
Zhenmai Hu

Dr. Michael D. Adams, Supervisor

Dr. Wu-Sheng Lu, Committee Member

Department of Electrical and Computer Engineering

University of Victoria

A Software Package for Generating
Code Coverage Reports With Gcov

1. Introduction
❖ The Importance of Software Testing

Structure of This Presentation

2. Background
❖ Software Testing

• Software Testing Methods

• Structural Coverage Analysis

• Code Coverage Criteria

❖ GCC and Gcov

❖ Name Mangling

3. The Gcov Report Generator (GRG) Software

4. Conclusion and Future Work

❖ Software Introduction

❖ The GRG Library

❖ The Application Program Coverage

❖ Usage Example

❖ Software Installation

1

Introduction
❖ The Importance of Software Testing

1. The European Space Agency’s Ariane 5 Flight 501 failed forty seconds after takeoff on June 4, 1996.

2. The NASA Mars Climate Orbiter approached Mars at the wrong angle when entering the upper atmosphere and

disintegrated in 1998.

Ariane 5 Flight 501 from BBC News by Jonathan Amos The artist's concept of NASA Mars Climate Orbiter.
Credit: NASA/JPL-Caltech

2

Background - Software Testing
❖ Software Testing Methods

Software testing considers many aspects of software

behavior.

For example, testing considers if the software being tested:

• responds correctly to all required inputs;

• has acceptable performance consumption towards time

and memory;

• is sufficiently usable for applications;

• works appropriately in all intended environments;

• meets the general needs of users; and

• achieves the design and development requirements

without side effects.

Summarization of software testing strategies

3

Background - Software Testing
❖ Structural Coverage Analysis
Structural coverage analysis is frequently utilized to evaluate testing thoroughness by determining the

exercised code structure in testing procedures. It can typically be classified into two categories: control

flow criteria(the flow of operations and paths performed during software execution) and data flow

criteria(flow of data through variable assignments and references).

A control-flow graph (CFG) is a directed graph depicting all execution paths in code.

Each node in a CFG is a straight-line code sequence with one entry point and one exit point, and

represents a basic block in computer programming.

Each edge that connects nodes in a CFG, corresponds to a branch in code.

A condition is a boolean expression that does not contain boolean operators like AND, OR and NOT.

A decision is a boolean expression composed of conditions and zero or more boolean operators.

a b

c

4

Background - Software Testing

❖Code Coverage Criteria

Code coverage testing measures the percentage of the program

source code exercised based when running specific test suites.

Code coverage criteria is the requirement that a test suite needs to

fulfill during software testing

• Function Coverage =
number of functions executed

total number of functions
* 100%

• Statement Coverage =
number of statements executed

total number of statements
* 100%

• Branch Coverage =
number of branches executed

total number of branches
* 100%

Full coverage: any particular coverage type with 100% coverage

a = -1 b = -1

a = 1 b = 1

5

Background - GCC and Gcov
❖GCC

❖Gcov

The GNU Compiler Collection (GCC), includes the front ends and
libraries to support several programming languages such as C,
C++, Objective-C, and etc. It needs to add [-fprofile-arcs] and [-
ftest-coverage] or [--coverage] to support Gcov.

Gcov is a code coverage tool that comes as a utility from GCC and
only works on code compiled with GCC . It uses two types of files,
gcno and gcda, to generate coverage information that can be
used to analyze various types of code coverage.

The node files with extension gcno produced during compilation,
containing the data needed to reproduce the graph of basic
blocks and the corresponding source line number to each block.

The count files with extension gcda produced at program
termination, containing the execution count for every basic block
and branch and some summary information.

Let’s take hello_world.cpp as an example!

Source code file hello_world.cpp for the hello_world program.

6

Background - GCC and Gcov

The code coverage report hello_world.cpp.gcov.

Summary information of hello_world generated with gcov

1. Compile the file with --coverage using the GCC C++ compiler. The gcno file will be generated in this step.

2. Run the program generated and print the string “Hello, World!”. The gcda file will be generated in this step.

3. Use gcov command to generate summary information and the coverage report hello_world.gcda.

g++ --coverage hello_world.cpp -o hello_world

./hello_world

gcov hello_world

7

Background - GCC and Gcov
Gcov provides numerous command-line options for obtaining additional information to the coverage report.

For example: gcov hello_world -a -b -j

• -a or --all-blocks : adds the execution count for every basic block in the coverage report

• -b or --branch-probabilities : shows the branch frequencies in percent in the coverage report

• -j or --json-format : generates the coverage date in JSON format.

Root

current_worki
ng_directory

data_file files

file

lines

s

gcc_version
format_ve

rsion

lines

branches count

fallthrough

throw

count

line_number

unexecuted_block

function_name

functions

blocks_exe
cuted

execution
_count

demangled
_name

start_column end_column start_line end_line

blocks

name

8

Background – Name Mangling
❖ Name Mangling

In C++, multiple functions can have the same name in the source code due to overloading or visibility within

different scopes. To differentiate them when linking and compiling, the compiler using a specific set of rules

assigns each function in the source code a unique name is a process known as name mangling.

The unique name produced by name mangling is called the mangled name.

The original function name in the source code is called the demangled name.

For example, in the Itanium application binary interface (ABI) standard for C++, the functions can be mapped

as:

int add (int) _Z3addi

int add (double) _Z3addd

Specifically, the compiler can implement each constructor using multiple functions, and the same holds for

destructors. These associated functions of a constructor or destructor typically have the same function name

in the source code but different mangled name. For example, a virtual base destructor with the demangled

name base::˜base() can have two different mangled names: _ZN4baseD0Ev and _ZN4baseD2Ev.

9

Software
❖ Software Introduction
The Gcov Report Generator (GRG) software consists of:

• A C++ header-only library to generate nicely-formatted customized code-coverage report in PDF format.

• Program called coverage to run the library through command line.

The code coverage report generated in PDF format is formatted as:

• The summary section includes six summary tables for function, statement, and branch coverage on per-file and

per-function basis (eg: Per-File Function Coverage, Per-Func Function Coverage).

• The detail section includes the function source code and detailed coverage information (eg: execution counts of

lines and branches).

The important customized features provided by the GRG are as follow:

• filter coverage results using file and function patterns (i.e., regular expressions);

• calculate the branch coverage with or without exceptional branches;

• format the code coverage report by keeping only the selected section contents;

• select the coverage information included by setting the function, statement, and branch coverage threshold on a

per-file and per-function basis; and

• aggregate coverage results for functions with the same names in source code but different mangled names

10

Software
❖ The GRG Library
Application programming interface (API) of the GRG library: One primary class Report_maker (constructor + function call operator)
+ Two secondary classes Global_options and Report_options as input parameters.

11

Software
❖ The Application Program Coverage
Coverage is controlled by numerous command line options. There are two types of these options: Global Options and Per-Report Options.
Global options apply to all reports generated by the program, while per-report options apply only to a single report.

• -c or --aggregate-constructors-destructors

• -t or --aggregate-templates

• -h or --help

When this option is specified, coverage aggregates all of the C++ compiler-generated functions from one particular C++ constructor as if they were the same function
when determining code coverage. This option also has a similar effect on destructors.

When this option is specified, coverage aggregates all instantiations of the same template function as if they were the same function when determining code coverage.

When this option is specified, coverage prints help information about using coverage to the standard output and exits without doing any further processing.

Global Options

Global Options — Function Selection

• -x REGEX or --file-pattern REGEX

• -y REGEX or --function-pattern REGEX

• -p EXPRESSION or --pattern EXPRESSION

• -r or --reset

When this option is specified, coverage sets the current value of the file pattern to the extended regular expression specified by REGEX. The value of REGEX defaults to
string "(.*?)" (i.e., select all files).

When this option is specified, coverage sets the current value of the function pattern to the extended regular expression specified by REGEX. The value of REGEX
defaults to string "(.*?)" (i.e., select all functions).

When this option is specified, coverage adds a new file-function pattern to the pattern list that consists of the file-function patterns. The EXPRESSION is a string chosen
from “keep” or “delete”, through which we can determine whether to keep or discard the current file-function pattern when generating the report. The value of
EXPRESSION defaults to keep, which means the file-function pattern that matches the EXPRESSION will be kept.

When this option is specified, coverage resets all of the per-report options to their default values.

12

Software
❖ The Application Program Coverage

• -n DIRNAME or --temporary-directory-name DIRNAME

• -k or --keep-temporary-directory

• -e or --ignore-exceptional-branches

• -o PATHNAME or --output PATHNAME

• -m PROGRAM or --pdflatex-program PROGRAM

When this option is specified, coverage sets the DIRNAME as the name of the temporary directory used to store the LaTeX source file. The directory specified must
already exist. For example, "/tmp/foobar" or "apple" can be used. If this option is not specified, the system directory for temporary files will be used (i.e., the directory
returned by the C++ standard library function std::filesystem::temp_directory_path).

When this option is specified, coverage keeps the temporary directory that contains the LaTeX source file. If this option is not specified, the directory will be deleted.

When this option is specified, coverage treats exceptional branches as if they do not exist when determining branch coverage.

When this option is specified, coverage sets PATHNAME as the output pathname to which to write the code coverage report. If not specified, the report is printed to
standard output.

This option sets PROGRAM as the pathname of the program to use to convert LaTeX source to a PDF document. Any program that has a CLI compatible with pdflatex
can be used. The pdflatex, lualatex, or pdflatex_frontend are possible values for PROGRAM. The value of PROGRAM defaults to pdflatex.

Per-Report Options

Per-Report Options – Report Formatting

• -d or –detail

• --function-coverage-summary-per-file/--statement-coverage-summary-per-function/--branch-coverage-summary-per-file

• --function-coverage-summary-per-function/--statement-coverage-summary-per-function/--branch-coverage-summary-per-function

• --function-coverage-summary/--statement-coverage-summary/--branch-coverage-summary

When this option is specified, coverage includes the detail section in the report, which contains detailed coverage information for each selected function.

When this option is specified, coverage includes the per-file function/statement/branch coverage summary table in the code coverage report.

When this option is specified, coverage includes the per-function function/statement/branch coverage summary table in the code coverage report.

This option works for selecting both the --function-coverage-summary-per-file and the --function-coverage-summary-per-function options (same for statement and branch).

13

Software
❖ The Application Program Coverage

• -F PERCENT or --func-cov-per-file-threshold PERCENT

• -f PERCENT or --func-cov-per-func-threshold PERCENT

• -S PERCENT or --state-cov-per-file-threshold PERCENT

• -s PERCENT or --state-cov-per-func-threshold PERCENT

• -B PERCENT or --branch-cov-per-file-threshold PERCENT

• -b PERCENT or --branch-cov-per-func-threshold PERCENT

When this option is specified, coverage selects all functions in source files with function coverage less than the real number PERCENT, of which the value starts from 0
and is allowed to be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

When this option is specified, coverage selects all functions with function coverage less than the real number PERCENT, of which the value starts from 0 and is allowed
to be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

When this option is specified, coverage selects functions in source files with statement coverage less than the real number PERCENT, of which the value starts from 0
and is allowed to be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

When this option is specified, coverage selects all functions with statement coverage less than the real number PERCENT, of which the value starts from 0 and is allowed
to be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

When this option is specified, coverage selects all functions in source files with branch coverage less than the real number PERCENT, of which the value starts from 0
and is allowed to be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

When this option is specified, coverage selects all functions with branch coverage less than the real number PERCENT, of which the value starts from 0 and is allowed to
be greater than 100. The value of the PERCENT defaults to 101. The lines in the selected function are marked in the detail section of the report.

Per-Report Options — Function Selection

14

Software
❖ Usage Example
A source file template.cpp:
• a template function called bubbleSort to sort the input array with element type specified in ascending order;
• two overloading functions with the same name sum used to add two input numbers but differs in the return type and input data type;
• a function called main that initializes some variables and calls the other functions.

Source code of the template.cpp used in code coverage report example

15

Software
❖ Usage Example
Source code for full_report.pdf that uses the GRG library API with
default options

Source code for the file specified_report.pdf that uses
the GRG library API with particular options

16

Software
❖ Usage Example

Run coverage to generate the file full_report.pdf containing all the files and functions with default option
settings:

Run coverage to generate the file specified_report.pdf with specified file-function pattern and coverage
thresholds:

./coverage --function-coverage-summary \
--statement –coverage-summary \
--branch-coverage-summary \
--detail \
--output full_report.pdf template.gcda

./coverage --file-pattern .*template.cpp --pattern keep \
--function-coverage-summary \
--statement-coverage-summary \
--branch-coverage-summary \
--detail \
--state-cov-per-func-threshold 100 \
--branch-cov-per-func-threshold 100 \
--output specified_report.pdf template.gcda

17

Software
❖ Usage Example Partial contents of the file full_report.pdf generated the by GRG software.

To open
the file

18

full_report.pdf

Software
❖ Usage Example The file specified_report.pdf generated the by GRG software.

To open
the file

19

specified_report.pdf

Software
❖ Software Installation
The following versions of required software packages have been verified to work with the

GRG software:

• GCC 10.3.0;

• Boost 1.71.0; and

• pdfTeX 1.40.22 (TeX Live 2021).

The GRG software uses CMake for compiling, building, testing, and installation:

1. Generate the native build files by running the command:

2. Build the GRG software and test files by running the command:

3. Test the GRG software built by running the command follows:

4. Install the GRG software by running the command:

The text like the following will be printed to the standard output upon successful completion of the tests, and the code coverage reports
will be presented in the directory named CoverageTestResults under the $SOURCE_DIR directory.

cmake -H$SOURCE_DIR -B$BUILD_DIR

cmake --build $BUILD_DIR

cmake --build $BUILD_DIR --target test

cmake --build $BUILD_DIR --target install

100% tests passed , 0 tests failed out of 4

20

Conclusion and Future Work

• The importance of software testing and the criteria of structural coverage analysis have been studied.

• The GRG software developed based on Gcov containing a library and a program called coverage.

• The GRG software can generate customized code coverage report in PDF format for function, statement, and

branch coverage on per-file and per-function basis.

• The GRG software provides rich functionalities, including filtering functions using regular expressions,

calculating the branch coverage with or without exceptional branches, selecting the report contents by setting

coverage threshold, and aggregating associated functions with different mangled names.

• In the future, the GRG software could allow users to output coverage statistics into a plain text file.

• In addition, the GRG software may need to add mangled function names when presenting the report.

21

Thank you!

Any Questions?

22

