacts

obtained with the various transforms, an example is now given. The lena image was compressed at
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a ratio of 64:1 using each of the transforms under consideration, and then reconstructed with the
results shown in Figure 4.12. Only a portion of the image is shown in each case (enlarged slightly)
in order that the differences between the results be more clearly visible. Notice the severe blocking
artifacts obtained in the case of the Haar transform. Blocking artifacts are less pronounced in the

TS transform case, but they are still clearly visible.

(d) (e) (f)
Figure 4.12. Lossy compression example for 2-band transforms. (a) Original image. Lossy re-

construction at compression ratio of 64:1 using (b) Haar transform, (c¢) TS transform, (d} CDF22
transform, (e) CDF24 transform, and (f) CDF97 transform.
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()

Figure 4.13. Lossy compression example for 2-band transforms (continued). Lossy reconstruction
at compression ratio of 64 : 1 using (g} V610 transform, (h) MIT97 transform, (i) BCW3 transform,
and (j} S+P transform.

Now, we consider the two 4-band transforms (i.e., V4 and A4). Table 4.7 shows the lossless
compression results for six test images obtained with each of the two transforms. For each image,
the best result has been highlighted. Evidently, the V4 transform is best for images with much
nonsmooth intensity variation while the A4 transform is more effective for smooth images. These

results are, again, consistent with the shape of the synthesis scaling and wavelet functions for the
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two transforms. The synthesis scaling and wavelet functions for the V4 transform are highly dis-
continuous and consequently the V4 transform is best suited to images with many sharp intensity
changes (like cmpnd1 and eafbempnd). Similarly, the A4 transform has relatively smoother scal-
ing and wavelet functions, and is therefore more effective for smooth images (like barb, finger,
lena, and molecule). Comparing the results in Tables 4.5 and 4.7, we can see that the two 4-band

transforms are not as good as the best 2-band transforms.

Table 4.7. Lossless compression results for J-band transforms

CR

Image V4 A4

barb 1.606 1.666
cmpndi 2.699 2.328
eafbcmpnd 1.356 1.290
finger 1.409 1.430
lena 1.716 1.779
molecule 2.847 2.955

Table 4.8 shows the results obtained for the lossy compression of the same six images used above.
Again, the best result for each image has been highlighted. Evidently, these lossy results tend to

correlate reasonably well with the lossless compression results presented above.

Table 4.8. Lossy compression results for j-band transforms

PSNR (dB) PSNR (dB)
Image CR V4 A4 Image CR V4 A4
barb 8 34.02 35.75 finger 8 29.84 | 30.67
16 30.07 31.31 16 25.80 | 26.65
32 26.67 27.62 32 23.09 | 23.95
64 24.17 25.17 64 20.90 | 21.47
128 23.00 23.72 128 || 19.88 | 20.28
cmpnd1 8 36.81 36.51 lena 8 36.41 | 38.05
16 28.51 28.45 16 33.34 | 35.36
32 23.35 23.35 32 30.71 | 132.32
64 20.63 20.73 64 28.10 | 29.36
128 18.58 18.73 128 || 25.72 | 26.91
eafbcmpnd 8 22.97 22.91 molecule 8 41.62 42.55
16 17.81 17.67 16 37.28 | |41.67
32 14.15 14.33 32 33.03 | 38.95
64 13.21 13.33 64 30.64 | 34.98
128 12.17 12.32 128 || 28.18 | 31.63
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In terms of subjective lossy compression performance, the A4 transform was found to perform
better than the V4 transform. The oscillations in the scaling and wavelet functions associated with
the V4 transform lead to very noticeable checkerboarding artifacts. To demonstrate the quality
of lossy reconstructions obtained with these two transforms an example is now presented. The
lena image was compressed at a ratio of 64:1 using both the V4 and A4 transforms, and then
reconstructed yielding the results shown in Figure 4.14. The checkerboarding artifacts obtained

from the V4 transform are clearly visible.

(a) ) (©)

Figure 4.14. Lossy compression example for {-band transforms. (a) Original image. Lossy recon-

struction at compression ratio of 64 : 1 using (b} V4 transform, and (¢) A4 transform.

4.13 Full Embedding versus Partial Embedding

The image compression system discussed in Section 4.7 always produces a partially embedded bit-
stream. That is, all but the three LSBs of the transform coefficients are coded using EZW, and then
the remaining bits are coded in a very simple non-embedded fashion. In this section, we compare
the performance of this scheme to the fully embedded case. As suggested previously, the partially
embedded approach is not always the best, but in many cases it leads to improved compression
performance in lossless (or near-lossless) operation.

Recall that in some cases, reversible transforms compute scaled versions of near-orthogonal trans-
forms. In these instances, the transform coefficients must be weighted on a per subband basis in
order to correspond to a near-orthogonal transform. Since it is the weighted coefficients that are
actually coded, some subbands can never have coefficients with nonzero bits in their three LSB

positions.
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For purposes of analysis, three different reversible transforms were considered: Haar, CDF22,
and BCW3. Table 4.9 shows the lossless compression results obtained for six images using both
the partially embedded and fully embedded coding schemes. In each case, the best result (from
either partial or full embedding) is highlighted. For all three transforms, partial embedding yields
the best results for the barb, finger, and lena images while full embedding is most effective for
the chart_s, cmpndl, and molecule images. From this we can see that it is the image, and not
the transform employed, that largely determines whether partial or full embedding performs best.
Fortunately, there is a simple explanation for the above results. To see it, however, we must observe
one key difference between the two methods.

It is important to note that the choice of partial or full embedding only affects the rate-distortion
behavior at very high bit rates—typically at compression ratios less than 8. Since we are rarely
interested in lossy compression at such low compression ratios, the difference in lossy results is of
little concern.

In both the partially and fully embedded cases, the first part of the bitstream is coded using
the EZW scheme. The difference in the two approaches is what happens once the third LSB of the
transform coefficients is reached. In the fully embedded case, nothing changes, and the EZW scheme
is used to code the rest of the coefficient bits. With the partially embedded approach, the remaining
bits of the transform coefficients are coded explicitly. There is one fundamental difference between
the two approaches: When partial embedding is employed, all of the remaining (i.e., uncoded)
transform coefficient bits must be coded explicitly. In the case of full embedding, however, not all
of the remaining bits necessarily need to be coded. This is because EZW only ever codes nonzero
coefficients. Thus, if a large number of the remaining bits correspond to zero-valued coefficients,
very little additional information needs to be output. Also, EZW has the property that it can very
efficiently encode trees of zero bits. Thus, even if the remaining uncoded bits correspond to nonzero
coeflicient values, so long as these bits are mostly zero, EZW can encode them extremely efficiently.
Thus, one might speculate that full embedding would perform better in cases where the three LSBs
of the transform coefficients tend to be zero. Otherwise, the partially embedded approach would
likely be more effective.

As will now be demonstrated, numerical results confirm the above hypothesis. In other words,
full embedding does perform better than partial embedding in cases where the three LSBs of the
transform coefficients are mostly all zero. Table 4.10 shows how many of the transform coefficients
have their three LSBs equal to zero for each image/transform pair. Clearly, the images for which
full embedding is best (i.e., chart_s, cmpndl, molecule) have a large percentage of transform
coefficients with their three LSBs all zero, typically, more than 40%. The other images (i.e., barb,
finger, lena) for which partial embedding is more effective have a much lower percentage of such
coefficients. This suggests a further refinement for the image coder. One could easily choose between
full and partial embedding on the basis of how many transform coefficients have their three LSBs
all equal to zero. If more than 40% of the coefficients satisfy this condition, full embedding would
be selected; otherwise, partial embedding would be used. Although one additional bit in the output
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stream 1s required to differentiate between the partially and fully embedded cases, the potential

savings are far more significant.

Table 4.9. Lossless compression results for full versus partial embedding

CR
Haar CDF22 BCwW3
Image Full Partial Full Partial Full Partial
barb 1.548 1.556 1.669 1.686 1.715 1.733
chart_s 2.366 2.320 2.449 2.433 2.395 2.385
cmpnd1 4.819 4.490 3.817 3.714 3.074 3.041
finger 1.270 1.272 1.435 1.439 1.472 1.475
lena 1.730 1.740 1.858 1.875 1.874 1.893
molecule 4.130 3.903 4.231 4.030 4.097 3.930

Table 4.10. Fraction of transforms coefficients with all three LSBs equal to zero

“Zero” Coefficients (%)
Image Haar | CDF22 | BCW3
barb 14.84 26.24 26.45
chart_s 44.78 50.14 48.05
cmpnd1 77.33 78.55 70.72
finger 12.52 25.34 25.35
lena 15.76 26.57 26.33
molecule || 72.25 69.43 67.59

4.14 Periodic Extension versus Symmetric Extension

Periodic extension and symmetric extension were previously discussed as a means for handling
finite-length signals. In the case of linear transforms, symmetric extension is known to generally
yield better compression results than periodic extension. As one might expect, this behavior carries
over to nonlinear reversible transforms. Since reversible transforms well approximate their parent
linear transforms, this behavior is inherited from the linear case. Experimental results to support
this assertion will now be presented.

For the purposes of this analysis, two symmetry-preserving reversible transforms were considered:
CDF22 and BCW3. These transforms were used in conjunction with both periodic extension and
symmetric extension to compress six test images in a lossy and lossless manner. The compression
results were then used to assess the relative merits of the two extension techniques.

The six test images used consisted of the following: barb, chart_s, cmpndi, finger, lena, and

molecule. This set of images was chosen so that both smooth and nonsmooth image types were
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represented, and also so that some images had dimensions that would result in expansive transforms
for the periodic extension case. Of the various images, chart_s and molecule result in expansive
transforms in the periodic extension case while the others are nonexpansive.

At this point we recall the two primary advantages of symmetric extension over periodic exten-

slon:

1. Symmetric extension does not introduce jump discontinuities in the extended signal, while
periodic extension does have the potential to do this. Such discontinuities are undesirable as

they increase the amount of high frequency energy in the signal.

2. Symmetric extension allows for nonexpansive transforms for arbitrary length signals while

periodic extension can result in expansive transforms.

Thus, there are two reasons we might expect to obtain better compression results with symmetric
extension. Considering the test images used, we would expect that the smooth images (i.e., barb,
finger, lena, molecule) would benefit from point (1) above, while the images that have “bad”
dimensions (i.e., chart_s and molecule) would benefit from point (2). With these observations in
mind, we now examine the compression results obtained with the two different extension methods.

The results for the lossless compression of the test images are given in Table 4.11. Symmetric
extension performs significantly better than periodic extension for all of the test images except the
cmpndl image where the two methods yield essentially the same result.

The chart_s image is not particularly smooth and has an expansive transform in the periodic
extension case. Thus, we would expect this image to benefit the most from point (2) above. Similarly,
the lena image is very smooth, and does not have an expansive transform. Thus, we would expect
this image to benefit mostly from point (1) above. Clearly, however, the lena image benefits
much more from symmetric extension than the chart_s image. Therefore, it would appear that
expansiveness does not significantly affect compression performance. In fact, smooth images tend
to benefit much more from the use of symmetric extension than images with dimensions that lead
to expansive transforms.

Lossy compression results for the same six test images are shown in Table 4.12. In the vast
majority of cases, the results obtained with symmetric extension are either clearly better than, or
comparable to those obtained with periodic extension. Again, we observe that smooth images such
as lena tend to benefit much more from symmetric extension than images that have expansive
transforms in the periodic extension case.

In terms of subjective image quality, symmetric extension very frequently leads to better results
than periodic extension at low bit rates. In particular, the use of periodic extension often leads to
disturbing artifacts at the edges of the reconstructed image. To demonstrate this effect, the lena
image was reconstructed at a compression ratio of 64:1 using both periodic extension and symmetric
extension. The results are shown in Figure 4.15. In order for the artifacts to be clearly visible, only
part of the right edge of the image is shown under magnification. Clearly, in the periodic extension
case we have a very annoying artifact that is not present at all in the symmetric extension case.

This poor behavior at image edges is typical of periodic extension.
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Smooth images would tend to benefit most from the first advantage of symmetric extension given
above. Tmages with “bad” dimensions (i.e., dimensions that result in an expansive transform with
periodic extension) benefit from the second advantage. Clearly, from the results we can see that
smooth images (e.g., lena) tend to benefit the most from symmetric extension regardless of the
expansiveness issue. One can therefore conclude that from a compression performance standpoint,
expansiveness is not a serious problem. The introduction of undesirable high frequency components
by periodic extension is far more problematic.

One further issue concerning expansiveness, however, must not be overlooked. Although expan-
siveness does not significantly degrade compression performance, it does have a number of detri-
mental effects on coder complexity. When periodic extension is used, additional rows and columns
are added on an “as needed” basis in order to handle the expansive cases. This, however, results in
padding entries in the matrix of transform coefficients. Due to these padding elements, the coeffi-
cients for the various subbands are more difficult to locate, and coder complexity suffers. Of course,
one could instead perform all padding on the image initially, but this also leads to much more expan-
sive transforms and is therefore undesirable. In addition, expansive transforms cannot generally be
calculated in place (at least in a strict sense). Therefore, we have a compelling argument for wanting
to use symmetric extension. By avoiding all of the complications caused by expansiveness, we are
able to build much simpler image coders. Of course, all other things being equal, a less complex
coder will also be faster.

Therefore, we conclude that even in the case of (nonlinear) reversible transforms, symmetric
extension is clearly superior to periodic extension. Since symmetric extension can only be used in
conjunction with symmetry-preserving transforms, this provides a very strong motivation for the
use of such transforms. In fact, aside from the Haar transform (which is so simple to compute),
it 1s hard to justify the use of any other reversible transform that cannot be used with symmetric
extension. Thus, the design of reversible transforms with the symmetry-preserving property is

preferred whenever possible.

Table 4.11. Lossless compression results for periodic versus symmetric extension

CR
CDF22 BCW3
Image PE SE PE SE
barb 1.680 1.686 1.726 1.733
chart_s 2.431 2.433 2.379 2.385
cmpnd1 3.715 3.714 3.041 3.041
finger 1.438 1.439 1.474 1.475
lena 1.865 1.875 1.881 1.893
molecule 3.978 4.030 3.868 3.930
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Table 4.12. Lossy compression results for periodic versus symmetric extension

PSNR (dB)
CDF22 BCW3
Image CR | PE SE PE SE
barb 8 || 34.34 | 3440 || 35.26 | 35.34

16 30.15 30.21 30.81 30.91
32 26.36 26.46 26.72 26.83
64 23.93 24.04 24.12 24.23
128 23.26 23.40 23.29 23.39
chart_s 8 41.30 41.30 41.08 41.11
16 34.03 34.02 34.32 34.39
32 29.41 29.41 29.85 29.90
64 26.64 26.62 27.03 27.07
128 23.92 23.92 24.47 24.51
cmpnd1 8 41.31 41.31 39.73 39.73
16 30.76 30.75 30.62 30.61
32 24.43 24.43 24.42 24.41
64 20.46 20.45 20.64 20.64
128 19.45 19.42 19.45 19.45
finger 8 29.61 29.63 30.98 31.00
16 26.07 26.08 26.91 30.61
32 22.92 22.92 23.56 24.41
64 21.23 21.21 21.55 20.64
128 19.52 19.49 19.56 19.45
lena 8 38.94 39.03 39.08 39.22
16 35.91 36.00 36.10 36.23
32 32.88 33.03 33.08 33.27
64 29.95 30.21 30.06 30.35
128 27.25 27.52 27.21 27.57
molecule 8 47.79 47.86 47.89 47.97
16 44.20 44.25 43.99 44.09
32 40.77 41.00 40.89 41.09
64 36.84 37.64 37.39 37.70
128 32.55 33.04 33.16 33.99

4.15 Multi-Transform Approach to Image Compression

In transform-based image compression systems, compression performance is highly dependent on
the effectiveness of the decorrelating transform employed. Unfortunately, transform effectiveness
is inherently signal-dependent, and consequently no single transform yields the best results for all

classes of images. The results of the reversible transform performance evaluation presented earlier
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(a) (b) (c)

Figure 4.15. Lossy compression ezample. (a) Original image. Lossy reconstruction at compression

ratio of 64 : 1 using (b) periodic extension, and (c¢) symmetric extension.

well demonstrate this fact. In spite of the fact that no single transform is optimal for all classes of
images, many image compression systems utilize a single fixed transform for decorrelation purposes.

Since no single transform is optimal for all classes of images, there are obvious benefits to utilizing
more than one transform in an image coding system. By allowing the use of more than one transform,
additional freedom exists to choose a transform that is well suited to a particular image. There are,
however, two difficulties associated with such a scheme. The first problem is deciding upon a set of
candidate transforms which can potentially be used during the coding process. The second problem,
and also the more difficult one, is to find efficient and reliable methods for selecting an appropriate
transform to use for a given image from a particular set of candidate transforms.

Before the development of lifting-based design techniques for reversible transforms, such trans-
forms were constructed by ad hoc methods that are difficult to generalize. For this reason, reversible
transforms were traditionally very difficult to design, and few good reversible transforms were known.
This made a multi-transform approach unattractive as there were very few transforms from which
to choose in constructing a candidate set to be used by the image coder. With lifting-based de-
sign techniques, however, reversible versions of most linear M-band subband transforms can be
constructed. Thus, we are now able to exploit the large body of linear subband transforms that
are known to work so well for image compression. With so many excellent reversible transforms at

our disposal, is it possible to seriously consider a multi-transform approach to reversible embedded
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image compression. Since so many good linear subband transforms are known, it is relatively easy
to produce reversible transforms that work well for particular classes of images. In fact, we can even
custom design reversible transforms for particular classes of images, and then use these transforms
to form the candidate set. With several performant transforms from which to choose, we can often
select a better transform, thus, improving compression performance.

We now propose a simple multi-transform approach to reversible embedded image compression.
With this scheme, the decorrelating transform employed by the image coder is selected on a per-image
basis from a candidate set of transforms using image-specific characteristics. By using image-specific
information in the selection process, a transform well suited to a particular image can be chosen. In
this fashion, we can best exploit the strengths of each transform in the candidate set. Although this
thesis 1s concerned only with reversible embedded image compression, the scope of applicability of
the proposed method is potentially much larger. There is nothing to prevent these ideas from being
used for purely lossless compression or even strictly lossy compression with linear versions of the
transforms described.

Having decided to use a multi-transform approach, one must choose a candidate set of transforms
to be employed by the codec. Initially, the ten reversible versions in Table 4.1 and the S+P transform
were considered as potential members of the candidate set. With the exception of the S+P transform,
all of these transforms were designed using the lifting-based method discussed earlier. The selection
of the candidate set was driven by several considerations. For a transform to be accepted as a member

of the candidate set, the transform should have some or all of the following desirable properties:

1. The transform should yield good lossless compression results and reasonably good lossy results
both subjectively and objectively for some reasonably large class of images.

2. It should be possible to calculate the transform using only fixed-point arithmetic. Since fixed-
point arithmetic is inherently simpler and faster than floating-point arithmetic, transforms that
can be calculated using only fixed-point arithmetic have a clear cost/performance advantage.
Also for reasons of cross-platform portability, the use of floating-point arithmetic is undesirable.
For example, different platforms may have subtle differences (or even bugs) in their floating-

point implementations that could cause lossless compression to become lossy.

3. The transform should be nonexpansive for images of arbitrary size. The nonexpansive property
eliminates undesirable growth in the forward transform coefficient count, simplifies the process
of locating subbands in the transformed image as no padding is present, and helps to facilitate
in-place calculation. Moreover, numerous complications can arise when an expansive transform
is employed in an image coding system. These complications often lead to increased coder
complexity and can simply be avoided by using nonexpansive transforms.

4. The transform should allow in-place calculation. In-place calculation leads to improved mem-

ory efficiency and often better time efficiency as well.

The first two criteria were considered essential. The last two were considered highly desirable,
but were not a requirement. Also, not only must the individual transforms chosen have desirable

characteristics, but together the transforms of the candidate set must have good coverage of the
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types of images likely to be encountered in practice. That is, for any given image, there should be
at least one transform in the candidate set that is reasonably well suited to the image.

In an earlier section, we saw that the smoothness and uniformity of an image largely determine
transform effectiveness. Moreover, three different classes of images were identified along with the
transform that is most effective for images from each class. To briefly restate these results, we found
that

1. for images characterized by very smooth intensity variations, the BCW3 transform is usually
most effective;

2. for 1mages with moderate amounts of nonsmooth intensity variation and smoothly varying
images with very large regions of uniform intensity, the CDF22 transform is typically best;

3. for images characterized by much nonsmooth intensity variation, the Haar transform is quite

effective.

These results suggest that we might consider a candidate set consisting of the BCW3, CDF22, and
Haar transforms. As luck would have it, the BCW3 and CDF22 transforms have all four desired
properties for any transform to be used in the candidate set. The Haar transform, however, does
not meet all of these criteria as it can be expansive and often yields poor subjective results for
lossy compression. In spite of the disadvantages of the Haar transform, its simplicity and excellent
lossless performance for highly nonsmooth images are felt to make its use justifiable. Together, the
BCW3, CDF22, and Haar transforms provide good coverage of most types of images likely to be
encountered in practice. That is, most images fall into one of the three categories handled by these
transforms. All of the above facts taken together lead naturally to a candidate set consisting of the
BCW3, CDF22, and Haar transforms.

Earlier observations made immediately suggest two characteristics of an image that could be

used for transform selection:
1. The smoothness of intensity variations in an image.
2. The proportion of an image constituted by regions of uniform (i.e., constant) intensity.

In order to use these two characteristics for transform selection, we require a quantitative measure
of these characteristics. To measure both smoothness and uniformity, two simple statistics based on
first-order differences were used. Suppose that we are given an image where the pixels may assume
values from the set {0,1,..., R— 1}. The differences between adjacent pixels in the horizontal and
vertical directions are sampled as depicted in Figure 4.16. For convenience, denote these differences

as d; for 1 =0,1,..., N — 1. From these differences, we define the smoothness measure
s = 100N /N (4.1)

where N is the number of d; satisfying |d;| > R/2. This metric can assume values on the interval
[0, 100] with smaller values corresponding to greater smoothness. Similarly, we define the uniformity

measure

u = 100N, /N (4.2)
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where N, is the number of d; satisfying d; = 0. With this metric, a larger value corresponds to

greater uniformity.

Figure 4.16. Pairs of pizels used in difference calculations.

Given a particular image to be compressed, we first calculate the smoothness metric s and
uniformity metric u for the image as defined by (4.1) and (4.2), and then we select the decorrelating

transform to use as indicated in Table 4.13. This selection process does not incur too much additional

Table 4.13. Transform selection criteria

Condition Transform
0<u<20and 0<s<0.25 BCW3
20 <u <40 and s < —0.01u+ 0.45
40<u< 7 and 0<s<0.05
0<u<25and 5<s<100 Haar
25 <u< 50 and 2 < s <100
50 < u <100 and 1 < s < 100

otherwise CDF22

overhead as it requires only a fraction (approximately one-eighth) of the computation necessary for
a single-level Haar wavelet decomposition.

As mentioned previously, the Haar transform is known for often introducing undesirable artifacts
when used for lossy compression. If such artifacts are unacceptable for a particular application, the
CDF22 transform can be used in place of the Haar transform. In almost all observed cases, if the
Haar transform performs better than the BCW3 transform, the CDF22 transform will also lead to
better results than the BCW3 transform.

In order to evaluate the effectiveness of the proposed method, it was employed in the reversible
embedded image compression system described in Section 4.7. For test data, a suite of approxi-
mately 75 grayscale images was used, representing images with a wide assortment of sizes and of

many different types (e.g., photographs, computer generated images, compound images, images with
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intermixed text and graphics, medical images, etc.). Here, the compression results obtained for a
representative subset of these images are presented. This subset consists of twenty-five images taken
from those listed in Table B.1. For more information about these images, see Appendix B.

Each of the 25 test images was coded in a lossless manner and the results obtained are shown in
Table 4.14. The results for each individual transform (i.e., Haar, CDF22, CDF24, MIT97, BCW3,
S+P) are given along with the results obtained with our proposed scheme. Since our method can be
used both with and without the Haar transform, two sets of results are provided for this method.
For each image, the result associated with the transform selected by our method is highlighted. As
is evident from these numbers, the proposed method yields better results than those obtained with

any of the other permissible transforms individually.

Table 4.14. Lossless compression results for multi-transform scheme

Compression Ratio
Proposed Method

Image Haar CDF22 | CDF24 | CDF97 | MIT97 | BCW3 | S+P | with/without Haar
airl 1.403 1.468 1.461 1.468 1.476 1.476 1.480 1.476
air?2 1.726 1.869 1.860 1.819 1.891 1.889 1.881 1.889
airplane 2.317 2.409 2.401 2.264 2.385 2.389 2.389 2.409
barb 1.556 1.686 1.692 1.710 1.724 1.733 1.712 1.733
bike3 1.651 1.728 1.719 1.706 1.725 1.725 1.715 1.728
chart_s 2.320 2.433 2.412 2.272 2.388 2.385 2.402 2.433
cmpndi 4.490 3.714 3.407 2.946 3.103 3.041 3.504 4.490/3.714
cmpnd?2 4.272 3.713 3.395 2.949 3.117 3.057 3.431 4.272/3.713
cr 1.864 1.930 1.928 1.919 1.924 1.928 1.911 1.928

ct 2.495 2.975 2.941 3.037 3.191 3.179 3.120 3.179
eafbcmpnd 2.445 1.851 1.706 1.475 1.524 1.501 1.697 2.445/1.851
expressi 3.133 2.515 2.388 2.003 2.187 2.161 2.263 3.133/2.515
finger 1.272 1.439 1.432 1.451 1.477 1.475 1.445 1.475
france 5.328 3.759 3.452 2.527 2.945 2.900 3.228 5.328/3.759
gold 1.588 1.675 1.670 1.655 1.675 1.676 1.662 1.676
hotel 1.623 1.687 1.684 1.667 1.686 1.687 1.672 1.687
lax 1.358 1.371 1.368 1.366 1.366 1.368 1.360 1.368
lena 1.740 1.875 1.870 1.875 1.891 1.893 1.881 1.893
library 1.460 1.401 1.382 1.337 1.352 1.347 1.359 1.460/1.401
mandrill 1.283 1.329 1.327 1.330 1.333 1.335 1.332 1.335
medical_93 2.588 2.941 2.920 2.706 3.004 2.998 2.953 2.998
molecule 3.903 4.030 4.004 3.610 3.927 3.930 3.960 4.030
nri 1.722 1.845 1.838 1.850 1.879 1.879 1.885 1.879
us 2.567 2.539 2.484 2.202 2.429 2.415 2.507 2.567/2.539
xrayl 2.696 3.103 3.088 2.812 3.156 3.155 3.092 3.103
Mean 2.352 2.291 2.233 2.078 2.190 2.180 2.234 2.477/2.308
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Although the results presented are for an EZW-based coder, similar results have also been ob-
tained with the SPTHT coding scheme described in [37]. In this regard, the effectiveness of our
method is somewhat independent of the coding scheme employed.

From the above results, we can see that the proposed method is quite effective despite its sim-
plicity, yielding better compression results than are obtained by the use of a single fixed transform.
By selecting the decorrelating transform on a per image basis using image-specific statistics, we are
able to choose a more effective transform, thus, obtaining improved compression performance. Al-
though some additional computational overhead is incurred by the transform selection process, this

overhead is relatively small. Moreover, the selection algorithm itself is extremely easy to implement.

4.16 Summary

We began the chapter with a brief introduction to image compression. This led to the discussion
of transform-based compression systems and the motivation for their use. Next, measures for lossy
and lossless compression performance were presented. Reversible embedded image compression was
introduced and its merits described. Next, the EZW scheme was briefly presented as an example of
an embedded coding technique. This led to a brief discussion of the particular EZW-based image
coder used to obtain most of the results in this thesis. Next, wavelet transforms were discussed
in the context of image compression. The advantages of using wavelet transforms over other more
traditional transforms such as the DCT were presented.

Several 2-band linear wavelet transforms known to be effective for image compression were pre-
sented along with two 4-band linear wavelet transforms—mnone of these transforms being reversible.
Reversible versions of these transforms were then constructed using the lifting-based method de-
scribed 1n the previous chapter. The reversible transforms were then employed in our EZW-based
image compression system and their effectiveness evaluated. Both the cases of lossy and lossless
compression were considered. The merits of full versus partial embedding and periodic versus sym-
metric extension were also studied. Based on the observations made previously in the chapter, a

multi-transform approach to image compression was proposed.

4.17 Conclusions

This chapter presented numerous new results regarding reverisble embedded image compression.
Here, we briefly summarize these contributions.

Several reversible transforms were evaluated in terms of their effectiveness for image compression.
This led to many useful observations as to which transforms are most effective for various classes
of images and what types of artifacts are obtained from the various transforms when employed for

lossy compression. Some of these observations are as follows:

e For images characterized by very smooth intensity variations and lacking very large areas of

uniform intensity, the BCW3 transform performs best overall for lossy and lossless compression.
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e For images with moderate amounts of nonsmooth variation and smoothly varying images with
very large regions of uniform intensity, the CDF22 transform is typically best for lossy and

lossless compression.

e For images characterized by much nonsmooth variation and large regions of uniform intensity,
the Haar transform is extremely effective for lossless compression. This said, however, the

subjective quality of lossy compression results are often poor.

Of the two 4-band transforms studied, the A4 transform is comparable to some of the 2-band
transforms, but not as good as the best of the 2-band transforms. The V4 transform fares very
poorly due to the highly discontinuous synthesis basis functions associated with it.

Compression results obtained using periodic extension and symmetric extension were compared,
and symmetric extension was found to be clearly superior (as is in the linear transform case).
Symmetric extension has the advantages of not introducing jump discontinuities in the extended
signal and also allowing the construction of nonexpansive transforms for signals of arbitrary length.
Of these two advantages, the first was found to be more significant from a compression performance
viewpoint, and the second was found to be more important from a coder complexity viewpoint.
Since symmetric extension can only be used in conjunction with symmetry-preserving transforms,
reversible transforms with this property are clearly very desirable.

The relative merits of full versus partial embedding were also studied. The fully embedded
approach used the EZW scheme to completely code all of the transform coefficient bits. The partially
embedded approach used the EZW scheme until the three LSBs of the transform coefficients were
reached, and then the remaining bits were coded in a very simple nonembedded manner. Although
some images benefit significantly from the use of a partially embedded bitstream, this was found
not to be true in all cases, particularly for some noiseless computer-generated images. Furthermore,
it was observed that one could use the transform coefficients in order to accurately predict which
coding scheme is most effective. By measuring the fraction of transform coefficients with all zeros in
the 3 LSB positions, one can easily predict whether full or partial embedding is likely to work best.

In this chapter, a multi-transform approach to image compression was proposed. With this
scheme, the decorrelating transform employed by the image coder is selected from a set of candidate
transforms based on image-specific characteristics. The transform selection algorithm incurs rela-
tively little additional overhead, yet significantly improves compression results. This demonstrates
that it is possible to achieve improved compression performance by judicious choice of decorrelating
transform, and that such transform selection can be done without incurring objectionable amounts

of additional computation.
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Finally, the numerical results presented throughout this chapter demonstrate that the EZW cod-
ing scheme can be used to good effect for lossless image compression. Only a few minor modifications

to the EZW coding scheme, were needed (as outlined previously) in order to accomplish this.

| was gratified to be able to answer promptly, and | did. | said | didn't know.

—NMark Twain



105

Chapter 5

Conclusions and Future Research

| dread success. To have succeeded is to have finished one's business on earth, like the
male spider, who is killed by the female the moment he has succeeded in his courtship.
| like a state of continual becoming, with a goal in front and not behind.

—George Bernard Shaw

5.1 Overview

This thesis has studied the design and implementation of reversible wavelet transforms and their
application to reversible embedded image compression. In summary, the first part of the thesis
focused mainly on the reversible transforms themselves, while the remaining portion considered their
use in reversible embedded image compression systems. In accordance with this logical partitioning,
the contributions made by this thesis can be categorized as either pertaining to reversible transforms

or image compression. These contributions are summarized in the two sections that follow.

5.2 Reversible Transforms

By generalizing the lifting realization to the M-band case, we were able to extend the design method
in [10] so that reversible versions of any M-band transform (for arbitrary M) can be produced. Also,
for completeness, realizations based on both type 1/2 and type 3/4 polyphase forms are considered.

Using the extended design method, reversible versions of numerous transforms were constructed.
Through numerical results it was demonstrated that this lifting-based design method can produce
reversible transforms that well approximate their parent linear transforms. Similarly, 1t was shown
that the type of filtering structure produced by this design method is ideally suited to implemen-
tation using only fixed-point arithmetic. This result is important because it implies that reversible
transforms derived from lifting can be implemented much more efficiently using fixed-point instead
of floating-point arithmetic.

The lifting-based reversible transform design method involves finding a lifting factorization of
the polyphase matrix of a QMF bank. A simple, yet effective, software-based algorithm for finding
good lifting factorizations in the AM-band case was proposed. This technique addresses numerical ill-
conditioning problems that can arise during the factorization process. Having a software algorithm

for calculating lifting factorizations in the M-band case (for M > 2) is practically very useful since



5. Conclusions and Future Research 106

computation by hand would be extremely tedious for all but trivial, and therefore useless, sets of
filters.

Some well-known reversible transforms such as the S4P transform do not quite fit into the lifting
framework. Combiningideas from the S+P transform and lifting, a new and more general framework
for reversible transform construction was proposed. This new framework is beneficial as it provides
a more flexible approach for the design of reversible transforms and is capable of generating an
even larger class of reversible transforms than those derived with lifting alone. For example, we can

generate reversible versions of transforms based on QMF banks with IIR filters.

5.3 Reversible Embedded Image Compression

In this research, a reversible embedded image compression system based on the EZW coding scheme
was used to obtain most results. Some modifications were made to the EZW coding scheme as
originally proposed by Shapiro [41] in order to adapt it to handling M-band transforms, arbitrary-
sized images, and reversible coding. Moreover, the modified coding scheme is partially embedded.
At high bit rates, the coder switches to a simple residual coding method. This achieves better lossless
compression ratios for many images. Further experimentation, however, suggested that even better
performance could be achieved by choosing between full and partial embedding based on the values
of the transform coefficients being coded. Through the numerical results presented, it is clear that
the EZW scheme is highly effective for reversible coding. And, in fact, the price paid for reversibility
is not too high as lossy compression results are still very close to those given in Shapiro’s original
paper on EZW [41].

Several reversible 2-band wavelet transforms were studied in the context of both lossless and lossy
compression, namely, the Haar, TS, CDF22, CDF24, CDF97, V610, MIT97, and BCW3 transforms.
Of the transforms considered, the CDF22 and BCW3 transforms were found to be most effective for
lossy and lossless compression of nonsmooth and smooth images, respectively. The Haar transform
is also extremely effective for the compression of highly nonsmooth images, but its subjective lossy
performance is often very poor.

The observations made on the effectiveness of the various reversible transforms for different
classes of images led to the proposal of a multi-transform approach to image compression. In
this approach, the transform employed by the image codec is selected on a per image basis using
simple image-based statistics. The selection method incurs very little additional overhead and is
trivial to implement. By selecting the most appropriate transform for the image at hand, improved
compression performance is achieved. Despite the simplicity of the technique, it works very well.
Similar results were also obtained with a SPIHT based codec, so this multi-transform approach is
at least somewhat independent of the coding scheme employed.

Two reversible 4-band wavelet transforms were also considered in the thesis, namely the V4
and A4 transforms. The results obtained with these two transforms tended to be inferior to those

obtained with the best of the 2-band transforms considered. The 4-band transforms do not have
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very smooth synthesis scaling/wavelet functions, and this is believed to be a significant contributing
factor to the poor results. The results obtained with these transforms, however, did demonstrate
that the lifting-based reversible transform design method can be applied to M-band transforms to
good effect. Whether M-band transforms can ultimately outperform 2-band transforms remains to

be seen.

5.4 Future Research

Although this thesis has made some useful contributions towards improved reversible transforms and
reversible embedded image compression systems, there are still many areas that could potentially

benefit from further research. Some of these areas include the following:

e The motivation behind a multi-transform approach to image compression is simply to improve
compression performance by selecting the transform best suited to a particular image. The
multi-transform technique proposed earlier in this thesis applies the same transform to the
entire image. Such an approach can not adequately handle images with characteristics that
vary greatly in different regions (e.g., compound images). It is highly likely that improved
compression performance can be achieved by segmenting an image (into homogeneous regions)
and then applying (possibly) different transforms to each subregion. For such an approach to
be feasible, fast and effective segmentation algorithms and transform selection schemes would
need to be devised.

e Yet another possibility for improving transform effectiveness is to develop spatially varying
transforms. In this case, a single transform is applied to the entire image, but the transform
adapts itself to the spatially varying statistics of the image. Lifted transforms lend themselves
particularly well to such a scheme.

e The transforms discussed in this thesis are most appropriate for multi-level images. Often,
however, compression systems must also be able to handle bi-level images. Thus, building
high-performance transforms for bi-level images would be a useful endeavor. As a starting
point, one might consider some recent work by Swanson and Tewfik [47] which considers
generalizations of wavelet transforms over finite fields for handling bi-level images.

e Most research efforts to date have focused on separable transforms. Although such transforms
are computationally more efficient than their nonseparable counterparts, they have the disad-
vantage of having severe axial dependencies. By using nonseparable transforms, this problem
can be reduced. Lifting may prove beneficial in this context as it may lead to improved design
techniques and more efficient implementation strategies for nonseparable transforms. More-
over, 1t may be possible to extend the methods discussed in this thesis in order to construct
reversible nonseparable transforms.

e While 2-band wavelet transforms have been exhaustively studied, M-band wavelet transforms
(with M > 2) have not been as widely researched. There are, however, some good reasons to

believe that M-band transforms may be more effective for signal compression. One desirable
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feature of M-band wavelet systems is that it is possible to have orthogonality with symmetric,
finitely-supported scaling/wavelet functions. This is not possible with 2-band systems except
for the trivial case of the Haar and other Haar-like transforms. Futher work on developing

better M-band wavelet transforms would be beneficial.

e Often a reversible transform is constructed to calculate a scaled version of its parent linear
transform. It has been observed, however, that one particular scaling doesn’t lead to the best
compression results in all cases. Therefore, one might want to consider a scheme where the

scaling is chosen based on the characteristics of a particular image.

e This thesis has dealt exclusively with the compression of grayscale images. An increasing
number of applications today, however, use multi-component (e.g., color) images. Effective
means for applying transform techniques to such images would be beneficial. Moreover, good
embedded coding techniques for multi-component images 1s an area that would benefit from

further research.

5.5 Closing Remarks

Reversible embedded image coding provides a convenient framework for building unified lossy /lossless
image compression systems. Moreover, the embedded nature of the compressed bitstream is very
attractive in many applications. This thesis has striven to make contributions in both the ar-
eas of reversible transforms and reversible embedded image compression. By exploiting the ideas
presented herein, new reversible embedded image compression systems with improved compression
performance can be built. Thus, this research can benefit the many applications in which images

are stored and communicated, for example, image database retrieval and image archiving.

My pen is at the bottom of a page,
Which, being finished, here the story ends;
'"Tis to be wished it had been sooner done,

But stories somehow lengthen when begun.

—Byron
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Appendix A

Proofs

It is by the fortune of God that, in this country, we have three benefits: freedom of

speech, freedom of thought, and the wisdom never to use either.

—NMark Twain

A.1 Proof of Theorem 2.1

First, let us consider the effects of transforming the analysis filters. We begin by making the following

observations:

1. For both type 1/2 and type 3/4 systems, multiplying the analysis filter transfer functions by
B0 multiplies the analysis polyphase matrix by &g.

2. For type 1/2 systems, multiplying the analysis filter transfer functions by 2~ circularly shifts
the analysis polyphase matrix one column to the right and multiplies the wrapped column by

z~'. This is equivalent to postmultiplying the analysis polyphase matrix by

0 Iy,
271 0

Multiplying the analysis filter transfer functions by z instead of z=! simply postmultiplies the
analysis polyphase matrix by the inverse of the above matrix.

I circularly shifts

3. For type 3/4 systems, multiplying the analysis filter transfer functions by z~
the analysis polyphase matrix one column to the left and multiplies the wrapped column by

z~1. In other words, the analysis polyphase matrix is postmultiplied by

0 271
Iy O

Multiplying the analysis filter transfer functions by z instead of z~! simply postmultiplies the

analysis polyphase matrix by the inverse of the above matrix.
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Using (1) and by repeatedly using (2) and (3) Lo times, we find that multiplying the analysis filter

transfer functions by Gpz~%° postmultiplies the analysis polyphase matrix by

- 4 Lo
0 Iy
Bo M type 172
21 0
- S Lo
0 21
o type 3/4
Iy_. O

Thus, the old and new analysis polyphase matrices are related as specified in the theorem.

Now, let us consider the effects of transforming the synthesis filters. We start by making the

following observations:

1. For both type 1/2 and type 3/4 systems, multiplying the synthesis filter transfer functions by

2. For type 1/2 systems, multiplying the synthesis filter transfer functions by z~

(1 multiplies the synthesis polyphase matrix by ;.

I circularly shifts

the synthesis polyphase matrix upwards by one row and multiplies the wrapped row by z~'.

This is equivalent to premultiplying the synthesis polyphase matrix by

Multiplying the synthesis filter transfer functions by z instead of z=! simply premultiplies the

synthesis polyphase matrix by the inverse of the above matrix.
. For type 3/4 systems, multiplying the synthesis filter transfer functions by z~! circularly shifts
the synthesis polyphase matrix one row downwards and multiplies the wrapped column by z~ 1.

In other words, the synthesis polyphase matrix is premultiplied by

0 271
Iy O

Multiplying the synthesis filter transfer functions by z instead of z=! simply premultiplies the

synthesis polyphase matrix by the inverse of the above matrix.

Using (1) and by repeatedly using (2) and (3) Ly times, we have that multiplying the synthesis filter

transfer functions by ;2= premultiplies the synthesis polyphase matrix by

- - L.
0 Iy
B M type 172
21 0
- S L1
0 21
o type 3/4
Iy_. O

Thus, the old and new synthesis polyphase matrices are related as specified in the theorem. This

completes the proof. |
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A.2 Proof of Theorem 2.2

By definition, a QMF bank has the PR property if and only if it is alias-free with a distortion
function that is a pure delay. A QMF bank is alias-free, however, if and only if P(z) has the form

- iy
M-1
0 Iy,
Pi(2) ) type 1/2
pe={= 0 (A1)
z) = - -
M-l 0 z~1 ’
Pi(2) type 3/4
k=0 | Iv—1 0 |

That is, P(z) is a right pseudocirculant matrix for a type 1/2 system and a left pseudocirculant

matrix for a type 3/4 system. Furthermore, such an alias-free system has the distortion function

T(z) =< a1 k=0 (A.2)
2 Py (M) type 3/4

If we now assume that the system is PR, we also have that T'(z) is of the form
T(z) =2z7"

where « is an integer. This implies that in (A.2) exactly one of the Py(z), say P,(%), is nonzero and

has the form

- a7
0 Iy_
Pl 1Y M-t type 1/2
271 0
P(z)= = o (A.3)
0 271
27 Iy type 3/4
Iy O

Now we observe that




So from (A.3) we have

r 4 ML4n
0 Iy_
M-t type 1/2
271 0
=9r 1 ML+n
0 271
type 3/4
Iy O
- K
0 Iy_
M-t type 1/2
271 0
= - K
0 27!
type 3/4
Iy O
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where K = ML + 7. Thus, if the QMF bank has the PR property, P(z) must have the form stated

in the theorem.

A.3 Proof of Corollary 2.3

From Theorem 2.2, we know that P(z) has the form

where K is an integer. Taking the determinant of P(z) simply yields

Thus, det P(z) must be of the form stated in the theorem.

Iy

type 1/2

type 3/4

det P(z) = (—1)K(M-1)—K

Using both (A.4) and the fact that P(z) = R(z)E(z), we have

det R(z) det E(z) = (—1)K(M-1)—K

(A.4)

(A.5)

Assume now that the analysis and synthesis filters are of the FIR type. This implies that det E(z)

and det R(z) are Laurent polynomials. The only way that the product in (A.5) can be a monomial
is if both det E(z) and det R(z) are themselves monomials. Thus, the last part of the theorem is

proven.

A.4 Proof of Lemma 3.1

In the case of both identities, there are two possibilities to consider:
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1. The integers a and b have the same parity. That is, either both integers are odd or both are

even.

2. The integers a and b have opposite parity. That is, one integer is odd and the other is even.

In the first case, a & b is an even integer. Thus, we can write
[5a+b)] +[5(a=b+1)] =5(a+b)+5(a=b)=a
and
[50+a)] - |5(b-a)] = 50+a) - 5(b—a)=a
In the second case, a £ b is an odd integer. Thus, we can write
[3la+b)] +[5(a=b+ 1) =F@a+b-1)+5(a-b+1)=a
and
s+ a)] - [30-a)]=30+a-1)—3(b-a-1)=a

Combining the results from the first and second cases, we have that the two identities hold for any

integers a and b. |

A.5 Proof of Theorem 3.2

Suppose we have an M x M Laurent polynomial matrix U(z) with det U (z) = A(z) where A(z) is
not identically zero. We can arbitrarily choose any row of U(z) and divide it by A(z) to obtain a

new matrix V'(z) with det V(z) = 1. We can, however, express U(z) in terms of V (z) as
U(z) = So(2)V (2) (A.6)

where Sg(z) is a Type S elementary matrix of the form S(-; A(z)). Now, any Laurent polynomial
matrix V'(z) with det V/(z) = 1 can be decomposed using Euclid’s algorithm (see [21], [16]) into the

factors
V(z) = Ao(2)A1(z) - Ap_1(2) (A7)

where the A;(z) are Type A elementary matrices. Combining equations (A.6) and (A.7), we have

that U(z) admits a decomposition of the form
U(z) = So(z)Ao(z)A1(2) - - Ap_1(2)
Therefore, U (z) must also permit a factorization of the form

U(z) = So(2)S1(2) - Sq-1(2)Ao(2)A1(z) - - - Ap_1(2)
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From the previous equation, we have

Q-1 P-1
detU(z) = (H det Sl(z)) (H detAi(z))

Q-1
H det S;(2)
i=0

Therefore, if []det S;(z) # A(z), then the factorization cannot be completed. |

A.6 Proof of Theorem 3.3

From Theorem 2.1, we have

_ - Lo
0 Iy
BoE(z) X type 1/2
- 0
El(z) = - 2 Lo (A.S)
0 271
BoE(z) type 3/4
Iprq 0
and
_ I,
0 Iy,
B ) R(z) type 1/2
F 0
R/(z) = - 2L, (A.9)
0 2zt
B R(z2) type 3/4
Iarq 0

From equation (A.8), it follows that

det E'(z) = M (=1)FoM=1)~Lo et E(z)

— 040/3)(])” (_I)LU(M—l)Z—(Lu-I-Ku)

Thus, we have the first identity stated in the theorem. Now, solving for E™'(z) in (A.8) yields

- - Lo
Bo (_)1 Ijz_l [E'(2)]7" type 1/2
El)={ LU kP (A.10)
Bl | e ey
Since the system is PR, we have from Theorem 2.2 that
- 1K
z(—)l Ijz_l E™'(z) type 1/2
R(z) =< - e (A.11)
z(—)l Ijz_l E~'(z) type3/4




Substituting (A.11) in (A.9) and then using (A.10), we obtain

Thus, the second identity stated in the theorem is obtained. This completes the proof.

p

)

Bob1

Bob1

Bob1

Bobr

0 Iy,
271 0
JLi+K,
0 -1
Tar_q 0
r 4 Li+K:
0 Iy,
271 0 z
- JLi+K:
0 271
| Iv—1 0 | | T2
r 9 Lot+Li1+K:
0 Iy,
271 0
- J Lo+Li+K;:
0 271
Tar_q 0

qLi+K:

E'(z) type 1/2

E_l(z) type 3/4

[E' ()]

[E' ()]
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Writing is easy. All you have to do is cross out the wrong words.

—NMark Twain
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Appendix B

Test Images

After [Benjamin] Franklin came a herd of Electrical Pioneers whose names have become
part of our electrical terminology: Myron Volt, Mary Louise Amp, James Watt, Bob
Transformer, etc. These pioneers conducted many important electrical experiments.
For example, in 1780 Luigi Galvani discovered (this is the truth) that when he attached
two different kinds of metal to the leg of a frog, an electrical current developed and
the frog's leg kicked, even though it was no longer attached to the frog, which was
dead anyway. Galvani's discovery led to enormous advances in the field of amphibian
medicine. Today, skilled veterinary surgeons can take a frog that has been seriously
injured or killed, implant pieces of metal in its muscles, and watch it hop back into the
pond just like a normal frog, except for the fact that it sinks like a stone.

—Dave Barry, "What is Electricity?”

B.1 Overview

The various test images used in this thesis are listed in Table B.1. Many of these images are taken
from the the ISO JPEG test set and USC image database as indicated in the table. The nonstandard
test images used and a few of the more important standard test images are shown in Figures B.1 to
B.13.

The images were originally obtained in a variety of formats (e.g., GIF, Sun Rasterfile, raw). Those
which were not already in Sun Rasterfile format were converted to this format using a collection
of software tools (i.e., xv, pbmplus, and software specially written by the author). The images
were required to be in Sun Rasterfile format as this is the only format currently supported by the
image codec software. As some of the images were originally color, conversion to grayscale was also

necessary in some cases.
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Table B.1. Test images

Image Size Bits/Pixel | Description

airtf 1024 x1024 8 aerial photograph

air2! 720x1024 8 aerial photograph

airplane 768 %512 8 airplane

barb? 512x512 8 woman

bike3! 781x919 8 motorcycle

chart_s' 1688 %2347 8 scanned chart

cmpndi! 512768 8 computer generated compound
cmpnd2! 1024 x 1400 8 computer generated compound
crt 1744 %2048 10 computer radiology

ctl 512x512 12 computer tomography
eafbcmpnd 496 x495 8 mixed text and graphics
expressi 559%x505 8 screen capture

finger! 512x512 8 fingerprint

france 672x496 8 transparency

gold! 720x 576 8 houses and countryside

hotel! 720x576 8 hotel

lax? 512x512 8 aerial view of airport

lenat 512x512 8 woman

library 464x352 8 compound

mandrill? 512x512 8 face of mandrill

medical_93 1228 x920 8 screen capture

molecule 909x 823 8 computer generated 3D model
mrif 256x256 11 magnetic resonance

us! 512x448 8 ultrasound

xray1l 423x600 medical x-ray of hand

T 1SO test image
Y USC test image

122
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Figure B.1. airplane (768x512, 8 bpp)

Figure B.2. barb (512x512, 8 bpp)
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Figure B.3. chart.s (1688x2347, 8 bpp)
Figure B.4. cmpndl (512x 768, 8 bpp)
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Figure B.5. eafbcmpnd (496x 495, 8 bpp)

Figure B.7. finger (512x512, 8 bpp)
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rese n X
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Figure B.6. expressi (559x505, 8 bpp)

Figure B.8. france (672x 496, 8 bpp)
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Figure B.10. library (464x352, 8 bpp)

Figure B.9. lena (512x512, 8 bpp)

Figure B.11. medical 93 (1228x 920, 8 bpp)

Figure B.12. molecule (909x 823, 8 bpp)
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Figure B.13. xray1l (423x600, 8 bpp)
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Appendix C

Image Compression Software

| cannot overemphasize the importance of good grammar... What a crock. | could
easily overemphasize the importance of good grammar. For example, | could say: “Bad
grammar is the leading cause of slow, painful death in North America,” or "Without
good grammar, the United States would have lost World War 11"

—Dave Barry, “An Utterly Absurd Look at Grammar”

C.1 Overview

The image codec software consists of the following program:

1. The rastoim program which performs image compression.
2. The imtoras program which performs image decompression.

3. The ratedist program which performs rate-distortion analysis.

The codec is based on the EZW coding scheme used in conjunction with reversible wavelet trans-
forms. The software is capable of handling grayscale images of arbitrary size (e.g., non-square and/or
non-dyadic dimensions) up to 65535 x 65535 with as many as 16 bits/pixel. (The compression of
color images is not currently supported.) Sun Rasterfile format is used for all image data external
to the codec. That is, the image compression program rastoim expects its input to be in Sun
Rasterfile format, and the image decompression program imtoras produces its output in the same
format. The compressed data stream generated by the coder is in a format which is referred to as
IM format.

The image compression program rastoim reads image data assumed to be in Sun Rasterfile
format from standard input and writes the compressed image data in IM format to standard output.
Command line options allow a specific reversible transform to be used and the number of scales in the
wavelet decomposition to be specified. The entire coded bitstream required for lossless reconstruction
is always produced. If a lossy reconstruction is desired, the output may be truncated at some
appropriate point.

The image decompression program imtoras reads compressed image data in IM format from
standard input and writes the uncompressed image data in Sun Rasterfile format to standard output.
By default, the entire compressed bitstream is used during decoding. This default behavior can be
overridden with a command line option that specifies the maximum number of bytes to be read by

the decoder. This feature is useful when lossy reconstruction is desired.
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C.2 The rastoim Command

Name

rastoim - image coder for reversible embedded image codec

Synopsis

rastoim [-v] [-c coding_scheme] [-t transform] [-n maz_scales]

Description

The rastoim command reads an image in Sun Rasterfile from standard input and writes the com-
pressed image to standard output in IM format. The input image must be grayscale. The complete
bitstream required for lossless decoding is always generated. If only lossy compression is desired,

other software can be used to truncate the coded bitstream.

Options

e —c coding_scheme. Select the transform coefficient quantization and coding scheme to be used
by the image codec. The parameter coding_scheme must be an integer. The value 0 selects

SPIHT and 1 selects EZW.

e -n maz_scales. Set the maximum allowable number of scales in the wavelet decomposition to

maz_scales.

o -t transform. Select the decorrelating transform to be used by the image codec. The value 0

selects the built-in S4+P transform. Other values select user-defined are transforms.

e -v. Enable verbose mode.

Examples

Assume that we have an image in Sun Rasterfile format stored in the file lena.ras. To compress
the image (losslessly) using transform 0 and the SPTHT coding scheme, and write the result to the
file lena. im, type:

rastoim -¢ 0 -t 0 -n 6 < lena.ras > lena.im

C.3 The imtoras Command

Name

imtoras - image decoder for reversible embedded image codec
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Synopsis

imtoras [-v] [-m maz_bytes)

Description

The imtoras command reads an image in IM format from standard input and writes the decom-

pressed image to standard output in Sun Rasterfile format.

Options

o -m maz_bytes. Only use the first maz_bytes of coded bitstream during decoding.

e -v. Enable verbose mode.

Examples

Assume that we already have a compressed image in IM format stored in the file lena.im. To

decompress the entire encoded bitstream and write the result to another file called lena_new.ras,

type:
imtoras < lena.im > lena_new.ras

C.4 The ratedist Command

Name

ratedist - calculate rate-distortion characteristic

Synopsis

ratedist -o original_image -c compressed_image -7 compression_ratio [-b basename]

Description

The ratedist program reads the original image in Sun Rasterfile format and the compressed version

of the image in IM format and calculates the requested rate-distortion values.

Options
e -0 original_tmage. Specify the name of the file containing the original image in Sun Rasterfile
format.

e ¢ compressed_tmage. Specify the name of the file containing the compressed image in IM

format.

e -7 compression_ratio. Set the compression ratio for which to calculate PSNR/MSE.
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e -b basename. Specify the basename to be used to save lossy reconstructions of the original

image (in Sun Rasterfile format).

Examples

Assume that we have the original image stored in Sun Rasterfile format in lena.ras, and the
compressed image in IM format in lena.im. To calculate the rate-distortion performance for the
lossy compression of the image, type:

ratedist -o lena.ras -c lena.im

This is the end... my only friend, the end.

—Jim Morrison
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