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Abstract—A new mesh-generation method for image rep-
resentation based on data-dependent triangulations (DDTs) is
proposed. The proposed method is shown to produce meshes
of higher quality (both in terms of mean squared error and
subjectively) than those generated by two competing approaches,
namely the greedy-point removal scheme of Demaret and Iske and
a DDT-based scheme of Garland and Heckbert. Furthermore, our
method is shown to achieve these excellent results at a relatively
modest computational and memory cost.

I. I

In recent years, there has been a growing interest in
(triangle) mesh representations of images. Such representations
facilitate the use of nonuniform sampling and have proven ben-
eficial in many applications, such as feature detection, pattern
recognition, tomographic reconstruction, and image coding.
With a mesh model of an image, the image domain is parti-
tioned by a triangulation into a set of (triangle) faces, and then
over each face of the triangulation an approximating function
is constructed. Of the many classes of mesh representations
proposed to date, the class based on Delaunay triangulations
is extremely popular. In the case of a Delaunay triangulation,
the connectivity of the triangulation (i.e., how the points in the
triangulation are connected by edges) is determined solely by
the geometry (i.e., position) of the points being triangulated.
Another class of mesh representations is the class based on
data-dependent triangulations (DDTs). In the case of DDTs,
the connectivity of the triangulation is chosen in a way that
depends on the data set from which points to be triangulated
originated (and not just the geometry of those points). In this
way, DDTs offer much greater flexibility, and theoretically
can perform better than their Delaunay counterparts if well
chosen. In practice, however, due to this increased flexibility,
it is much more difficult to develop computationally-efficient
mesh-generation schemes that are based on DDTs (compared
to the Delaunay case).

Of the many Delaunay-based mesh-generation schemes
proposed to date, one of the very best is the greedy point
removal (GPR) method proposed by Demaret and Iske [1].
This method starts with a triangulation containing all sample
points of the original image, and then iteratively removes sam-
ple points using some optimality criterion. While the method
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produces very high-quality meshes, it unfortunately has very
high computational and memory costs. Although numerous
DDT-based mesh-generation methods have been proposed,
many have impractically high computation times. Of those
schemes that are relatively fast, a particularly good one was
proposed by Garland and Heckbert [2, p. 18, Algorithm IV]
(with the quality threshold parameter qthresh chosen as 0.5
and an L2 error measure). We henceforth refer to this method
as the Garland-Heckbert (GH) method.

In this paper, we propose a new DDT-based mesh-
generation method. The proposed method produces mesh rep-
resentations of images with lower approximation error than
than those generated by both the GPR and GH methods. At
the same time, the computational and memory costs of the
proposed method are comparable to the GH method and much
lower than the GPR method. In passing, we note that the work
presented herein corresponds to a preliminary version of the
mesh-generation method proposed in our journal article [3].
Consequently, the work described herein has also been partially
presented in [3]. Since the approach to final-connectivity ad-
justment used herein is simpler and requires less computation
than the one in [3], this preliminary work is also of interest to
the research community.

The remainder of this paper is organized as follows. Sec-
tion II provides some background information on meshes for
image representation. In Section III, our new mesh-generation
method is presented. Then, in Section IV, the performance of
our proposed method is evaluated by comparing it to the GPR
and GH methods. Finally, Section V concludes the paper with
a summary of our key results.

II. M  I R

In what follows, for a set S , |S | denotes the cardinality
of S . Consider an integer-valued image function φ defined on
Λ = {0, 1, . . . ,W − 1} × {0, 1, . . . ,H − 1} (i.e., a rectangular
grid of width W and height H). With a mesh model of an
image, the image domain is partitioned by a triangulation
into a set of (triangle) faces and then over each face of the
triangulation an approximating function is constructed. A mesh
model is completely characterized by: 1) the sample points
P = {pi}

|P|−1
i=0 ⊂ Λ, and their corresponding function values

Z = {zi}
|P|−1
i=0 , where zi = φ(pi); and 2) the set F of (triangle)

faces formed by a triangulation of P (i.e., the connectivity of
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Fig. 1. Edge flip example. Part of (a) a triangulation with an edge ac and
(b) the new triangulation obtained after the edge ac is transformed to the edge
bd by an edge flip.

the vertices in a triangulation of P). Given P and F, a function
φ̂P,F that interpolates φ at the points in P is constructed as
follows. First, we form a continuous piecewise-linear function
φ̃P,F . For each (triangle) face f ∈ F, φ̃P,F is chosen as the
unique linear function that interpolates φ at the three vertices
of f . To ensure that φ̂P,F is integer valued (just like φ), we
choose φ̂P,F as φ̂P,F(p) = round(φ̃P,F(p)) for all p ∈ Λ, where
round denotes an operator that rounds to an integer value. The
set P must always include the extreme convex-hull points of
Λ (i.e., the four corners of the image bounding box) so that
the triangulation of P covers all points in Λ. As a matter
of terminology, the sampling density of the mesh model is
defined as |P| / |Λ|.

The mesh-generation problem that we address in this paper
can be succinctly stated as follows: Given φ and a desired
number N of sample points, find the mesh model of φ (i.e.,
P and F) with |P| = N that minimizes the measure ε of the
difference between φ and the approximation φ̂P,F . In our work,
the mean squared error (MSE) is used as the error measure,
so that

ε = |Λ|−1
∑
p∈Λ

(
φ̂P,F(p) − φ(p)

)2
.

Herein, the MSE is typically expressed in terms of the peak
signal-to-noise ratio (PSNR), which is defined as PSNR =

20 log10

(
2ρ−1
√
ε

)
, where ρ is the number of bits/sample in the

image φ.

Before proceeding to introduce our proposed method, we
must first provide some additional background regarding trian-
gulations. An edge e in a triangulation is said to be flippable
if it has two incident faces (i.e., is not on the triangulation
boundary) and the union of the two faces incident on e is a
convex quadrilateral q (with no interior angles equal to 180◦).
If e is flippable, a valid triangulation is obtained if e is deleted
from the triangulation and replaced by the other diagonal of
the quadrilateral q. This transformation is known as an edge
flip. For example, in Fig. 1, the edge ac is transformed to the
edge bd by an edge flip. Any triangulation of a set of points
can be reached from any other triangulation of the same set
of points by a finite sequence of edge flips.

III. PM-GM

Our proposed mesh-generation method is iterative in na-
ture. It starts with a nearly empty mesh and adds points to

the mesh until the desired sampling density is achieved. More
specifically, our method consists of the following steps (in
order): 1) Construct an initial triangulation, consisting of the
extreme convex-hull points of the image domain Λ (i.e., the
four corner points of the image bounding box). 2) Select a new
point p∗ to add to the triangulation, using an optimality crite-
rion to be described shortly. 3) Insert p∗ into the triangulation.
4) Update the connectivity of the triangulation by performing
a sequence of edge flips, using an optimization procedure [4]
with an edge-flipping criterion to be described shortly. 5) If the
target sampling density has not yet been achieved, go to step 2
(i.e., add another point). 6) Further update the connectivity of
the triangulation using a simple postprocessing scheme. In the
preceding algorithmic summary, some details were necessarily
omitted in the interest of simplicity. In what follows, we will
now fill in these missing details.

The quantities Λ, φ, and φ̂·,· are as defined previously
in Section II, and P and F denote, respectively, the set of
sample points and set of faces currently in the mesh. For
convenience, φ̂ is used as an abbreviation for φ̂P,F (i.e., the
current approximating function for φ). Each point in the image
domain Λ is assigned to exactly one face in the triangulation of
P. If a point is strictly inside a face, the point is assigned to that
face. If a point is on an edge or is a vertex in the triangulation,
a scheme similar to [5] is used to uniquely assign the point to
a face. The set of all points belonging to the face f is denoted
points( f ). The face error of the face f , denoted faceErr( f ), is
defined as

faceErr( f ) =
∑

p∈points( f )

(
φ̂(p) − φ(p)

)2
,

(i.e., faceErr( f ) is the squared error summed over the points in
the face f ). The approximate diameter of the face f , denoted
diam( f ), is defined as the length of the longest side of the
(smallest) bounding box of the face f . The shape quality of
a face f , denoted quality( f ), is defined as

quality( f ) = area( f )/ diam( f ),

where area( f ) denotes the area of the face f .

Point insertion (step 3). In step 3 of our method, the new
point p∗ needs to be inserted into the triangulation, which is
accomplished as illustrated in Fig. 2. If p∗ is strictly inside
a face in the triangulation, say face abc, we connect p∗ by
new edges to each vertex of its containing face, as shown in
Fig. 2(a). If p∗ is on an edge in the triangulation, say on edge
ac, we split this edge at p∗ and, for each face f incident on
ac, we connect p∗ with a new edge to the vertex in f that is
opposite the edge ac, as shown in Fig. 2(b).

Point selection (step 2). In step 2 of our method, we must
select the new point p∗ to insert into the triangulation. This is
accomplished in two stages. First, we select the face f ∗ in the
triangulation into which a new point is to be inserted. Then,
we choose a point p∗ in the face f ∗ for insertion. The face f ∗

is selected according to

f ∗ = arg max
f∈F

faceErr( f ),
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Fig. 2. Point insertion example. Part of a triangulation showing how the new
vertex p∗ is inserted (a) inside a triangle abc and (b) on an edge ac.

where F is the set of all faces in the triangulation (i.e., f ∗ is the
face with the largest face error). Having chosen the face f ∗, we
select the point p∗ to insert. This is done in two stages. First,
we choose a set T of test points to consider as candidates for
insertion. We then choose p∗ from T . If

∣∣∣points( f ∗)
∣∣∣ > 8, T is

chosen as the 8 points p in points( f ∗) for which
∣∣∣φ̂(p) − φ(p)

∣∣∣
is largest. (As an aside, we note that the value of 8 here was
chosen based on experimentation.) Otherwise, we choose T =

points( f ∗). Given T , we choose p∗ as

p∗ = arg min
t∈T

∑
p∈points( f ∗)

(φ̂P∪{t},(F\ f ∗)∪F∗ (p) − φ(p))2, (1)

where F∗ denotes the set of faces that would replace the face
f ∗ if the point t were inserted into the triangulation (of P) as
explained in the description of step 3 above (i.e., we choose p∗

as the point in T whose insertion would result in the greatest
decrease in the approximation error over the face f ∗).

Connectivity update (step 4). In step 4 of our method,
the connectivity of the triangulation is updated using an
optimization procedure. A cost function is used to measure
the badness of each edge. The cost of the (flippable) edge e,
denoted edgeCost(e), is defined as

edgeCost(e) =
faceErr( f1) + faceErr( f2)

quality( f1) quality( f2)
,

where f1 and f2 are the two faces incident on e. As a matter
of terminology, an edge is said to be optimal if: 1) it is not
flippable; or 2) it is flippable and the cost of the edge after
flipping is strictly less than the cost of the edge before flipping.
An edge whose optimality is uncertain is said to be suspect.
The connectivity update process essentially tests any suspect
edges for optimality, and performs edge flips to eliminate any
suspect edge that is not optimal.

Let S denote the current set of suspect edges. In step 3, we
inserted the new point p∗ into the triangulation. Initially, we
set S to all flippable edges belonging to faces that are incident
on p∗. For example, in Fig. 2(a), the edges ab, bc, and ca are
suspect. The edges p∗a, p∗b, and p∗c are not suspect, since
they are not flippable. As another example, in Fig. 2(b), the
edges ab, bc, cd, da, and p∗a are suspect. The edges p∗b,
p∗c, and p∗d are not suspect, as they are not flippable. The
optimization procedure then proceeds as follows: 1) If |S | = 0
(i.e., S is empty), then stop. 2) Remove an edge e from S .
3) If e is not flippable, go to step 1. 4) Let q denote the
convex quadrilateral for which e is a diagonal. Let e′ denote
the edge obtained by flipping e (i.e., the other diagonal of q).

TABLE I. T 

Image Size, Bits/Sample Description
bull 1024×768, 8 computer-generated bull
ct 512×512, 12 CT scan of head [6]
glasses 1024×768, 8 raytraced glasses
lena 512×512, 8 woman [7]
peppers 512×512, 8 collection of peppers [7]
x_ray 2048×1680, 12 X-ray of pelvis [6]

If edgeCost(e′) < edgeCost(e), flip e and add all edges on the
boundary of q to S . For example, for the scenario depicted in
Fig. 1, after flipping the edge ac to bd, the edges ab, bc, cd,
and da would each be added to S if flippable. 5) Go to step
1.

Final connectivity adjustment (step 6). In step 6 of our
method, a final adjustment is made to the connectivity of the
triangulation through a simple postprocessing scheme. This
scheme works as follows. Let E denote the set of all edges in
the triangulation. For each flippable edge e ∈ E, if flipping the
edge e results in a strictly lower approximation error, the edge
e is flipped. (Unlike the case of the optimization procedure
used in step 4, the final connectivity adjustment scheme has
no notion of suspect edges and edge flips cannot propagate.)

IV. E R

Having introduced our proposed method, we now evaluate
its performance by comparing it to the GPR and GH methods
introduced in Section I. In our evaluation, we consider both
mesh quality (in terms of PSNR and subjective quality) and
time/memory complexity. In our work, we employed more
than 40 images as test data. Herein, we present results for
a representative subset of these images, namely, those listed
in Table I. This subset was deliberately chosen to contain a
variety of image types including photographic, medical, and
computer-generated imagery.

Mesh quality. For all images in our test set and several
sampling densities, we used each of the methods under con-
sideration to generate a mesh and then measured the resulting
approximation error in terms of PSNR. The results obtained
are shown in Table II, with the best result in each case (i.e.,
each row in the table) highlighted in boldface.

To begin, we compare our proposed method to the GPR
scheme. From the results of Table II, we can see that our
proposed method outperforms the GPR scheme in 23 out of
24 test cases by a margin of up to 2.85 dB with a median
of 0.75 dB. The only case in which the GPR scheme fares
better is the x_ray image at a sampling density of 1%. In this
instance, the GPR scheme only beats our proposed method by
0.02 dB which is essentially negligible. The excellent relative
performance of our proposed method is particularly noteworthy
when one considers that, as we shall see later, the GPR scheme
takes significantly more computation time and a few orders
of magnitude more memory. Next, we compare our proposed
method to the GH scheme. From the results of Table II, we
can see that our proposed method outperforms the GH scheme
in all 24 test cases by a margin ranging from 0.46 to 2.85 dB,
with a median of 1.60 dB. Clearly, the above results show our



TABLE II. C        
- 

Image
Sampling
Density

(%)

PSNR
(dB)

Proposed GPR GH

bull

0.125 35.97 33.12 33.12
0.250 40.14 38.23 38.28
0.500 42.48 41.87 40.73
1.000 44.19 43.99 42.48

ct

0.250 33.66 32.15 32.22
0.500 38.14 37.22 37.68
1.000 42.66 41.35 42.01
2.000 47.39 45.33 46.63

glasses

0.500 26.47 25.84 25.07
1.000 29.74 28.88 28.87
2.000 33.73 32.73 33.13
3.000 36.55 35.24 35.94

lena

0.500 27.43 26.66 25.37
1.000 30.11 29.12 28.51
2.000 32.55 31.82 31.26
3.000 33.96 33.37 32.78

peppers

0.250 24.66 23.93 22.58
0.500 27.71 27.09 25.95
1.000 30.36 30.05 28.77
2.000 32.48 32.39 31.14

x_ray

0.125 40.60 39.79 38.61
0.250 42.23 41.97 40.39
0.500 43.70 43.66 41.82
1.000 45.05 45.07 43.24

proposed method to be vastly superior to both the GPR and
GH schemes in terms of mesh quality.

In the above evaluation, PSNR was found to correlate
reasonably well with subjective quality. For the benefit of the
reader, however, we provide an example illustrating the subjec-
tive quality achieved by the various methods. In particular, for
one of the test cases involving the bull image (from Table II),
a small part of each image reconstruction is shown under
magnification in Fig. 3, along with the corresponding image-
domain triangulation. Examining the figure, we can see that
our proposed method produces an approximation that better
captures image details such as image edges, whereas the GPR
and GH schemes tend to produce more severe artifacts in the
vicinity of image edges.

Time complexity. Due to space constraints, we cannot
provide a detailed comparison of the time complexities of
the various methods under consideration herein. So, to give
the reader some insight in this regard, we provide a rep-
resentative subset of some timing results collected on very
modest hardware (namely, a seven year old notebook computer
with a 3.4 GHz Intel Pentium 4 and 1 GB of RAM). For
the lena image and sampling densities in the range 0.5% to
3%, the proposed and GH methods each have an execution
time of less than 5.5 seconds, while the GPR method has
a much higher computational cost, requiring approximately
43 seconds. The proposed method typically has an execution
time about 1.6 to 1.8 times that of the GH method, due
largely to the cost of computing (1). This modest increase
in computational cost is certainly quite reasonable considering
that the proposed method still only takes a few seconds to
execute and produces meshes of much higher quality than the
GH method. Furthermore, the proposed method also produces
meshes of higher quality than the state-of-the-art GPR method,
in only a small fraction of the time. In this sense, our proposed

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Part of the image approximation obtained for the bull image at
a sampling density of 0.125% with the (a) proposed (35.97 dB), (c) GPR
(33.12 dB) and (e) GH (33.12 dB) methods and (b), (d), (f) their corresponding
triangulations.

method performs exceptionally well for its relatively modest
execution-time cost.

Memory complexity. For each of the methods under con-
sideration, memory usage is dominated by the data structure
employed to represent the mesh (i.e., triangulation). In all
cases, the size of the mesh data structure is proportional to the
number of vertices (i.e., sample points) in the mesh. Therefore,
the peak memory usage is determined by the peak mesh size.
For an image of width W, height H, and a given sampling



density D, the peak mesh size for each of the proposed, GH,
and GPR methods is DWH, DWH, and WH, respectively.
So, the memory usage for the proposed and GH methods is
essentially the same, while, for values of D of practical interest,
say D ∈ [0.125%, 3%], the GPR method requires 33 to 800
times more memory than the proposed and GH methods. Thus,
in terms of memory usage, our proposed method fares quite
well (i.e., is tied for the best).

V. C

In this paper, we proposed a new mesh-generation method
for image representation based on DDTs. The performance of
our proposed scheme was compared to the GPR method, a
leading approach based on Delaunay triangulations, as well as
the GH method, a highly-effective technique based on DDTs.
Through experimental results, our proposed method was shown
to produce much higher quality meshes (both in terms of
PSNR and subjective quality) than both the GPR and GH
methods. Furthermore, our proposed method was found to
require very substantially less computation and memory than
the GPR scheme. Relative to the GH scheme, our proposed
method was seen to have essentially the same memory cost
and require only a modest increase in computational cost,
considering the much higher quality meshes produced by our
method. Our mesh-generation method can be of great benefit
to the many applications that employ mesh models of images.
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