
A Software Package for Generating Code Coverage Reports With Gcov

by

Zhenmai Hu

B.A.Sc., Changsha University of Science & Technology, 2013

A Report Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF ENGINEERING

in the Department of Electrical and Computer Engineering

© Zhenmai Hu, 2021
University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

A Software Package for Generating Code Coverage Reports With Gcov

by

Zhenmai Hu

B.A.Sc., Changsha University of Science & Technology, 2013

Supervisory Committee

Dr. Michael D. Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member
(Department of Electrical and Computer Engineering)

iii

ABSTRACT

Code coverage is an essential tool often used in software testing. Therefore, a tool that generates well-
organized and easy-to-read customized reports containing code coverage information is highly beneficial.
In this report, we present the Gcov Report Generator (GRG) software, which includes a library developed
for generating code coverage reports in PDF format with Gcov and a supporting application program named
coverage that uses the library through the command line. This GRG software can work with the GCC C++
compiler version 10 onwards. The documentation of the application programming interface for the GRG
library, the command-line interface for using coverage, and the usage example of generated PDF reports are
presented. The GRG software can be used as a front-end tool to the Gcov program to generate code coverage
reports in PDF format with function coverage, statement coverage, and branch coverage information. In
addition, program options can be utilized to filter the file and function patterns, select coverage criteria
types, specify coverage thresholds, and aggregate function information for templates, constructors, and
destructors.

iv

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Listings vii

Table of Contents vii

1 Introduction 1
1.1 Software Testing and Code Coverage . 1
1.2 Overview and Organization of Report . 2

2 Background 5
2.1 Overview . 5
2.2 Software Testing . 5

2.2.1 Structural Coverage Analysis . 7
2.2.2 Coverage Criteria . 10

2.3 GCC and Gcov . 11
2.3.1 GCC Instrumentation . 11
2.3.2 Gcov Invocation . 15
2.3.3 Gcov JSON-format Coverage Data Schema . 19

2.4 Name Mangling . 22

3 Gcov Report Generator Software 25
3.1 Overview . 25
3.2 GRG Software Introduction . 25
3.3 Software Installation . 26
3.4 The GRG Library . 27

3.4.1 API Documentation . 28
3.4.2 Library APIs Usage Examples . 31

3.5 Application Program Coverage . 35

vi

3.5.1 Command-Line Interface . 35
3.5.2 Coverage Usage Examples . 38

4 Conclusions and Future Work 41
4.1 Conclusions . 41
4.2 Future Work . 41

A Code Coverage Report: full report .pdf 43
A.1 Overview . 43

B Code Coverage Report: specified report .pdf 49
B.1 Overview . 49

Bibliography 53

vii

List of Figures

2.1 Summarization of software testing strategies. 6
2.2 CFG example of a for loop. (a) Source code of the for loop statement. (b) CFG of the for

loop statement. 8
2.3 CFG example of if and else . (a) Source code of the if and else statements. (b) CFG of the

if and else statements. 8
2.4 CFG example of a switch. (a) Source code of the switch statement. (b) CFG of the switch

statement. 9
2.5 An code example may have full statement coverage but not full branch coverage. (a) The

source code of that example. (b) Corresponding CFG of the source code. 12
2.6 Summary information of hello world generated with gcov. 14
2.7 The code coverage report hello world .cpp.gcov. 14

viii

ix

List of Listings

2.1 Source code file hello world .cpp for the hello world program. 13
2.2 The source code file division .cpp for the division program. 16
2.3 Gcov coverage report for the division program with default settings. 16
2.4 Gcov coverage report for the division program with the −a, −b, and −f options. 17
2.5 Partial coverage data in JSON format generated for the division program. 20
3.1 Application programming interfaces of the GRG library. 28
3.2 Source code of the template .cpp used in code coverage report example. 32
3.3 Source code for the file full report .cpp that uses the GRG library API with default options. 33
3.4 Source code for the file specified report .cpp that uses the GRG library API with particular

options. 33

x

xi

List of Acronyms

GCC The GNU Compiler Collection

PDF Portable Document Format

HTML HyperText Markup Language

XML Extensible Markup Language

JSON JavaScript Object Notation

GRG Gcov Report Generator

API Application Programming Interface

CFG Control Flow Graph

CLI Command Line Interface

ABI Application Binary Interface

POSIX Portable Operating System Interface

xii

1

Chapter 1

Introduction

1.1 Software Testing and Code Coverage
Software plays a crucial role in society. Many critical and essential infrastructures rely on software for order
and efficient operations, such as hospital medical devices, electrical grid systems, and even police tracing
systems. With software constantly changing, it is difficult to guarantee, however, that the software will
not contain errors. The errors that cause inappropriate and unexpected results or abnormal behaviours in
computer programs or systems are called bugs, which can sometimes be very costly and may cause serious
consequences. For example, on June 4, 1996, the European Space Agency’s Ariane 5 Flight 501 failed
forty seconds after takeoff. The prototype rocket of the flight exploded due to numerical overflow in the
onboard guidance software, which caused severe losses [9] [12]. Another example of a failure caused by
software bugs is the NASA Mars Climate Orbiter, which, in 1998, approached Mars at the wrong angle
when entering the upper atmosphere and disintegrated. The primary cause of this failure was that one part
of the software produced inaccurate results by using the wrong units of pound-force rather than Newtons
when calculating thrust parameter data [4]. Therefore, finding and correcting bugs is an indispensable part
of software development.

Software testing can be undertaken to reduce the occurrence of bugs and effectively minimize them.
Different methods, such as software analysis and testing, can be applied to find bugs in a program. Software
testing and analysis techniques can be classified into two categories: static analysis and dynamic analysis.
Static analysis is a testing method that does not require execution of the software being tested, which usually
profiles the software at rest, such as by utilizing code reviews or static analysis tools [31]. Many bugs can
be found and fixed by applying static analysis, where static analysis might be performed by code reviews,
compilers via diagnostics, or analysis tools. Still, some of the bugs may be hidden before the software runs in
the actual operating environment. At this time, another complementary method is needed: dynamic analysis.
Dynamic analysis is capable of exposing vulnerabilities and flaws that are too complicated for static analysis
alone to reveal. In contrast to static analysis, dynamic analysis is a testing approach that works by executing
the code being tested [17]. Various methods can be used in dynamic testing, such as functional, structural,
and dynamic testing tools, which will be discussed later. Computing the code coverage for test suites is a
standard structural testing method, which can measure the degree to which the source code of a program has
been executed and the percentage of the code that has been exercised [28]. Using dynamic analysis, such as
code coverage, can help confirm that the part of the code that needs attention has been executed during the
test to assist in finding and reducing bugs effectively. For a given program, the more code covered during

2 1.2. OVERVIEW AND ORGANIZATION OF REPORT

testing, the more thorough the test. In other words, compared to lower test coverage, programs with higher
test coverage execute more code during the testing process, which indicates that these programs have a lower
chance of containing undetected software errors [5] [14]. The combination of static and dynamic analysis
methods can help analyze and find potential bugs in the program during software testing.

As an essential technique in dynamic testing, code coverage measurement plays a vital role in improv-
ing and maintaining software code quality. Code coverage measurement helps to evaluate the effectiveness
of software testing by providing different coverage criteria information, such as function, line, statement,
and branch coverage [21]. Practical tools can collect code coverage data and generate reports contain-
ing different coverage information. In addition, some of these tools can analyze the data to create more
readable coverage reports in various formats to clearly show the untested parts of the code detected along
with their corresponding source code. Depending on the language used for coding, multiple options are
available for creating code coverage reports. For example, Gcov is a very popular test coverage tool in-
cluded with the GNU Compiler Collection (GCC), and Gcov helps users determine the effectiveness of
their test suites [11] [10]. In addition, some graphical front-end tools can collect and then generate data
from Gcov into more readable reports. For example, Lcov can generate colourful HyperText Markup Lan-
guage (HTML) documents containing the source code annotated with coverage information, and Gcovr can
produce different kinds of coverage reports in such formats as HTML, Extensible Markup Language (XML),
or JavaScript Object Notation (JSON) [15] [32] [13].

Given the portability and convenience of Portable Document Format (PDF) documents, the author de-
veloped the Gcov Report Generator (GRG) software, which can be used as a front-end tool based on Gcov
to generate code coverage reports in PDF format. Unlike in the case of some previously existing tools, the
GRG software described herein allows users greater flexibility for filtering and selecting the report contents
and customizing the format of the generated reports. For example, the GRG software can filter based on
file and function patterns, choose to ignore branches resulting from exceptions when calculating the branch
coverage, select the coverage thresholds, and aggregate the constructors, destructors, and templates that
have the same names in the source code but have different mangled names [26] [29]. Thus, our tool can help
users determine poorly tested parts of their code more easily to address these deficiencies to improve code
quality.

1.2 Overview and Organization of Report

This report presents the GRG software that the author developed, which consists of a library based on Gcov
to generate code coverage reports in PDF format and a front-end application program named coverage
to use this library through the command line. In addition, this report introduces the essential information
needed to use the GRG and includes detailed application programming interface (API) documentation,
application program usage information, and code coverage report examples. The remainder of this report is
organized as described below.

Chapter 2 introduces the background information necessary to understand the subsequent material pre-
sented herein. We first describe software testing techniques, such as static testing and dynamic testing. This
introduction is followed by information on control flow graphs (CFGs) and their graphical representations,
as well as structural coverage analysis. Next, coverage criteria used in the GRG software are presented in
detail, such as function, statement, and branch coverage. After that, we introduce the commands used and
files generated by the GCC C++ compiler and Gcov when collecting and generating code coverage statistics.
Then, a general description of the Gcov invocation and the schema of the coverage data in JSON format
generated by Gcov are given with examples. Lastly, the name mangling is discussed.

CHAPTER 1. INTRODUCTION 3

Chapter 3 presents the details of the GRG software developed by the author. This chapter begins with
a general introduction to the GRG software and its functionalities, followed by instructions on building and
installing this software. After that, we introduce the application programming interfaces (APIs) of the GRG
library that can be used to generate the code coverage reports in PDF format with examples of how to use
these APIs in the library. Then, the command-line interface (CLI) of the application program coverage is
described with examples.

Chapter 4 concludes this report with some closing remarks. Some suggestions for future work are also
made.

As supplemental information, examples of code coverage reports in PDF format generated using the
GRG library and the software application coverage are provided in Appendices A and B. These examples
can help users build a more intuitive understanding of what information is included in the report generated
by the GRG software.

4 1.2. OVERVIEW AND ORGANIZATION OF REPORT

5

Chapter 2

Background

2.1 Overview
This chapter provides the necessary background information for readers to understand the work presented
in this report. We start by introducing software testing, especially structural coverage testing, followed by
a discussion of the coverage criteria used in structural testing. After that, GCC and Gcov and instructions
on using them to collect coverage data and produce reports containing coverage information are discussed.
Then, we describe options that Gcov uses for specifying the contents of the coverage report generated and
the schema of coverage data in JSON format generated by Gcov. Lastly, the name mangling is introduced.

2.2 Software Testing
Software testing is an activity that tries to ensure that software meets formal requirements and works as
expected. Human errors can introduce defects into software, and the consequence of such defects can
potentially be catastrophic, depending on the application. Therefore, software testing aims to find software
defects and bugs to ensure that the software product meets certain quality standards. Through software
testing, software bugs can be caught, and the vulnerabilities of the software product can be removed at an
earlier stage before bad consequences result, which is more cost-effective and helps to enhance the software
security. Software testing considers many aspects of software behaviour. For example, testing considers if
the software being tested [1]:

• responds correctly to all required inputs;

• has acceptable performance consumption towards time and memory;

• is sufficiently usable for applications;

• works appropriately in all intended environments;

• meets the general needs of users; and

• achieves the design and development requirements without side effects.

6 2.2. SOFTWARE TESTING

Figure 2.1: Summarization of software testing strategies.

Testing methods can be classified into two main categories: static testing and dynamic testing. In Fig-
ure 2.1, we summarize the software testing strategies covered in this report.

Static testing is a testing method that analyzes code without running it. This type of testing is performed
by code reviews and static analysis tools. The examination of static testing mainly focuses on evaluat-
ing code based on its form, structure, content, or documentation without executing it [22]. For example,
individuals often perform code reviews to manually examine the software source code and documents to
identify bugs or other problems. Code reviews can vary from informal to formal. While two individuals
can direct an informal review in various ways, a formal review often involves several knowledgeable partic-
ipants along with the original author in the form of a meeting that can last several hours. The objective of
a code review is to assist with discovering software bugs and to improve documentation quality. Utilizing
static analysis tools is another option for static testing in finding critical defects and security weaknesses in
code. Many tools are provided for undertaking static analysis, for example, the Clang Static Analyzer [6],
Coverity Scan [27], and the compiler itself can report incorrect usages and invalid syntaxes. In brief, code
reviews and static analysis tools can be effective at finding specific types of errors such as missing design
requirements, interface specification inconsistencies, unused variables, unreachable code, standard coding
violations, and syntax violations [8]. Static testing has its limitations. For example, it demands considerable
time when done manually and cannot determine whether the function fundamentally matches developers’
intentions. In addition, static testing tools cannot pinpoint defects that only manifest at run-time.

Dynamic testing is the process of analyzing and evaluating the code of a system or component based on
its behaviour during execution [22]. The most frequently used dynamic testing strategies include black-box,
white-box, and experience-based testing techniques. Black-box testing, also known as functional testing, is
a testing method that checks whether the software meets its specification without using the knowledge of the
code’s internal structure. This type of strategy focuses on finding situations in which the software behaves
differently from its specifications. Since the black-box testing process is independent of the implementation
details of code design, many program paths may be left untested. White-box testing, also called structural
testing, is a testing method that employs knowledge of the internal structure of the software being tested
and typically exercises as much code and control flow as possible. With this type of testing, testers can
access source code and documents related to the software internals and use knowledge of data structures

CHAPTER 2. BACKGROUND 7

and algorithms to find bugs. For instance, the profiling tool Gcov that reports code coverage information
is an example of a structural testing tool. A white-box technique tests more thoroughly than black-box
testing but requires testers to be skilled and experienced with the software being tested. Experience-based
testing techniques need the software testers to be skillful, knowledgeable and trained, since they may have
insights into the areas that could contain defects or bugs during testing. Functional and structural testing
can be applied to all levels of software testing. Furthermore, experience-based techniques can be used as a
complementary strategy to functional and structural testing [8]. Dynamic testing helps identify weak areas
in a run-time environment or defects that are problematic for static testing to find.

Static testing and dynamic testing are complementary methods for software testing because they are
often effective at finding different types of defects. Based on the methods and techniques we use for software
testing, different outcomes may be achieved to meet different testing standards and requirements. In brief,
software testing can significantly improve software quality and durability.

2.2.1 Structural Coverage Analysis

Structural coverage analysis is frequently utilized to evaluate testing thoroughness by determining the code
exercised during testing procedures. In other words, structural coverage testing measures the fraction of
the code executed during testing. Structural coverage criteria can be classified into two categories: control
flow and data flow criteria. Control flow criteria measure the flow of operations and paths performed during
software execution, such as statement sequences and function call instructions, while data flow criteria
evaluate the flow of data through variable assignments and references. To describe how control flow criteria
are used in structural coverage analysis, we will first introduce the concept of a control-flow graph (CFG)
and various structural components of code.

A CFG is a directed graph depicting all execution paths in code, which consists of nodes and directed
edges between those nodes. Each node in a CFG represents a basic block, which is a straight-line code
sequence with one entry point and one exit point [2]. In computer programming, a basic block corresponds
to a statement or a set of statement fragments, which are instructions in a high-level language that perform
some actions. Each edge that connects nodes in a CFG corresponds to a branch in code and shows the
control flow paths. For example, suppose that we have two nodes, a and b. The edge from a to b would
be present in the CFG if the statement fragment that represents node b can be executed immediately after
statement a. Like a fork in the road, a node may connect to more than one path in a CFG, introducing
the concept of condition and decision. A condition is a boolean expression that does not contain boolean
operators like AND, OR and NOT, and a decision is a boolean expression composed of conditions and zero
or more boolean operators [24]. Decisions are associated with branching constructs, such as for, if, and
switch statements.

CFGs are often used in structural testing to express how structural components are chained together to
impact computation sequences. Expressing code in CFGs is sometimes particularly useful in measuring
coverage in software testing. To better introduce how to view and analyze program source code more
clearly from the perspective of a CFG, we will give three examples of CFGs for control-flow structures that
are often used in programming. Consider the codes fragments using for, if, and switch statements and
their corresponding CFGs shown in Figures 2.2, 2.3 and 2.4. For convenience, we set the number of the
node to its corresponding source code line number in these examples.

We first give an example of a for loop and its corresponding CFG. Figure 2.2 depicts a for loop that
initializes an array with integers from 0 to 9. The source code of the for loop is shown in Figure 2.2(a), and
the corresponding CFG is given in Figure 2.2(b). The for loop first initializes a variable called i to 0 and
then checks the condition that whether variable i is smaller than 10 is true or not. The two steps correspond

8 2.2. SOFTWARE TESTING

1 for (int i = 0; i < 10; i++) {
2 a[i] = i;
3 }
4 /*...*/

(a)

(b)

Figure 2.2: CFG example of a for loop. (a) Source code of the for loop statement. (b) CFG of the for
loop statement.

1 if(x <= y) {
2 if(x == y) {
3 y = 1;
4 } else {
5 y = 2;
6 }
7 } else {
8 y = 3;
9 }

10 y = y + x;

(a)

(b)

Figure 2.3: CFG example of if and else. (a) Source code of the if and else statements. (b) CFG of the
if and else statements.

to nodes 1a and 1b in Figure 2.2(b). If the condition is true, we can move inside the for loop to reach the
expression a[i] = i, which is represented by node 2. After that, statement i++, which corresponds to node

CHAPTER 2. BACKGROUND 9

1 switch(c) {
2 case 0:
3 x = x + 2;
4 break;
5 case 1:
6 x = x * 2;
7 break;
8 case 2:
9 x = x * x * 5;

10 break;
11 }
12 x++;

(a) (b)

Figure 2.4: CFG example of a switch. (a) Source code of the switch statement. (b) CFG of the switch
statement.

1c, is executed to add 1 to variable i. The condition of node 1b will be rechecked after executing node 1c.
The sequence of these operations will keep running until node 1b is not satisfied and continues to execute
the statement /*...*/ that is represented by node 4. In another situation, node 1b directly jumps to node 4
if the condition of 1b is false. As shown in Figures 2.2(a) and 2.2(b), the source code of a for loop would
typically consist of three nodes. For example, nodes 1a, 1b and 1c in 2.2(b) stand for the first line of the
for loop in 2.2(a). The operation paths of the for loop are particularly clearly drawn in the CFG.

Examples of the if and switch statements can more clearly show how branches appear in a CFG.
Figure 2.3 shows if statements comparing the value of variables x and y. The source code of the if and
switch statements are shown in Figure 2.3(a), and the corresponding CFG is given in Figure 2.3(b). The
code first checks if the variable x is smaller or equal to the variable y at the first line in the source code,
which corresponds to node 1 in the CFG. If the condition x <= y is true, the code will enter another if
and else decision from lines 3 to 6. Otherwise, the code will directly execute the statement y = 3 at line
8. The second if and else decision checks if the values of x and y are equal or not on the basis of the
first decision being true, and then generates two branches to nodes 3 and 5. The statement y = y + x
represented by node 10 will be executed at the end. In summary, the if and else statements can be shown
as a node that contains one or more conditions or decisions followed by two nodes that present two outcome
branches in CFGs. The instructions at different branches are exercised depending upon the result of the
conditions/decisions.

In CFGs, a node can connect to multiple nodes, and traversing all connected edges is usually more
challenging than traversing all nodes. To illustrate, we give the Figure 2.4 that shows a switch statement
with three different cases. The source code of the switch statement is shown in Figure 2.4(a), and the
corresponding CFG is given in Figure 2.4(b). This switch example shows that a switch statement can have
multiple results and indicates that a node can connect to many edges in a CFG. For example, Figure 2.4(b)
shows that node 1, the variable c, is succeeded by three nodes 3, 6 and 9. If we want to run all nodes, the
variable c has to be set to 0, 1, and 2 respectively, and node 1 must be executed at least three times. In this
situation, all the nodes are ensured to be exercised at least once. Not all branches are invoked, however.
The situation that variable c is not equal to any value of 0, 1, and 2 should also be satisfied if we want to

10 2.2. SOFTWARE TESTING

visit all branches. By assigning the variable c with any value other than 0, 1, and 2, we can exercise the
edge between node 1 and node 12. Consequently, this example tells us that traversing every edge is more
complicated than traversing all nodes in tests.

Control flow analysis considers information about the iterations, branches, and selections in the code
during testing. Moreover, control flow analysis can identify unreachable code. Data flow analysis can
measure how data behaves in complex data transactions in code. In addition, it can find defects such as
unused variables or undefined variables. Through testing and calculation, the control-flow and data-flow
techniques can be helpful to structural coverage analysis in finding unreachable code, eliminating redundant
test cases and measuring the thoroughness of testing.

2.2.2 Coverage Criteria

Having introduced the concept of a CFG and structural components of codes, now we consider the code
coverage and its types. Code coverage measures the percentage of the program source code exercised based
on control and data flow when running specific test suites. The coverage criteria are requirements that a test
suite needs to fulfill during software testing [3]. For example, suppose the level of coverage obtained has
not reached the desired threshold. In that case, additional test cases should be added for testing, and this
process can be repeated until the desired threshold is achieved. In software testing, various coverage criteria
exist to measure the test adequacy of programs from different testing requirements and testing levels. The
primary types of coverage criteria in software include function, statement, and branch coverage, which we
will introduce in detail shortly.

Function Coverage

Function coverage is a testing criterion that quantifies how many functions in the code under test are exe-
cuted. We can divide the number of functions executed by the total number of functions to calculate function
coverage. This coverage measure can be used to ensure that every function has been invoked during testing.
If all the functions in a program have been executed, we call that full function coverage. In addition, any
particular coverage type with 100% coverage can be called full coverage.

Function coverage is useful for checking if all functions are executed during a test, but it cannot ensure
if all the statements inside those functions are executed. In other words, an enormous fraction of code that
has full function coverage may never be invoked during the testing process. Therefore, function coverage is
often considered as a weak coverage criterion if used alone. As a result, we usually use function coverage
with other coverage criteria such as statement coverage and branch coverage in software testing.

Statement Coverage

Statement coverage, another testing criterion, quantifies how many statements in the code under test are ex-
ecuted. It can be calculated as the number of statements executed divided by the total number of statements
in the code being tested. Full statement coverage ensures that every statement in the design is executed at
least once. In the corresponding CFG, full statement coverage means that each node is visited at least once.
Consequently, statement coverage is also called node coverage.

Unlike line coverage that measures the proportion of lines executed to the total number of lines in the
code under tests, statement coverage is a more decisive coverage criterion. Each line of code may contain
more than one statement, and we need to take all the potential statements into account when calculating
statement coverage. To clarify, we will present a code example with the full line coverage but may not

CHAPTER 2. BACKGROUND 11

have the full statement coverage. The code example is shown in Figure 2.2, with the source code of a for
loop present in Figure 2.2(a) and the corresponding CFG in Figure 2.2(b). As introduced, the for loop
at line 1 contains three nodes: 1a, 1b and 1c, which correspond to statement int i = 0, i < 10, and
i++ respectively. Line coverage is 100% if any of the three nodes is executed, while statement coverage
needs all nodes to be executed to obtain 100%. Compared with functions and lines in code, statements can
provide more coverage details. As a result, statement coverage is more useful than function coverage and
line coverage. Still, statement coverage alone is not particularly strong as it does not usually test all branch
outcomes [1].

Branch Coverage

Branch coverage is meant to quantify the degree of branches taken when executing the code under test.
It can be calculated by dividing the number of branch outcomes executed by the total number of branch
outcomes in a program. In terms of a CFG, full branch coverage means that each edge is visited during
testing. Therefore, branch coverage is stronger than statement coverage, as 100% branch coverage ensures
100% statement coverage while the reverse may not be true. The stronger the coverage criteria are, however,
the more test cases are needed to achieve full coverage [8].

Next, we will present a code example with full statement coverage but not full branch coverage in
Figure 2.5. The source code containing two if statements is shown in Figure 2.5(a) and the corresponding
CFG is shown in 2.5(b). The values of the decisions in the two if statements can be true when a < 0
and b < 0. For instance, we can execute all code fragments with a single test case a = -1 and b = -1
achieving full statement coverage. Not all possible branches are executed in this situation, however. For
example, the branch of a >= 0 is not exercised.

In the case of C++ code, exceptions may occur when the code is executed. So we have to consider
branches taken due to exceptions. Typically, the branch coverage obtained in lcov or gcovr includes
exceptional branches in the calculation. In extensive and thorough testing, users usually want to ensure that
every exceptional branch is taken into consideration. In some types of testing, however, testers may not
want to include exceptional branches when calculating branch coverage. Unfortunately, most tools do not
support this functionality.

2.3 GCC and Gcov
The GNU Compiler Collection, abbreviated GCC, includes the front ends and libraries to support sev-
eral programming languages such as C, C++, Objective-C, Go, Fortran, Ada, and D [10]. Users invoke a
language-specific driver program by commands like gcc for C and g++ for C++. With these commands,
GCC C/C++ compilers can parse the C/C++ statements syntactically and generate the object code. Gcov is
a code coverage tool for generating information that can be used to analyze various types of code coverage.
Gcov comes as a utility from GCC and only works on code compiled with GCC [11]. With the help of GCC
and Gcov, users can find the places of code that are not well tested and reduce the software bugs.

2.3.1 GCC Instrumentation
GCC supports various options used to add instrumentation to the compiled code. For instance, the instru-
mentation for Gcov collects the statistics and calculates code coverages. Gcov uses two types of files, gcno
and gcda, for coverage information. The note files with the extension gcno, produced during compilation,
contain the data needed to reproduce the graph of basic blocks and the corresponding source line number to

12 2.3. GCC AND GCOV

1 if(a < 0) {
2 x = 1;
3 }
4 if(b < 0) {
5 x = 2;
6 }
7 x++;

(a)

(b)

Figure 2.5: An code example may have full statement coverage but not full branch coverage. (a) The source
code of that example. (b) Corresponding CFG of the source code.

each block. The count files with the extension gcda are produced right at program termination and contain
the execution count for every basic block and branch and some summary information [11]. Both types of
files are generated in the same directory as the executable program. The command-line options for gcc/g++
used to enable instrumentation and support for generating the files Gcov needs for analyzing code coverage
are as follows [30]:

• -ftest-coverage

This option generates note files with the extension gcno that the Gcov code-coverage utility can use
to analyze program coverage. The note file of each source file is named with ${auxname}.gcno,
in which ${auxname} is the basename of the source file. The C/C++ compiler will instrument the
source code and add counters for every node and edge in the CFG of the code at compile time. Thus,
coverage information in note files corresponds with the source files more closely if compiled without
optimization.

• -fprofile-arcs

This option adds code to create count files with the extension gcda that contain transition and value
profile counts at the termination of program execution. Similarly, the count file of each source file
is named with ${auxname}.gcda. The C/C++ compiler will track basic block counts at run time
with this option. The compiler loads the counts and increments them when basic blocks execute and
updates the counters in the gcda file upon termination.

• --coverage

CHAPTER 2. BACKGROUND 13

This option is a synonym for -fprofile-arcs and -ftest-coverage.

With the information in the gcno and gcda files, users can utilize the command gcov to generate code
coverage statistics. By doing this, a coverage summary of files and their functions is printed to standard
output. In addition, code coverage reports with the gcov extension that include more detailed coverage in-
formation are produced in the same directory as the gcno and gcda files by default. Next, we will give an
example called hello_world to illustrate how to use Gcov and what the information generated by gcov
looks like. The example has a single source file called hello_world.cpp shown in Listing 2.1. By exe-
cuting the program hello_world, a string Hello, World! will be printed. Starting from the source code
of hello_world.cpp, we will give the procedures step by step for generating the gcno, gcda, and the gcov
file. The coverage summary and the generated gcov report are presented at the end.

Listing 2.1: Source code file hello_world.cpp for the hello_world program.
1 #include <iostream >
2

3 int main() {
4

5 std::cout << "Hello , World!\n";
6

7 int status;
8 if(std::cout) {
9 status = 0;

10 } else {
11 status = 1;
12 }
13

14 return status;
15 }

Firstly, to generate a gcno file called hello_world.gcno and the program called hello_world from
the source file hello_world.cpp, we use the following command:

g++ --coverage hello_world.cpp -o hello_world

After that, the gcda file hello_world.gcda can be obtained by executing the program hello_world. Then,
with these files and the information they carried that Gcov needs for analyzing and calculation, to generate
the code coverage summary information and the coverage report for hello_world, we can run the com-
mand:

gcov hello_world

The summary information that should be printed to standard output would resemble that shown in Figure 2.6.
According to the summary information, we know that the line coverage of file hello_world.cpp is 83.33%
of 6, which means 5 out of 6 lines have been executed at least once. This is the basic information that
gcov generated by default. Additional information, such as function and branch coverage, can also be
obtained if enabled via command-line options of Gcov. More about the command-line options will be
introduced in Chapter 2.3.2. The content of the code coverage report called hello_world.cpp.gcov is
given in Figure 2.7. As shown in the code coverage report, the fields in the gcov file are separated by the
colon character. Hence, the preamble lines consist of three fields, where the first field is always a number

14 2.3. GCC AND GCOV

File ’hello_world.cpp’
Lines executed :83.33% of 6
Creating ’hello_world.cpp.gcov ’
File ’/usr/include/c++/10/iostream ’
No executable lines
Removing ’iostream.gcov ’

Figure 2.6: Summary information of hello_world generated with gcov.

-: 0:Source:hello_world.cpp
-: 0:Graph:hello_world.gcno
-: 0:Data:hello_world.gcda
-: 0:Runs:1
-: 1:#include <iostream >
-: 2:
1: 3:int main() {
-: 4:
1: 5: std::cout << "Hello , World!\n";
-: 6:
-: 7: int status;
1: 8: if(std::cout) {
1: 9: status = 0;
-: 10: } else {

#####: 11: status = 1;
-: 12: }
-: 13:
1: 14: return status;
-: 15:}

Figure 2.7: The code coverage report hello_world.cpp.gcov.

0, the second field is a tag name for locating a particular preamble line, and the third part is the value under
that tag. In the same way, the structure of program lines is in the form of execution count, line number, and
source code text separated by colons. To illustrate, the number 1 in the first column with line numbers 3, 5,
8, 9 and 14 represents the execution count of these lines, while the symbols "#####" with line number 11
shows that the statement "status = 1" is not executed. The numbers in the second column from 1 to 15
show the line number, and the contents in the third column represent each line’s source code.

It is worth mentioning that the string "0:Runs:1" shows that the executable program has been run only
once, and the number of runs accumulates across runs. That is to say, the program attempts to read the gcda
files at program startup, adds the execution counts, and updates the counts to the gcda file upon program
termination. If the gcda file does not exist, the execution counts are assumed to be zero. In addition, the
execution counts of each line are also updated along with the program execution. Users should compile
their code without optimization when using Gcov since Gcov accumulates statistics by line when analyzing
coverage, and optimization may combine some lines of code together or reorder them incorrect [11].

CHAPTER 2. BACKGROUND 15

2.3.2 Gcov Invocation
Gcov provides numerous command-line options for obtaining additional information in the coverage report.
All the supported options can be printed by the -h or --help option of Gcov. To utilize the options provided
by Gcov, we apply the following command-line syntax:

gcov [options] input_files

Some of the most frequently used options are as follows [11]:

• -a or --all-blocks

When this option is specified, Gcov adds the execution count for every basic block in the coverage
report. Thus, the blocks that are not executed within each line can be found with this option.

• -b or --branch-probabilities

When this option is specified, Gcov shows the branch frequencies in percent in the coverage report
and writes branch summary information to standard output. With this option, the frequency of each
branch taken in the program is determined.

• -c or --branch-counts

When this option is specified, Gcov shows the number of times each branch is taken. It should be
used with -b or --branch-probabilities, otherwise, it will not affect the coverage report.

• -f or --function-summaries

When this option is specified, Gcov prints a summary of each function in addition to the file level
summary to the standard output.

• -j or --json-format

When this option is specified, Gcov generates the coverage date in JSON format. The generated JSON
file is compressed using the Gzip compression algorithm and named with suffix ".gcov.json.gz".

• -t or --stdout

When this option is specified, Gcov prints the coverage information to standard output instead of
generating a code coverage report in the file with the extension gcov.

• -h or --help

When this option is specified, Gcov prints help information related to Gcov to standard output and
exits without further processing.

To illustrate how these options work and how the corresponding coverage report looks, we will give an
example called division that has a single source file called division.cpp. Two code coverage reports are
generated in the example with or without Gcov options applied for comparison. The file division.cpp is
shown in Listing 2.2 and two functions are defined in the source code. One function called division works
to acquire the division result from the two input parameters in type double. The second function called
main calls division with arguments x = 50.5 and y = 10. The result value of executing the example is
5.05 without any exception being thrown. Based on the source code, following the steps of using Gcov to
generate a code coverage report introduced in Chapter 2.3.1, we obtain a preliminary report with no options
applied shown in Listing 2.3. In addition, we create a code coverage report in Listing 2.4 that contains more
detailed coverage information with the -a, -b, and -f options.

16 2.3. GCC AND GCOV

Listing 2.2: The source code file division.cpp for the division program.
1 #include <iostream >
2 #include <stdexcept >
3

4 double division(double a, double b) {
5 if (b == 0) {
6 throw std::runtime_error("Denominator cannot be zero!");
7 }
8 return a / b;
9 }

10

11 int main () {
12 double x = 50.5;
13 double y = 10;
14 try {
15 std::cout << division(x, y) << ’\n’;
16 } catch (std::runtime_error& e) {
17 std::cerr << e.what() << ’\n’;
18 }
19 return 0;
20 }

Listing 2.3: Gcov coverage report for the division program with default settings.
1 -: 0:Source:division.cpp
2 -: 0:Graph:division.gcno
3 -: 0:Data:division.gcda
4 -: 0:Runs:1
5 -: 1:#include <iostream >
6 -: 2:#include <stdexcept >
7 -: 3:
8 1: 4:double division(double a, double b) {
9 1: 5: if (b == 0) {

10 #####: 6: throw std::runtime_error("Denominator
cannot be zero!");

11 -: 7: }
12 1: 8: return a / b;
13 -: 9:}
14 -: 10:
15 1: 11:int main () {
16 1: 12: double x = 50.5;
17 1: 13: double y = 10;
18 -: 14: try {
19 1: 15: std::cout << division(x, y) << ’\n’;
20 =====: 16: } catch (std::runtime_error& e) {
21 =====: 17: std::cerr << e.what() << ’\n’;
22 -: 18: }

CHAPTER 2. BACKGROUND 17

23 1: 19: return 0;
24 -: 20:}

Listing 2.4: Gcov coverage report for the division program with the -a, -b, and -f options.
1 -: 0:Source:division.cpp
2 -: 0:Graph:division.gcno
3 -: 0:Data:division.gcda
4 -: 0:Runs:1
5 -: 1:#include <iostream >
6 -: 2:#include <stdexcept >
7 -: 3:
8 function _Z8divisiondd called 1 returned 100% blocks executed 50%
9 1: 4:double division(double a, double b) {

10 1: 5: if (b == 0) {
11 1: 5-block 0
12 branch 0 taken 0% (fallthrough)
13 branch 1 taken 100%
14 #####: 6: throw std::runtime_error("Denominator

cannot be zero!");
15 %%%%%: 6-block 0
16 call 0 never executed
17 call 1 never executed
18 branch 2 never executed
19 branch 3 never executed
20 %%%%%: 6-block 1
21 call 4 never executed
22 $$$$$: 6-block 2
23 call 5 never executed
24 -: 7: }
25 1: 8: return a / b;
26 1: 8-block 0
27 1: 8-block 1
28 -: 9:}
29 -: 10:
30 function main called 1 returned 100% blocks executed 43%
31 1: 11:int main () {
32 1: 12: double x = 50.5;
33 1: 13: double y = 10;
34 -: 14: try {
35 1: 15: std::cout << division(x, y) << ’\n’;
36 1: 15-block 0
37 call 0 returned 100%
38 branch 1 taken 100% (fallthrough)
39 branch 2 taken 0% (throw)
40 1: 15-block 1
41 call 3 returned 100%

18 2.3. GCC AND GCOV

42 branch 4 taken 100% (fallthrough)
43 branch 5 taken 0% (throw)
44 1: 15-block 2
45 call 6 returned 100%
46 branch 7 taken 100% (fallthrough)
47 branch 8 taken 0% (throw)
48 =====: 16: } catch (std::runtime_error& e) {
49 $$$$$: 16-block 0
50 branch 0 never executed
51 branch 1 never executed
52 $$$$$: 16-block 1
53 call 2 never executed
54 $$$$$: 16-block 2
55 call 3 never executed
56 $$$$$: 16-block 3
57 call 4 never executed
58 =====: 17: std::cerr << e.what() << ’\n’;
59 call 0 never executed
60 call 1 never executed
61 branch 2 never executed
62 branch 3 never executed
63 $$$$$: 17-block 0
64 call 4 never executed
65 branch 5 never executed
66 branch 6 never executed
67 -: 18: }
68 1: 19: return 0;
69 1: 19-block 0
70 -: 20:}

As can be seen by comparing the two Listings 2.3 and 2.4, more information is included in the coverage
report with the -a, -b, and -f options than with no options. For example, lines 8 and 30 in Listing 2.4 present
detailed information of division and main, including the execution counts and the percentage of executed
blocks in each function. It is worth mentioning that special symbols are used to show unexecuted lines and
blocks. The unexecuted lines are marked by "#####" or "=====", depending on whether they are reachable
by non-exceptional paths. Specifically, the string "#####" is used for zero coverage lines with unexceptional
paths accessible and "=====" for exceptional paths only, such as C++ exception handlers. In addition, the
execution counts for unexecuted blocks are shown as "$$$$$" or "%%%%%". The unexecuted basic blocks
that are reachable by unexceptional paths are marked by "$$$$$"; otherwise, the string "%%%%%" is used.
If the executed basic blocks contain a statement with an execution count of zero, character * is added to the
end of the execution count.

Besides the information for functions and unexecuted lines, the -a option also include block counts, such
as on lines 11, 15 and 20 in Listing 2.4. Also, the -b option introduces the execution count for each branch
and function call on, such as lines 12, 13, 16 and 17 in Listing 2.4. If a single source line corresponds to
code with more than one branch or function call, multiple branches or calls are listed. The execution counts
are shown for each branch if it has been executed at least once; otherwise, the string "never executed"
will be printed.

CHAPTER 2. BACKGROUND 19

Gcov also provides options to directly output the coverage information using coloured text to standard
output or generate a compressed file that contains the JSON-format coverage data, which is a simpler format
for programs to parse. With the help of options provided by Gcov, we can better comprehend the function,
branch, and statement being achieved during testing. Moreover, we can easily find the parts of the code that
are not well exercised during testing and obtain both summary and detailed code coverage information of
the testing code.

2.3.3 Gcov JSON-format Coverage Data Schema
As mentioned, Gcov provides the option to produce the code coverage data in JSON format. With the -j
or --json-format option, we can obtain a zipped file containing the coverage data. After decompressing
the zipped file, the JSON-format data containing coverage information is acquired. Next, we describe the
schema that Gcov uses to present the JSON-format coverage data.

The root object of the coverage data has the following fields:

• the current working directory where the program being tested was compiled, which is associated with
the JSON key current_working_directory;

• the name of the data file of the testing program, which is associated with the JSON key data_file;

• the semantic version of the format, which is associated with the JSON key format_version;

• the version of the GCC compiler, which is associated with the JSON key gcc_version; and

• an array of the file objects, which is associated with the JSON key files.

The file object in the files array corresponds to the source file executed in running the program and
contains more detailed coverage information on the function and line basis in that file. Each file object has
the following fields:

• the name of the source file, which is associated with the JSON key file;

• an array of the function objects, which is associated with the JSON key functions; and

• an array of the line objects, which is associated with the JSON key lines.

The function object in the functions array contains coverage data related to the function, such as the
function execution count, the blocks included in that function, the function position in the source file, and
the function mangled and demangled names. Specifically, each function object has the following fields:

• the number of blocks included in the function, which is associated with the JSON key blocks;

• the number of executed blocks of the function, which is associated with the JSON key blocks_executed;

• the number of executions of the function, which is associated with the JSON key execution_count;

• the demangled name of the function, which is associated with the JSON key demangled_name;

• the mangled name of the function, which is associated with the JSON key name;

• the line in the source file where the function begins, which is associated with the JSON key start_line;

20 2.3. GCC AND GCOV

• the column in the source file where the function begins, which is associated with the JSON key
start_column;

• the line in the source file where the function ends, which is associated with the JSON key end_line;
and

• the column in the source file where the function ends, which is associated with the JSON key end_column.

Similarly, each line object in the lines array, which contains detailed coverage data of that line, has the
following fields:

• the number of executions of the line, which is associated with the JSON key count;

• the line number of the line, which is associated with the JSON key line_number;

• the name of the function that this line belongs to, which is associated with the JSON key function_name;

• a boolean flag to show whether the line has unexecuted blocks, which is associated with the JSON
key unexecuted_block; and

• an array of the branch objects, which is associated with the JSON key branches.

Lastly, each branch object in the branches array has the following fields:

• the number of executions of the branch, which is associated with the JSON key count;

• a boolean flag to show whether this branch is a fall through branch, which is associated with the JSON
key fallthrough; and

• a boolean flag to show whether this branch is an exceptional branch, which is associated with the
JSON key throw.

To show how the coverage data in the JSON format appears and clearly explain the structure, we provide
partial coverage data in the JSON format shown in Listing 2.5 as an example. The coverage data is generated
for the division program, of which the source code is shown in Listing 2.2. According to the field values
in the root object, we can find general information about the program being tested, such as the data file name
is division, the source file is division.cpp, and the program was only executed once.

Listing 2.5: Partial coverage data in JSON format generated for the division program.
1 {
2 "current_working_directory":

"/home/mint/Coverage_Report/doc/software/division",
3 "data_file": "division",
4 "files": [
5 {
6 "file": "division.cpp",
7 "functions": [
8 {
9 "blocks": 8,

10 "blocks_executed": 4,
11 "demangled_name": "division(double , double)",

CHAPTER 2. BACKGROUND 21

12 "end_column": 1,
13 "end_line": 9,
14 "execution_count": 1,
15 "name": "_Z8divisiondd",
16 "start_column": 8,
17 "start_line": 4
18 },
19 {
20 "blocks": 14,
21 "blocks_executed": 6,
22 "demangled_name": "main",
23 "end_column": 1,
24 "end_line": 20,
25 "execution_count": 1,
26 "name": "main",
27 "start_column": 5,
28 "start_line": 11
29 }
30],
31 "lines": [
32 {
33 "branches": [
34 {
35 "count": 0,
36 "fallthrough": true ,
37 "throw": false
38 },
39 {
40 "count": 1,
41 "fallthrough": false ,
42 "throw": false
43 }
44],
45 "count": 1,
46 "function_name": "_Z8divisiondd",
47 "line_number": 5,
48 "unexecuted_block": false
49 },
50

51 /* Many line objects are omitted here. */
52

53 {
54 "branches": [],
55 "count": 1,
56 "function_name": "main",
57 "line_number": 13,

22 2.4. NAME MANGLING

58 "unexecuted_block": false
59 }
60]
61 },
62 {
63 "file": "/usr/include/c++/10/ iostream",
64 "functions": [],
65 "lines": []
66 }
67],
68 "format_version": "1",
69 "gcc_version": "10.3.0"
70 }

As can be seen from lines 7 to 30 in Listing 2.5, we can obtain more detailed coverage information of the
two functions, division and main, included in the source file division.cpp. For example, the function
division that starts at line 4 and ends at line 9 was executed once. This function includes eight blocks, and
only four of them have been executed. In addition, the function demangled name is division(double,
double), while the accordingly mangled name is_Z8divisiondd. The coverage information of the main
function can also be obtained in the data provided.

The examples of line objects from line 31 to line 61 shown in Listing 2.5 present more information
related to lines and branches. For example, the line with source code line number 5 that belongs to function
_Z8divisiondd was executed once, and there are no unexecuted blocks included in that line. Moreover, this
line has two branches, and only one branch has been executed. According to the value of the fallthrough
flag in the branch objects of that line, we acquire that the branch executed is not the fall through branch and
corresponds to the statement "b != 0" according to the source code of division.

In brief, we can obtain detailed coverage information of the entire file for the program being tested from
the JSON-format data provided by Gcov. By processing the coverage data, the function, statement, and
branch coverage of each file can be calculated according to the definition of those coverage criteria.

2.4 Name Mangling
One cannot avoid having to deal with function names in the context of code coverage. In C++, multiple
functions can have the same name in the source code, however, due to overloading or visibility within
different scopes. Unfortunately, linkers do not understand concepts like function overloading and cannot
distinguish between functions that have the same names in the source code. For this reason, linkers require
every function to have a unique name. Consequently, using a specific set of rules, the compiler assigns
each function in the source code a unique name in the process known as name mangling. The unique name
produced by name mangling is called the mangled name, and the original function name in the source code
is called the demangled name. Additionally, the name mangling rules used are platform-specific. In this
project, the rules are assumed to follow the Itanium application binary interface (ABI) standard for C++
programs [23]. For example, in the Itanium ABI, the functions

int add(int)
int add(double)

are mapped to the respective mangled names

CHAPTER 2. BACKGROUND 23

_Z3addi
_Z3addd

The two mangled names differ in the last character representing function parameter type. For more details
and examples of the name mangling, the reader is referred to [18].

Name mangling is relevant to code coverage because mangled names appear in some contexts where it
is important to distinguish between multiple overloads of a function or a particular function used to imple-
ment a constructor or destructor. Specifically, the compiler can implement each constructor using multiple
functions, and the same holds for destructors. For example, a virtual base destructor with the demangled
name base::˜base() can have two different mangled names: _ZN4baseD0Ev and _ZN4baseD2Ev, depend-
ing on the way the destructor is used. Therefore, testers may need to pay special attention to situations like
overloaded functions, constructors, and destructors in code coverage testing.

24 2.4. NAME MANGLING

25

Chapter 3

Gcov Report Generator Software

3.1 Overview
This chapter introduces the Gcov Report Generator (GRG) software developed by the author. The rest of
this chapter is organized as follows. First, we give a general introduction to the working principle and
overall structure of the GRG software. Then, we explain the procedures for building and installing the GRG
software. Finally, we give a detailed introduction to the GRG software with usage examples.

3.2 GRG Software Introduction
The GRG software consists of a C++ library and an application program called coverage, which uses this
library to generate nicely-formatted customized code coverage reports in PDF format. There are mainly
two sections in the code coverage reports generated by the GRG software: the summary section and the
detail section. The summary section includes summary tables containing execution counts calculated and
coverage information in percentage format for specified files and functions, as well as file pathnames and
function names related to the coverage information. The information in the summary tables are on a per-file
and per-function basis for the function, statement, and branch coverage, respectively. The detail section
contains the corresponding source code of the files and functions with lines, branches, and blocks details,
such as execution counts of lines and branches. In addition, the file pathnames and function names in
summary tables correspond to the source code in the detail section through hyperlinks so that the GRG
users can easily find the specified file or function in the code coverage reports generated. More importantly,
the GRG software allows users to customize their coverage reports by filtering and selecting the contents.
For example, the GRG software can:

• filter coverage results using file and function patterns (i.e., regular expressions);

• calculate the branch coverage with or without exceptional branches;

• format the code coverage report by keeping only the selected section contents;

• select the coverage information included by setting the function, statement, and branch coverage
threshold on a per-file and per-function basis; and

26 3.3. SOFTWARE INSTALLATION

• aggregate coverage results for functions with the same names in source code but different mangled
names, such as in the cases of constructors, destructors, and templates.

After describing the functionality and behaviour of this software, we will introduce the general structure
of the GRG software. Under the global namespace called grg, the GRG software provides one primary
functor class named Report_maker used for report generation and a few secondary classes used to specify
flags or options for the primary class. The Report_maker class mainly consists of two parts: the constructor
and the function call operator. First, the constructor parses coverage information from gcda files input as
parameters, calculates the coverage statistics, and stores the statistics in an appropriate data structure. Then,
the function call operator generates formatted code coverage reports in PDF format using these statistics
and writes the reports to the assigned output stream. Moreover, the GRG software provides some secondary
classes such as Global_options and Report_options as input parameters for the constructor and the
function call operator. These classes have flags and options for users to customize the code coverage reports.
The flags and options will be introduced in more detail in Section 3.4.

3.3 Software Installation
The GRG software is written in C++ and utilizes many C++17 features. Gcov, a tool provided with the C++
compiler, is used by the GRG software to acquire code coverage information. As a result, GCC version
10.3.0 or later is needed for the GRG software.

The GRG software applied the JSON for Modern C++ library to convert the coverage data in JSON
format generated by Gcov into the format that fits the data structure used by the GRG library. The single
header file json.hpp written by Niels Lohmann has already been included as part of the GRG software
for convenience [16]. So, this library does not need to be installed before building the GRG software,
eliminating the hassle of installing this library.

The GRG software uses the stable_vector container in the Boost Container library and uses the Boost
Process library to manage system processes when parsing coverage information [20] [19]. In addition, the
GRG software utilizes pdflatex to produce PDF files from LaTeX source code [25]. So, the Boost libraries
and the software program pdflatex should be installed before building the GRG software.

In conclusion, the following versions of required software packages have been verified to work with the
GRG software:

• GCC 10.3.0;

• Boost 1.71.0; and

• pdfTeX 1.40.22 (TeX Live 2021).

The GRG software uses CMake for compiling, building, testing, and installation [7]. In what follows,
let $SOURCE_DIR denote the top-level directory of the GRG software distribution, and $BUILD_DIR denote
a directory where build files are created. The GRG software also provides some test files in the directory
named tests under the $SOURCE_DIR directory. These test files are also built and run with CMake as target
tests to verify if the GRG software could run correctly after being built.

To build, test, and install the GRG software with CMake, the following steps should be:

1. Generate the native build files by running the command:

cmake -H$SOURCE_DIR -B$BUILD_DIR

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 27

2. Build the GRG software and test files by running the command:

cmake --build $BUILD_DIR

3. Next, we can test the GRG software built by running the command follows.

cmake --build $BUILD_DIR --target test

This command first runs the programs built for the test files to generate their gcda files and then runs
the GRG software with these gcda files to generate code coverage reports. The text like the following
will be printed to the standard output upon successful completion of the tests. In addition, the code
coverage reports in PDF format generated for the test files will be presented in the directory named
CoverageTestResults under the $SOURCE_DIR directory.

100% tests passed , 0 tests failed out of 4

The GRG software should only be used if it passes all test cases in the test suite.

4. Finally, we can install the GRG software by running the command:

cmake --build $BUILD_DIR --target install

In order to make it more convenient for users, the GRG software provides the file called run_cmake to
execute all the commands in the above instructions. Thus, users can compile, run, test, and install the GRG
software by simply running this script.

3.4 The GRG Library
As introduced in Section 3.2, the GRG library provides a primary class called Report_maker and mainly
two supporting classes. The APIs of the GRG library are designed to be easy to understand and convenient
to use with two main functions in the Report_maker class: the constructor and the function call operator.
In addition, two supporting classes called Global_options and Report_options are used to specify cus-
tomizations in reports. The Report_maker class is non-movable and non-copyable. Next, we will introduce
how the constructor and the function call operator work in generating code coverage reports in more detail.

The constructor works for parsing coverage information and calculating coverage statistics and has two
input parameters: the initialized Global_options class object and an array of strings of the gcda files. This
constructor first invokes gcov on the input gcda files to generate an intermediate JSON dataset. Then, it
reads coverage information from the JSON dataset and stores it on appropriate data structures. Lastly, it
calculates the function, statement, and branch coverage statistics on a per-file and per-function basis using
the data read. The constructor will throw an exception if an error occurs.

The class object of the Global_options is a parameter of the constructor. By adjusting the settings in
the Global_options object, library users can filter using the file and function patterns, as well as aggregate
information for constructors, destructors, and templates. In addition, users can choose if they want to
ignore exceptional branches when calculating branch coverage. It warrants mentioning that the settings in
Global_options are common to all code coverage reports generated by a single Report_maker object and
cannot be modified after construction.

The function call operator works to generate code coverage reports in PDF format using the coverage
statistics computed in the constructor and corresponding file source codes. This function call operator has

28 3.4. THE GRG LIBRARY

two input parameters: the initialized Report_options class object and an output stream to which to write
the code coverage report generated. The function call operator first generates a LaTeX source file in a
system directory for temporary files during execution. Then, it outputs summary tables that contain the
coverage statistics and detail sections that include the corresponding source code and complete coverage
information into the LaTeX document. In what follows, it runs the LaTeX software to produce the coverage
report in PDF format. The coverage report generated is then written to the specified output stream. Finally,
the temporary directory created for the LaTeX source file is deleted. Thus, each time this operator function
is called, a code coverage report in PDF format is generated.

The class object of Report_options is a parameter of the function call operator. By adjusting the set-
tings in the Report_options object, users can select the contents included in the report, filter the coverage
statistics by thresholds, control the name of the temporary directory, and specify the output pathname of
the coverage report generated. By adjusting the options in the Report_options object, users can obtain
multiple code coverage reports containing different contents and various formats for a single Report_maker
object.

In the section that follows, we will explain in more detail how the GRG library APIs and the options and
flags in the Global_options and Report_options classes are used.

3.4.1 API Documentation

The API documentation of the GRG library is shown in Listing 3.1. A more detailed description of the
various classes follows.

Listing 3.1: Application programming interfaces of the GRG library.
1 #ifndef grg_hpp
2 #define grg_hpp
3

4 #include <cstdlib >
5 #include <boost/process.hpp> // boost::process
6 #include <memory > // std::unique_ptr
7 #include <grg/code_coverage_data_structure.hpp>
8 #include <grg/nlohmann/json.hpp> // nlohmann::json
9

10

11 namespace bp = boost::process;
12 using json = nlohmann::json;
13

14 namespace grg {
15

16 class Report_maker {
17 public:
18 // Used in the process to parse and calculate coverage

statistics
19 struct Global_options {
20 bool aggregate_ctors_dtors = false;
21 bool aggregate_templates = false;
22 bool keep_regex = true;

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 29

23 std::vector <File_function_regex > filter_patterns;
24 };
25

26 // Used in the process to generate PDF coverage reports.
27 struct Report_options {
28 bool ignore_exceptional_branches = false;
29 bool function_coverage_summary = false;
30 bool statement_coverage_summary = false;
31 bool branch_coverage_summary = false;
32 bool function_coverage_summary_per_file = false;
33 bool function_coverage_summary_per_function = false;
34 bool statement_coverage_summary_per_file = false;
35 bool statement_coverage_summary_per_function = false;
36 bool branch_coverage_summary_per_file = false;
37 bool branch_coverage_summary_per_function = false;
38 bool detail = false;
39 bool keep_temporary_directory = false;
40 double func_cov_per_file_threshold = 101;
41 double func_cov_per_func_threshold = 101;
42 double state_cov_per_file_threshold = 101;
43 double state_cov_per_func_threshold = 101;
44 double branch_cov_per_file_threshold = 101;
45 double branch_cov_per_func_threshold = 101;
46 std::string temporary_directory_name = "";
47 std::string output_file_name = "";
48 std::string pdflatex_program = "pdflatex";
49 };
50

51 // The contructor
52 Report_maker(Global_options options ,

std::vector <std::string >& gcda_files);
53

54 // The function call operator
55 bool operator()(Report_options options , std::ostream& out);
56 };
57

58 } /*end of namespace grg*/
59

60 #endif /*grg_hpp*/

The Global_options Class

The Global_options class shown in Listing 3.1 from line 19 to line 24 allows users to specify the options
settings utilized in the process of parsing data from the JSON dataset and calculating the code coverage
statistics. These options mainly work to filter by file and function patterns and aggregate coverage informa-
tion in constructors, destructors, and templates.

30 3.4. THE GRG LIBRARY

As described in Section 2.4, the constructors and destructors are implemented using multiple functions.
The data member called aggregate_ctors_dtors is a boolean flag for users to choose if they want to
aggregate the coverage information for constructors and destructors, and this data member defaults to false.

Similarly, Gcov also considers the different instantiations of a template as different functions in the
report generated. Depending on the number of instantiations, a template can be present in several associated
functions with different mangled names. The aggregate_templates data member gives the users the
ability to combine the coverage information for multiple instantiations of a template into one, and this data
member defaults to false.

A code coverage report produced by Gcov could easily contain thousands of functions and become quite
long. Since users may find it challenging to locate the information of interest when reading a report, the
GRG library provides its users with the option to filter data based on pattern matching. More specifically,
users can specify regular expressions by the struct called File_function_regex, which consists of two
strings expressed as follows:

struct File_function_regex {
std::string file_regex;
std::string function_regex;

};

The two members, file_regex and function_regex, are Portable Operating System Interface (POSIX)
regular expressions [26]. Both regular expressions in a File_function_regex must match to select one file
and function pattern. The GRG library users can define multiple patterns for filtering, where the relationship
among patterns is OR. In addition, the keep_regex data member allows users to invert the sense of pattern
matching. This data member defaults to true to keep all the patterns matched.

The Report_options Class

The Report_options class shown in Listing 3.1 from line 27 to line 49 allows users to control the option
settings used when generating code coverage reports in PDF format. These options mainly work to specify
and format the contents presented in the coverage reports generated.

As introduced, the GRG library provides summary tables containing function, statement, and branch
coverage information on per-file and per-function bases in coverage reports. Following this, the GRG
library provides six data members for users to choose whether to include these summary tables in the
coverage report. Specifically, the function_coverage_summary_per_file data member is a boolean
flag for users to choose whether they want to include summary tables of the function coverage per-file
in the report, while the function_coverage_summary_per_function data member has the same func-
tionality but on a per-function basis. The function_coverage_summary data member selects both the
function_coverage_summary_per_file and function_coverage_summary_per_function at the same
time. Similarly, the GRG library also offers boolean data members for the statement and branch cov-
erage to enable their summary tables in coverage reports on per-file and per-function basis, such as the
statement_coverage_summary_per_file and statement_coverage_summary_per_function data mem-
bers for the statement coverage, and the two data members branch_coverage_summary_per_file and
branch_coverage_summary_per_function for branch coverage. The statement_coverage_summary
data member selects both the two data members for statement coverage mentioned above simultaneously,
and the branch_coverage_summary data member works the same for the two data members of branch
coverage. The values of these data members all default to false.

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 31

In addition, the ignore_exceptional_branches and detail data members also control the informa-
tion presented in coverage reports. The ignore_exceptional_branches data member allows users to
omit exceptional branches in the branch coverage calculation, and this data member defaults to false. The
detail data member allows users to specify if the report should include source code and detailed coverage
information, and this data member defaults to false.

To format the coverage report, the GRG library offers six data members to filter the coverage statistics by
setting the coverage thresholds on a per-file and per-function basis, such as func_cov_per_file_threshold
and state_cov_per_file_threshold. The value of each of these data members is of the type double and
corresponds to a coverage threshold. A threshold value is in units of percent. The expected use case is that
users simply care about coverage worse than a certain amount, so only the elements with lower percentage
values than the coverage threshold will be kept in coverage reports generated by the GRG library. For exam-
ple, the element with full statement coverage in the summary table of statement coverage per function will
not be present in the coverage report if the value of the state_cov_per_func_threshold data member is
set to 100. All coverage threshold values default to a value greater than 100, which means all the files and
functions will be included in coverage reports.

The other data members are temporary_directory_name, pdflatex_program, and output_file_name,
and keep_temporary_directory. The temporary_directory_name data member is used to define the
name of the temporary directory containing the LaTeX source file. The value of this data member is a
standard string for users to specify the name of their temporary directory, where the directory specified
must already exist. This data member defaults to the system directory for temporary files. Next, the data
member keep_temporary_directory allows users to keep the temporary directory, whereas the tempo-
rary directory is defaulted to be deleted. The pdflatex_program data member is applied for users to
specify the pathname of the program to convert the LaTeX source file to generate the PDF coverage report.
Any program that has a CLI compatible with pdflatex can be used to set the value of this data mem-
ber. The pdflatex, lualatex, or pdflatex_frontend are possible values for the pdflatex_program,
where pdflatex_frontend is a script provided by the GRG software based on pdflatex with an ex-
tended memory size for larger size files [25]. This data member defaults to run pdflatex. Lastly, the
output_file_name data member allows users to specify the pathname of the code coverage report in PDF
format generated by the GRG library. The GRG library prints the report to standard output if the value of
this data member is an empty string.

3.4.2 Library APIs Usage Examples
In this section, we will present two files containing some usage examples on how to use the APIs of the
GRG library to generate code coverage reports for a source file called template.cpp. The source file
template.cpp shown in Listing 3.2 has four functions:

• a template function called bubbleSort to sort the input array with element type specified in ascending
order;

• two overloading functions with the same name sum used to add two input numbers but differs in the
return type and input data type; and

• a function called main that initializes some variables and calls the other functions.

For comparison, we will generate two code coverage reports of the template.cpp: one report without ap-
plying any filter option including full files and functions is generated by running the codes in full_report.cpp

32 3.4. THE GRG LIBRARY

shown in Listing 3.3, while another report utilizing specific options keeping part of files and functions is
generated by running the codes in specified_report.cpp shown in Listing 3.4.

Listing 3.2: Source code of the template.cpp used in code coverage report example.
1 #include <iostream >
2 #include <type_traits > //std::extent
3

4 // A template function
5 template <class T>
6 void bubbleSort(T a[], int n) {
7 for (int i = 0; i < n - 1; i++) {
8 for (int j = n - 1; i < j; j--) {
9 if (a[j] < a[j - 1]) {

10 std::swap(a[j], a[j - 1]);
11 }
12 }
13 }
14 }
15

16 // Two overloading functions
17 int sum(int a, int b) {
18 return a + b;
19 }
20

21 double sum(double a, double b) {
22 return a + b;
23 }
24

25 int main() {
26

27 // Calls template function
28 int a1[5] = {3, 5, 1, 2, 4};
29 double a2[5] = {2.3, 5.6, 1.1, 2.2, 10.0};
30 bubbleSort <int>(a1, std::extent <int[5]>::value);
31 bubbleSort <double>(a2, std::extent <int[5]>::value);
32

33 // Calls overload functions and outputs the results
34 int a = 1;
35 int b =2;
36 double c = 1.2;
37 double d = 2.4;
38 std::cout << sum(a,b) << ’\n’;
39 std::cout << sum(c,d) << ’\n’;
40

41 return 0;
42 }

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 33

Listing 3.3: Source code for the file full_report.cpp that uses the GRG library API with default options.
1 #include <iostream >
2 #include <fstream >
3 #include "grg/grg.hpp"
4

5 int main() {
6

7 // Initialize the global options
8 grg::Report_maker::Global_options global_options;
9 std::vector <std::string > gcda_files_vec;

10 std::string input_file("template.gcda");
11 gcda_files_vec.push_back(input_file);
12

13 // Call the constructor of Report_maker class
14 grg::Report_maker maker(global_options , gcda_files_vec);
15

16 // Initialize the report options
17 grg::Report_maker::Report_options report_options;
18 report_options.function_coverage_summary = true;
19 report_options.statement_coverage_summary = true;
20 report_options.branch_coverage_summary = true;
21 report_options.detail = true;
22

23 // Call the operator() to genrate the coverage report stream
24 // and write it to a PDF file named full_report.pdf
25 std::fstream myfile("full_report.pdf", std::ios::out);
26 int status = maker(report_options , myfile);
27 myfile.close();
28

29 return status;
30 }

Listing 3.4: Source code for the file specified_report.cpp that uses the GRG library API with particular
options.

1 #include <iostream >
2 #include <fstream >
3 #include "grg/grg.hpp"
4

5 int main() {
6

7 // Initialize the global options
8 grg::Report_maker::Global_options global_options;
9 global_options.aggregate_templates = true;

10 File_function_regex cur_pattern = {".*template.cpp", "(.*?)"};
11 global_options.filter_patterns.push_back(cur_pattern);

34 3.4. THE GRG LIBRARY

12 std::vector <std::string > gcda_files_vec;
13 std::string input_file("template.gcda");
14 gcda_files_vec.push_back(input_file);
15

16 // Call the constructor of Report_maker class
17 grg::Report_maker maker(global_options , gcda_files_vec);
18

19 // Initialize the report options
20 grg::Report_maker::Report_options report_options;
21 report_options.function_coverage_summary = true;
22 report_options.statement_coverage_summary = true;
23 report_options.branch_coverage_summary = true;
24 report_options.detail = true;
25 double threshold = 100;
26 report_options.state_cov_per_func_threshold = threshold;
27 report_options.branch_cov_per_func_threshold = threshold;
28

29 // Call the operator() to genrate the coverage report stream
30 // and write it to a PDF file named specified_report.pdf
31 std::fstream myfile("specified_report.pdf", std::ios::out);
32 int status = maker(report_options , myfile);
33 myfile.close();
34

35 return status;
36 }

The general procedure for using the APIs of the GRG library to generate code coverage reports is to
first initialize the settings in the Global_options object. When the prerequisites are ready, users can call
the constructor of the Report_maker class with the Global_options object. Then, users can set up the
options in the Report_options object and specify the output file stream. Lastly, the function call operator
can be called with the chosen settings to generate the code coverage report in PDF format and write it to
the desired stream. Next, we will consider the programs demonstrating the use of the GRG library in more
detail by walking through the source code of the full_report.cpp and the specified_report.cpp. In
the following examples, we assume the GRG software has been installed and the file template.gcda has
been obtained.

As shown in Listing 3.3, lines 8 to 11 initialize the Global_options class object without setting any
filter options and construct an input array that has the element template.gcda. After that, we called
the constructor at line 14 with default options in the GRG library to calculate code coverage statistics.
Then, lines 17 to 21 specify that the report should include both per-file and per-function summary tables
for function, statement, and branch coverage, as well as a detail section. The coverage thresholds are not
specified, which means they all default to a value larger than 100. So, the GRG library will include all the
files and functions in the code coverage report. Lines 25 to 27 show how to write the generated coverage
report stream in a PDF file.

Compared to full_report.cpp, the file specified_report.cpp adds a file-function pattern and spec-
ifies some options to filter the contents in the report generated. As shown in Listing 3.4, besides initializing
the Global_options class object and the input array, lines 8 to 14 set the option that aggregates different
instances of the same template to true and add the file-function pattern to keep only the functions in the file

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 35

template.cpp in coverage reports. Furthermore, lines 25 to 27 set the threshold for statement and branch
coverage per function to 100%. As a result, the GRG library only includes the functions with statement and
branch coverage lower than 100% in the summary tables.

The two code coverage reports generated are full_report.pdf and specified_report.pdf. The
report full_report.pdf including all the files and functions is provided in Appendix A, and the report
specified_report.pdf utilizing the filtering options is presented in Appendix B for comparison.

3.5 Application Program Coverage
In addition to the GRG library, we also developed an application program called coverage to use the library
through the command-line interface (CLI). This application program allows users to generate coverage
reports from the command line conveniently. In what follows, we will describe the application program in
detail.

3.5.1 Command-Line Interface
The application program coverage is controlled by numerous command-line options. There are two types
of these options: global options and per-report options. Global options apply to all reports generated by the
program, while per-report options apply only to a single report. The detailed information of global options
and per-report options are listed as follow:

• Global Options

• -c or --aggregate-constructors-destructors
When this option is specified, coverage aggregates all of the C++ compiler-generated functions
from one particular C++ constructor as if they were the same function when determining code
coverage. This option also has a similar effect on destructors.

• -t or --aggregate-templates
When this option is specified, coverage aggregates all instantiations of the same template as if
they were the same function when determining code coverage.

• -h or --help
When this option is specified, coverage prints help information about using coverage to the
standard output and exits without doing any further processing.

• Global Options — Function Selection

• -x REGEX or --file-pattern REGEX
When this option is specified, coverage sets the current value of the file pattern to the extended
regular expression specified by REGEX. The value of REGEX defaults to string "(.*?)" (i.e.,
select all files).

• -y REGEX or --function-pattern REGEX
When this option is specified, coverage sets the current value of the function pattern to the ex-
tended regular expression specified by REGEX. The value of REGEX defaults to string "(.*?)"
(i.e., select all functions).

36 3.5. APPLICATION PROGRAM COVERAGE

• -p EXPRESSION or --pattern EXPRESSION
When this option is specified, coverage adds a new file-function pattern to the pattern list
that consists of the file-function patterns. The EXPRESSION is a string chosen from keep or
delete, through which we can determine whether to keep or discard the current file-function
pattern when generating the report. The value of EXPRESSION defaults to keep, which means
the file-function pattern that matches the EXPRESSION will be kept.

• -r or --reset
When this option is specified, coverage resets all of the per-report options to their default
values.

• Per-Report Options

• -n DIRNAME or --temporary-directory-name DIRNAME
When this option is specified, coverage sets the DIRNAME as the name of the temporary di-
rectory used to store the LaTeX source file. The directory specified must already exist. For
example, "/tmp/foobar" or "apple" can be used. If this option is not specified, the system
directory for temporary files will be used (i.e., the directory returned by the C++ standard library
function std::filesystem::temp_directory_path).

• -k or --keep-temporary-directory
When this option is specified, coverage keeps the temporary directory that contains the LaTeX
source file. If this option is not specified, the directory will be deleted.

• -e or --ignore-exceptional-branches
When this option is specified, coverage treats exceptional branches as if they do not exist when
determining branch coverage.

• -o PATHNAME or --output PATHNAME
When this option is specified, coverage sets PATHNAME as the output pathname to which to
write the code coverage report. If not specified, the report is printed to standard output.

• -m PROGRAM or --pdflatex-program PROGRAM
This option sets PROGRAM as the pathname of the program to use to convert LaTeX source to
a PDF document. Any program that has a CLI compatible with pdflatex can be used. The
pdflatex, lualatex, or pdflatex_frontend are possible values for PROGRAM, where the
pdflatex_frontend is the script provided by the GRG software based on pdflatex with an
extended memory size for larger size files. The value of PROGRAM defaults to pdflatex.

• Per-Report Options — Report Formatting

• -d or --detail
When this option is specified, coverage includes the detail section in the report, which contains
detailed coverage information for each selected function.

• --function-coverage-summary-per-file

When this option is specified, coverage includes the per-file function coverage summary table
in the code coverage report.

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 37

• --function-coverage-summary-per-function

When this option is specified, coverage includes the per-function function coverage summary
table in the code coverage report.

• --function-coverage-summary

This option works for selecting both the --function-coverage-summary-per-file and the
--function-coverage-summary-per-function options.

• --statement-coverage-summary-per-file

When this option is specified, coverage includes the per-file statement coverage summary table
in the code coverage report.

• --statement-coverage-summary-per-function

When this option is specified, coverage includes the per-function statement coverage summary
table in the code coverage report.

• --statement-coverage-summary

This option works for selecting both the --statement-coverage-summary-per-file and the
--statement-coverage-summary-per-function options.

• --branch-coverage-summary-per-file

When this option is specified, coverage includes the per-file branch coverage summary table in
the code coverage report.

• --branch-coverage-summary-per-function

When this option is specified, coverage includes the per-function branch coverage summary
table in the code coverage report.

• --branch-coverage-summary

This option works for selecting both the --branch-coverage-summary-per-file and the
--branch-coverage-summary-per-function options.

• Per-Report Options — Function Selection

• -F PERCENT or --func-cov-per-file-threshold PERCENT
When this option is specified, coverage selects all functions in source files with function cov-
erage less than the real number PERCENT, of which the value starts from 0 and is allowed to be
greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function
are marked in the detail section of the report.

• -f PERCENT or --func-cov-per-func-threshold PERCENT
When this option is specified, coverage selects all functions with function coverage less than
the real number PERCENT, of which the value starts from 0 and is allowed to be greater than
100. The value of the PERCENT defaults to 101. The lines in the selected function are marked
in the detail section of the report.

• -S PERCENT or --state-cov-per-file-threshold PERCENT
When this option is specified, coverage selects functions in source files with statement coverage
less than the real number PERCENT, of which the value starts from 0 and is allowed to be greater
than 100. The value of the PERCENT defaults to 101. The lines in the selected function are
marked in the detail section of the report.

38 3.5. APPLICATION PROGRAM COVERAGE

• -s PERCENT or --state-cov-per-func-threshold PERCENT
When this option is specified, coverage selects all functions with statement coverage less than
the real number PERCENT, of which the value starts from 0 and is allowed to be greater than
100. The value of the PERCENT defaults to 101. The lines in the selected function are marked
in the detail section of the report.

• -B PERCENT or --branch-cov-per-file-threshold PERCENT
When this option is specified, coverage selects all functions in source files with branch coverage
less than the real number PERCENT, of which the value starts from 0 and is allowed to be greater
than 100. The value of the PERCENT defaults to 101. The lines in the selected function are
marked in the detail section of the report.

• -b PERCENT or --branch-cov-per-func-threshold PERCENT
When this option is specified, coverage selects all functions with branch coverage less than the
real number PERCENT, of which the value starts from 0 and is allowed to be greater than 100.
The value of the PERCENT defaults to 101. The lines in the selected function are marked in the
detail section of the report.

3.5.2 Coverage Usage Examples
In Section 3.4.2, we presented two examples of how to use the GRG library APIs to generate the code cover-
age reports for the code in template.cpp. This section will show the corresponding commands on how to
use the coverage program to match the earlier examples. The two reports generated by running coverage
are the same as the reports generated by using the GRG library APIs and are included in Appendices A and
B. To use the coverage program to generate the two reports, we do the following:

1. Run coverage to generate the file full_report.pdf containing all the files and functions with de-
fault option settings:

./coverage --function -coverage -summary \
--statement -coverage -summary --branch -coverage -summary \
--detail --output full_report.pdf template.gcda

2. Run coverage to generate the file specified_report.pdf with specified file-function pattern and
coverage thresholds:

./coverage --file -pattern .*template.cpp --pattern keep \
--aggregate -templates \
--function -coverage -summary \
--statement -coverage -summary \
--branch -coverage -summary --detail \
--state -cov-per-func -threshold 100 \
--branch -cov-per-func -threshold 100 \
--output specified_report.pdf template.gcda

Next, we will present a comparatively complicated example of how to use the coverage to generate
more than one report at one time. Suppose we want to produce multiple reports with different user settings
from the two gcda files: app1.gcda and app2.gcda. This can be accomplished with the invocation of the

CHAPTER 3. GCOV REPORT GENERATOR SOFTWARE 39

program coverage. We use the --reset option to restore the per-report settings for each report. The first
report generated is called report1.pdf and this report:

• aggregates all of the associated constructors, destructors, and templates with different mangled names;

• calculates the branch coverage without considering exceptional branches;

• keeps the functions that match with the respective file and function patterns src/app/.*.hpp and
ra::(.*::)::intrusive_list<.*>::.*; and

• includes only branch coverage summary tables.

The second report is named report2.pdf and this report:

• includes the function and statement coverage summary tables and the detail section;

• sets the threshold for function coverage per file to 50%;

• sets the threshold for statement coverage per function to 100%.

The commands that utilize the coverage to generate reports report1.pdf and report2.pdf are as fol-
lows:

./coverage --aggregate -templates \
--aggregate -constructors -destructors \
--ignore -exceptional -branches \
--file -pattern src/app/.*.hpp \
--function -pattern ra::(.*::)::intrusive_list <.*>::.* \
--pattern keep \
--branch -coverage -summary \
--output report1.pdf \
--reset \
--function -coverage -summary \
--statement -coverage -summary \
--func -cov-per-file -threshold 50 \
--state -cov-per-func -threshold 100 \
--detail \
--output report2.pdf \
app1.gcda app2.gcda

40 3.5. APPLICATION PROGRAM COVERAGE

41

Chapter 4

Conclusions and Future Work

4.1 Conclusions
In this report, the importance of software testing and the criteria of structural coverage analysis have been
studied. As a useful tool for testing code coverage for C++ code designs, the author has developed the GRG
software based on Gcov. The GRG software consists of a library for generating customized nicely-formatted
code coverage reports in PDF format and an application program called coverage to use this library. The
code coverage reports generated contain summary statistics of function, statement, and branch coverage on
a per-file and per-function basis and detailed information for source code, such as execution counts of lines
and blocks. Moreover, the GRG software provides rich functionalities, including filtering functions using
regular expressions, calculating the branch coverage with or without exceptional branches, selecting the
report contents by setting coverage threshold, and aggregating associated functions with different mangled
names. Finally, how to use the GRG library and the coverage program to generate multiple code coverage
reports has been presented with code examples. The code coverage reports generated for code examples are
included in appendices.

4.2 Future Work
Although the GRG software currently works quite well, there is still potential work worth exploring in the
future. For example, besides generating code coverage reports in PDF format, the GRG software could
allow users to output coverage statistics into a plain text file. It can be time-consuming to run LaTeX on
large files, and users may not need PDF output in all cases. Despite the GRG having provided filtering and
selecting options for users to specify the exact file and function patterns, all the code coverage statistics and
detailed information for the report in PDF format can be quite large sometimes.

In addition, as mentioned in Section 2.4, the compiler uses mangled names when compiling and linking.
The GRG software, however, currently only supports demangled function names when presenting the code
coverage reports because demangled names are more human-readable and understandable. In some cases,
testers may want to know mangled function names to differentiate the version of a constructor or destructor
called. Also, the memory space and the execution time for running the LaTeX file to PDF file can be reduced
as mangled names are usually shorter than demangled names, especially for functions with long names.

42 4.2. FUTURE WORK

43

Appendix A

Code Coverage Report:
full_report.pdf

A.1 Overview
This chapter presents the code coverage report called full_report.pdf generated by the GRG software
for the file template.cpp. The full_report.pdf includes all the files and functions and did not use any
filter options.

1 Summary

1.1 Function Coverage

1.1.1 Per-File Function Coverage

Coverage Pathname
5/5 (100.00%) /home/mint/Coverage/tests/template.cpp

4/4 (100.00%) /usr/include/c++/10/bits/move.h

1.1.2 Per-Function Function Coverage

Coverage Pathname
1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<double>(double*, int

)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<int>(int*, int)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(int, int)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(double, double)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] main

12/12 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<double&>::type&& std

::move<double&>(double&)

15/15 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<int&>::type&& std::

move<int&>(int&)

4/4 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_<

std::__is_tuple_like<double> >, std::is_move_constructible<double>, std::

is_move_assignable<double> >::value, void>::type std::swap<double>(double&,

double&)

5/5 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_

<std::__is_tuple_like<int> >, std::is_move_constructible<int>, std::

is_move_assignable<int> >::value, void>::type std::swap<int>(int&, int&)

1.2 Statement Coverage

1.2.1 Per-File Statement Coverage

Coverage Pathname
33/33 (100.00%) /home/mint/Coverage/tests/template.cpp

12/12 (100.00%) /usr/include/c++/10/bits/move.h

1.2.2 Per-Function Statement Coverage

Coverage Pathname
9/9 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<double>(double*, int

)

9/9 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<int>(int*, int)

2/2 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(int, int)

2/2 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(double, double)

11/11 (100.00%) [/home/mint/Coverage/tests/template.cpp] main

2/2 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<double&>::type&& std

::move<double&>(double&)

2/2 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<int&>::type&& std::

move<int&>(int&)

1

44 A.1. OVERVIEW

Continued from previous page.
Coverage Pathname
4/4 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_<

std::__is_tuple_like<double> >, std::is_move_constructible<double>, std::

is_move_assignable<double> >::value, void>::type std::swap<double>(double&,

double&)

4/4 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_

<std::__is_tuple_like<int> >, std::is_move_constructible<int>, std::

is_move_assignable<int> >::value, void>::type std::swap<int>(int&, int&)

1.3 Branch Coverage

1.3.1 Per-File Branch Coverage

Coverage Pathname
16/20 (80.00%) /home/mint/Coverage/tests/template.cpp

0/0 (100.00%) /usr/include/c++/10/bits/move.h

1.3.2 Per-Function Branch Coverage

Coverage Pathname
4/8 (50.00%) [/home/mint/Coverage/tests/template.cpp] main

6/6 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<double>(double*, int

)

6/6 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<int>(int*, int)

0/0 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(int, int)

0/0 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(double, double)

0/0 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<double&>::type&& std

::move<double&>(double&)

0/0 (100.00%) [/usr/include/c++/10/bits/move.h] std::remove_reference<int&>::type&& std::

move<int&>(int&)

0/0 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_<

std::__is_tuple_like<double> >, std::is_move_constructible<double>, std::

is_move_assignable<double> >::value, void>::type std::swap<double>(double&,

double&)

0/0 (100.00%) [/usr/include/c++/10/bits/move.h] std::enable_if<std::__and_<std::__not_

<std::__is_tuple_like<int> >, std::is_move_constructible<int>, std::

is_move_assignable<int> >::value, void>::type std::swap<int>(int&, int&)

2 Details

2.1 /home/mint/Coverage/tests/template.cpp

void bubbleSort<double>(double*, int)

Line Counts Branches Source
6 1 void bubbleSort(T a[], int n){

7 5 4:1 for (int i = 0; i < n - 1; i++){

8 14 10:4 for (int j = n - 1; i < j; j--){

9 10 4:6 if (a[j] < a[j - 1]){

10 4 std::swap(a[j], a[j - 1]);

11 }

12 }

13 }

14
15 1 }

2

APPENDIX A. CODE COVERAGE REPORT: FULL_REPORT.PDF 45

void bubbleSort<int>(int*, int)

Line Counts Branches Source
6 1 void bubbleSort(T a[], int n){

7 5 4:1 for (int i = 0; i < n - 1; i++){

8 14 10:4 for (int j = n - 1; i < j; j--){

9 10 5:5 if (a[j] < a[j - 1]){

10 5 std::swap(a[j], a[j - 1]);

11 }

12 }

13 }

14
15 1 }

sum(int, int)

Line Counts Branches Source
18 1 int sum(int a, int b){

19 1 return a + b;

20 }

sum(double, double)

Line Counts Branches Source
22 1 double sum(double a, double b){

23 1 return a + b;

24 }

main

Line Counts Branches Source
27 1 int main(){

28
29 // Calls template function

30 1 int a1[5] = {3, 5, 1, 2, 4};

31 1 double a2[5] = {2.3, 5.6, 1.1, 2.2, 10.0};

32 1 bubbleSort<int>(a1, std::extent<int[5]>::value);

33 1 bubbleSort<double>(a2, std::extent<int[5]>::value);

34
35 // Calls overload functions and outputs the results

36 1 int a = 1;

37 1 int b =2;

38 1 double c = 1.2;

39 1 double d = 2.4;

40 1 1:0:1:0 std::cout << sum(a,b)<< ’\n’;

41 1 1:0:1:0 std::cout << sum(c,d)<< ’\n’;

42
43 1 return 0;

44 }

2.2 /usr/include/c++/10/bits/move.h

std::remove_reference<double&>::type&& std::move<double&>(double&)

Line Counts Branches Source
101 12 move(_Tp&& __t)noexcept

102 12 { return static_cast<typename std::remove_reference<_Tp>::type&&>(__t); }

std::remove_reference<int&>::type&& std::move<int&>(int&)

Line Counts Branches Source
101 15 move(_Tp&& __t)noexcept

102 15 { return static_cast<typename std::remove_reference<_Tp>::type&&>(__t); }

3

46 A.1. OVERVIEW

std::enable_if<std::__and_<std::__not_<std::__is_tuple_like<double> >, std::is_move_constructible

<double>, std::is_move_assignable<double> >::value, void>::type std::swap<double>(double&, double

&)

Line Counts Branches Source
189 4 swap(_Tp& __a, _Tp& __b)

190 _GLIBCXX_NOEXCEPT_IF(__and_<is_nothrow_move_constructible<_Tp>,

191 is_nothrow_move_assignable<_Tp>>::value)

192 {

193 #if __cplusplus < 201103L

194 // concept requirements

195 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)

196 #endif

197 4 _Tp __tmp = _GLIBCXX_MOVE(__a);

198 4 __a = _GLIBCXX_MOVE(__b);

199 4 __b = _GLIBCXX_MOVE(__tmp);

200 4 }

std::enable_if<std::__and_<std::__not_<std::__is_tuple_like<int> >, std::is_move_constructible<int

>, std::is_move_assignable<int> >::value, void>::type std::swap<int>(int&, int&)

Line Counts Branches Source
189 5 swap(_Tp& __a, _Tp& __b)

190 _GLIBCXX_NOEXCEPT_IF(__and_<is_nothrow_move_constructible<_Tp>,

191 is_nothrow_move_assignable<_Tp>>::value)

192 {

193 #if __cplusplus < 201103L

194 // concept requirements

195 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)

196 #endif

197 5 _Tp __tmp = _GLIBCXX_MOVE(__a);

198 5 __a = _GLIBCXX_MOVE(__b);

199 5 __b = _GLIBCXX_MOVE(__tmp);

200 5 }

4

APPENDIX A. CODE COVERAGE REPORT: FULL_REPORT.PDF 47

48 A.1. OVERVIEW

49

Appendix B

Code Coverage Report:
specified_report.pdf

B.1 Overview
This chapter presents the code coverage report called specified_report.pdf generated by the GRG soft-
ware for the file template.cpp. The specified_report.pdf applied some filter options and only include
the functions belong to template.cpp.

1 Summary

1.1 Function Coverage

1.1.1 Per-File Function Coverage

Coverage Pathname
4/4 (100.00%) /home/mint/Coverage/tests/template.cpp

1.1.2 Per-Function Function Coverage

Coverage Pathname
2/2 (100.00%) [/home/mint/Coverage/tests/template.cpp] void bubbleSort<double>(double*, int

)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(int, int)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] sum(double, double)

1/1 (100.00%) [/home/mint/Coverage/tests/template.cpp] main

1.2 Statement Coverage

1.2.1 Per-File Statement Coverage

Coverage Pathname
24/24 (100.00%) /home/mint/Coverage/tests/template.cpp

1.2.2 Per-Function Statement Coverage

1.3 Branch Coverage

1.3.1 Per-File Branch Coverage

Coverage Pathname
10/14 (71.43%) /home/mint/Coverage/tests/template.cpp

1.3.2 Per-Function Branch Coverage

Coverage Pathname
4/8 (50.00%) [/home/mint/Coverage/tests/template.cpp] main

2 Details

2.1 /home/mint/Coverage/tests/template.cpp

void bubbleSort<double>(double*, int)

Line Counts Branches Source
6 2 void bubbleSort(T a[], int n){

7 10 8:2 for (int i = 0; i < n - 1; i++){

8 28 20:8 for (int j = n - 1; i < j; j--){

9 20 9:11 if (a[j] < a[j - 1]){

10 9 std::swap(a[j], a[j - 1]);

11 }

12 }

13 }

14
15 2 }

1

50 B.1. OVERVIEW

sum(int, int)

Line Counts Branches Source
18 1 int sum(int a, int b){

19 1 return a + b;

20 }

sum(double, double)

Line Counts Branches Source
22 1 double sum(double a, double b){

23 1 return a + b;

24 }

main

Line Counts Branches Source
27 1 int main(){

28
29 // Calls template function

30 1 int a1[5] = {3, 5, 1, 2, 4};

31 1 double a2[5] = {2.3, 5.6, 1.1, 2.2, 10.0};

32 1 bubbleSort<int>(a1, std::extent<int[5]>::value);

33 1 bubbleSort<double>(a2, std::extent<int[5]>::value);

34
35 // Calls overload functions and outputs the results

36 1 int a = 1;

37 1 int b =2;

38 1 double c = 1.2;

39 1 double d = 2.4;

40 1 1:0:1:0 std::cout << sum(a,b)<< ’\n’;

41 1 1:0:1:0 std::cout << sum(c,d)<< ’\n’;

42
43 1 return 0;

44 }

2

APPENDIX B. CODE COVERAGE REPORT: SPECIFIED_REPORT.PDF 51

52 B.1. OVERVIEW

53

Bibliography

[1] Michael D. Adams. Lecture Slides for Programming in C++, April 2021. https://ece.engr.uvic.
ca/˜frodo/publications.html#books.

[2] Frances E. Allen. Control Flow Analysis. ACM SIGPLAN Notices, Volume 5, Issue 7, ACM Digital
Library, NY, US, 1970.

[3] FPaul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press, Cam-
bridge, UK, 2016.

[4] Arthur G. Stephenson and Lia S. LaPiana and Daniel R. Mulville and Peter J. Rutledge and etc. Mars
Climate Orbiter Mishap Investigation Board Phase I Report, November 1999. NASA.

[5] Brader Larry and Hilliker Howie and Wills Alan. Testing for continuous delivery with visual stu-
dio 2012. https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj159345(v=
pandp.10). Microsoft Corporation, Published online on March 2013; accessed November 2021.

[6] Clang Static Analyzer, a source code analysis tool for finding bugs in C, C++, and Objective-C pro-
grams. The clang team. https://clang-analyzer.llvm.org/. Published online; accessed Novem-
ber 2021.

[7] CMake. Kitware Inc. https://cmake.org/. Published online; accessed November 2021.

[8] I. Evans D. Graham, E. Van Veenendaal and R. Black. Foundations of Software Testing. International
Thomson Business Press, Haryana, India, 2019.

[9] M. Dowson. The Ariane 5 Software Failure. ACM SIGSOFT Software Engineering Notes, 22(2):87,
March 1997.

[10] GCC, the GNU compiler collection. Free Software Foundation, Inc. https://gcc.gnu.org/. Pub-
lished online; accessed November 2021.

[11] Gcov, a test coverage program. Free Software Foundation, Inc. https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html. Published online; accessed November 2021.

[12] Jézéquel JM and Meyer B. Design by Contract: The Lessons of Ariane. IEEE Computer, 30(1):129–
130, January 1997.

[13] JSON, ECMA-404 The JSON Data Interchange Standard. ECMA International. https://www.json.
org/json-en.html. Published online; accessed November 2021.

https://ece.engr.uvic.ca/~frodo/publications.html#books
https://ece.engr.uvic.ca/~frodo/publications.html#books
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj159345(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj159345(v=pandp.10)
https://clang-analyzer.llvm.org/
https://cmake.org/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html

54 BIBLIOGRAPHY

[14] Williams Laurie, Smith Ben, and Heckman Sarah. Test Coverage with EclEmma. Open seminar
software engineering, North Carolina State University, Raleigh, NC, USA, 2016.

[15] Lcov, a graphical front-end for GCC’s coverage testing tool Gcov. Sourceforge. http://ltp.
sourceforge.net/coverage/lcov.php. Published online; accessed November 2021.

[16] Niels Lohmann. JSON for Modern C++ Library. https://github.com/nlohmann/json. Published
online; accessed November 2021.

[17] Egele Manuel, Scholte Theodoor, Kirda Engin, and Kruegel Christopher. A survey on automated
dynamic malware-analysis techniques and tools. ACM Computing Surveys, 44(2):2, March 2008.

[18] Mark Mitchell. C++ ABI for IA-64: Code and Implementation Examples. https://
itanium-cxx-abi.github.io/cxx-abi/abi-examples.html#mangling. Published online; ac-
cessed November 2021.

[19] Klemens David Morgenstern. Boost.Process Library. https://www.boost.org/doc/libs/1_65_
1/doc/html/process.html. Published online; accessed November 2021.

[20] Joaquin M. Lopez Munoz. Class template stable vector in Boost library. https://www.boost.
org/doc/libs/1_53_0/doc/html/boost/container/stable_vector.html. Published online;
accessed November 2021.

[21] Glenford J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. Wiley, the 2 edition, NJ,
USA, 2004.

[22] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software Engineering
Terminology. IEEE, NJ, USA, 1990.

[23] Open-source project. Itanium C++ ABI. https://itanium-cxx-abi.github.io/cxx-abi/abi.
html. Published online; accessed November 2021.

[24] Bhatt C. Patel P. and Talati D. Structural coverage analysis with DO-178B standards. Conference
paper, International Conference on Advanced Computing Networking and Informatics, 2019.

[25] pdfTeX. PDF producer from TeX source. https://www.tug.org/applications/pdftex/. Pub-
lished online; accessed November 2021.

[26] Portable Operating System Interface (POSIX) standards, POSIX.1-2017. Regular Expressions.
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html.

[27] Scan. Coverity scan static analysis tool. https://scan.coverity.com/. Published online; accessed
November 2021.

[28] Sten Pittet. An introduction to code coverage. https://www.atlassian.com/
continuous-delivery/software-testing/code-coverage. Published online; accessed
November 2021.

[29] The GNU C++ Library Manual Chapter 28. Demangling. Free Software Foundation, Inc. https:
//gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html. Published online; ac-
cessed November 2021.

http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
https://github.com/nlohmann/json
https://itanium-cxx-abi.github.io/cxx-abi/abi-examples.html#mangling
https://itanium-cxx-abi.github.io/cxx-abi/abi-examples.html#mangling
https://www.boost.org/doc/libs/1_65_1/doc/html/process.html
https://www.boost.org/doc/libs/1_65_1/doc/html/process.html
https://www.boost.org/doc/libs/1_53_0/doc/html/boost/container/stable_vector.html
https://www.boost.org/doc/libs/1_53_0/doc/html/boost/container/stable_vector.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://www.tug.org/applications/pdftex/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://scan.coverity.com/
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html

BIBLIOGRAPHY 55

[30] The GNU C++ Library Manual Chapter 3.11 Program Instrumentation Options. Free Software Foun-
dation, Inc. https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Instrumentation-Options.
html#Instrumentation-Options. Published online; accessed November 2021.

[31] James A. Whittaker. Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test
Design. Addison-Wesley Professional, Boston, USA, 2009.

[32] William Hart, Lukas Atkinson, and Michael Forderer, and etc. Gcovr, a report generator for GCC code
coverage. https://gcovr.com/en/stable/. Published online; accessed November 2021.

https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Instrumentation-Options.html#Instrumentation-Options
https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Instrumentation-Options.html#Instrumentation-Options
https://gcovr.com/en/stable/

56 BIBLIOGRAPHY

	Supervisory Committee
	Abstract
	Table of Contents
	List of Figures
	List of Listings
	Table of Contents
	1 Introduction
	1.1 Software Testing and Code Coverage
	1.2 Overview and Organization of Report

	2 Background
	2.1 Overview
	2.2 Software Testing
	2.2.1 Structural Coverage Analysis
	2.2.2 Coverage Criteria

	2.3 GCC and Gcov
	2.3.1 GCC Instrumentation
	2.3.2 Gcov Invocation
	2.3.3 Gcov JSON-format Coverage Data Schema

	2.4 Name Mangling

	3 Gcov Report Generator Software
	3.1 Overview
	3.2 GRG Software Introduction
	3.3 Software Installation
	3.4 The GRG Library
	3.4.1 API Documentation
	3.4.2 Library APIs Usage Examples

	3.5 Application Program Coverage
	3.5.1 Command-Line Interface
	3.5.2 Coverage Usage Examples

	4 Conclusions and Future Work
	4.1 Conclusions
	4.2 Future Work

	A Code Coverage Report: !fullreport.pdf!
	A.1 Overview

	B Code Coverage Report: !specifiedreport.pdf!
	B.1 Overview

	Bibliography

