An Improved Progressive Lossy-to-Lossless Coding
Method for Arbitrarily-Sampled Image Data

Michael D. Adams
Dept. of Electrical and Computer Engineering, University of Victoria
Victoria, BC, V8W 3P6, Canada
mdadams@ece.uvic.ca

Abstract—A method for the progressive lossy-to-lossless cod-
ing of arbitrarily-sampled image data is proposed. Through
experimental results, the proposed method is demonstrated to
have a rate-distortion performance that is vastly superior to
that of the state-of-the-art image-tree (IT) coding scheme. In
particular, at intermediate rates (i.e., in progressive decoding
scenarios), the proposed method yields image reconstructions with
a peak-signal-to-noise ratio that is much higher (sometimes by
several dB) than the IT scheme, while simultaneously achieving
a slightly lower lossless rate.

I. INTRODUCTION

In recent years, there has been a growing interest in image
representations based on nonuniform sampling [1]-[5]. Since
most images are nonstationary in nature, the use of uniform
sampling (such as lattice-based sampling) for images is almost
always suboptimal, as it tends to place too many sample
points in regions of slow variation and too few sample points
in regions of rapid change. With nonuniform sampling, the
sample points can be adapted to the image content, yielding
a more efficient representation. Of course, with the use of
datasets that are arbitrarily (i.e., nonuniformly) sampled comes
the need to compress such datasets for storage and communi-
cation. Moreover, in many applications, it is highly desirable
to employ a coding scheme that offers progressive lossy-
to-lossless functionality. With such functionality, the decoder
need not wait until the entire coded bitstream is received in
order to start decoding. Instead, it can start decoding as soon as
it receives only a very small portion of the coded bitstream, and
as more of the coded bitstream is received, a better and better
approximation of the coded dataset can be reconstructed, with
a lossless reproduction being obtained after the entire coded
bitstream has been decoded.

Although numerous schemes have been proposed for the
coding of arbitrarily-sampled image data (e.g., [4], [5]), rel-
atively fewer provide progressive lossy-to-lossless functional-
ity. To date, one of the best performing progressive coding
schemes is the so called image-tree (IT) coding method
proposed in [5]. In this paper, we propose a new tree-based
coding method for arbitrarily-sampled image data, which was
inspired by the IT scheme. As will be shown later through
experimental results, our proposed method has vastly superior
progressive coding performance relative to the IT scheme, as
well as having slightly improved lossless coding performance.

The remainder of this paper is organized as follows.
Section II provides some background information. Section III
introduces a new tree-based representation for arbitrarily-
sampled image datasets, and then Section IV proposes an effec-

tive method for coding the information in this representation.
In Section V, the coding efficiency of the proposed method
is compared to that of the IT scheme, with the proposed
method proving to yield vastly superior progressive coding
performance at intermediate rates as well as slightly improved
performance at lossless rates. Finally, Section VI concludes
the paper with a summary of our key results.

Before proceeding further, a brief digression is in order
regarding the notation used herein. The set of integers and set
of real numbers are denoted as Z and R, respectively. The
cardinality of a set S is denoted |S|. Lastly, for z € R, |z]
and [x] respectively denote the largest integer not more than x
(i.e., the floor function) and the smallest integer not less than
z (i.e., the ceiling function).

II. BACKGROUND

An image is an integer-valued function f defined for
integer points (x,y) in the domain D = {0,1,..., W — 1} X
{0,1,..., H — 1}. Without loss of generality, we assume that
the range of f can be represented as P-bit unsigned integers.
Such an image can be approximated using a dataset that
consists of: 1) aset S = {(xy, yi)}ﬁ‘o_l of sample points, with
S C 72; and 2) their corresponding sample values {zz}li‘o_ "
where z; = f(x;,y;). This arbitrarily-sampled dataset is the
type of dataset that we are concerned with coding herein. As
a matter of terminology, we refer to the quantity |S|/|D| as
the sampling density of the dataset.

In anticipation of things to come, we now introduce a
simple transform relevant to our proposed coding method.
The two-point average-difference (AD) transform maps two
integers xo and x; to two integers yo and yi, as given by

yo = |3 (wo + 1)

where Yo and y; correspond to the approximate average of x
and z; and the difference between x(y and z;, respectively.
Due to the form of (1), if zy and z; can each be represented
with 7 bits (i.e., an n-bit integer), yo and y; can be represented
with n and n + 1 bits, respectively, a fact that we make use
of later. The transform computed by (1) is invertible, with its
inverse given by

and Y1 = I1 — o, (1)

zo=yo— [gy1] and x1 =y + . (2

III. TREE-BASED REPRESENTATION

In order to be able to present our proposed coding
method, we must first introduce a tree-based representation of

q izs PpBe oo PR e
(a)

’[o,mé[o,l)‘ ’[1,2>§[1,2>‘ ’[&4);[0,1)‘ ’[o,1>§[3,4>‘ ’[&4);[3,4)‘

(b)

Fig. 1. ADIT example. (a) An arbitrarily-sampled image dataset and (b) its
corresponding ADIT representation.

arbitrarily-sampled datasets, called the average-difference im-
age tree (ADIT). To represent an arbitrarily-sampled dataset,
the ADIT must capture: 1) the sample positions (i.e., the
position in the image domain of each of the sample points);
and 2) the sample values (i.e., the value of the image function
at each sample point). The ADIT shares some similarities with
the image tree (IT) from [5]. The main difference between
these two tree-based representations is that they use a com-
pletely different approach to capture sample-value information.
As it turns out, the way in which the ADIT represents sample-
value information facilitates more efficient coding relative to
the IT approach.

As suggested above, the ADIT is a tree. Each node in
the tree has zero to four children and is associated with the
following information: 1) a rectangular region in the image
domain, called a cell; 2) an approximation coefficient; and
3) max{c— 1,0} detail coefficients, where ¢ is the number of
children that the node possesses. The approximation coefficient
specifies the approximate average sample value of all samples
contained in the node’s cell, while the detail coefficients
specify the difference between the approximation coefficient
of the node and the approximation coefficients of its children.
An example of an ADIT is provided in Fig. 1. The ADIT
is shown in Fig. 1(b) and the arbitrarily-sampled dataset
that it represents is given in Fig. 1(a). In the figure, each
node in the ADIT is labelled (in order) with its associated
cell, approximation coefficient, and detail coefficients if any
(appearing in brace brackets). In what follows, we will explain
how the ADIT is constructed for a given arbitrarily-sampled
dataset.

First, we consider how to determine the number and
connectivity of nodes in the ADIT as well as the relation-
ship between the position of a node in the ADIT and its
associated cell. An arbitrary node in the ADIT, with the cell
R = [xo,21) X [yo,y1), is associated with four possible
children having cells {R;}?_, given by

Ry = [Zm,21) X [Y0, Ym)s
and Rz = [Tm,Z1) X [Ym, Y1),

Ry = [0, Zm) X [Y0, Ym)s
Ry = [z, 2m) X [Ym, Y1),

where zm = |3(zo+21+1)| and ym = [S(yo +y1 +1)].
In other words, the cells {R;}7_, are obtained by splitting R
at its approximate midpoint in each of horizontal and vertical
directions. To establish the connectivity of nodes, we start with
an ADIT consisting of a single node that is associated with
the cell [0, W) x [0, H). Then, starting from this single root
node, the remainder of the nodes are generated by recursively
adding, to each node in the ADIT with cell R, any child node
whose cell R’ satisfies: 1) R’ contains at least one sample

ag
as T _’ﬁlo a
ai do
ag_ |T !
® (b)

Fig. 2. Computation of the approximation and detail coefficients for a given
node in the case that (a) the node has all four possible children; and (b) the
node is missing the child corresponding to approximation coefficient a3.

point; 2) R’ has nonzero area; and 3) R’ # R. This process
leads to an ADIT with L = [log, max{W, H}]|+1 levels, and
is associated with a quadtree partitioning of the image domain.
Furthermore, the terminal nodes in the ADIT have a one-to-
one correspondence with sample points. Each terminal node
specifies the location of a single sample point. In particular,
the cell of a terminal node always contains exactly one point in
72, which must correspond to a sample point. For example, in
Fig. 1, one can see that each of the terminal nodes in the
ADIT corresponds to a cell containing exactly one integer
lattice point which is a sample point.

Now, we examine how the approximation and detail co-
efficients for a node are calculated. Consider an arbitrary
node n with ¢ children, which (as stated above) has one

approximation coefficient a and m detail coefficients {d; ;161,
where m = max{c — 1,0}. For a terminal node (which

corresponds to a sample point), a is simply chosen as the
sample value of the corresponding sample point, and there
are no detail coefficients (since ¢ = 0). For a nonterminal
node n, the situation is more complicated as a and {d;}7"*
are computed through the repeated application of the AD
transform given by (1). Let {a;}?_, denote the approximation
coefficients of the four possible children of node n. Suppose
that ¢ = 4 (i.e., all four possible children are present). In this
case, m = 3, and a and {d;}?_, are computed by applying the
AD transform repeatedly as shown in Fig. 2(a). In this figure,
each block labelled “I"” corresponds to the AD transform with
the top input, bottom input, top output, and bottom output
corresponding to the quantities xg, x1, Yo, and y; in (1),
respectively. Suppose now that ¢ < 4. In this case, some of
the four possible children are not present and in effect one or
more of the {a;}?_, is missing. To handle missing inputs, we
apply the following two rules to the block diagram in Fig. 2(a):
1) any transform block with only one input is replaced by an
identity block that does not produce any detail coefficient; 2) if
any transform block has no inputs, the block is simply removed
altogether. For example, if ¢ = 3 and the child corresponding
to as is not present, m = 2, and a and {d; }}_, are calculated as
shown in Fig. 2(b). Due to the dynamic range properties of the
AD transform noted earlier (in Section II), each approximation
coefficient can be represented as a P-bit unsigned integer and
each detail coefficient can be represented as a (P + 1)-bit
signed integer.

IV. CODING METHOD

Having introduced the ADIT representation of an
arbitrarily-sampled image dataset, we now propose an efficient
scheme for coding the information in an ADIT. In what

follows, we describe only the encoding process in detail, since
the decoding process follows from symmetry. To capture all
of the information in the ADIT without redundancy, it is
necessary to specify: 1) the width W and height H of the
image domain; 2) the child configuration (CC) of each node,
that is, which of the four possible children are present for each
node; 3) the approximation coefficient a, of the root node; and
4) the detail coefficients (DCs), if any, of each node. Note that
the approximation coefficients for the non-root nodes are not
required, since these coefficients can be computed from a, and
the detail coefficients.

In addition to the ADIT used to represent the arbitrarily-
sampled image dataset, two other key data structures are
employed by the encoder: 1) the CC queue and 2) the DC
queue. The CC queue is a priority queue that holds nodes
whose CC information has not yet been coded. The node
priorities are chosen to correspond to a breadth-first traversal
of the tree (i.e., so that nodes placed on the CC queue are
removed in breadth-first order). The DC queue is a first-in first-
out (FIFO) queue that holds nodes whose CC information has
been coded but whose DC information has not yet been fully
coded. The encoding process proceeds as follows. To begin, a
short header containing W, H, P, and a, is output. Then, the
context-adaptive binary arithmetic-coding engine [6], which
is used to encode the remainder of the data, is initialized.
Initially, the root node is placed on the CC queue. Then,
the algorithm alternates between coding CC information for
nodes on the CC queue and DC information for nodes on the
DC queue, switching queues when the queue currently being
processed becomes empty or a maximum entropy budget has
been exhausted. After a node on the CC queue is processed,
it is moved to the DC queue and each of its children is
placed on the CC queue. After a node on the DC queue is
processed, it is placed on the DC queue only if it still has more
DC information remaining to be coded. The overall encoding
process is shown in more detail in Algorithm 1, where the
algorithms for encoding CC and DC information are to be
specified shortly. As can be seen from Algorithm 1, the entropy
budget for the CC queue (i.e., 512 bits) is twice the entropy
budget for the DC queue (i.e., 256 bits). This gives a relatively
higher priority to sample-position information in the coded
bitstream, which was found to be beneficial for good rate-
distortion performance (based on significant experimentation).
Next, we consider how the CC and DC information is coded.
In the case of the CC information, the encoding process is
identical to that used in the IT method. So, our focus in what
follows is on the coding of DC information.

Binarization. In the coding of DC information, the need
arises to encode (n + 1)-bit signed integers with n bits of
magnitude plus a sign bit. In order for these integers to be
coded by a binary arithmetic coder, they must first be binarized
(i.e., converted to a sequence of binary symbols). To accom-
plish this, we define a family of binarizations parameterized
by n and an integer f, where f € [1,n], which we denote as
SI(n, f). The SI(n, f) binarization process behaves identically
to the Ul(n, f) binarization process for unsigned integers
described in [5], except that, in SI(n, f) binarization, an extra
binary symbol is coded in bypass mode immediately following
the coding of the first non-zero magnitude bit of the integer.
This extra binary symbol is the sign bit for the integer being
coded. (Note that bypass mode is simply an arithmetic-coding

Algorithm 1 Encoding algorithm.
1: ccBudget =512

2: dcBudget := 256

3: encode header information (i.e., W, H, P, and a,)

4: insert root node on CC queue

5: while CC queue not empty or DC queue not empty do

6: while ccBudget > 0 and CC queue not empty do

7: set node to element at front of CC queue and remove
element from queue

8: encode CC information for node and set b to entropy
of information just coded

9: ccBudget := ccBudget - b

10: insert each child of node on CC queue

11: insert node on DC queue

12: end while
13: while dcBudget > 0 and DC queue not empty do

14: set node to element at front of DC queue and remove
element from queue

15: invoke DC encoding process for node and set b to
entropy of information just coded

16: if still more DC data to encode for node then

17: insert node on DC queue

18: end if

19: dcBudget := dcBudget - b

20: end while

21: ccBudget := min{512, ccBudget + 512}
22: dcBudget := min{256, dcBudget + 256}
23: end while

context in which both binary symbols have fixed and equal
probabilities.)

DC information coding. Each detail coefficient is a (P+1)-
bit signed integer, consisting of a P-bit magnitude plus a sign
bit, and each detail coefficient for a given node is coded using
SI(P, min{P,4}) binarization conditioned on the node’s level
in the tree. Each time the DC encoding process is invoked for
a particular node, one more magnitude bit is coded (starting
from the most-significant bit position) for each of the node’s
detail coefficients. Whenever the first nonzero magnitude bit is
coded for a detail coefficient, it is immediately followed by the
sign bit. Since each invocation of the DC coding process codes
one magnitude bit from each of the node’s detail coefficients
and each detail coefficient has P magnitude bits, all of the
DC information for a node will be encoded after the coding
process has been invoked P times for the node.

Decoding. As mentioned earlier, the decoding process
simply mirrors the encoding process. For this reason, we do not
describe the decoding process in any depth. There is, however,
one detail about decoding that is worth noting. In particular,
at intermediate rates during decoding, a terminal node in the
partially decoded ADIT may be such that its cell contains more
than one integer lattice point. In such a case, the terminal node
is deemed to be associated with a sample point located at the
centroid of the node’s cell.

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of our proposed method,
we compare its coding performance to that of the state-of-the-
art IT scheme. For evaluation purposes in our work, 40 images

TABLE 1. TEST IMAGES

Name Size Bits/Sample | Description
ct 512x512 12 CT scan [8]
lena 512x512 8 woman [7]
peppers 512512 8 collection of vegetables [7]
TABLE II. LOSSLESS CODING PERFORMANCE OF THE PROPOSED AND
IT METHODS FOR SEVERAL DATASETS
Sampling
Density Rate (Bytes)
Image (%) Proposed IT
ct 0.5 3266 3279
1.0 6054 6086
2.0 11077 11170
4.0 20106 20300
lena 0.5 2779 2797
1.0 5098 5115
2.0 9284 9329
4.0 16729 16846
peppers 0.5 2827 2833
1.0 5217 5229
2.0 9527 9571
4.0 17180 17285

were employed, taken mostly from well known collections
including the USC image database [7] and JPEG-2000 test
set [8]. Herein, we present results for a small representative
subset of these images, namely the three images listed in
Table I, which cover both photographic and medical imagery.
Since the above images are uniformly-sampled on a rectangular
lattice, arbitrarily-sampled datasets had to be generated from
these images to be used for evaluation purposes. To produce
such datasets, we employed the Delaunay mesh-generation
scheme proposed in [2]. From an arbitrarily-sampled dataset,
an image reconstruction that is uniformly sampled on a rectan-
gular lattice is synthesized by constructing a piecewise-linear
interpolant over the Delaunay triangulation of the dataset’s
sample points, as described in [2].

For each test image and several sampling densities, we gen-
erated an arbitrarily-sampled dataset (using the method of [2]
mentioned above). Then, each arbitrarily-sampled dataset was
losslessly coded using each of the proposed and IT methods
and the lossless rate measured. A representative subset of these
lossless coding results is shown in Table II. Next, each of the
losslessly coded bitstreams was progressively decoded with the
reconstruction error being measured with respect to the original
lattice-sampled image as a function of rate. A representative
subset of these progressive coding results (for three test cases)
is shown in Fig. 3. Each of the three graphs in the figure
shows the peak-signal-to-noise ratio (PSNR) plotted against
the number of bytes decoded. In what follows, we will examine
the above results (from Fig. 3 and Table II) more closely.

Analysis of progressive coding results. First, let us consider
the progressive coding results from Fig. 3. Each plot in this fig-
ure shows the PSNR of the reconstructed image plotted against
rate. On each graph, the far left corresponds to no information
having been decoded, while the far right corresponds to the
coded bitstream having been fully decoded and the arbitrarily-
sampled dataset having been losslessly reconstructed. As noted
above, the PSNR is measured relative to the original lattice-
sampled image. Since the arbitrarily-sampled dataset only
approximates the original lattice-sampled image, the PSNR
does not become infinite (corresponding to zero mean-squared
error) when the bitstream is fully decoded. Instead the PSNR

45 T T T T T
o
k=2
o
zZ
0
o
1 5 1 1 1 1 1
0 1024 2048 3072 4096 5120 6144
Rate (bytes)
(a)
34 T T T T
o]
o
o«]
z
%)]
o
14 1 1 1 1
0 2048 4096 6144 8192 10240
Rate (bytes)
(b)
&]
E -
o
=]
N
o]
1 2 1 1 1 1
0 2048 4096 6144 8192 10240
Rate (bytes)
©

Fig. 3. Progressive coding performance of the proposed and IT methods for a
dataset corresponding to (a) the ct image at a sampling density of 1%; (b) the
lena image at a sampling density of 2%; and (c) the peppers image at a
sampling density of 2%.

reaches a finite maximum value corresponding to the difference
between the arbitrarily-sampled dataset and original lattice-
sampled image.

From the graphs in Figs. 3(a) to (c), it is clear that the
proposed method consistently yields image reconstructions
with higher PSNR (often by several dB) than the IT method,
except at very low rates. The performance at these very low
rates, however, is of little interest since the obtained image
reconstructions are of such poor quality as to be useless for
practical applications. So, in a practical sense (i.e., at rates that
yield image reconstructions of sufficient quality to be useful
for practical applications), the proposed method consistently
outperforms the IT scheme. A much closer examination of the

(b)

(© (d)

Fig. 4. Lossy coding example for the ct image. (a) The original image with
a region of interest marked by a rectangle; and (b) the region of interest
in the original image. The lossy reconstruction obtained after 3757 bytes
(approximately 62%) of the bitstream has been decoded with each of the
(c) proposed (33.94 dB) and (d) IT (27.59 dB) methods.

PSNR numbers shows that for the graphs in Figs. 3(a), (b),
and (c), the proposed method beats the IT scheme by average
and maximum margins of 3.45 dB and 10.88 dB, 1.50 dB
and 4.81 dB, and 1.61 dB and 5.64 dB, respectively. These
margins are obviously very significant. So, the progressive
coding performance of the proposed method is clearly quite
superior to that of the IT scheme.

For the most part, PSNR was found to correlate reasonably
well with subjective image quality. For the benefit of the reader,
however, we provide an example for illustrative purposes. In
particular, for the test case considered in Fig. 3(a) (i.e., the
dataset for the ct image), Fig. 4 shows the reconstructed
images obtained at an intermediate rate of 3757 bytes, which
corresponds to approximately 62% of coded bitstream having
been decoded. Comparing the reconstructed images produced
by the proposed and IT methods in Figs. 4(c) and (d), re-
spectively, we can see that reconstruction from the proposed
method more faithfully reproduces the original image than the
one from the IT scheme.

Analysis of lossless coding results. In each of the graphs
in Fig. 3, the rate at which the proposed and IT methods
achieve lossless reconstruction is evidently quite close. Now,
we will consider the results of Table II in order to compare
the lossless coding performance of the two methods more
precisely. Examining the results of Table II, we can see that the
proposed method performs slightly better than the IT scheme,
yielding a lossless rate that is consistently lower by about 0.2%
to 1.0%, depending on the particular dataset being coded. Thus,

the superior coding performance of the proposed method (over
the IT scheme) at intermediate rates does not come at the cost
of an increased lossless rate. In fact, as we can see, the lossless
rate is actually improved as well.

Additional commentary. From the results presented above,
it is clear that the coding performance of the proposed method
is vastly superior to that of the IT scheme. Here, we briefly
comment on some of the reasons for this better performance.
The IT method encodes all sample-position and sample-value
data for a particular node at once before proceeding to code
information for another node. In contrast, our proposed method
does not code all sample-value data for a particular node
together. By allowing sample-value data for different nodes
to be interspersed, it is possible to better concentrate the
information that most helps to reduce the reconstruction error
earlier in the coded bitstream. This leads to our proposed
method yielding superior progressive performance at interme-
diate rates. Another reason for the performance difference can
be attributed to the different manner in which the sample-value
data is represented in the tree. Due to this difference, in the
case of a node with more than one child, the IT method must
code an additional small integer (of 1 or 2 bits) relative to
the proposed method. This helps to contribute to the proposed
method achieving a lower lossless rate.

VI. CONCLUSIONS

In this paper, we have proposed a new progressive lossy-
to-lossless coding method for arbitrarily-sampled image data.
Through experimental results, the progressive coding effi-
ciency of our proposed method at intermediate rates was shown
to be vastly superior to that of the state-of-the-art IT scheme,
yielding image reconstructions with much higher PSNR (some-
times by several dB). Furthermore, our proposed method was
also demonstrated to yield slightly lower lossless rates. Our
proposed coding method can benefit the many applications that
utilize nonuniformly sampled images, by allowing such data
to be more efficiently stored and communicated.

REFERENCES

[1] 1. Amidror, “Scattered data interpolation methods for electronic imaging
systems: a survey,” Journal of Electronic Imaging, vol. 11, no. 2, pp.
157-176, Apr. 2002.

[2] M. D. Adams, “A highly-effective incremental/decremental Delaunay
mesh-generation strategy for image representation,” Signal Processing,
vol. 93, no. 4, pp. 749-764, Apr. 2013.

[3] P Liand M. D. Adams, “A tuned mesh-generation strategy for image
representation based on data-dependent triangulation,” IEEE Trans. on
Image Processing, vol. 22, no. 5, pp. 2004-2018, May 2013.

[4] L. Demaret and A. Iske, “Scattered data coding in digital image com-
pression,” in Curve and Surface Fitting: Saint-Malo 2002. Brentwood,
TN, USA: Nashboro Press, 2003, pp. 107-117.

[5] M. D. Adams, “An efficient progressive coding method for arbitrarily-
sampled image data,” IEEE Signal Processing Letters, vol. 15, pp. 629—
632, 2008.

[6] 1. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, no. 6, pp. 520-540,
1987.

[7] “USC-SIPI image database,” 2011.
http://sipi.usc.edu/database

[8] “JPEG-2000 test images,” ISO/IEC JTC 1/SC 29/WG 1 N 545, Jul. 1997.

[Online]. Available:

