An Improved Progressive Lossy-to-Lossless Coding

Method for Arbitrarily-Sampled Image Data

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, V8W 3P6, Canada

E-mail: ndadanms @ce. uvi c. ca

August 2013

mdadams@ece.uvic.ca

© Motivation

© Arbitrarily-Sampled Image Datasets

© Average-Difference Image Tree (ADIT) Coding Method
© Evaluation of Coding Performance

© Conclusions

Michael D. Adams (University of Victoria) ADIT Coding Method

Motivation

since most images nonstationary, uniform sampling on lattice not optimal
in regions where image has more detail, sampling density may be too low
in regions where image has less detail, sampling density probably too high
motivates arbitrary (i.e., nonuniform) sampling

6 6 6 ¢ ¢

when arbitrary sampling employed, need means to efficiently encode
resulting datasets

@ example: arbitrarily-sampled datasets arise when triangle meshes (e.g.,
interpolants over Delaunay triangulations) used for image representation

Image Uniform Sampling Arbitrary Sampling

Michael D. Adams (University of Victoria) ADIT Coding Method August 2013 3

Mesh Model of Image (Sampling Density 2.

Delaunay Triangulation
of Image Domain Resulting Triangle Mesh

Reconstructed

Image

Michael D. Adams (University of Victoria) ADIT Coding Method August 2013 4

Arbitrarily-Sampled Image Dataset

@ image is integer-valued function f defined for integer points (x,y) in the
domain D ={0,1,...,W—1}x{0,1,...,H—1}
@ without loss of generality, assume that range of f can be represented as
P-bit unsigned integers
@ arbitrarily-sampled image dataset consists of:
©Q setS= {(xi,yi)}‘i;l of sample points, with S C Z?
@ corresponding set Z = {zi}‘isz‘al of sample values, where z; = f(xi,Yi)
@ sampling density of dataset defined as |S|/|D|
@ want to be able to efficiently code this type of dataset

@ want progressive lossy-to-lossless coding capability

Michael D. Adams (University of Victoria) ADIT Coding Method

Average-Difference (AD) Transform

@ average-difference (AD) transform maps two integers xq and x; to two
integers Yo and y1, as given by

Yo = L%(Xo +X1)J and Y1 =X1—Xo

@ Yo and y; correspond to approximate average of x¢ and x; and difference
between xy and x,, respectively

@ if xg and x; can each be represented with n bits, yg and y; can be
represented with n and n 4 1 bits, respectively

@ inverse of above transform given by

X0 :yo—t%le and X1:y1+X0

Michael D. Adams (University of Victoria) ADIT Coding Method

Average-Difference Image Tree (ADIT)

@ average-difference image tree (ADIT) is tree-based data structure

@ associated with quadtree partitioning of image domain, which splits image
domain into cells
@ each node in tree has zero to four children and is associated with following
information:
@ rectangular region in image domain, called cell
@ one approximation coefficient
© max{c— 1,0} detail coefficients, where c is number of children possessed
by node
@ approximation coefficient: corresponds to approximate average value of
all sample values contained in node’s cell

@ detail coefficients: specify difference between approximation coefficient of
node and approximation coefficients of children

Michael D. Adams (University of Victoria) ADIT Coding Method

Quadtree Partitioning of Image Domain

@ L[-level quadtree partitioning of image domain D (where
L = [log, max{W,H}] + 1):

w y
(2)]| . (2)| (2)]_ (2) 1_,
. " €03 |13 |23 |33 x
€o1 €11 (2] (2)] ()] (2)
L0 02 (€12 |22 |®32
H 0,0 — — —
(2)] (2)].(2)| (2)
(1) (1) €01 [€11 |21 |31
‘o0 10 @] 2]]2
€00 |10 |20 |®30
Level 0 Level 1 Level 2

L Levels

@ quadtree partitioning shown explicitly as tree:

L Levels

(2) _(2) _(2) _(2) _(2) _(2) _(2)_(2) (2) _(2) _(2) _(2) _(2) _(2) _(2) _(2)
€0 €10 a1 €11 20 30 €21 31 €02 ©12 ©03 €13 €22 €32 €23 €33

Michael D. Adams (University of Victoria) ADIT Coding Method

ADIT Example

3(2 3 [0,4)x[0,4)
2 2,{0,2,0}
Yi[s
o0 1
o173 [o,2]x[o,2]‘ ’[2,4)><[O,2)‘ ’[0,2)><[2,4)‘ ’[2,4)><[2,4)‘
x 2,{5} 1 2 3
Image N l | l
Dataset ’[0,1)3[0,1)‘ ’[1,2)x[1,2)‘ ’[3,4)x[0,1)‘ ’[0,1)§[3,4)‘ ’[&4);[3,4)‘
5 1

Corresponding ADIT
@ each node in ADIT labelled (in order) with
© associated cell
@ approximation coefficient
© detail coefficients if any, appearing in brace brackets
@ image dataset can be losslessly reconstructed from information in leaf
nodes
@ can generate approximations of dataset from pruned versions of tree
@ generate one sample point and corresponding sample value for each leaf
node in pruned tree
@ if leaf node has cell with area greater than one, corresponding sample
point taken to be (approximate) centroid of cell

Michael D. Adams (University of Victoria) ADIT Coding Method

Approximation and Detail Coefficients

consider arbitrary node . with c children, which has one approximation

coefficient a and m detail coefficients {d; ;"™ HA ! where m = max{c—1,0}.
for terminal node (which corresponds to sample point):

@ a chosen as sample value of corresponding sample point

@ no detail coefficients (since ¢ = 0)
for nonterminal node n:

@ aand {d computed through repeated application of AD transform

let {al}lzo denote approximation coefficients of four possible children of
node n

if all four possible children present (i.e., ¢ = 4), then m = 3, and a and
{d; }m o~ are computed by applying AD transform repeatedly as shown in
figure:

(&%)

ar T _’_do a
a; d>
as T _’Ql

Michael D. Adams (University of Victoria) ADIT Coding Method

Approximation and Detail Coefficients (Continued)

@ if some of the four possible children not present (i.e., ¢ < 4), then in effect
one or more of {ai}f’zo missing
@ to handle missing inputs, apply following two rules to block diagram for
case of no missing inputs (on previous slide):
@ any transform block with only one input replaced by identity block that does
not produce any detail coefficient
@ if any transform block has no inputs, block is simply removed altogether
@ for example, if ¢ = 3 and child corresponding to az not present, m = 2,
and a and {d; }mo calculated as shown in right figure:

Qo

a, T _,Qo a

a d, —
az_ | T L da

@ each approximation coefficient representable as P-bit unsigned integer
@ each detail coefficient representable as (P + 1)-bit signed integer

Michael D. Adams (University of Victoria) ADIT Coding Method

ADIT Coding

@ provides progressive lossy-to-lossless coding capability
@ consider only encoding process (as decoding mirrors encoding)
@ to (nonredundantly) capture all information in ADIT, sufficient to encode:
© width W and height H of image domain
@ child configuration (CC) of each node (i.e., which of four possible children
are present for each node)
© approximation coefficient a, of root node
@ detail coefficients (DCs) (if any) of each node
@ aside from ADIT, two key data structures employed by encoder:
@ child configuration (CC) queue
@ detail coefficients (DC) queue
@ CC queue:
@ priority queue
@ holds nodes whose CC information not yet coded
@ node priorities correspond to breadth-first traversal order
@ DC queue
e first-in first-out (FIFO) queue
@ holds nodes whose CC information has been coded but whose DC
information not yet fully coded

Michael D. Adams (University of Victoria) ADIT Coding Method

ADIT Encoding Algorithm

@ image width W, image height H, approximation coefficient a, of root
node, P bits/sample

@ output header containing W, H, a,, and P

@ initialize context-adaptive binary arithmetic-coding engine, used to encode
remainder of data

@ clear CC and DC queues

@ place root node on CC queue

@ alternate between coding CC information for nodes on CC queue and DC
information for nodes on DC queue

@ switch queues when queue currently being processed becomes empty or
maximum entropy budget exhausted

@ after node on CC queue processed, nhode moved to DC queue and each
of its children placed on CC queue

@ after node on DC queue processed, node placed on DC queue only if still
has more DC information remaining to be coded

@ terminates when both queues empty

Michael D. Adams (University of Victoria) ADIT Coding Method

ADIT Encoding Algorithm (Detailed)

: ccBudget =512

. dcBudget =256

. encode header information (i.e., W, H, P, and a;)

. insert root node on CC queue

while CC queue not empty or DC queue not empty do

while ccBudget > 0 and CC queue not empty do

set node to element at front of CC queue and remove element from queue
encode CC information for node and set b to entropy of information just coded
ccBudget :=ccBudget - b

10: insert each child of node on CC queue

11: insert node on DC queue

12: end while

13: while dcBudget > 0 and DC queue not empty do

N RWONE

14: set node to element at front of DC queue and remove element from queue

15: invoke DC encoding process for node and set b to entropy of information just
coded

16: if still more DC data to encode for node then

17: insert node on DC queue

18: end if

19: dcBudget :=dcBudget - b

20: end while

21: ccBudget :=min{512, ccBudget + 512}
22: dcBudget :=min{256, dcBudget + 256}
23: end while

Michael D. Adams (University of Victoria) ADIT Coding Method

CC and DC Encoding

@ CC encoding performed same as in IT method

@ each detail coefficient is (P 4 1)-bit signed integer (i.e., P-bit magnitude
plus sign bit)

@ each detail coefficient for given node is coded using SI(P, min{P,4})
binarization, conditioned on node’s level in tree

@ each time DC encoding process invoked for particular node, one more
magnitude bit is coded (starting from most-significant bit position) for each
of node’s detail coefficients

@ whenever first nonzero magnitude bit coded for detail coefficient, it is
immediately followed by sign bit

@ all of DC information for node will be encoded after coding process has
been invoked P times for node (since each invocation of DC coding
process codes one magnitude bit from each of node’s detail coefficients
and each detail coefficient has P magnitude bits)

Michael D. Adams (University of Victoria) ADIT Coding Method

Lossless Coding Performance

Sampling
Density Rate (Bytes)
Image (%) Proposed IT
ct 0.5 3266 3279
1.0 6054 6086
2.0 11077 11170
4.0 20106 20300
| ena 0.5 2779 2797
1.0 5098 5115
2.0 9284 9329
4.0 16729 16846
peppers 0.5 2827 2833
1.0 5217 5229
2.0 9527 9571
4.0 17180 17285

@ proposed method consistently yields slightly lower lossless bit rates
@ greatly improved progressive coding performance at lossy rates does not
come at cost of reduced lossless coding efficiency

Michael D. Adams (University of Victoria) ADIT Coding Method

Progressive Coding Performance

PSNR (dB)
@
8
PSNR (dB)
R

Propose# 7777777 16 {] Propose# 7777777
» o 10‘24 2(;AB 3(;72 AD‘QG 5]120 6144 h o 2(;AB 4(;95 61‘44 81‘92 10240
Rate (bytes) Rate (bytes)
ct at sampling density of 1% | ena at sampling density of 2%
(mean and maximum difference 3.45 dB and 10.88 dB) (mean and maximum difference 1.50 dB and 4.81 dB)
34
32 —
30 | -
28 - 1
g 26 | —
S ul 1
z
5 22 |- —
2 ol 1
18 8
16 ff 4
12 ‘ ‘ ‘ F'rupusel? 7777777 d
» 0 2048 4096 6144 8192 10240

Rate (bytes)

pepper s at sampling density of 2%

(mean and maximum difference 1.61 dB and 5.64 dB)
@ proposed method consistently yields image reconstructions with higher
PSNR (often by several dB) than IT method, except at rates too low to be
of practical interest

Michael D. Adams (University of Victoria) ADIT Coding Method

LOSS)/ Coding Example: ct image, 3757 bytes decoded (about 62%)

Original

Proposed (33.94 dB) IT (27,59 dB)

Michael D. Adams (University of Victoria) ADIT Coding Method August 2013 18

Lossy Coding Example: | ena image, 6000 bytes decoded (about 64%)

Original

Proposed (27.46 dB) IT (25,07 dB)

Michael D. Adams (University of Victoria) ADIT Coding Method August 2013 19

Conclusions

@ proposed new coding method for arbitrarily-sampled image data

@ introduced effective representation for arbitrarily-sampled image data,
namely ADIT

@ presented means to code this representation

@ proposed coding method shown to have vastly superior progressive
coding performance at lossy rates relative to state-of-the-art IT method
(both in terms of PSNR and subjectively)

@ proposed coding method has slightly better coding performance at
lossless rates

@ of potential benefit to many applications employing arbitrarily-sampled
image datasets

Michael D. Adams (University of Victoria) ADIT Coding Method

Questions?

Michael D. Adams (University of Victoria)

ding Method

August 2013 21

