
A Flexible Mesh-Generation Strategy for Image Representation Based on Data-Dependent
Triangulation

by

Ping Li
B.Sc., Xi’an Jiaotong University, 2009

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

c© Ping Li, 2012
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

A Flexible Mesh-Generation Strategy for Image Representation Based on Data-Dependent
Triangulation

by

Ping Li
B.Sc., Xi’an Jiaotong University, 2009

Supervisory Committee

Dr. Michael D. Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Panajotis Agathoklis, Departmental Member
(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Michael D. Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Panajotis Agathoklis, Departmental Member
(Department of Electrical and Computer Engineering)

ABSTRACT

Data-dependent triangulation (DDT) based mesh-generation schemes for image represen-
tation are studied. A flexible mesh-generation framework and a highly effective mesh-
generation method that employs this framework are proposed.

The proposed framework is derived from frameworks proposed by Rippa and Garland
and Heckbert by making a number of key modifications to facilitate the development of
much more effective mesh-generation methods. As the proposed framework has several
free parameters, the effects of different choices of these parameters on mesh quality (both
in terms of squared error and subjectively) are studied, leading to the recommendation of
a particular set of choices for these parameters. A new mesh-generation method is then
introduced that employs the proposed framework with these best parameter choices.

Experimental results show our proposed mesh-generation method outperforms several
competing approaches, namely, the DDT-based incremental scheme proposed by Garland
and Heckbert, the COMPRESS scheme proposed by Rippa, and the adaptive thinning
scheme proposed by Demaret and Iske. More specifically, in terms of PSNR, our pro-
posed method was found to outperform these three schemes by median margins of 4.1
dB, 10.76 dB, and 0.83 dB, respectively. The subjective qualities of reconstructed images
were also found to be correspondingly better. In terms of computational cost, our proposed
method was found to be comparable to the schemes proposed by Garland and Heckbert
and Rippa. Moreover, our proposed method requires only about 5 to 10% of the time of the
scheme proposed by Demaret and Iske. In terms of memory cost, our proposed method was
shown to require essentially same amount of memory as the schemes proposed by Garland

iv

and Heckbert and Rippa, and orders of magnitude (33 to 800 times) less memory than the
scheme proposed by Demaret and Iske.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables vii

List of Figures viii

List of Acronyms xi

Acknowledgements xii

Dedication xiii

1 Introduction 1
1.1 Mesh Representation of Images . 1
1.2 Historical Perspective . 2
1.3 Overview and Contribution of the Thesis 5

2 Preliminaries 9
2.1 Overview . 9
2.2 Notation and Terminology . 9
2.3 Image Processing . 10
2.4 Computational Geometry . 10
2.5 Mesh Models of Images . 15
2.6 Grid-Point to Face Mapping . 17

3 Proposed Mesh-Generation Framework and Method 21
3.1 Overview . 21

vi

3.2 Local Optimization Procedure (LOP) . 21
3.3 Proposed Mesh-Generation Framework 23

3.3.1 Face- and Candidate-Selection Policies 27
3.3.2 Edge-Flip Criteria . 29

3.4 Proposed Mesh-Generation Method and Its Development 35
3.4.1 Choice of Face- and Candidate-Selection Policies 36
3.4.2 Choice of Main Edge-Flip Criterion 41
3.4.3 Choice of Final Edge-Flip Criterion 48
3.4.4 Extra Experiments . 52
3.4.5 Proposed Mesh-Generation Method 57

3.5 Evaluation of Proposed Mesh-Generation Method 57

4 Conclusions and Future Research 65
4.1 Conclusions . 65
4.2 Future Research . 66

A Software User Manual 69
A.1 Introduction . 69
A.2 Building the Software . 70
A.3 Software Functionality . 70
A.4 Organization of Source Code . 71
A.5 Application Programs . 72

A.5.1 The makemesh Command . 72
A.5.2 Inputs of the Software . 77
A.5.3 Outputs of the Software . 78
A.5.4 Examples of Mesh-Generation Schemes 80

Bibliography 82

vii

List of Tables

Table 3.1 Test images . 36
Table 3.2 Comparison of the mesh quality obtained with the various face-selection

policies . 37
Table 3.3 Comparison of the mesh quality obtained with the various candidate-

selection policies . 40
Table 3.4 Comparison of the mesh quality obtained with the various main edge-

flip criteria . 43
Table 3.5 Comparison of the mesh quality obtained with the various final edge-

flip criteria . 49
Table 3.6 Comparison of the mesh quality obtained with the various mesh-generation

methods . 58
Table 3.7 Comparison of the computational complexity for the various methods 61

Table A.1 Options for Potential Cycle Problem 73
Table A.2 Edge Flip Criteria . 73
Table A.3 Candidate Point Selection Choices 76

viii

List of Figures

Figure 2.1 Examples of a (a) convex, and (b) non-convex sets 11

Figure 2.2 Convex hull example. (a) A set V of points, and (b) the convex hull
of V . 11

Figure 2.3 Example of triangulation of a set of points. (a) a triangulation of V ,
and (b) another triangulation of V 12

Figure 2.4 Example of a Delaunay triangulation of a set of points. (a) A set V

of points, and (b) a Delaunay triangulation of V 13

Figure 2.5 Flippable and non-flippable edge example. (a) Flippable edge viv j

and (b) non-flippable edge vkvl. 14

Figure 2.6 Edge flip example. Part of (a) a triangulation with an edge viv j and
(b) the new triangulation obtained after the edge viv j is transformed
to the edge vkvl by an edge flip. 15

Figure 2.7 Mesh model of an image. (a) Original image, (b) image modelled
as surface, (c) triangulation of image domain, (d) resulting triangle
mesh , and (e) reconstructed image. 16

Figure 2.8 An example of how points are assigned to only one face. (a) A tri-
angulation on a rectangular grid, and (b) a triangulation with only
vertices and points on edges shown. 19

Figure 3.1 Point insertion example. Part of a triangulation showing how the new
vertex p∗ is inserted (a) inside a triangle viv jvk and (b) on an edge vivk. 25

Figure 3.2 An edge e = viv j that is a diagonal of the quadrilateral vivkv jvl in the
triangulation T . 29

Figure 3.3 Example of determining the newly suspect edges after the insertion
of the point p∗ inside a face: (a) first case, (b) second case, and on
the edge: (c) first case, (d) second case. 34

Figure 3.4 Example of determining the newly suspect edges after an edge flip
that produces the edge e′. (a) First case. (b) Second case. 35

ix

Figure 3.5 Comparison of the subjective mesh quality obtained for the glasses
image at sampling density of 1% with the (a) GAE (26.55 dB), and
(b) GSE (29.99 dB). 38

Figure 3.6 Comparison of the subjective mesh quality obtained for the lena im-
age at sampling density of 0.5% with the (a) GAE (23.45 dB), and
(b) GSE (26.51 dB). 38

Figure 3.7 Comparison of the subjective mesh quality obtained for the ct im-
age at sampling density of 0.25% with the (a) GAE (31.45 dB), and
(b) GSE (33.66 dB). 39

Figure 3.8 Part of the image approximation obtained for the bull image at sam-
pling density of 0.125% with the various candidate-selection poli-
cies (a) PAE (35.38 dB), (b) PWAE (33.42 dB), (c) AMSE-PAE
(36.41 dB), (d) AMSE-PWAE (35.63 dB), and (e) hybrid (36.48 dB). 42

Figure 3.9 Comparison of the mesh quality obtained for the lena image at sam-
pling density of 1% with various main edge-flip criteria (a) Delau-
nay (28.55 dB), (b) ABN (24.54 dB), (c) JND (28.82 dB), (d) DLP
(28.22 dB), . 44

Figure 3.10 Comparison of the mesh quality obtained for the lena image at sam-
pling density of 1% with various main edge-flip criteria (Cont’d)
(a) DP (22.75 dB), (b) ELABN (27.17 dB), (c) ELJND (28.58 dB),
and (d) YMS (27.19 dB). 45

Figure 3.11 Comparison of the mesh quality obtained for the lena image at sam-
pling density of 1% with various main edge-flip criteria (Cont’d) (c)
SE (24.20 dB), (d) GHH (28.93 dB), (e) SQSE (29.41 dB), and (f)
JNDSE (29.41 dB). 46

Figure 3.12 The triangulations obtained for the lena image at a sampling density
of 1% with the main edge-flip criterion chosen as (a) ABN (28.55 dB),
(b) DP (22.75 dB), (c) SE (24.20 dB), (d) DLP (28.22 dB), and
(e) JNDSE (29.41 dB), respectively. 47

Figure 3.13 Comparison of the mesh quality obtained for the peppers image
at sampling density of 1% with the various final edge-flip criteria
(a) None (27.36 dB), (b) ABN (25.46 dB), (c) JND (26.34 dB),
(d) DLP (26.25 dB), (e) DP (25.06 dB), and (f) ELABN (25.96 dB). 50

x

Figure 3.14 Comparison of the mesh quality obtained for the peppers image at
sampling density of 1% with the various final edge-flip criteria (Cont’d)
(a) ELJND (27.04 dB), (b) YMS (25.42 dB), (c) SE (28.86 dB),
(d) GHH (28.14 dB), (e) SQSE (28.25 dB), and (f) JNDSE (28.30 dB).

. 51
Figure 3.15 An example of candidate-selection method using window. 54
Figure 3.16 An example of cycle in mesh generation. In each triangulation,

dashed line denotes the new edge from flipping an old non-optimal
edge; dark line denotes the next suspect edge that will be tested for
optimality; the regular lines are the edges in the current triangulation. 56

Figure 3.17 Part of the image approximation obtained for the bull image at a
sampling density of 0.125% with the (a) proposed (36.48 dB), (c) GH
(26.55 dB), (e) R (19.26 dB), (g) GH2 (33.12 dB), (i) R2 (25.83 dB),
and (k) AT (33.12 dB), methods and (b), (d), (f), (h), (j), and (l) their
corresponding triangulations. 60

Figure 3.18 Part of the image approximation obtained for the lena image at a
sampling density of 1% with the (a) proposed (30.16 dB), (c) GH
(25.27 dB), (e) R (19.34 dB), (g) GH2 (28.51 dB), (i) R2 (24.20 dB),
and (k) AT (29.12 dB), methods and (b), (d), (f), (h), (j), and (l) their
corresponding triangulations. 63

Figure 3.19 Part of the image approximation obtained for the ct image at a sam-
pling density of 0.5% with the (a) proposed (38.70 dB), (c) GH
(35.23 dB), (e) R (25.92 dB), (g) GH2 (37.68 dB), (i) R2 (29.61 dB),
and (k) AT (37.22 dB), methods and (b), (d), (f), (h), (j), and (l) their
corresponding triangulations. 64

xi

List of Acronyms

DDT data-dependent triangulation
LOP Lawson’s local optimization procedure
PSNR peak signal-to-noise ratio
MSE mean squared error
MMSODD maximum magnitude second-order directional derivative
PAE peak absolute error
PWAE peak weighted absolute error
ABN angle between normals
JND jump in normal derivative
DP derivations from linear polynominals
DLP distances from planes
YMS Yu-Mores-Sederberg cost
ELABN edge-length-weighted ABN
ELJND edge-length-weighted JND
D Delaunay
SE squared error
GHH Garland and Heckbert hybrid
SQSE shape-quality-weighted SE
JNDSE JND-weighted SE
EL edge length
LIFO last-in first-out

xii

ACKNOWLEDGEMENTS

This thesis would never have been possible without the help and support of numerous
kind people who in one way or another contributed and extended their valuable assistance
along the way. I would like to take this opportunity to express my thanks to these individ-
uals.

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Michael Adams,
who has guided and supported me throughout my graduate studies with his knowledge
and patience. I thank Michael for giving me the opportunity to work on research topics
that really interest me deeply, and for this reason, I have enjoyed my studies at UVic very
much. Without his help, this thesis would never have been written. One simply could not
wish for a better or friendlier supervisor.

Next, I would like to thank my supervisory committee member Dr. Panajotis Agathoklis
for serving on my committee and providing constructive comments. I also want to express
my gratitude to the course instructors during my graduate studies, Dr. Andreas Antoniou,
Dr. Pan Agathoklis, Dr. Wu-Sheng Lu, and Dr. Alexandra Branzan Albu, for their fantastic
lessons and inspiration.

I wish to thank my best friend, Chenyuan Wang, for being such a delightful companion.
I thank you from the bottom of my heart for every little thing you did for me, every concern,
every laugh, every tear, and most of all for every moment that we spent together.

I am also indebted to many friends and colleagues who have helped me during my
studies: Dan Li, Xi Tu, Jie Yan, Chamira Edussooriya, Yang Song, Li Ji, Binyan Zhao,
Teng Ge, and Congzi Liu. I am also very grateful for the help and assistance that I received
from the staff in the Department of Electrical and Computer Engineering: Vicky Smith,
Moneca Bracken, Janice Closson, Dan Mai, and Erik Laxdal.

I would like to acknowledge the financial support that I received from the Natural Sci-
ences and Engineering Research Council of Canada and University of Victoria. The re-
search grant and fellowship they provided helped me resolve the financial burden so that I
can focus on my research.

Last but not the least, I want to thank my entire family for their unconditional love,
understanding and constant support, my parents for working so hard and putting me through
school, Zhichao for being such a sweet little brother, my grandpa for believing in me, and
my aunt Qian for being so giving, loving and caring.

xiii

DEDICATION

To my family, who offered me unconditional love and support!

xiv

Chapter 1

Introduction

1.1 Mesh Representation of Images

Digital images can be represented in various ways. One of the most straightforward and
commonly used approaches is a lattice based representation, e.g., images are uniformly
sampled at each point on a rectangular grid. Due to the nonstationary nature of most im-
ages, such sampling is far from optimal. When uniform sampling is employed, the sam-
pling density will inevitably be too high in regions where the image is changing slowly
and too low in regions where the image is changing rapidly. Besides that, storing and
transmitting uniformly sampled images often requires large amounts of memory or high
bandwidths. Thus, nonuniform sampling (i.e., sampling at a subset of points from a lattice)
for image representations has been considered as a means to overcome these drawbacks.

With nonuniform sampling, the sample points are wisely chosen so that their spatial
density varies in relation to the degree of local image detail. That is, more sample points are
placed in regions containing high frequency features and fewer sample points are placed in
regions containing predominantly low frequency components. Nonuniform sampling often
leads to much more compact representations because with nonuniform sampling, an image
can be represented using far fewer sample points than uniform sampling. Image represen-
tations based on nonuniform sampling also have the ability to better capture characteristic
features inherent in images, such as sharp edges. Thus, such representations have been
utilized and proven beneficial for many applications, such as feature detection [1], pat-
tern recognition [2], computer vision [3], restoration [4], tomographic reconstruction [5],
filtering [6], interpolation [7], and image/video coding [8, 9, 10, 11, 12, 13, 14].

Although many classes of image representations based on nonuniform sampling have

2

been proposed, the class based on triangle meshes has become quite popular. The process
of constructing meshes to represent images is called mesh modelling, and the meshes are
referred as mesh models for images. With a triangle mesh model of an image, the image
domain is partitioned by a triangulation into a set of (triangle) faces and then over each face,
an approximating function is constructed. A triangle mesh is characterized by its sample
points and their connectivity. Sample points correspond to geometry of the triangle mesh,
which comprise coordinate information. Connectivity corresponds to the topology of the
mesh, which captures the incidence relation between the triangles in the mesh.

Triangle meshes are advantageous since a single triangle can often well approximate
many sample values on a rectangular grid. For example, a large white rectangular region,
which may comprise thousands of pixels in an image, could be well represented by two tri-
angles instead. Additionally, triangle meshes are ideally suited for modeling images with
sharp edges and corners. Furthermore, the geometry of such meshes is mathematically sim-
ple and quick to calculate, which makes them particularly useful in real-time environments
where speed is important. Considering the above benefits, researchers have proposed nu-
merous representation methods based on triangle meshes [15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 7, 32, 33].

From the foregoing, we know that for image representations, triangle meshes have many
attractive benefits; but how do we generate triangle meshes to represent images? The an-
swer to the above question is known as the mesh-generation problem. The mesh-generation
problem that we address in this thesis can be succinctly stated as follows: Given an image
and a desired number of sample points, find the triangle mesh model that minimizes the
measure of the difference between the given image and the mesh-model approximation.
This problem can be separated into two distinct (but related) sub-problems:

1. the selection of the sample points (i.e., the vertices of a triangulation), and

2. the selection of the connectivity of the triangulation.

Finding good computationally-efficient methods for solving the above-stated mesh-generation
problem is quite challenging, since problems like this are known to be NP hard [34].

1.2 Historical Perspective

As stated earlier, a great many mesh-generation methods have been developed over the
years. One way to categorize these methods depends on whether they are iterative or non-
iterative during the sample points selection process. Noniterative methods determine all

3

of the sample points in only one step. For instance, in [35], the classical Floyd-Steinberg
error-diffusion algorithm [36] was employed to choose all of the sample points in the im-
age domain according to the local image content. Then Delaunay triangulation is used
to connect all of the sample points. More similar non-iterative approaches can be found
in [4, 5, 37, 38]. Iterative schemes, on the other hand, choose the set of sample points
in many iterations. Such schemes are more complicated, since they can either add and/or
remove sample points during each iteration [16, 17, 39, 40, 21].

Typically, non-iterative methods are faster than iterative ones. The quality of image
approximations produced by noniterative methods, however, are often lower than those
generated by iterative schemes.

Two classes of iterative schemes are quite popular: refinement schemes and simplifi-
cation schemes. A simplification strategy works by removing vertices from a fine initial
triangulation. For instance, the works [16, 39] proposed similar iterative point removal
schemes, called adaptive thinning algorithms. Such schemes remove sample points one by
one, based on a certain anticipated error, until a subset of most significant points is gener-
ated. During the sample point removing process, they make sure that the piecewise linear
interpolants over the Delaunay triangulation of these subsets approximate progressively the
function values sampled at the original scattered points. These schemes perform very well,
however, they require a significant amount of memory space and computational cost.

Refinement schemes, on the other hand, operate by adding vertices to a coarse trian-
gulation, while minimizing the error in every step. They are simple and fast relative to
simplification schemes, but may fail to find a good approximation because of local min-
ima. For instance, the papers [21, 17] proposed two similar DDT-based refinement mesh-
generation schemes that iteratively add new sample points, based on local error measure,
into the coarse mesh until a target number of sample points or a prescribed error tolerance
has been reached.

One particularly popular subclass of triangle mesh representations is those based on
Delaunay triangulations) [41]. The connectivity of Delaunay triangulations (i.e., how the
points in the triangulation are connected by edges) is determined solely by the geometry
(i.e., position) of the points being triangulated. Delaunay triangulations have numerous
properties that make them attractive choices for approximation purposes. First, to whatever
extent is possible, Delaunay triangulations avoid long thin (i.e., sliver) triangles which can
lead to very poor approximations if not well chosen, by maximizing the minimum interior
angle of the triangles in the triangulations. Another advantage of Delaunay triangulations is
that they are unique, if certain degeneracies are handled by a technique such as the preferred

4

directions scheme of [42]. Delaunay triangulations play an important role in computational
geometry, and there are many mesh-generation schemes based on Delaunay triangulations
proposed to date [15, 43, 19, 16, 39, 17, 20, 3, 18, 40].

For a long time, long and thin (i.e., sliver) triangles were considered bad for approxi-
mation and avoided whenever possible. Thus, Delaunay triangulation based methods were
commonly employed, since they try to choose triangulations so as to contain many nice
looking, nearly equiangular, triangles. Studies and numerical examples [44, 30, 17, 18, 45],
however, showed that sliver triangles are not always bad choices for approximation and that
great improvement in the quality of approximation can be obtained if sliver triangles are
well chosen. In particular it was demonstrated that long and thin triangles are very suitable
for the reconstruction of areas where a function has high second-order derivatives in one
direction as compared to others [45, 18]. In images, such areas often correspond to edges.
For this reason, Delaunay triangulation is frequently suboptimal for image approximation.

Another subclass of triangle mesh representations is those based on data-dependent tri-
angulations (DDTs). It is this particular subclass that is of interest herein. In the case
of DDTs, the connectivity of the triangulation is chosen in a way that depends on the
data set from which the points to be triangulated originated (and not just the geometry of
those points). Since, unlike the Delaunay case, DDTs can have their connectivity cho-
sen arbitrarily, DDTs offer vastly greater flexibility, and theoretically have the potential to
perform much better than their Delaunay counterparts if well chosen [44]. In practice, how-
ever, due to this increased flexibility, it is much more difficult to develop highly-effective
computationally-efficient mesh-generation schemes that are based on DDTs, as compared
to the Delaunay case.

To date, numerous DDT-based mesh-generation methods have been proposed [17, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 18, 31, 7, 32, 46, 33], however, many of them
(e.g. [24, 22, 26, 29, 28, 27, 23, 25, 7]) concern themselves with only the problem of
triangulation-connectivity selection (i.e., the second sub-problem of mesh generation men-
tioned on page 2). That is, they assume that the sample points are given or have already
been chosen through some unspecified means. Such an assumption is not very realistic in
many applications. For this reason, methods that select both the sample points and triangu-
lation connectivity are of great practical interest.

One difficulty with DDT-based mesh-generation methods is that they can often have
very high computational cost. For example, some DDT-based schemes [47, 48, 32] are
based on simulated annealing, which is very computationally expensive. Another DDT-
based method proposed in [27] takes several iterations and requires between 0.5 and 5

5

seconds per iteration for an 80 × 80 image. Furthermore, this method only considers
triangulation connectivity. Therefore, as one can well imagine, in the case of the more
difficult problem of choosing both the sample points and triangulation connectivity, mesh-
generation methods can potentially become very computationally complex.

Of those schemes that are relatively fast and choose both the sample points and trian-
gulation connectivity, a particularly good one was proposed by Garland and Heckbert [17,
Algorithm IV] (with the quality threshold parameter qthresh chosen as 0.5 and an L2 error
measure), which we henceforth refer to as the Garland-Heckbert (GH) method. The GH
method is associated with a basic framework for mesh generation, which is very similar
to a framework proposed even earlier by Rippa [21]. These two frameworks served as
foundation for the work in this thesis.

1.3 Overview and Contribution of the Thesis

This thesis is primary concerned with image representations based on triangle meshes.
In particular, we studied the choices of mesh models, and examined how to select the
parameters of mesh model (i.e., mesh generation). In passing, we note that some of the
work presented in this thesis has also been partly described in the author’s papers [49, 50].

This thesis makes two main contributions. The first contribution is that it proposes a
new framework for mesh-generation algorithms by adding a number of key improvements
to the earlier frameworks from Rippa and Garland and Heckbert. As the proposed frame-
work has several free parameters, we also studied the framework to determine how different
choices for these free parameters affect mesh quality, leading to the recommendation of a
particular set of choices for these parameters. The second contribution of our thesis is that
it proposes a highly effective mesh-generation method based on the proposed framework,
with these best parameter choices. As we shall see, our proposed mesh-generation method
produces meshes with significantly lower approximation errors than those generated by
other competing schemes. At the same time, the computational and memory costs of the
proposed method are relatively modest.

Structurally, the remainder of this thesis is organized into three chapters and one ap-
pendix. The first chapter provides the background information necessary to place this work
in context and facilitate the understanding of the research results presented herein. The
remaining two chapters present the main research work and results. The appendix provides
supplemental information about the research work in this thesis, but such details are not
strictly necessary for an understanding of the main thesis content.

6

Chapter 2 provides some essential background information necessary to understand
the work in this thesis. Some of the notation and terminology used herein are presented
first, followed by some image processing fundamentals. Then some basic concepts from
computational geometry are introduced, such as triangulation, Delaunay triangulation, and
DDT. After that, the mesh model of images used in our framework is presented. Lastly, we
comment on a grid-point to face mapping strategy used herein.

Chapter 3 presents a flexible mesh-generation framework and a new DDT-based mesh-
generation scheme derived from our framework. The development of our framework and
the proposed method, together with the results and analysis, are also discussed.

The chapter begins with the introduction of the local optimization procedure (LOP)
algorithm. Next, we propose our new mesh-generation framework based on DDT, which
has several free parameters that must be chosen in order to produce a fully-specified mesh-
generation method. After that, we study how different choices of each free parameter affect
the performance of the resulting method. Careful analysis is performed on these results,
leading to the recommendation of a particular choice for each parameter.

Finally, in Chapter 3, we evaluate the performance of our proposed mesh-generation
method by comparing it to three previously proposed mesh-generation methods regarding
mesh quality, time and memory complexity. The first of the methods is a DDT-based
refinement mesh-generation scheme proposed by Garland and Heckbert [17, Algorithm IV]
with the quality threshold parameter qthresh chosen as 0.5 and an L2 error measure, which
we henceforth refer to by the name “GH”. The second of the methods is also a DDT-based
refinment mesh-generation scheme proposed by Rippa [21] with the least-squares edge cost
(in the interpolating case), which we henceforth refer to by the name “R”. The third of the
methods is a Delaunay-based adaptive thinning scheme proposed by Demaret and Iske [16],
which will be referred as “AT” henceforth. Based on the results collected, the proposed
method is demonstrated to outperform the GH, R, and AT schemes, by median margins
of 4.1 dB, 10.76 dB, and 0.83 dB, respectively. The subjective qualities of reconstructed
images correlate reasonably well with PSNR. In terms of computational cost, our proposed
method was found to be comparable to the GH and R schemes, with about 6 to 12% and
36 to 52% increase, respectively. Moreover, our proposed method requires only about 5 to
10% of the time of the AT scheme. In terms of memory cost, our proposed method was
shown require essentially same amount of memory as the GH and R schemes and orders of
magnitude (33 to 800 times) less memory than the AT scheme.

Chapter 4 summarizes the key results presented in this thesis. Finally, it concludes with
suggestions of related topics for future research.

7

The appendix provides a brief description of the software used to collect experimental
results in our research. This software was developed by the author with guidance from her
supervisor. The code is fairly long and complex, as was not trivial to write. Amongst other
things, the appendix includes a short tutorial on how to use our software.

8

9

Chapter 2

Preliminaries

2.1 Overview

Some essential background information is introduced in this chapter to promote a better
understanding of the work presented in this thesis. We begin with an introduction to the
basic notation and terminology used herein. Then, some image processing background is
presented. Next, we explain some concepts from computational geometry. This is then
followed by a discussion of mesh models of images and mesh generation. We conclude
this chapter by some comments regarding a grid-point to face mapping strategy.

2.2 Notation and Terminology

In this thesis, the sets of integers and real numbers are denoted Z and R, respectively. For
a, b ∈ R, the expressions (a, b), [a, b], (a, b], and [a, b) denote the intervals {x : a < x < b},
{x : a ≤ x ≤ b}, {x : a < x ≤ b}, and {x : a ≤ x < b}, respectively. For a set S , its cardinality
is denoted |S |. The empty set is denoted ∅. For a set S , S denotes the closure of S .

For a vector x = (x1, x2, . . . , xn) in Rn, its 2-norm is defined as

‖x‖ =
√

x1
2 + x2

2 + . . . + xn
2.

The gradient of a function f , denoted as∇ f , is defined as the vector field whose components
are the partial derivatives of f . That is,

∇ f =

(
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
.

10

2.3 Image Processing

Binomial filters are lowpass filters with simple and efficient structures based on the bino-
mial coefficients for implementing Gaussian filtering [51]. The transfer function Hn of the
nth-order one-dimensional (1-D) binomial filter with zero-phase and unity DC gain is given
by

Hn(z) = z(n−1)/2
(
1
2

+
1
2

z−1
)n−1

,

where n is an odd integer. Two-dimensional binomial filters can be generated by using two
one-dimensional binomial filters in a separable fashion (i.e., a tensor-product construction).

The Laplacian of a function f , denoted ∆ f , is defined as

∆ f (x, y) = ∇2 f (x, y) =
∂2 f
∂x2 +

∂2 f
∂y2 .

For a function f , its maximum magnitude second-order directional derivative (MM-
SODD) [35] d(x, y) at (x, y) can be computed by

d(x, y) = max {|α(x, y) + β(x, y)| , |α(x, y) − β(x, y)|} , (2.1)

where
α(x, y) =

1
2

[
∂2

∂x2 f (x, y) +
∂2

∂y2 f (x, y)
]
, and

β(x, y) =

√
1
4

[
∂2

∂x2 f (x, y) −
∂2

∂y2 f (x, y)
]2

+

[
∂2

∂x∂y
f (x, y)

]2

.

2.4 Computational Geometry

Next, we introduce some computational geometry concepts used in this thesis. This in-
cludes concepts such as a triangulation, Delaunay triangulation, and DDT.

In order to fully define the concept of triangulation, two basic computational geometry
concepts, convex set and convex hull, need to be introduced first.

Definition 2.1 (Convex set). A set V of points is convex if for every pair of points a and b

in V, every point on the line segment ab is in V.

The definition of convex set is illustrated in Figure 2.1. As we can see, the set V of points,
denoted by the shaded area in Figure 2.1(a), is convex since every point on a line segment

11

a

b

(a)

a
b

(b)

Figure 2.1: Examples of a (a) convex, and (b) non-convex sets .

(a) (b)

Figure 2.2: Convex hull example. (a) A set V of points, and (b) the convex hull of V .

formed by a pair of points a and b from V is still in V . In contrast, the set V of points,
denoted by the shaded area in Figure 2.1(b), is not convex, because part of the line segment
ab is not in V .

Definition 2.2 (Convex hull). Given a finite set V = {p1, p2, . . . , pn} of points in R2, the

convex hull of V, denoted H(V), is the intersection of all convex sets that contain V (i.e.,

the “smallest” convex set that contains all of the points of V).

An example of a convex hull is shown in Figure 2.2. Given a set V of points as shown in
Figure 2.2(a), the convex hull of V is the shaded area shown in Figure 2.2(b). One way to
visualize a convex hull of V is to imagine letting a rubber band snap tight around all the
points in V . The resultant polygon formed by the rubber band is the boundary of the convex
hull of V .

With convex hull defined, we are ready to introduce the concept of a triangulation,
which is of fundamental importance herein.

Definition 2.3 (Triangulation). A triangulation of a finite set V of points is a set T = { fi}
|T |−1
i=0

of nondegenerate open triangles satisfying the following conditions:

12

(a) (b)

Figure 2.3: Example of triangulation of a set of points. (a) a triangulation of V , and (b)
another triangulation of V .

1. the set of all vertices of triangles in T is V;

2. every edge of a triangle in T contains only two points from V;

3. ∪|T |−1
i=0 fi is the convex hull of V; and

4. fi ∩ f j = ∅ for i , j.

In other words, a triangulation T of a finite set V of points is a subdivision of the convex
hull of V into a set of triangles such that any two triangles in T never intersect, and the set
of points that are vertices of T coincides with V . For a triangulation T , the vertices, edges,
and faces of T are denoted asV(T), E(T), and F (T), respectively.

There are many ways to subdivide the convex hull of a finite set V of points in order to
produce a valid triangulation. Figure 2.3 provides two different triangulations of a set of
points. We can see that, although the triangulations in Figures 2.3(a) and (b) share the same
set of vertices, the connectivities of the triangulations (i.e., the edges in the triangulations)
are different.

The two commonly employed types of triangulations are the Delaunay triangulation
and the DDT. The Delaunay triangulation was described by Delaunay in 1934 [41]. Before
defining Delaunay triangulation, we first need to introduce the concept of a circumcircle.

Definition 2.4. (Circumcircle) The unique circle that passes through all three vertices of a

triangle T is called the circumcircle of T .

With the definition of circumcircle in place, we can now present the definition of Delaunay
triangulation.

Definition 2.5. (Delaunay triangulation) A triangulation T of a set V of points in a plane

is said to be Delaunay if no point in V is inside the circumcircle of any triangle in T .

13

(a) (b)

Figure 2.4: Example of a Delaunay triangulation of a set of points. (a) A set V of points,
and (b) a Delaunay triangulation of V .

Delaunay triangulations have the property that they maximize the minimum interior angle
of all triangles in the triangulation. In this sense, Delaunay triangulations avoid silver
triangles to whatever extent is possible. The Delaunay triangulation of a set V of points is
only guaranteed to be unique if no four points in V are cocircular. In many applications,
however, it is desirable that the Delaunay triangulation be uniquely determined. Take image
representation, for example. If the Delaunay triangulation of a set V of points is unique,
only the positions and values of the sample points are needed to generate a unique mesh
representation for an image. On the other hand, if the uniqueness cannot be ensured, the
connectivity of the sample points in V is also needed to fully determine the triangulation for
an image. Thus, the uniqueness of the Delaunay triangulation is desirable for more compact
representations. Several schemes have been proposed to resolve this nonuniqueness issue.
One simple strategy, called preferred directions, was proposed by Dyken in 2006 [42]. This
scheme provides a means to uniquely choose one out of all possible Delaunay triangulations
of a set of points.

An example of a Delaunay triangulation is shown in Figure 2.4. A set V of points is
given by Figure 2.4(a) and the Delaunay triangulation of V is given by Figure 2.4(b). In
Figure 2.4(b), the circumcircle of each face is drawn using dashed lines. As we can see, no
vertex falls inside any circumcircle, hence, this triangulation is Delaunay.

Another type of triangulation is a DDT, which is less restrictive than a Delaunay tri-
angulation. In the case of DDTs, the connectivity of the triangulation is chosen in a way
that depends on the data set from which the points to be triangulated originated (and not
just the geometry of those points). Unlike the Delaunay case, DDTs can have their con-

14

v j

vlvk

vi

(a)

vk

v j

vl

vi

(b)

Figure 2.5: Flippable and non-flippable edge example. (a) Flippable edge viv j and (b) non-
flippable edge vkvl.

nectivity chosen arbitrarily. Thus, DDTs offer vastly greater flexibility, and theoretically
have the potential to perform much better than their Delaunay counterparts if well cho-

sen [44]. In practice, however, due to this increased flexibility, it is much more difficult to
develop highly-effective computationally-efficient mesh-generation schemes that are based
on DDTs, as compared to the Delaunay case. Next, we introduce the concepts of flippable
edges and edge flips, which are of fundamental importance in DDTs.

Definition 2.6 (Flippable edge). An edge e in a triangulation is said to be flippable if it has

two incident faces (i.e., is not on the triangulation boundary) and the union of these two

faces is a strictly convex quadrilateral q.

Figure 2.5(a) shows an example of a flippable edge viv j in a convex quadrilateral vivkv jvl.
Edge vkvl in Figure 2.5(b) is not flippable because the the quadrilateral vivkv jvl is not con-
vex.

If an edge e is flippable with its two incident faces forming the strictly convex quadri-
lateral q, a valid triangulation is obtained if e is deleted from the triangulation and replaced
by the other diagonal of q. This transformation is known as an edge flip. An example of
edge flip is shown in Figure 2.6, where a flippable edge viv j in Figure 2.6(a) is transformed
to the edge vkvl in Figure 2.6(b) by an edge flip. Any triangulation of a set of points can
be obtained from any other triangulation of the same set of points by a finite sequence of
edge flips [52, 53]. Moreover, since an edge flip does not change the number of edges in
a triangulation, this further implies that every triangulation of a set of points has the same
number of edges.

15

v j

vk

vi

vl

(a)

v j

vl

vi

vk

(b)

Figure 2.6: Edge flip example. Part of (a) a triangulation with an edge viv j and (b) the new
triangulation obtained after the edge viv j is transformed to the edge vkvl by an edge flip.

2.5 Mesh Models of Images

As mentioned before, triangle mesh models are quite beneficial for image representation
purposes. There are many ways to represent images using meshes, and each has different
advantages and drawbacks. For example, Tu and Adams proposed a scheme [54], based
on constrained Delaunay triangulation, that explicitly represents discontinuities (i.e., image
edges). This scheme , while flexible, is conceptually complex.

In this thesis, we chose to employ a mesh model for images based on DDTs, as de-
scribed below. It offers great flexibility and efficiency in dynamically changing the geome-
try and topology of the mesh.

Consider an integer-valued image function φ defined on Λ = {0, 1, . . . ,W−1}×{0, 1, . . . ,H−
1} (i.e., a rectangular grid of width W and height H). With a triangle mesh model of an im-
age, the image domain is partitioned by a triangulation into a set of (triangle) faces and then
over each face of the triangulation an approximating function is constructed. Figure 2.7
shows an example of mesh modelling using triangle meshes. The image in Figure 2.7(a)
can be viewed as a surface in 3-D as shown in Figure 2.7(b) with the surface height corre-
sponds to the image values of sample points. A triangulation is formed by partitioning the
image domain into a set of triangles, as illustrated in Figure 2.7(c). The resulting triangle
mesh is shown in Figure 2.7(d) This process is known as mesh modelling. Then a recon-
structed image can be generated by sampling the grid points of the image, which is shown
in Figure 2.7(e).

For convenience in what follows, we letV(T) and F (T) denote the vertices and faces

16

(a) (b)

(c)
0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

(d)

(e)

Figure 2.7: Mesh model of an image. (a) Original image, (b) image modelled as surface,
(c) triangulation of image domain, (d) resulting triangle mesh , and (e) reconstructed image.

of a triangulation T as previously defined (in Section 2.4 on page 12). A triangle mesh
model is completely characterized by a triangulation T covering the image domain Λ as

17

well as the values of φ for each point p ∈ V(T). We refer to each element of V(T)
as a sample point. Given T , a function φ̂T that interpolates φ at the points in V(T) is
constructed as follows. First, we form a continuous piecewise-linear function φ̃T . For each
(triangle) face f ∈ F (T), φ̃T is chosen as the unique linear function that interpolates φ at
the three vertices of f . To ensure that φ̂T is integer valued (just like φ), we choose φ̂T as
φ̂T (p) = round(φ̃T (p)) for all p ∈ Λ, where round denotes an operator that rounds to an
integer value. The setV(T) must always include the extreme convex-hull points of Λ (i.e.,
the four corners of the image bounding box) so that the triangulation of V(T) covers all
points in Λ. As a matter of terminology, the size and sampling density of the mesh model
T are defined as |V(T)| (i.e., the number of vertices in T) and |V(T)| / |Λ|, respectively.

With the mesh model introduced, the process to generate such models is known as mesh
generation. The mesh-generation problem that we address in this thesis can be succinctly
stated as follows: Given φ and a desired number N of sample points, find the mesh model
T of φ with |V(T)| = N that minimizes the measure εT of the difference between φ and
the approximation φ̂T . In our work, the mean squared error (MSE) is used as the error
measure, so that

εT = |Λ|−1
∑
p∈Λ

(
φ̂T (p) − φ(p)

)2
. (2.2)

Herein, the MSE is typically expressed in terms of the peak signal-to-noise ratio (PSNR),
which is defined as PSNR = 20 log10

(
2ρ−1
√
ε

)
, where ρ is the number of bits/sample in the

image φ. Essentially, the PSNR measures the MSE relative to the dynamic range of the data.

2.6 Grid-Point to Face Mapping

In the process of mesh generation, we usually have an image defined on a rectangular grid
and a triangulation superimposed on it, as shown in Figure 2.8(a), with “·” represents grid
point. For reasons that will become clear later, we need a convenient scheme to define
map from grid point to face. A slightly modified scheme from Fleischer [55], is introduced
below.

Suppose we have an image φ defined on a rectangular grid, and a triangulation T of
image domain, the grid-point to face mapping strategy assign each grid point p to exactly
one face in T as follows:

1. If p is strictly inside a face f , map p to the face f ;

18

2. If p is on a horizontal edge e excluding its endpoints, map p to the face below e

unless there is no face below, in which case p is mapped to the face above e;

3. If p belongs to a non-horizontal edge e excluding its endpoints, map p to the face to
the left of e unless there is no face to the left of e, in which case p is mapped to the
face to the right of e;

4. If p is the right endpoint of a horizontal edge e, map p to the same face to which e

belongs;

5. If p is a vertex in T but not a right endpoint of a horizontal edge e, map p to the face
to the left of e;

6. If p is the top-left or bottom-left corner vertices of T , map it to the same face to
which the top or bottom horizontal edge belong, respectively.

Figure 2.8 is provided to illustrate the above grid-point to face mapping scheme. Fig-
ure 2.8(a) shows an image φ defined on a rectangular grid {0, 1, . . . , 15} × {0, 1, . . . , 9}, and
a triangulation T superimposed on the grid including the four extreme points of the im-
age. In order to understand the above mapping strategy more clearly, the grid points in
Figure 2.8(b) are all marked with different symbols. The grid points belong to each face
share the same symbol. Examples will be given for each type of grid points listed above.

Consider the point p1 = (2, 5). The point p1 is strictly inside face f4. Therefore,
according to case 1 above, p1 is mapped to face f4. Now consider points p2 = (8, 9) and
p3 = (8, 1), which are both on horizontal edges. According to case 2, p2 is mapped to face
f2 (i.e. the face below edge v4v3), while p3 is mapped to the face f2, since there is no face
below edge v1v2. For points p4 = (13, 7) and p5 = (0, 5) that belong to non-horizontal
edges v3v6 and v0v1, respectively. According to case 3, p4 will be mapped to f3 as f3 is the
face to the left of v3v6. On the other hand, p5 will be mapped to face f4, which is to the
right of v0v1, because there is no face to the left of v0v1. Case 4 and 5 map the vertices in
T . Consider points p6 = (4, 5) and p7 = (15, 0) for instance. p6 is mapped to f4, which is
the face to the left of edge v0v5, and p7 is mapped to f7, the same face to which edge v1v2

belongs. Case 6 applies to the top-left vertex and bottom-left vertex in the triangulation.
p8 = (0, 9), and p9 = (0, 0) are mapped to face f1 and f7, respectively.

19

1

6

7

8

9

2 3 4 5 6 7 8 9 10 11 13 14 1512

2

5

4

3

1

0

v3

v6v5

v4
v0

v2

v1

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

4

5

6

7

8

9

2

1

0

v6v5

v4

f1 f2

f3

f4
f5

f7

f6

v0

mapped to f6

mapped to f5

mapped to f4

mapped to f2

mapped to f1

mapped to f7

mapped to f3

v1

v2

v3

(b)

Figure 2.8: An example of how points are assigned to only one face. (a) A triangulation on
a rectangular grid, and (b) a triangulation with only vertices and points on edges shown.

20

21

Chapter 3

Proposed Mesh-Generation Framework
and Method

3.1 Overview

In this chapter, we propose a flexible DDT-based mesh-generation framework and a new
highly-effective mesh-generation method derived from this framework. We begin with
the introduction of Lawson’s local optimization procedure (LOP). Then, our new mesh-
generation framework is presented, which has several free parameters that must be chosen
in order to produce a fully-specified mesh-generation method. Next, we present a sum-
mary of our analysis, which leads to the recommendation of a particular choice for each
parameter. Finally, we propose a specific mesh-generation method, based on these recom-
mended choices. The performance of our proposed mesh-generation method is evaluated
by comparing to several competing schemes, with our method proving to be superior.

3.2 Local Optimization Procedure (LOP)

As mentioned earlier in Section 1.2 on page 5, the mesh-generation framework proposed
in this thesis was inspired by the frameworks of Rippa [21] (known by the name “COM-
PRESS” therein) and Garland and Heckbert [17] (known as “Algorithm IV” therein). Both
the Rippa and Garland-Heckbert frameworks employ the well-known local optimization
procedure (LOP) [29] of Lawson. Our proposed framework also utilizes a variant of the
LOP. Since knowledge of the LOP is essential to the understanding of our framework, we
will first describe the LOP below.

22

The fact that every triangulation is reachable from every other triangulation via edge
flips [52, 53] motivated Lawson to propose the so called LOP [29], an algorithm for finding
an optimal triangulation of a set of points via edge flips. (Recall that edge flips were
discussed in Section 2.4 on page 14.) To cast the triangulation problem as an optimization,
we define a rule, called an edge-flip criterion, that determines, for a flippable edge e,
if the triangulation with the edge e is preferred over the triangulation obtained if e were
transformed to e′ by an edge flip. The edge-flip criterion is specified as a binary-valued
decision function, denoted isPreferred, where isPreferred(e) is one if e is preferred to e′,
and zero otherwise. As a matter of terminology, an edge e is said to be optimal if:

1. it is not flippable; or

2. it is flippable and isPreferred(e) = 1.

A triangulation is said to be (locally) optimal if each one of its edges is optimal. An edge
whose optimality is uncertain is said to be suspect. Note that, by definition, an edge that
is not flippable cannot be suspect. In short, the LOP tests any suspect edges for optimality,
and performs edge flips to eliminate any suspect edge that is not optimal. Letting S denote
the current set of suspect edges, the variant of the LOP used herein consists of the following
steps:

1. Initialize S to contain all suspect edges (i.e., edges that are flippable but whose opti-
mality has not yet been tested).

2. If |S | = 0 (i.e., S is empty), then stop.

3. Remove an edge e from S .

4. If e is not flippable or e has been visited more than 5 times since the LOP started, go
to step 2.

5. Let q denote the (strictly convex) quadrilateral formed by the union of the two faces
incident on e, and let e′ denote the edge obtained by flipping e (i.e., the other diagonal
of q). If isPreferred(e) = 0 (i.e., e is not optimal according to whatever edge-flip
criterion is in effect), apply an edge flip to e (to produce e′), and add to S any newly
suspect edges resulting from the edge flip. Which edges become newly suspect as
a result of the edge flip depend on the specific choice of isPreferred, and will be
addressed in more detail later in Section 3.3.2, after we have introduced the various
edge-flip criteria considered herein. In practice, however, these edges are in a small
neighbourhood about e.

23

6. Go to step 2.

In passing, we note that the LOP is only guaranteed to produce a locally (as opposed to
globally) optimal triangulation, and the locally optimal triangulation produced depends
on the order in which edges are flipped. The algorithm presented above differs slightly
from the LOP as proposed by Lawson. In particular, a limit is placed on the number of
times that an edge can be tested for optimality during the LOP process via the second
condition appearing in step 4. This extra condition is necessary in order to ensure that the
algorithm does not become trapped in a cycle, repeating the same sequence of edge flips
indefinitely. In the context of our work, cycles can arise for two reasons. First, we allow for
the use of edge-flip criteria that are not guaranteed to always be well behaved, and when
such criteria are used, cycles can sometimes occur. Second, due to the effects of finite-
precision arithmetic (i.e., roundoff error), decisions regarding the optimality of an edge
can occasionally be made in an inconsistent manner, leading to cycles. A more detailed
treatment of the cycle problem will be presented in Section 3.4.4 after we have introduced
the edge flip criteria used in our work.

3.3 Proposed Mesh-Generation Framework

Having introduced the (slightly modified) LOP used in our work, we are now ready to
present our proposed mesh-generation framework. With our framework, for a given trian-
gulation T , each point in the image domain Λ is assigned to exactly one face in T . This
is achieved by applying the grid-point to face mapping scheme described earlier in Sec-
tion 2.6. The set of all points in Λ belonging to the face f in T is denoted PT (f).

As input, our framework takes an image φ (defined on Λ) and a target number N of
sample points for the mesh to be generated. Our proposed framework is iterative in nature.
It starts with a nearly empty mesh and adds points to the mesh until the desired sampling
density is achieved. Let T denote the triangulation in the current iteration. φ̃T is the unique
linear interpolant of φ and φ̂T is the integer valued interpolant of φ defined before in Sec-
tion 2.5. V(T), E(T), and F (T) denote the vertices, edges and faces of T as previously
defined on page 12. Our framework then consists of the following steps (in order):

1. Initial triangulation. Initially choose the triangulation T as a triangulation of the
extreme convex-hull points of the image domain Λ (i.e., the four corner points of the
image bounding box).

24

2. Initial connectivity adjustment. Adjust the connectivity of the triangulation by ap-
plying the LOP (described earlier) choosing the edge-flip criterion isPreferred as
isPreferred = isPreferredmain, where isPreferredmain is a free parameter of our frame-
work. Initially, when the LOP is invoked, all flippable edges in T are marked as
suspect.

3. If the target number of sample points has been reached (i.e., |V(T)| ≥ N), go to
step 8.

4. Point selection. Select a new point p∗ ∈ Λ \ V(T) to add to the triangulation T .
This is accomplished in two steps. First, select a face f ∗ in T into which a new point
is to be inserted, as given by

f ∗ = selFace,

where selFace is a function (implicitly depending on T) that embodies the face-
selection process and is a free parameter of our framework. Second, having chosen
the face f ∗, select a candidate point p∗ belonging to f ∗ and not currently in T (i.e.,
p∗ ∈ PT (f ∗) \V(T)) for insertion, as given by

p∗ = selCand(f ∗), (3.1)

where selCand is a function that embodies the candidate-selection process and is a
free parameter of our framework.

5. Point insertion. Insert p∗ into the triangulation T . If p∗ is strictly inside a face in
T , say face viv jvk, we connect p∗ by new edges to each vertex of its containing face,
as shown in Figure 3.1(a). If p∗ is on an edge in T , say on edge vivk, we split this
edge at p∗ and, for each face f incident on vivk, we connect p∗ with a new edge to the
vertex in f that is opposite the edge vivk, as shown in Figure 3.1(b).

6. Main connectivity adjustment. Adjust the connectivity of the triangulation by ap-
plying the LOP, with the edge-flip criterion isPreferred chosen as isPreferred =

isPreferredmain and the suspect edges initially chosen as all edges whose optimal-
ity could have been changed by the insertion of p∗ in the previous step (i.e., step 5).
The edges whose optimality can be affected by the insertion of p∗ depend on the
particular choice of isPreferredmain, and will be discussed in more detail later in Sec-

25

p∗

v j vk

vi

(a)

v j

vi

p∗

vk

vl

(b)

Figure 3.1: Point insertion example. Part of a triangulation showing how the new vertex p∗

is inserted (a) inside a triangle viv jvk and (b) on an edge vivk.

tion 3.3.2, after we have introduced the various edge-flip criteria considered herein.
In practice, these edges are in a relatively small neighbourhood about p∗.

7. Go to step 3.

8. Final connectivity adjustment (optional). If the optional final connectivity-adjustment
step is enabled, continue; otherwise, stop. Adjust the connectivity of the trian-
gulation by applying the LOP, with the edge-flip criterion isPreferred chosen as
isPreferred = isPreferredfinal, where isPreferredfinal is a free parameter of our frame-
work. Initially, when the LOP is invoked, all flippable edges in the triangulation are
marked as suspect.

From above, one can see that our framework requires the choice of several free param-
eters in order to arrive at a completely-specified method for mesh generation. In particular,
we must choose:

1. a point-selection strategy that consists of a face-selection policy selFace together with
a candidate-selection policy selCand;

2. an edge-flip criterion isPreferredmain to be used in the initial and main connectivity
adjustment, called the main edge-flip criterion;

3. a choice of whether to perform the optional final connectivity adjustment;

4. if final connectivity adjustment is to be performed, an edge-flip criterion isPreferredfinal

to be used for this purpose, called the final edge-flip criterion.

26

Note that it is the intention of our framework that isPreferredmain and isPreferredfinal be cho-
sen differently. As for how the above parameters might be chosen, we defer this discussion
until later.

Although, as mentioned above, our proposed framework was inspired by the frame-
works of Rippa [21] and Garland and Heckbert [17], a number of key differences exist
between our framework and these other ones. In particular, the two most fundamental
differences are as follows. First, in the Rippa and Garland-Heckbert frameworks, the point-
selection process (corresponding to step 4 in our framework) is not logically viewed as
being split into two smaller steps, with the first choosing a face and the second choosing
a point within the face. Both approaches always choose p∗ as the point p ∈ Λ \ V(T)
for which

∣∣∣φ̂T (p) − φ(p)
∣∣∣ is greatest. That is, the Rippa and Garland-Heckbert frameworks

essentially replace (3.1) in our framework with the fixed choice

p∗ = arg max
p∈Λ\V(T)

∣∣∣φ̂T (p) − φ(p)
∣∣∣ , (3.2)

in which case there is no explicit face-selection process (selFace) per se. As we shall see
later, the point-selection scheme given by (3.2) leaves much to be desired. The second
key difference is that neither the Rippa nor Garland-Heckbert framework has an equivalent
to the final connectivity-adjustment step (i.e., step 8) in our framework. As we shall see
later, final connectivity adjustment plays a crucial role in allowing highly effective mesh-
generation methods to be synthesized.

In passing, we note that mesh-generation methods derived from our proposed frame-
work (as well as the Rippa and Garland-Heckbert frameworks) have a number of desirable
characteristics. In particular, because our framework is based strictly on the refinement of
an initial coarse mesh (with four vertices), the current mesh size never exceeds the target
mesh size (i.e., N vertices) at any point during mesh generation. This is important in or-
der to minimize memory usage (and often computational complexity as well). In contrast,
frameworks or methods based on mesh simplification typically have a much greater peak
mesh size. Another desirable characteristic of our proposed framework is that it can easily
accommodate a stopping criterion for the mesh-generation process that is based on either
sampling density or a prescribed error tolerance (in step 3 of our framework).

As seen above, our proposed framework requires the choice of several free parameters
in order to arrive at a completely-specified method for mesh generation. For example, we
must specify face-selection and candidate-selection policies as well as various edge-flip
criteria. So far, we have not made any suggestions as to how these items might be chosen.

27

In what follows, we introduce a variety of possible choices for these items as considered in
our work.

3.3.1 Face- and Candidate-Selection Policies

In step 4 of our framework (i.e., point selection), we must choose a face f ∗ in which to
select a new point for insertion. This face-selection policy is embodied by the function
selFace. In our work, we considered two face-selection policies.

The first policy, called greatest absolute error (GAE), chooses selFace as

selFaceGAE = arg max
f∈U(T)

max
p∈PT (f)

∣∣∣φ̂T (p) − φ(p)
∣∣∣ ,

where U(T) is the set of all faces f ∈ F (T) such thatPT (f) , ∅. That is, selFace is defined
to choose the face in T that contains the point where the original image and approximation
differ most.

The second policy, called greatest squared error (GSE), selects selFace as

selFaceGSE = arg max
f∈U(T)

∑
p∈PT (f)

(
φ̂T (p) − φ(p)

)2
,

where U(T) is the set of all faces f ∈ F (T) such thatPT (f) , ∅. That is, selFace is defined
to choose the face in T with the largest squared error.

In step 4 of our framework (i.e., point selection), once a face f ∗ has been chosen, we
must select a candidate point p∗ within that face for insertion. This candidate-selection
policy is embodied by the function selCand. In our work, we considered five candidate-
selection policies.

The first policy, called peak absolute error (PAE), selects selCand as

selCandPAE(f) = arg max
p∈PT (f)\V(T)

∣∣∣φ̂T (p) − φ(p)
∣∣∣ .

That is, of all candidate points in the face, this policy selects the point at which the absolute
error is greatest.

The second policy, called peak weighted absolute error (PWAE), selects selCand as

selCandPWAE(f) = arg max
p∈PT (f)\V(T)

w(p)
∣∣∣φ̂T (p) − φ(p)

∣∣∣ ,

28

where w(p) denotes the MMSODD (a second-order derivative defined in Section 2.3) of a
given image φ. That is, of all candidate points in the face, this policy selects the point at
which the weighted absolute error is greatest. Note the MMSODD of an image φ can be
computed using (2.1) at each grid point. The partial-derivative operator in (2.1) are formed
from the tensor product of one-dimensional derivative operators, where the discrete-time
approximations of the one-dimensional first-order and second-order derivative operator are
computed using the filters with transfer functions 1

2z − 1
2z−1 and z − 2 + z−1, respectively.

Furthermore, binomial filters with order of nine are employed as smoothing operator for
image φ before the derivative computation.

The third policy, called approximate minimum squared error based on PAE (AMSE-
PAE), chooses p∗ in two steps. First, we choose a set Ω of test points to consider as candi-
dates for insertion. We then choose p∗ from Ω. If |PT (f ∗) \V(T)| > 8, Ω is chosen as the
eight points p in PT (f ∗) \V(T) for which

∣∣∣φ̂T (p) − φ(p)
∣∣∣ is greatest; otherwise, we choose

Ω = PT (f ∗) \V(T). (As an aside, we note that the value of eight here was chosen based
on experimentation.) Given Ω, we then choose selCand as

selCandAMSE−PAE(f) = arg min
t∈Ω

∑
p∈PT (f)

(
φ̂Υ(t)(p) − φ(p)

)2
,

where Υ(t) denotes the triangulation that would be obtained if the point t were inserted into
T . That is, selCand is defined to select the point in Ω whose insertion would result in the
least squared error over the face f ∗.

The fourth policy, called approximate minimum squared error based on PWAE (AMSE-
PWAE), chooses p∗ in an identical manner as AMSE-PAE, except that weighted abso-
lute error instead of absolute error is used when choose the set Ω of test points. That is,
if PT (f ∗) \ V(T) > 8, Ω is chosen as the eight points p in PT (f ∗) \ V(T) for which
w(p)

∣∣∣φ̂T (p) − φ(p)
∣∣∣ is greatest; otherwise, we choose Ω = PT (f ∗) \V(T). Then, selCand

is chosen as

selCandAMSE−PWAE(f) = arg min
t∈Ω

∑
p∈PT (f)

(
φ̂Υ(t)(p) − φ(p)

)2
,

The fifth policy, called hybrid, simply employs the PAE policy until the number of
sample points in the mesh reaches 25% of the desired number, with the AMSE-PAE policy
being used thereafter. This policy is motivated largely by the desire to save computation.
By using the less-computationally costly PAE policy initially, computational cost can be
significantly reduced (relative to the AMSE-PAE policy).

29

vk

vl

vi v j

f1

f2
e

Figure 3.2: An edge e = viv j that is a diagonal of the quadrilateral vivkv jvl in the triangula-
tion T .

Lastly, we note that choosing the face-selection and candidate-selection policies as
GAE and PAE, respectively, is mathematically equivalent to the point-selection scheme
used in the Rippa and Garland-Heckbert frameworks, given earlier by (3.2).

3.3.2 Edge-Flip Criteria

In our framework, steps 2, 6, and 8 each employ the LOP, and the LOP requires the spec-
ification of an edge-flip criterion. So far, we have not commented on how this edge-flip
criterion might be chosen. In what follows, we introduce twelve edge-flip criteria that
were considered in our work. Herein, we employ two different classes of edge-flip crite-
rion. Both are based on the idea of assigning costs to edges, and then making the decision
of whether to flip an edge based on these costs. The main difference between these two
classes is in how they use these edge-cost functions in order to make decisions.

Before we can introduce any of the edge-flip criteria, we must first introduce the edge-
cost functions that these criteria employ. Each edge-cost function assigns a cost to an edge
e in the triangulation T . Let vn = (xn, yn) denote the nth vertex in T and let zn = φ(xn, yn) be
the corresponding sample value. Furthermore, let e = viv j. In what follows, in the case that
e is not a boundary edge (and must therefore have two incident faces), its two incident faces
are denoted as f1 and f2, where f1 is triangle vivkv j and f2 is triangle viv jvl. The preceding
definitions are illustrated in Figure 3.2. Furthermore, let P1 and P2 respectively denote the

30

linear interpolant over f1 and f2 (i.e., φ̃T restricted to f1 and f2), where

P1(x, y) = a1x + b1y + c1, and

P2(x, y) = a2x + b2y + c2.

Lastly, we introduce a few additional definitions needed in what follows. The approximate
diameter of the face f , denoted diam(f), is defined as the length of the longest side of the
(smallest axis-aligned) bounding box of the face f . The shape quality of a face f , denoted
sq(f), is defined as

sq(f) = area(f)/ diam(f),

where area(f) denotes the area of the face f .

The first class of edge-flip criterion is associated with edge-cost functions that assign
a cost to every edge in the triangulation T . This class makes use of the following seven
edge-cost functions:

1. edgeCostABN, the angle between normals (ABN) from [22];

2. edgeCostJND, the jump in normal derivatives (JND) from [22];

3. edgeCostDLP, the deviations from linear polynomials (DLP) from [22];

4. edgeCostDP, the distances from planes (DP) from [22];

5. edgeCostYMS, the Yu-Morse-Sederberg (YMS) cost from [27];

6. edgeCostELABN, the edge-length-weighted ABN (ELABN) from [25, 26];

7. edgeCostELJND, the edge-length-weighted JND (ELJND) which is newly proposed
herein.

The definitions of these functions are as follows. For a nonboundary edge e (which must
have two incident faces) in the triangulation T , we define

edgeCostABN(T, e) = arccos
[

(a1, b1,−1) · (a2, b2,−1)
‖(a1, b1,−1)‖ ‖(a2, b2,−1)‖

]
, (3.3a)

edgeCostJND(T, e) =
∣∣∣(nx, ny) · [(a1, b1) − (a2, b2)]

∣∣∣ , (3.3b)

edgeCostDLP(T, e) = ‖(|P1(xl, yl) − zl| , |P2(xk, yk) − zk|)‖ , (3.3c)

31

edgeCostDP(T, e) = ‖(dist(P1, (xl, yl, zl)), dist(P2, (xk, yk, zk)))‖ , (3.3d)

edgeCostELABN(T, e) =
∥∥∥vi − v j

∥∥∥ edgeCostABN(T, e), (3.3e)

edgeCostYMS(T, e) = ‖(a1, b1)‖ ‖(a2, b2)‖ − (a1, b1) · (a2, b2), and (3.3f)

edgeCostELJND(T, e) =
∥∥∥vi − v j

∥∥∥ edgeCostJND(T, e), (3.3g)

where (nx, ny) is a unit vector normal to e and

dist(Pα, (x, y, z)) =
|Pα(x, y) − z|
‖(aα, bα,−1)‖

.

For a boundary edge e (which has only one incident face), we simply define

edgeCostABN(T, e) = 0,

edgeCostJND(T, e) = 0,

edgeCostDLP(T, e) = 0,

edgeCostDP(T, e) = 0,

edgeCostYMS(T, e) = 0,

edgeCostELABN(T, e) = 0, and

edgeCostELJND(T, e) = 0.

The second class of edge-flip criterion is associated with edge-cost functions that assign
a cost to every flippable edge in the triangulation. This class makes use of the following
five edge-cost functions:

1. edgeCostD, the (preferred-directions) Delaunay (D) cost [42];

2. edgeCostSE, the squared error (SE) from [24];

3. edgeCostGHH, the GH hybrid (GHH) from [17];

4. edgeCostSQSE, the shape-quality-weighted SE (SQSE), which is newly proposed
herein; and

5. edgeCostJNDSE, the JND-weighted SE (JNDSE), which is newly proposed herein.

32

The preceding functions are defined as follows. The first function edgeCostD(T, e) is de-
fined to be 0 if e passes the preferred-directions-augmented in-circle (Delaunay) test in [42],
and 1 otherwise. The remaining functions are then given by

edgeCostSE(T, e) = β(T, e),

edgeCostGHH(T, e) =

[sq(f1) sq(f2)]−1 τ ≤ 1
2

β(T, e) otherwise,

edgeCostSQSE(T, e) =
[
sq(f1) sq(f2)

]−1 β(T, e), and

edgeCostJNDSE(T, e) = edgeCostJND(T, e)β(T, e), where

β(T, e) =
∑

p∈PT (f1)∪PT (f2)

(
φ̂T (p) − φ(p)

)2
,

τ =
min{σ,σ′}
max{σ,σ′} , σ = sq(f1) sq(f2), σ′ = sq(f ′1) sq(f ′2),

and f ′1 and f ′2 are the two faces incident on the edge e′, with e′ denoting the edge obtained
by applying an edge flip to e.

With the above edge-cost functions having been defined, we are now ready to introduce
the twelve edge-flip criteria considered in our work, known by the names ABN, JND, DLP,
DP, YMS, ELABN, ELJND, Delaunay, SE, GHH, SQSE, and JNDSE. Let e denote the
edge to be tested for optimality in the triangulation T , where e = viv j. Let e′ denote the new
edge obtained by applying an edge-flip transformation to e, and let T ′ be the triangulation
obtained if e is flipped. As mentioned above, we employ two different classes of edge-flip
criterion in our work. We consider each in turn below.

The first class of edge-clip criterion assigns a cost to each edge in triangulation, and
then assigns a cost to the triangulation, which corresponds to the sum of the edge costs.
The edge e is then preferred (over e′) if the cost of triangulation T does not exceed the cost
of triangulation T ′. That is, the first class of edge-flip criterion chooses isPreferred to be of
the form

isPreferred(e) =

1 triCost(T) ≤ triCost(T ′)

0 otherwise,
where (3.4a)

triCost(T) =
∑

e∈E(T)

edgeCost(T, e). (3.4b)

The ABN, JND, DLP, DP, YMS, ELABN, and ELJND edge-flip criteria are obtained by

33

choosing isPreferred as given in (3.4) with edgeCost selected as edgeCostABN, edgeCostJND,
edgeCostDLP, edgeCostDP, edgeCostYMS, edgeCostELABN, and edgeCostELJND, respectively.
Note that, although the summation in (3.4b) is taken over all edges in the triangulation,
only a small number of terms differ between triCost(T) and triCost(T ′) for all of the edge-
cost functions introduced above. So, as a practical matter, in order to compare triCost(T)
and triCost(T ′), it is only necessary to compute the relatively small number of terms that
can actually differ between the two summations.

The second class of edge-flip criterion simply uses the edge-cost function directly in
order to decide whether to flip an edge. If the edge e has a strictly higher cost then its
flipped counterpart e′, the decision is made to flip the edge. That is, the second class of
edge-flip criterion chooses isPreferred to be of the form

isPreferred(e) =

1 edgeCost(T, e) ≤ edgeCost(T ′, e′)

0 otherwise.
(3.5)

The Delaunay, SE, GHH, SQSE, JNDSE edge-flip criteria are obtained by choosing
isPreferred as given in (3.5) with edgeCost selected as edgeCostD, edgeCostSE, edgeCostGHH,
edgeCostSQSE, and edgeCostJNDSE, respectively. Observe that, the edge-flip criteria JNDSE
and SQSE, which are newly proposed herein, employ an underlying edge-cost function that
weighs the squared error by some measure related to triangle shape (namely, shape quality
or JND). Also, note that the use of the Delaunay edge-flip criterion in the LOP produces
the unique preferred-directions Delaunay triangulation.

At this point, we would like to make one brief but important comment regarding the SE
edge-flip criterion. From its definition above, observe that the SE edge-flip criterion will
only choose to flip an edge if the squared error, as defined in (2.2), is strictly reduced by the
edge flip. Since the objective herein is to minimize this squared error, the reader might have
the initial suspicion that consistently using the SE criterion everywhere in our framework
must trivially lead to the best results (i.e., the lowest squared error). As we shall see later,
however, this suspicion is, in fact, wrong.

Determination of suspect edges. Earlier, in the discussion of our mesh-generation
framework and the LOP, the question arose as to which edges can become suspect when
a new point is inserted in the triangulation or an edge is flipped. Although a general and
unavoidably vague answer to this question was given at that time, we are now in a position
to provide a much more precise answer to this question, which we do in what follows.

Recall that, in step 6 of our proposed mesh-generation framework (i.e., main connec-

34

p∗

(a)

p∗

(b)

p∗

(c)

p∗

(d)

Figure 3.3: Example of determining the newly suspect edges after the insertion of the point
p∗ inside a face: (a) first case, (b) second case, and on the edge: (c) first case, (d) second
case.

tivity adjustment), the LOP is performed after having inserted a new point p∗ in the trian-
gulation. When the LOP is invoked, we need to determine which edges should be initially
marked as suspect. This, however, depends on the specific edge-flip criterion being em-
ployed. Let f0 denote the set of all faces incident on the new vertex p∗ and let f1 denote
the set of all faces that share at least one edge with a face in f0. In the cases of the ABN,
JND, DLP, DP, ELABN, ELJND, and YMS edge-flip criteria, the edges that should be
marked as suspect are the flippable edges of all faces in f0 ∪f1. For example, after insert-
ing the point p∗ inside a face, as shown in Figure 3.3(a), the edges drawn using a thicker
line would be marked as suspect. When the newly inserted point p∗ is on an edge, the
suspect edges are those marked thicker in Figure 3.3(c). In the cases of the Delaunay, SE,
GHH, SQSE, and JNDSE edge-flip criteria, the edges that should be marked as suspect are
all flippable edges of all faces in f0. For example, after inserting the point p∗ in a face, as
shown in Figure 3.3(b), the edges drawn with a thicker line would be marked as suspect.
In the case that the newly inserted point p∗ is on an edge, the suspect edges are the thicker
lines as shown in Figure 3.3(d).

35

e′

(a)

e′

(b)

Figure 3.4: Example of determining the newly suspect edges after an edge flip that produces
the edge e′. (a) First case. (b) Second case.

Also, recall that, in step 5 of the LOP, whenever an edge is flipped, we must determine
which edges can become newly suspect as a result of the edge flip. Again, this depends
on the particular edge-flip criterion being used. Let e denote the edge being flipped; let
q denote the quadrilateral formed by the union of the two faces incident on e; and let e′

denote the edge obtained by applying an edge flip to e. In the cases of the ABN, JND,
DLP, DP, ELABN, ELJND, and YMS edge-flip criteria, the edges that should be marked
as suspect are all flippable edges belonging to q or belonging to faces incident on edges of
q. For example, if the edge e′ as shown in Figure 3.4(a) was just produced as a result of
an edge flip, we would need to mark all of the edges drawn with a thicker line as suspect
(presuming that each edge is flippable). In the case of the Delaunay, SE, GHH, SQSE, and
JNDSE edge-flip criteria, the edges that should be marked as suspect are all flippable edges
belonging to q. For example, if the edge e′ as shown in Figure 3.4(b) was just produced as
a result of an edge flip, we would need to mark all of the edges drawn with a thicker line as
suspect.

3.4 Proposed Mesh-Generation Method and Its Develop-
ment

So far, we have introduced our proposed mesh-generation framework, which has several
free parameters, and suggested a number of possible choices for each of these parameters.
As one might suspect, however, not all of these choices are equally good. In our work,
we studied how different choices of each parameter affects mesh quality. In what follows,
we present a summary of our analysis, which leads to the recommendation of a particular
choice for each parameter. Then, finally, we propose a specific mesh-generation method,

36

Table 3.1: Test images
Image Size, Bits/Sample Description
bull 1024×768, 8 computer-generated bull [59]
ct 512×512, 12 CT scan of head [56]
glasses 1024×768, 8 raytraced glasses [59]
lena 512×512, 8 woman [58]
mri 256×256, 11 MRI scan of head [56]
peppers 512×512, 8 collection of peppers [58]

based on these recommended choices.

Before proceeding further, a brief digression is in order regarding the image data that
we used for analysis and evaluation purposes. In our work, we employed 42 images as
test data, many of which were taken from standard image sets, such as [56], [57] and [58].
Herein, we present results for a representative subset of these images, namely, those listed
in Table 3.1. This subset was deliberately chosen to contain a variety of image types in-
cluding photographic, medical, and computer-generated imagery.

3.4.1 Choice of Face- and Candidate-Selection Policies

First, we examine how the choice of the face-selection policy selFace affects mesh qual-
ity. To do this, we fix the candidate-selection policy selCand as PAE, the main-edge flip
criterion isPreferredmain as JNDSE, and the final connectivity adjustment as enabled with
the final edge-flip criterion isPreferredfinal as SE. Then, we select from amongst the two
face-selection policies under consideration, namely, GAE and GSE. For all 42 images in
our test set and several sampling densities, we generated a mesh using each of the face-
selection policies, and then measured the resulting approximation error in terms of PSNR.
A representative subset of the results (namely, for the six images in Table 3.1) is given in
Table 3.2, with the best result in each case (i.e., each row in the table) shown in boldface.

Since the goal in our work is to minimize the squared error as defined in (2.2), we would
suspect that it is probably beneficial to choose the face with the greatest squared error into
which to insert a new point (i.e., the GSE policy). Examining Table 3.2, we can confirm
this suspicion to be correct. As the results show, the GSE policy beats the GAE policy in
all cases by a margin of 0.03 to 6.80 dB (with a median of 1.945 dB). Clearly, the GSE
policy is superior.

With the PSNR evaluated above, we next show the subjective quality of reconstructed
images, which is also an important aspect of mesh quality. Three images with various statis-

37

Table 3.2: Comparison of the mesh quality obtained with the various face-selection policies
Samp.

Density PSNR (dB)
Image (%) GAE GSE
bull 0.125 28.58 35.38

0.250 35.70 39.40
0.500 39.24 41.42
1.000 41.85 43.11

ct 0.250 31.45 33.66
0.500 36.85 38.69
1.000 41.68 43.09
2.000 46.36 47.70

glasses 0.250 18.99 22.75
0.500 22.70 26.05
1.000 26.55 29.99
2.000 31.40 34.51

lena 0.500 23.45 26.51
1.000 27.37 29.41
2.000 30.76 32.03
3.000 32.84 33.55

mri 0.500 27.11 31.23
1.000 33.44 34.29
2.000 36.77 37.56
3.000 39.18 39.21

peppers 0.250 21.70 23.55
0.500 24.57 26.83
1.000 28.47 29.58
2.000 31.27 31.70

tical characteristics, lena (photographic), ct (medical), and glasses (computer-generated)
images, are deliberately chosen for a more representative comparison. The three sets of
reconstructed images from Table 3.2 are shown in Figures 3.5, 3.6 and 3.7. We can see
that reconstructed images obtained with GSE policy represent the contour/edge informa-
tion much more precisely than those obtained with GAE policy. In particular, the pitcher
and the glass in the back of Figure 3.5 is a good example to show the difference between
these two policies. Reconstructed image obtained with GSE policy drew the contour of
these two objects quite clearly, while the image obtained with GAE did a poor job in that
region. More differences can be found in Figures 3.6 and 3.7, such as the face and hat area
of lena image and the shape of the holes in the middle region of ct image. As we can
see, GSE policy provides overall better approximations than GAE. Hence, the subjective

38

(a) (b)

Figure 3.5: Comparison of the subjective mesh quality obtained for the glasses image at
sampling density of 1% with the (a) GAE (26.55 dB), and (b) GSE (29.99 dB).

(c) (d)

Figure 3.6: Comparison of the subjective mesh quality obtained for the lena image at
sampling density of 0.5% with the (a) GAE (23.45 dB), and (b) GSE (26.51 dB).

qualities we observed correlate well with the PSNR listed in Table 3.2.

Although we have only shown results above for one specific choice of the fixed param-
eters (i.e., the parameters other than the face-selection policy), we generally found similar
results with other choices. In passing, we also note that the computational complexity of
the GSE and GAE policies are quite comparable. For the above reasons, we deem the GSE
policy as best and recommend its use in our framework.

Next, we examine how the choice of the candidate-selection policy selCand affects

39

(e) (f)

Figure 3.7: Comparison of the subjective mesh quality obtained for the ct image at sam-
pling density of 0.25% with the (a) GAE (31.45 dB), and (b) GSE (33.66 dB).

mesh quality. To do this, we fix the face-selection policy selFace as GSE, the main edge-
flip criterion isPreferredmain as JNDSE, and the final connectivity adjustment as enabled
with the final edge-flip criterion isPreferredfinal as SE. The candidate-selection policy is
then chosen from amongst the five under consideration, namely, PAE, PWAE, AMSE-PAE,
AMSE-PWAE and hybrid. For all 42 images in our test set and several sampling densities,
we generated a mesh using each of the various candidate-selection policies and measured
the resulting approximation error in terms of PSNR. A representative subset of the results
(namely, for the six images in Table 3.1) is given in Table 3.3, with the best and worst
values in each test case indicated by boldface and gray, respectively.

Examining Table 3.3, we can see that the AMSE-PAE and hybrid polices outperform
the PAE, PWAE, and AMSE-PWAE policies in the vast majority of cases. In particular,
the AMSE-PAE and hybrid policies beat the other three policies in 19/24 and 22/24 of the
test cases, respectively. Among the three policies PAE, PWAE, and AMSE-PWAE, the
PWAE policy is clearly the worst (lowest PSNRs in 23/24 of the test cases comparing to
the other four policies), and the AMSE-PWAE policy works better than the PAE policy in
16/24 of cases. When comparing the best two policies AMSE-PAE and hybrid, we can also
see that the hybrid policy outperforms the AMSE-PAE policy in 15/24 of the test cases.
Furthermore, the hybrid policy typically wins by a much larger margin than it loses. That
is, of the 9 cases where the AMSE-PAE policy beats the hybrid policy, only 2 are by more

40

Table 3.3: Comparison of the mesh quality obtained with the various candidate-selection
policies

Samp.
Density PSNR (dB)

Image (%) PAE PWAE AMSE-PAE AMSE-PWAE Hybrid
bull 0.125 35.38 33.42 36.41 35.63 36.48

0.250 39.40 38.05 40.25 39.61 40.45
0.500 41.42 40.79 42.63 42.17 42.68
1.000 43.11 42.76 44.32 44.04 44.29

ct 0.250 33.66 32.39 33.87 33.16 33.85
0.500 38.69 37.54 38.38 38.20 38.70
1.000 43.09 42.02 42.70 42.54 43.16
2.000 47.70 46.82 47.50 47.31 47.82

glasses 0.250 22.75 22.05 23.68 23.25 23.56
0.500 26.05 25.61 26.76 26.58 26.87
1.000 29.99 29.35 30.08 29.89 30.27
2.000 34.51 33.47 34.07 33.77 34.40

lena 0.500 26.51 26.35 27.45 27.57 27.37
1.000 29.41 29.32 30.22 30.06 30.16
2.000 32.03 31.82 32.66 32.54 32.80
3.000 33.55 33.27 34.09 33.96 34.21

mri 0.500 31.23 30.81 31.89 31.20 32.07
1.000 34.29 34.30 34.78 34.66 35.17
2.000 37.56 37.09 37.69 37.55 37.88
3.000 39.21 38.87 39.36 39.35 39.59

peppers 0.250 23.55 23.07 24.71 24.00 24.56
0.500 26.83 26.58 27.81 27.45 27.73
1.000 29.58 29.38 30.56 30.36 30.52
2.000 31.70 31.59 32.64 32.53 32.63

than a margin of 0.1 dB, whereas of the cases where the hybrid policy beats the AMSE-PAE
policy, 13 involve a margin of more than 0.1 dB. From the above observations, it is clear
that the hybrid policy is best.

With the PSNR evaluated above, we now show the subjective quality of the recon-
structed images to see how well the subjective quality correlates with the PSNR. The re-
constructed images of bull at sampling density of 0.125% from Table 3.3 are chosen to
demonstrate the performance of the five candidate-selection methods. Since the differences
between some reconstructed images obtained by these policies are not always easy for the
human eye to distinguish, we zoomed in a region in each reconstructed bull image and in-
cluded them in Figure 3.8. From the part of the reconstructed images in Figure 3.8, we can

41

see that the hybrid, AMSE-PAE and AMSE-PWAE policies produce meshes with better
quality than those produced by PAE and PWAE. Among the top three best policies, hybrid
results in the least distortion. These observations correlate well with the PSNR results in
Table 3.3.

Although we have only shown results above for one particular choice of the fixed pa-
rameters (i.e., the parameters other than the candidate-selection policy), we have generally
found similar results with other choices. In passing, we note that, since the hybrid policy
requires significantly less computation than the AMSE-PAE policy, selecting the former
over the latter also happens to be beneficial in terms of computational complexity. For the
reasons above, we deem the hybrid policy to be most effective and recommend its use in
our framework.

3.4.2 Choice of Main Edge-Flip Criterion

Next, we consider how mesh quality is affected by the choice of the main edge-flip criterion
isPreferredmain used in initial and main connectivity adjustment. To do this, we fix the face-
selection policy selFace as GSE, the candidate-selection policy selCand as PAE, and the
final connectivity adjustment as enabled with the final edge-flip criterion isPreferredfinal as
SE. Then we select isPreferredmain from amongst the various criteria under consideration,
namely, Delaunay, ABN, JND, DLP, DP, ELABN, ELJND, YMS, SE, GHH, SQSE, and
JNDSE. For all 42 images in our test set and several sampling densities, we generated
a mesh using each of the various main edge-flip criteria under consideration, and then
measured the resulting approximation error in terms of PSNR. A representative subset of
the results obtained (namely, for the six images in Table 3.1) is given in Table 3.4, where the
best and worst values in each test case are again shown in boldface and gray, respectively.
Note “D” in Table 3.4 represents the Delaunay edge-flip criterion.

Let us now examine Table 3.4. Rather than attempting to individually rank each of
the criteria from best to worst (which may not be possible to do in general), we instead
observe that there are some clear winners and losers here. In particular, the best performers
are the JNDSE, SQSE, and GHH criteria. Of these three, the JNDSE criterion (which is
newly proposed herein) is the overall winner, yielding the best result in 20/24 of the test
cases and never losing by a margin of more than 0.04 dB in the remaining cases. At the
other extreme, the worst performers in decreasing order of badness are the DP, SE, and
ABN criteria, which produce the three poorest results in every case. The DP criterion is
the worst performer overall, yielding the poorest result in 22/24 of the test cases. The

42

(a) (b)

(c) (d)

(e)

Figure 3.8: Part of the image approximation obtained for the bull image at sampling den-
sity of 0.125% with the various candidate-selection policies (a) PAE (35.38 dB), (b) PWAE
(33.42 dB), (c) AMSE-PAE (36.41 dB), (d) AMSE-PWAE (35.63 dB), and (e) hybrid
(36.48 dB).

SE criterion is worst or second worst in 16/24 of the test cases. The ABN criterion is
third worst or second worst in every case. The poor performance of the SE criterion is

43

Table 3.4: Comparison of the mesh quality obtained with the various main edge-flip criteria
Samp.

Density PSNR (dB)
Image (%) D ABN JND DLP DP ELABN ELJND YMS SE GHH SQSE JNDSE
bull 0.125 33.15 29.49 34.91 33.97 25.37 32.88 34.52 31.26 25.83 34.03 35.24 35.38

0.250 37.72 33.80 38.93 38.80 29.20 37.75 38.69 36.40 30.59 39.01 39.31 39.40
0.500 40.96 38.27 41.09 41.08 33.45 40.79 41.14 40.18 35.81 41.28 41.38 41.42
1.000 42.76 41.18 42.74 42.60 37.74 42.63 42.85 42.25 40.13 42.96 43.11 43.11

ct 0.250 31.22 25.65 31.82 30.56 24.74 29.58 32.51 29.37 26.02 32.77 33.16 33.66
0.500 36.85 28.94 38.02 36.21 27.03 34.25 37.71 34.85 29.61 38.21 38.44 38.69
1.000 41.52 32.47 42.55 41.43 29.66 39.99 42.37 40.23 33.91 42.54 43.07 43.09
2.000 45.91 37.07 47.19 46.47 33.24 45.12 47.08 45.24 39.12 47.10 47.70 47.70

glasses 0.250 22.26 19.23 22.06 21.06 17.78 20.80 22.27 20.46 17.51 22.40 22.58 22.75
0.500 25.29 21.06 25.24 24.29 19.21 23.76 25.33 23.17 19.19 25.51 26.06 26.05
1.000 28.85 23.49 29.15 28.02 21.06 27.14 29.11 26.57 21.38 29.40 29.93 29.99
2.000 32.87 26.55 33.65 32.64 23.24 31.28 33.42 30.95 24.26 33.73 34.36 34.51

lena 0.500 25.75 22.27 25.74 25.34 20.83 24.57 25.85 24.64 21.93 25.84 26.39 26.51
1.000 28.55 24.54 28.82 28.22 22.75 27.17 28.58 27.19 24.20 28.93 29.41 29.41
2.000 31.36 27.01 31.54 31.00 24.93 30.13 31.45 30.19 27.03 31.69 32.07 32.03
3.000 32.85 28.76 32.99 32.51 26.35 31.90 33.03 31.88 28.77 33.21 33.48 33.55

mri 0.500 30.40 25.81 30.03 29.69 25.43 28.65 30.64 28.71 25.51 30.96 31.19 31.23
1.000 33.92 28.66 33.64 32.97 27.64 32.14 33.67 32.09 28.34 34.17 34.28 34.29
2.000 36.76 31.28 36.69 36.00 30.33 35.36 36.95 35.23 31.71 37.15 37.44 37.56
3.000 38.58 33.17 38.61 37.73 32.15 37.18 38.72 37.24 33.80 38.81 39.15 39.21

peppers 0.250 23.02 19.50 22.72 22.21 17.83 21.50 22.76 21.01 19.20 23.03 23.41 23.55
0.500 26.13 22.28 25.88 25.23 19.73 24.61 26.08 24.09 21.66 26.28 26.72 26.83
1.000 28.86 25.09 28.82 28.33 21.85 27.85 29.01 27.38 24.60 29.18 29.51 29.58
2.000 31.18 27.99 31.12 30.81 24.37 30.50 31.28 30.21 27.73 31.49 31.70 31.70

extremely important to note. It is because the SE edge-flip criterion performs so badly that
the intuitively “obvious” solution of simply always using the SE edge-flip criterion in our
framework is not a good one.

Since the subjective quality of meshes is as important as the PSNR, we next show some
subjective quality comparisons using one of the test cases in Table 3.4. The reconstructed
images obtained using lena image at sampling density of 1% from Table 3.4 are shown
in in Figure 3.9, 3.10 and 3.11. From these figures, we can see that the quality of recon-
structed images varies largely among the twelve main edge-flip criteria. The performance
differences can be easily seen through many regions in the reconstructed lena image, such
as her face, hat, shoulder, and objects with clear edges at the back of the image. By exam-
ining them carefully, we observe that the subjective quality correlates well with the PSNRs
of reconstructed images, i.e., JNDSE, SQSE, GHH criteria perform the best among all of
them, while SE, ABN, and DP criteria are the worst ones.

Although we have only shown results above for one particular choice of the fixed pa-
rameters (i.e., the parameters other than the main edge-flip criterion), we have generally
found similar results with other choices. Since the JNDSE criterion is the clear winner, we
recommend its use as the main edge-flip criterion isPreferredmain in our framework.

A more careful examination of the results shows that the DP, SE, and ABN criteria
perform very poorly due to their propensity to lead to triangulations with a very large

44

(a) (b)

(c) (d)

Figure 3.9: Comparison of the mesh quality obtained for the lena image at sampling
density of 1% with various main edge-flip criteria (a) Delaunay (28.55 dB), (b) ABN
(24.54 dB), (c) JND (28.82 dB), (d) DLP (28.22 dB),

number of poorly chosen sliver triangles. For example, for one of the test cases from
Table 3.4, Figure 3.12 shows the triangulations that were obtained in the cases of the ABN,
DP, and SE criteria, which perform poorly, as well as the DLP and JNDSE criteria, which
perform relatively better. Notice how the results for the ABN, DP, and SE criteria are
dominated by many poorly chosen sliver triangles, whereas the DLP and JNDSE results

45

(a) (b)

(c) (d)

Figure 3.10: Comparison of the mesh quality obtained for the lena image at sampling
density of 1% with various main edge-flip criteria (Cont’d) (a) DP (22.75 dB), (b) ELABN
(27.17 dB), (c) ELJND (28.58 dB), and (d) YMS (27.19 dB).

are not. The good performance of the JNDSE, SQSE, and GHH edge-flip criteria can be
explained by the fact that these three criteria take into account not only squared error but
triangle shape as well (via shape quality in the GHH and SQSE cases and JND in the
JNDSE case). This allows these criteria to avoid triangulations with many poorly chosen
sliver triangles.

46

(a) (b)

(c) (d)

Figure 3.11: Comparison of the mesh quality obtained for the lena image at sampling
density of 1% with various main edge-flip criteria (Cont’d) (c) SE (24.20 dB), (d) GHH
(28.93 dB), (e) SQSE (29.41 dB), and (f) JNDSE (29.41 dB).

Although the interplay between edge-flip criteria and sliver triangles is often extremely
complex, we are able to offer some explanation as to why the DP and SE edge-flip criteria
(i.e., the two worst performers) tend to produce many sliver triangles. First, let us consider
the SE criterion. Since a sliver triangle has a very small area and therefore contains few
or no points from the image domain Λ, the squared error calculated over a sliver triangle

47

(a) (b)

(c) (d)

(e)

Figure 3.12: The triangulations obtained for the lena image at a sampling density of 1%
with the main edge-flip criterion chosen as (a) ABN (28.55 dB), (b) DP (22.75 dB), (c) SE
(24.20 dB), (d) DLP (28.22 dB), and (e) JNDSE (29.41 dB), respectively.

will always be very small and often zero. So, when viewed strictly from the standpoint
of squared error, sliver triangles seem quite good, as they have very low squared error.

48

Unfortunately, because of this fact, many undesirable situations can arise when the SE
criterion is employed. For example, consider an edge e whose two incident faces f1 and f2

are each sliver triangles that contain no points from Λ. The SE criterion will never flip such
an edge (i.e., isPreferred(e) will always be one). Such behavior can, in turn, increase the
likelihood that the two sliver triangles f1 and f2 remain in the triangulation. This problem
is further exacerbated by the fact that, since f1 and f2 do not contain any points from Λ, no
new point can be inserted into f1 or f2.

Next, let us contemplate why the DP criterion can lead to many sliver triangles. Con-
sider an edge e with two incident faces f1 and f2 whose union forms the (strictly convex)
quadrilateral q, and let e′ denote the edge obtained by flipping e. Suppose that e and e′

differ greatly in length, say, by a factor of more than 64, so that q is long and thin and f1

and f2 are sliver triangles. Let eshort and elong denote the shorter and longer of the edges
e and e′, respectively. Due to the manner in which the DP edge-cost function edgeCostDP

is defined in (3.3d), it is statistically very likely that edgeCostDP(elong) is quite small and
edgeCostDP(elong) < edgeCostDP(eshort). Thus, the DP edge-cost function tends to strongly
favor longer edges that are associated with sliver triangles. Because the DP edge-flip cri-
terion is based on this edge-cost function, all others things being equal, the DP edge-flip
criterion will tend to prefer longer edges when they are associated with sliver triangles, and
this in turn tends to lead to triangulations with many sliver triangles.

3.4.3 Choice of Final Edge-Flip Criterion

Next, we examine how the choice of the final edge-flip criterion isPreferredfinal affects mesh
quality. To do this, we fix the face-selection policy selFace as GSE, the candidate-selection
policy selCand as PAE, and the main edge-flip criterion isPreferredmain as Delaunay. Then,
we select from amongst the cases of no final connectivity adjustment as well as final con-
nectivity adjustment with the final edge-flip criterion isPreferredfinal chosen as each of De-
launay, ABN, JND, DLP, DP, ELABN, ELJND, YMS, SE, GHH, SQSE, and JNDSE.

For all 42 images in our test set and several sampling densities, we generated a mesh
using each of the schemes under consideration, and then measured the resulting approx-
imation error in terms of PSNR. A representative subset of the results obtained is given
in Table 3.5, with the best result in each test case shown in boldface. The case of no fi-
nal connectivity adjustment is labelled as “None” in the table. Note that, we exclude the
case of choosing isPreferredfinal as Delaunay since this is equivalent to no final connectivity
adjustment when isPreferredmain is Delaunay.

49

Table 3.5: Comparison of the mesh quality obtained with the various final edge-flip criteria
Samp.

Density PSNR (dB)
Image (%) None ABN JND DLP DP ELABN ELJND YMS SE GHH SQSE JNDSE
bull 0.125 30.86 29.70 27.79 29.77 29.89 30.35 30.81 27.89 33.15 31.29 32.10 32.07

0.250 35.16 33.62 34.36 34.98 33.73 34.73 35.33 32.64 37.72 35.84 36.51 36.54
0.500 38.91 37.72 37.96 38.52 37.60 38.24 38.76 37.04 40.96 39.50 39.89 39.98
1.000 41.13 39.59 40.11 40.60 39.99 39.89 40.77 39.23 42.76 41.85 41.97 42.09

ct 0.250 29.73 27.27 28.05 27.98 25.82 28.08 29.65 26.61 31.22 29.80 30.66 30.69
0.500 35.20 32.48 33.60 33.79 30.20 33.33 35.01 32.96 36.85 33.55 36.20 36.32
1.000 39.62 37.15 37.33 38.51 35.07 37.60 39.72 37.14 41.52 38.64 40.72 40.83
2.000 43.74 41.45 41.07 42.05 40.68 42.24 43.88 39.77 45.91 40.69 45.01 45.09

glasses 0.250 20.74 18.86 19.39 19.65 18.70 19.35 20.22 18.24 22.26 21.62 21.70 21.82
0.500 23.77 21.71 22.36 22.49 21.17 22.29 23.33 20.84 25.29 24.59 24.69 24.81
1.000 27.07 25.22 26.04 26.10 24.55 25.70 26.78 24.83 28.85 27.70 28.12 28.25
2.000 30.92 28.95 30.21 30.05 28.25 29.53 30.72 29.05 32.87 31.45 32.07 32.22

lena 0.500 24.21 22.66 23.55 23.45 22.17 22.81 23.96 22.56 25.75 25.15 25.07 25.17
1.000 26.88 24.86 26.12 26.09 24.85 25.37 26.55 24.99 28.55 27.90 27.89 27.96
2.000 29.82 27.94 29.15 29.08 27.85 28.39 29.54 28.28 31.36 30.77 30.71 30.81
3.000 31.37 29.45 30.71 30.57 29.23 30.05 31.06 29.83 32.85 32.24 32.24 32.34

mri 0.500 28.84 26.64 27.85 26.67 27.08 27.57 28.40 25.99 30.40 29.71 29.77 29.82
1.000 32.32 30.44 31.13 31.24 30.25 30.81 32.19 30.14 33.92 33.19 33.21 33.38
2.000 35.37 33.25 33.99 34.13 32.55 33.52 34.90 32.99 36.76 36.22 36.24 36.29
3.000 37.16 34.40 36.42 36.17 34.12 34.99 36.86 35.35 38.58 38.09 38.10 38.19

peppers 0.250 21.38 19.51 20.49 20.35 18.65 20.11 20.94 19.18 23.02 22.38 22.35 22.45
0.500 24.71 22.74 23.68 23.48 22.31 23.18 24.31 22.25 26.13 25.61 25.58 25.63
1.000 27.36 25.46 26.34 26.25 25.06 25.96 27.04 25.42 28.86 28.14 28.25 28.30
2.000 29.96 28.10 28.91 28.95 28.03 28.68 29.60 28.13 31.18 30.72 30.69 30.78

Examining Table 3.5, we can see that the SE criterion performs best in every test case,
followed by the JNDSE and SQSE criteria (in that approximate order). Moreover, the use
of final connectivity adjustment with the SE criterion beats the case of no final connectivity
adjustment (i.e., the “None” column) by a margin of 1.48 to 2.56 dB. So, clearly the use of
final connectivity adjustment with the SE criterion is extremely beneficial.

After examining the PSNRs, now we want to check whether the subjective quality cor-
responds well with the PSNRs. The reconstructed peppers images with sampling density
of 1% is chosen from Table 3.5 for comparison. Since the differences between some recon-
structed images obtained by these edge-flip criteria are not always easy for the human eye to
distinguish, zoomed-in parts of the reconstructed peppers images are shown in Figure 3.13
and Figure 3.14. Examining the reconstructed image more closely, we note that the per-
formance differences between those final edge-flip criteria can be seen around the contour
of the objects in the images. Take “None” and SE criteria for example, the contour of the
long pepper in Figure 3.13(a) is quite unclear, while in Figure 3.14(c), the contour around
the same pepper are more smooth and clear. Thus the general trend we observed from the
PSNRs of reconstructed images correlates well with the subjective quality of reconstructed
images.

Although we have only presented results for one set of choices for the fixed parameters
(i.e., the parameters other than the final edge-flip criterion), the preceding trends were found

50

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Comparison of the mesh quality obtained for the peppers image at sam-
pling density of 1% with the various final edge-flip criteria (a) None (27.36 dB), (b) ABN
(25.46 dB), (c) JND (26.34 dB), (d) DLP (26.25 dB), (e) DP (25.06 dB), and (f) ELABN
(25.96 dB).

to be followed for other choices, provided that the main edge-flip criterion was chosen to
produce a reasonably good triangulation as input to final connectivity adjustment. In cases

51

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Comparison of the mesh quality obtained for the peppers image at sampling
density of 1% with the various final edge-flip criteria (Cont’d) (a) ELJND (27.04 dB),
(b) YMS (25.42 dB), (c) SE (28.86 dB), (d) GHH (28.14 dB), (e) SQSE (28.25 dB), and
(f) JNDSE (28.30 dB).

where the main edge-flip criterion produces very poor triangulations (e.g., the DP, SE, and
ABN cases), it actually turns out that the JNDSE and SQSE criteria perform better than the

52

SE criterion.

The above behavior can be explained as follows. Nominally, we would expect the SE
criterion to perform best, as it directly minimizes the squared error in (2.2). In cases where
the triangulation that is input to the final connectivity adjustment process is reasonably
good, this is the exactly the behavior observed. If, however, the main edge-flip criterion is
chosen as one of the criteria (i.e., DP, SE, and ABN) that leads to very poor triangulations,
the behavior changes with the JNDSE and SQSE criteria becoming much more effective
than the SE criterion. This change in behavior is due to the fact that the SE criterion
does not take triangle shape into account. If the input triangulation (for final connectivity
adjustment) has many badly shaped triangles, the SE criterion cannot improve much upon
the situation since it is effectively blind to triangle shape, which will ultimately lead to a
poor quality mesh. In contrast, the JNDSE and SQSE criteria both consider triangle shape
(in addition to squared error). For this reason, they are able to partially mitigate the effects
of a poorly chosen triangulation and produce a better result than is possible with the SE
criterion.

Since the main edge-flip criterion isPreferredmain was previously recommended to be
chosen as JNDSE, which generally produces good triangulations with very few poorly-
chosen sliver triangles, we conclude that we should use final connectivity adjustment with a
final edge-flip criterion that works well for good triangulations. As we saw above, the clear
choice in this case is the SE criterion. Therefore, in our framework, we recommend always
using final connectivity adjustment and selecting the final edge-flip criterion isPreferredfinal

as the SE criterion.

3.4.4 Extra Experiments

Thus far, many free parameters in our framework are presented, and different choices of
each parameter are discussed. During the development of our framework, we have actually
explored more parameters and more choices for each parameter than those listed above.
Since some of them do not produce very competitive results or some of them may add
too much computational complexity to the method, we decided to not include them in the
earlier description of our proposed framework. Instead, we will briefly discuss them below
for readers’ interest.

As introduced earlier in Section 3.4.1, the AMSE-PAE and AMSE-PWAE candidate-
selection policies select candidate point in two steps: first choose a set Ω of test points and
then choose the candidate point from Ω. We noted that the size of set Ω (i.e., eight) was

53

chosen based on experimentation. During the development of our framework and methods,
various sizes of set Ω have been tested, from 1 to 50. We noticed that when the size of set
Ω increases, the PSNR of the reconstructed images have a general trend of increasing, but
the increase is diminishing. For example, when we increase the size of set Ω from 8 to 9,
the PSNR of the reconstructed images increases, however, the increase in PSNR is not as
larger as that when the size of set Ω increase from 7 to 8. The computation complexity,
however, increases linearly with the size of set Ω. We also noticed that when the size of
the test point set increases from 20 to 50, the PSNR of the reconstructed images start to
oscillate in a small range (less than 0.01 dB). Trying to balance between the mesh quality
and computation complexity, we settle down with a compromise number of eight.

Another area that we explored during the development of our framework and mesh-
generation methods was candidate-selection methods. For example, one other method we
have tried is to use a 3 by 3 window in the PAE and PWAE candidate-selection methods.
Instead of just calculating the difference between the image and its approximation in one
particular point p, we average the differences of nine points in a 3 by 3 window region,
with p as the center point of the window. Figure 3.15 gives a simple example to illustrate
this strategy. With PAE and PWAE policies, we only compute the difference between the
image and its approximation in point p, while for the window strategy, we compute the
differences for all the nine points in the window, average them and then assign that to point
p. Based on the experimental results, we noticed that this strategy helps to improve the
performance of PWAE candidate selection method, however, it actually weakens the PAE
candidate selection method. Since the best candidate selection methods are based on PAE,
and employing this window scheme requires extra computation, we decided to not include
this strategy in the earlier description of the candidate-selection methods.

Recall that the proposed candidate selection method is a hybrid scheme that employs
the PAE method before the number of sample points reaches 25% of the target number, then
employs the AMSE-PAE method for the rest of the sample points selection. Actually we
have experimented with different percentages for the hybrid scheme. For instance, we tried
a method that employs the PAE policy until the number of sample points reaches 50% of
the desired number, with the AMSE-PAE being used afterward. Experimental results show
that the hybrid scheme (i.e., candidate selection method with 25% as switching percent-
age) outperforms the method with 50% as the switching percentage in a majority of cases.
Besides, the hybrid scheme (with the lower 25% threshold) requires less computational
cost.

When we employ the LOP algorithm in Step 2 and Step 6 of our proposed framework,

54

p

v2 v3

v1

Figure 3.15: An example of candidate-selection method using window.

we need to remove one edge at a time from the suspect edge set for optimality test. If edges
are not optimal, we need to flip them. The order in which edges are flipped affects the final
mesh and therefore the quality of the reconstructed image [28]. The order we used in our
framework is last-in first-out (LIFO) order. That is, remove the suspect edges in the order
opposite from which they were inserted into the suspect edge set. A few other orders were
also examined during the development of our framework, such as first-in first-out (FIFO),
longest-edge first, random, and so on. Experimental results show that amongst all of the
orders we considered, there are no obvious winners. Thus, we decided to employ the LIFO
order in our work, since it is easy to implement efficiently.

One heavily explored area in our framework was edge-flip criteria. Although we have
already listed twelve edge-flip criteria above, there are still several criteria that were omitted
in our earlier discussions due to their non-impressive performance. One type of edge flip
criterion we tried combine certain shape-quality criteria with squared error, such as the
product of ABN and SE, the product of EL, SQ, and SE, and the product of EL, JND, and
SE. None of these hybrid schemes were found work very well. Thus they were not included
in the list of edge-flip criteria considered earlier.

In our framework, we have two classes of edge flip criteria, one associates with edge-
cost functions that assign a cost to every edge in the triangulation T and the other one
associates edge-cost functions that assign a cost to every flippable edge in the triangu-
lation. As we mentioned in Section 3.2, during the LOP, cycles can occur when the
second class of edge-flip (non-well-behaved) criteria are employed. For the first type

55

of edge-flip criteria, theoretically, cycle cannot occur except due to the roundoff error.
Take DLP for example, we will flip one edge only if it causes the triCost(T) to decrease.
where triCost(T) =

∑
e∈E(T) edgeCostDLP(T, e), and edgeCostDLP(T, e) is a 2-norm defined

in (3.3c). Thus, for the DLP case, the triCost(T) only decreases in each edge flip, and the
edge flip will eventually stops when triCost(T) = 0. On the other hand, for the second
class of edge-flip criteria, cycles could theoretically happen because we are only trying
to minimize the cost for only one edge at a time, not the cost of the whole triangulation.
Hence, it is quite possible that while one edge flip causes the edge cost to decrease while it
actually increases the cost of the whole triangulation. Thus, the edge-flip process using the
non-well-behaved edge-flip criterion, is not a strict optimization process and potential can
cause cycles.

An example of an cycle extracted from the bull image at sampling density of 0.125%
with face-selection policy selFace as GSE, the candidate-selection policy selCand as AMSE-
PAE, the main edge-flip criterion isPreferredmain as JNDSE. and the final connectivity ad-
justment as disabled, is given in Figure 3.16. In Figure 3.16, the dashed line denotes the
new edge will be shown in the triangulation after flipping an old non-optimal edge; dark
line denotes the next suspect edge that will be tested for optimality; other lines denote the
edges in the current triangulation. Assume during the mesh generation process, we have a
triangulation as shown in Figure 3.16(a) (excluding the dashed line) and edge vivk is just
tested as a non-optimal edge. So we flip edge vivk to the other diagonal v jvl of the convex
quadrilateral viv jvkvl, and add suspect edges (i.e., the four edges of quadrilateral viv jvkvl)
to the suspect edge set. After the edge flip, the triangulation becomes the one shown in
Figure 3.16(b) (excluding the dashed line). Next edge vivl is tested as non-optimal, then we
flip edge vivl to v jvm as shown in Figure 3.16(b). We continue the LOP process, and after
five edge flips we end up with a triangulation shown in Figure 3.16(f) , which is the same
triangulation as shown in Figure 3.16(a). During the above example, edges are flipped only
if it cause the cost of the edge under consideration to decrease. We, however, did not con-
sider the cost for the whole triangulation. Hence, it is possible that for the five edge flips in
the above example, certain edge flips cause the cost of the triangulation to increase, while
the rest cause the cost of the triangulation to decrease, then the conflicts lead to a cycle.
With careful examination in each step in the above cycle, we acknowledge that the order in
which suspect edges are flipped can potentially affect the cycles’ occurrence.

56

vi

vmv j

vk vl

(a)

vi

vmv j

vk vl

(b)

v j

vi

vm

vlvk

(c)

vi

v j

vk vl

vm

(d)
vi

v j vm

vlvk

(e)

vi

vmv j

vk vl

(f)

Figure 3.16: An example of cycle in mesh generation. In each triangulation, dashed line
denotes the new edge from flipping an old non-optimal edge; dark line denotes the next
suspect edge that will be tested for optimality; the regular lines are the edges in the current
triangulation.

57

3.4.5 Proposed Mesh-Generation Method

Above, we have studied how various choices of the free parameters of our proposed frame-
work affect mesh quality. This led us to recommend a particular choice for each of these
parameters. The mesh-generation method that we propose in this thesis simply corresponds
to our framework with the parameters selected as recommended earlier, namely, with the
face-selection policy selFace as GSE, the candidate-selection policy selCand as hybrid,
the main edge-flip criterion isPreferredmain as JNDSE, and final connectivity adjustment
enabled with the final edge-flip criterion isPreferredfinal as SE.

3.5 Evaluation of Proposed Mesh-Generation Method

Having introduced our proposed method, we now evaluate its performance by comparing
it to several other competing schemes in terms of mesh quality and computational/mem-
ory complexity. The first of the methods that we consider for comparison purposes is
the one proposed by Garland and Heckbert [17, Algorithm IV] with the quality threshold
parameter qthresh chosen as 0.5 and an L2 error measure, which we henceforth refer to
by the name “GH”. The GH method is essentially a special case of our framework with
no final connectivity adjustment and the face-selection policy, candidate-selection policy,
and main edge-flip criterion chosen as GAE, PAE, and GHH, respectively. The second
of the methods that we consider for comparison purposes is the one proposed by Rippa
in [21] with the least-squares edge cost (in the interpolating case), which we henceforth re-
fer to by the name “R”. (As an aside, we note that we elected to consider the least-squares
edge-cost function from [21], as it is the only edge-cost function therein that incorporates
squared error in some way.) The R method is a special case of our framework with no final
connectivity adjustment and the face-selection policy, candidate-selection policy, and main
edge-flip criterion chosen as GAE, PAE, and SE, respectively. The third of the methods that
we consider for comparison purposes is the adaptive-thinning (AT) scheme of Demaret and
Iske[16]. The AT method is one of the very best state-of-the-art Delaunay-based methods.
It produces extremely high-quality meshes, even better than many DDT-based schemes, but
has extremely high computational and memory requirements.

Mesh quality. For all 42 images in our test set and several sampling densities, we
used each of the methods under consideration to generate a mesh and then measured the
resulting approximation error in terms of PSNR. A representative subset of the results ob-
tained (namely, for the six images in Table 3.1) is shown in Table 3.6, with the best result

58

Table 3.6: Comparison of the mesh quality obtained with the various mesh-generation
methods

Samp.
Density PSNR (dB)

Image (%) Proposed GH R GH2 R2 AT
bull 0.125 36.48 26.55 19.26 33.12 25.83 33.12

0.250 40.45 31.99 23.08 38.28 30.59 38.23
0.500 42.68 37.64 26.46 40.72 35.81 41.87
1.000 44.29 40.56 32.40 42.48 40.13 43.99

ct 0.250 33.85 28.69 20.75 32.22 26.02 32.15
0.500 38.70 35.23 25.92 37.68 29.61 37.22
1.000 43.16 39.43 30.08 42.01 33.91 41.35
2.000 47.82 44.99 36.16 46.61 39.12 45.33

glasses 0.250 23.56 18.38 14.07 21.94 17.51 23.36
0.500 26.87 20.95 15.29 25.07 19.19 25.84
1.000 30.27 25.27 17.82 28.87 21.38 28.88
2.000 34.40 29.94 20.99 33.11 24.26 32.73

lena 0.500 27.37 22.39 16.66 25.37 21.93 26.66
1.000 30.16 25.27 19.34 28.51 24.20 29.12
2.000 32.80 29.80 22.41 31.26 27.03 31.82
3.000 34.21 31.84 24.11 32.77 28.77 33.37

mri 0.500 32.07 26.00 22.29 30.57 25.51 31.48
1.000 35.17 32.38 24.48 33.77 28.34 34.39
2.000 37.88 35.35 28.87 36.80 31.71 37.25
3.000 39.59 38.01 31.73 38.42 33.80 39.01

peppers 0.250 24.56 19.84 14.78 22.58 19.20 23.93
0.500 27.73 23.98 17.36 25.95 21.66 27.09
1.000 30.52 27.49 20.32 28.77 24.60 30.05
2.000 32.63 30.36 24.53 31.14 27.73 32.39

in each case (i.e., each row in the table) highlighted in boldface. In order to show that
the improvements offered by our proposed method are not solely due to its use of the GSE
face-selection scheme, we also consider our own improved versions of the GH and R meth-
ods, called GH2 and R2, respectively, where the face-selection policy of GAE is replaced
by GSE.

Examining Table 3.6, we can see that our proposed method is the clear winner, produc-
ing the best result in all 24 test cases. Inspecting the results more closely, we find that our
proposed method outperforms the GH, R, GH2, R2, and AT schemes by margins of 1.58
to 9.93 dB (with median 4.1050 dB), 7.86 to 17.37 dB (with median 10.765 dB), 1.02 to
3.36 dB (with median 1.5800 dB), 4.16 to 10.65 dB (with median 6.3650 dB), and 0.20 to

59

3.36 dB (with median 0.8250 dB), respectively. The fact that our proposed method beats
the GH2 and R2 schemes (i.e., our improved versions of the GH and R schemes, respec-
tively) by significant margins demonstrates that the excellent results from our method are
not simply due to our different point-selection strategy alone. The fact that our method can
outperform the AT scheme is extremely impressive, given that the AT scheme produces
very high quality meshes and (as we shall see shortly) requires over 10 times more com-
putation and orders of magnitude more memory. Again, examining Table 3.6, we observe
that the R and R2 methods are the clear losers, yielding the two worst results in every case.

In the above evaluation, PSNR was found to correlate reasonably well with subjective
quality. For the benefit of the reader, however, we provide three examples illustrating the
subjective quality achieved by the various methods. These three examples (lena, ct, and
bull) are chosen to contain a variety of image types including photographic, medical, and
computer-generated imagery. For each example (from Table 3.6), a small part of each
image reconstruction is shown under magnification in Figures 3.17, 3.18, and 3.19, along
with the corresponding triangulations. Examining the figures, we can see that our proposed
method produces approximations with better subjective quality as compared to the other
methods. So, our proposed method not only yields approximations with low squared error,
but good subjective quality as well. Observe that the R and R2 methods perform very
poorly, due to the large number of poorly chosen sliver triangles in their triangulations.

Computational complexity. Next, we compare the various mesh-generation methods
in terms of their computational complexity (i.e., execution time). To do this, we provide a
representative subset of some timing results collected on very modest hardware (namely, a
seven year old notebook computer with a 3.4 GHz Intel Pentium 4 and 1 GB of RAM). For
the lena image and several sampling densities, the time required for mesh generation for
each of the methods under consideration is shown in Table 3.7. In the case of the GH and
R methods, a second set of numbers is given in parentheses. These numbers correspond to
the time required if the method in question terminates mesh generation not when the target
sampling density is achieved, but rather when the PSNR mesh quality matches that of the
corresponding result from our proposed method.

Examining Table 3.7 (excluding the results in parentheses), we observe the following.
Our proposed method has very substantially lower complexity than the AT scheme, requir-
ing only about 5 to 10% of the time of the AT scheme. This is particularly impressive when
one considers that our method produces significantly higher quality meshes than the AT
scheme. Also, our proposed method requires about 6 to 12% and 36 to 52% more compu-
tation than the GH and R schemes, respectively. The increase in time relative to the GH

60

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.17: Part of the image approximation obtained for the bull image at a sampling
density of 0.125% with the (a) proposed (36.48 dB), (c) GH (26.55 dB), (e) R (19.26 dB),
(g) GH2 (33.12 dB), (i) R2 (25.83 dB), and (k) AT (33.12 dB), methods and (b), (d), (f),
(h), (j), and (l) their corresponding triangulations.

and R schemes is due primarily to the additional final connectivity adjustment step and the
use of a more computationally-expensive point-selection strategy (which often requires the
computation of selCandAMSE−PAE). When interpreting these computational-cost results, it is
important to keep in mind that the GH and R schemes produce meshes of very significantly

61

Table 3.7: Comparison of the computational complexity for the various methods
Samp.
Density Time (s)
(%) Proposed GH R AT
0.5 2.31 2.10 (2.85) 1.52 (4.22) 43.03
1.0 2.77 2.59 (3.33) 1.93 (5.45) 43.03
2.0 3.54 3.26 (4.10) 2.54 (7.25) 42.40
3.0 4.19 3.76 (4.67) 3.06 (8.53) 42.12

lower quality than the proposed method. If, in the case of the GH and R methods, we instead
let the mesh-generation process terminate when it achieves the same PSNR mesh quality
as the proposed method, the execution times in parenthesis in Table 3.7 apply. Viewing the
situation from this perspective, the GH and R methods are actually much slower, by factors
of 1.11 to 1.24 and 1.82 to 2.05, respectively. With the preceding observation in mind (as
well as others made above), we deem the computational complexity of our scheme to be
at least comparable to (and arguably better than) the GH and R methods. So overall, our
proposed method performs quite well in terms of computational complexity.

The curious reader might wonder why the execution times of the GH and R schemes are
not closer. As it turns out, the main reason for this difference is that the R scheme requires
many fewer edge flips than the GH scheme, typically about 2.4 to 2.9 times less. Recall
that the R scheme produces a relatively large number of poorly chosen sliver triangles. This
tends to significantly reduce the number of flippable edges, causing the LOP to converge
much more quickly with fewer edge flips. So, essentially, the only reason that the R scheme
is faster is because of the poor choice of triangulation that it yields.

Memory complexity. For all of the methods under consideration, memory usage is
dominated by the triangulation data structure and a few auxiliary data structures (such as
priority queues) whose size grows (approximately) proportionally to mesh size. Therefore,
memory usage is essentially determined by mesh size, and correspondingly, the peak mem-
ory usage is determined by the peak mesh size. For an image of width W, height H, and a
given sampling density D, the peak mesh size for each of the proposed, GH, and R meth-
ods is DWH, whereas the peak mesh size for the AT scheme is WH (since the AT scheme
begins with a mesh containing all WH sample points from the original image). So, the
peak memory usage for the proposed, GH, and R methods is essentially the same, while,
for values of D of practical interest, say D ∈ [0.125%, 3%], the AT method requires 33 to
800 times more memory than the proposed, GH, and R methods. So, in terms of mem-
ory usage, our proposed method compares very favorably, being tied for best (i.e., lowest

62

peak memory usage) with the GH and R schemes and requiring orders of magnitude less
memory than the AT scheme.

Summary. To summarize, through experimental results, our proposed mesh-generation
method was shown to produce much higher quality meshes (both in terms of PNSR and
subjective quality) than those generated by the three competing schemes, namely, the GH,
R and AT schemes. Furthermore, our proposed method was found to require very sub-
stantially less computation and memory than the AT scheme. Relative to the GH and R
schemes, our proposed method was seen to have the same memory cost and comparable
computational cost.

63

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.18: Part of the image approximation obtained for the lena image at a sampling
density of 1% with the (a) proposed (30.16 dB), (c) GH (25.27 dB), (e) R (19.34 dB),
(g) GH2 (28.51 dB), (i) R2 (24.20 dB), and (k) AT (29.12 dB), methods and (b), (d), (f),
(h), (j), and (l) their corresponding triangulations.

64

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.19: Part of the image approximation obtained for the ct image at a sampling
density of 0.5% with the (a) proposed (38.70 dB), (c) GH (35.23 dB), (e) R (25.92 dB),
(g) GH2 (37.68 dB), (i) R2 (29.61 dB), and (k) AT (37.22 dB), methods and (b), (d), (f),
(h), (j), and (l) their corresponding triangulations.

65

Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we have studied DDT-based mesh-generation schemes for image represen-
tation. In particular, we have proposed a new DDT-based mesh-generation framework for
image representation, derived by making a number of key modifications to the Rippa and
Garland-Heckbert frameworks, including

1. the addition of a final connectivity-adjustment step,

2. the development of more effective edge-flip criteria for the LOP, and

3. the introduction of a better point-selection strategy.

As the proposed framework consists of several free parameters, the effects of different
choices of each parameter on mesh quality (both in terms of PSNR and subjectively) are
studied, leading to the recommendation of a particular set of choices for these parameters.
Then a highly-effective mesh-generation method, obtained by choosing the best choice for
each free parameter within our framework, was proposed.

Through experimental results, our proposed mesh-generation method was shown to
produce meshes of significantly higher quality than those generated by the three competing
schemes, namely, the GH, R, and AT schemes. In terms of computational cost, our pro-
posed method was found to be comparable (for the reasons given earlier) to the GH and
R schemes and to require over an order of magnitude less computation time than the AT
method. In terms of memory cost, our proposed method was shown to require essentially
same amount of memory as the GH and R schemes and orders of magnitude less memory

66

than the AT scheme. In short, our proposed method yields meshes of very high quality at
reasonably low computational and memory costs. Consequently, our method is of great
benefit to the many applications that employ mesh models of images. Moreover, by fur-
ther exploring the algorithmic possibilities afforded by our proposed framework, we are
optimistic that even more effective mesh-generation schemes can be synthesized.

4.2 Future Research

Although this thesis has made significant contributions on DDT-based mesh-generation
schemes, further work in this area would still be beneficial. Some future research areas are
discussed in what follows.

As mentioned earlier, when certain non-well-behaved edge-flip criteria are employed
in our framework, sometimes cycles can occur in the LOP. A naive approach has been
employed to avoid cycles in some mesh-generation methods. In particular, we set a limit
(five) for the number of times each edge can be tested for optimality in each invocation of
the LOP. Then if this limit is exceeded (i.e., a certain edge has been tested for optimality for
more than 5 times), our algorithm will drop the edge under consideration and never test it
again in the same LOP process. Perhaps, a more elegant way can be found to avoid cycles.

In the LOP used in our framework, the order of testing or flipping suspect edges is set
to be LIFO. Although several other schemes were explored during the development of our
framework, none of them performs constantly better than others. As Dyn, Levin and Rippa
stated in [28], mesh quality might potentially be improved with better edge-testing orders
for the LOP. The author of this thesis believes that this is worth of further experimentation.
That is, we can assign a certain priority to each suspect edge, and then test the edges for
optimality in decreasing order of priority. For example, the priority for an edge e could
chosen to be related to the edgeCostSE of e or the shape qualities of the two faces sharing
e.

Yu, Morse, and Sederberg proposed a mesh-generation method that employs a so called
“look-ahead” scheme in [27]. Both our proposed method and theirs are greedy schemes
that employ the LOP to optimize the connectivity of a triangulation. One major difference
between our method and theirs is that our method only considers impact on current itera-
tion, while their method considers the impact on the current and the next iteration. Thus
their method has the potential to achieve meshes with higher quality since the look-ahead
scheme can reduce the possibility of being trapped in a local minimum. As we can foresee,
the look-ahead scheme will be computational expensive, but if we can implement it in a

67

more intelligent fashion, it would still be potentially valuable.

68

69

Appendix A

Software User Manual

A.1 Introduction

During the course of the research presented in this thesis, software that implements the
proposed mesh-generation framework and methods based on DDTs was developed by the
author with guidance from her supervisor. This software was written in C++, and con-
sists of more than 8500 lines of code (approximately 130 pages if printed). It involves
some fairly complicated algorithms and data structures, and it also utilizes two libraries,
namely the Computational Geometry Algorithm Library (CGAL) and Signal Processing
Library (SPL).

A large number of mesh generation methods can be derived from our framework, since
the framework contains several free parameters, and each one has many choices to con-
sider. The software takes an image, a target number of sample points, and a specific mesh-
generation method, which is represented by a set of sub-parameters, as basic inputs, and
produces a triangle mesh for the input image, an image approximation reconstructed from
the mesh, and mesh quality information (e.g., PSNR).

In the remainder of this appendix, we will introduce the software in more detail includ-
ing such information as

1. how to build the software;

2. the functionality of the software;

3. the organization of the source code; and

4. how to use the software.

70

A.2 Building the Software

In order to use our software, the first thing one needs to do is to build the software. The term
software build refers to the process of converting source code files into standalone software
artifacts that can be run on a computer. One of the most important steps of a software
build is the compilation process where source code files are converted into executable code,
which is also the step we will talk about herein.

This software was developed under Linux using C++. The building method herein is
based on the well known build tool make provided by most UNIX (or UNIX-like) systems.
The make command can automatically build executable programs and libraries from the
source code by reading files called makefiles which specify how to derive the target pro-
gram. As mentioned earlier, this software requires some particular libraries, namely, CGAL
and SPL. Thus in order to build the software, CGAL and SPL must first be installed. The
CGAL version we have been using for this software is 3.5.1, and the SPL version we have
been using is 1.0.27.

In order to compile all the source files and link the object files, you need to set the
directory to the top level directory for the software. Then, to delete all the object files and
executable files that generated during the previous building process, type:

make clean

To compile all the source files and link the object files, and type:

make

A.3 Software Functionality

Generally speaking, this software can accomplish three tasks:

1. generate a mesh for a given input image, a target number of sample points and a
specific mesh-generation method;

2. reconstruct an image approximation from the mesh; and

3. output some information regarding the quality of the mesh.

The information this software can produce in step 3 above includes:

• PSNR value, mean square error, and peak absolute error of the reconstructed image;

71

• time cost of the program;

• a polyline format data file that shows all the non-Delaunay edges in the mesh;

• a polyline format data file that shows all the flippable edges in the mesh;

• the number of non-Delaunay edges, the number of total edges in the mesh;

• an file, similar to OFF format, that shows all the vertices in 3D; and

• a text file that records every change to the mesh during the mesh-generation process.

A.4 Organization of Source Code

The source code consists of a number of files of various functionalities. In the list that
follows, each source file of the software is briefly described.

Array2.hpp Contains definition of a 2-D array class, Array2, which is used to
represent images in our software.

elements.hpp Contains modified vertex and face classes that derived from CGAL
library, with extra information inside them.

globalHeadFile.hpp Contains various macro definitions.

makemesh.cpp Contains the main MeshGenerator class and the main function.

makemesh.hpp Contains some types that specify all the available options for face-
selection method, candidate-selection method, and edge-flip cri-
terion.

mathUtil.hpp Contains some basic mathematical functions used in our software.

outputTri.cpp Contains functions that output information regarding the mesh
quality.

PriQue.hpp Contains a heap-based priority queue template class.

read_write_PGM.cpp Contains functions that read and write images as inputs and out-
puts. Our software only takes binary PGM format images as input,
and the maximum pixel value of the image is 65535(16 bits).

72

read_write_PGM.hpp Contains declarations of all the functions in read_write_PGM.cpp.

scanConvert.cpp Contains functions that scan-convert the mesh; it also contains
several functions that calculate the derivatives of input images and
shape quality of triangles.

scanConvert.hpp Contains declarations of all the functions in scanConvert.cpp.

Util.cpp Contains definitions of several functions that output extra infor-
mation for debugging

Util.hpp Contains declarations of all the functions in Util.cpp.

A.5 Application Programs

In order to demonstrate how to use our software, first, we will briefly introduce the makemesh
command. Then, we will introduce the software from three aspects: the inputs of the soft-
ware, the outputs of the software, and some examples of mesh-generation schemes together
with their corresponding commands.

A.5.1 The makemesh Command

Synopsis

makemesh -i inputImage -n sampleDensity -k faceSelMethod \

-c edgeFlipCri -p candPointSel [options]

makemesh -i inputImage -N targetNumber -k faceSelMethod \

-c edgeFlipCri -p candPointSel [options]

Description

The makemesh command runs the program to generate a mesh for a given image based on
a given sampling density or a target number of sample points, a face-selection method, a
main edge-flip criterion, and a candidate-point-selection method. Besides the mesh output,
the command can also produce a reconstructed image and other information regarding the
mesh quality. by adding output options to the command.

73

Table A.1: Options for Potential Cycle Problem
Number Description
0 continue the program without any warning(Default setting)
1 print out the iteration number and the two end points of the

edge that causes the cycle, then continue the program
2 print out the iteration number and the two end points of the

edge that causes the cycle, then exit the program

Options

The makemesh program accepts the following options:

-A loopAlert Sets the response mode when a potential loop is detected to loopAlert.
The program can get stuck in a cycle because we allow for the use
of some non-well-behaved edge-flip criteria. There are 3 options
available herein and they are listed in Table A.1.

-b binaryFile Outputs an image file, binaryFile, that shows the locations of all
the sample points in the output mesh.

-B dumpTri Outputs a dumpTri file that contains the triangulation generated
by the main mesh-generation process (i.e., without the post pro-
cessing).

-c edgeFlipCri Sets the edge-flip criterion, edgeFlipCri, in the main mesh-generation
process. This option has to be provided, and a number of criteria
are available for this option. They are listed in Table A.2.

Table A.2: Edge Flip Criteria

Number Criterion Description

0 Delaunay criterion (D) described in Section 3.3.2.

1 Squared error criterion (SE) described in Section 3.3.2.

2 Shape-quality-weighted SE (SQSE) criterion described in
Section 3.3.2.

3 Garland-Heckbert hybrid (GHH) criterion described in Sec-
tion 3.3.2. This criterion involves another command line op-
tion, -s, which is used to set the threshold for GHH criterion.

Continued on next page

74

Table A.2 – continued from previous page
Number Criterion Description
10 JND-weighted SE (JNDSE) criterion described in Sec-

tion 3.3.2.

12 ABN-weighted SE (ABNSE) criterion. It uses the product of
ABN and SE of an edge as the edge-cost function, and this
criterion is associated with edge-cost functions that assign a
cost to every flippable edge in the triangulation.

13 Edge-length-weighted JND (ELJND) criterion. It uses the
product of JND and the length of the edge as edge-cost func-
tion. This criterion is associated with edge-cost functions
that assign a cost to every flippable edge in the triangulation.

20 Angle between normal(ABN) criterion described in Sec-
tion 3.3.2.

21 Jump in normal derivatives(JND) criterion described in Sec-
tion 3.3.2.

22 Distances between planes(DP) criterion described in Sec-
tion 3.3.2.

23 Deviation from linear polynomial(DLP) criterion described
in Section 3.3.2.

24 Edge-length-weighted ABN (ELABN) criterion described in
Section 3.3.2.

25 Edge-length-weighted JND (ELJND) criterion described in
Section 3.3.2.

26 Edge length (EL). It uses the edge length of a edge e as the
edge-cost function that decides whether to flip the edge e or
not. If edge e has a strictly higher cost then it is flipped to
counterpart e′.

28 Yu-Morse-Sederberg cost function (YMS) criterion de-
scribed in Section 3.3.2.

-C postFlipOption Chooses the edge flip criteria (postFlipOption) used for the post
edge processing. The available choices are the same as for the -c

75

option, which are listed in Table A.2.

-d nonDelaunayFile Outputs a polyline format data file (nonDelaunayFile) that con-
tains all the non-Delaunay edges.

-f postFlag Use postFlag to indicates whether the mesh-generation method
has a final edge connectivity adjustment step. There are two choices
for this flag:

• 0–disable the final edge connectivity adjustment (default set-
ting);

• 1–enable the final edge connectivity adjustment;

-F flippableEdge Outputs a polyline format data file (flippableEdge) that contains
all the flippable edges in the output mesh.

-g propagatingFlag Use propagatingFlag to indicates whether the final edge connec-
tivity adjustment will be propagating or not. The two available
choices are:

• 0–disable the propagating property (default setting);

• 1–enable the propagating property.

-G globalOpt Use globalOpt to indicates whether to do a global edge connec-
tivity adjustment or a local edge one after each vertex got inserted
into the mesh. The two available choices are:

• 0–local edge connectivity adjustment (default setting for this
option);

• 1– global edge connectivity adjustment.

-H meshHistoryFile If enabled, our software will output a text file (meshHistoryFile)
that contains every changes of the mesh during the mesh-generation
process, regarding point insertion, edge flip-ability test, edge op-
timality test and edge flip.

-i inputImage Takes the input image for the program. The image format for our
program is portable graymap PGM with binary encoding.

76

Table A.3: Candidate Point Selection Choices
Number Choice Description
0 Peak absolute error (PAE) described in Section 3.3.1.
1 Peak weighted absolute error(PWAE) described in Sec-

tion 3.3.1.
2 Approximate minimum squared error based on

PWAE (AMSE-PWAE) described in Section 3.3.1.
3 Approximate minimum squared error based on PAE

(AMSE-PAE) described in Section 3.3.1.
5 Hybrid policy (hybrid) described in Section 3.3.1.

-k faceSelMethod Provides with two methods to select a face from the triangulation
to insert a candidate point. The two available choices are:

• 0–select face with maximum squared error (GAE);

• 1–select face with point of maximum absolute error (GSE).

-n sampleDensity Sets the sampling density for mesh-generation process. The range
can be any number between [0, 1]. Either this option or -N option
has to be provided.

-N pointsNumber Sets the target (integer) number of sample points to be inserted
into the mesh. Either this option or -n option has to be provided.

-o ouputImage Outputs the reconstructed image.

-O offFile Outputs a file (offFile), that contains all the vertices in the mesh
and their connectivity in 3D.

-p candPointSel Sets the candidate-point-selection method. Refer to Table A.3 for
more detail about each choice.

-r infoResults Outputs a text file (infoResults) contains information about the
quality of the output mesh.

-s threshold Sets the threshold for GHH criterion. This threshold is used to
switch the edge flip criterion between SE and shape quality. If -s
is set to 1, then it uses only shape quality as edge flip criterion;
while -s is set to 0, it only uses SE as edge flip criterion. 0.5 is

77

the default value and also the value that generates the meshes with
highest PSNR [17].

-t triFile Outputs a file (triFile) contains the triangulation generated by
the method.

-T iterTri Outputs two triangulations files (iterTri*a.tri and iterTri*b.tri)
in each vertex-insertion iteration, one before edge adjustment and
one after.

-W useWindow Use flag useWindow to indicates whether to use a 3 by 3 win-
dow during the candidate-point-selection process. There are two
choices for this flag:

• 0–disable the window functionality (default setting);

• 1–enable the window functionality;

A.5.2 Inputs of the Software

With all the command line options introduced above, we now divide them into two cate-
gories (input and output of the software) for the readers to better understand how to use
those options. Generally speaking, our software takes three main inputs:

1. an input image,

2. a sampling density (or a target number of sample points), and

3. a specific mesh-generation method.

We will describe each of them in the following.

Our software only takes portable graymap format images with binary encoding as input
images, that is, PGM images with magic number of P5. The command line option for
input image is -i, which has to be provided. Our software can handle up to 16 bits/sample
images. The P2 (ASCII encoding) format PGM images are not included, since this format
is less commonly used.

The second input for our software is the sampling density or the target number of sample
points. The command line option for sampling density is -n and we use a real number to
indicate the density. The command line option for the target number of sample points is

78

-N and it takes positive integer numbers. The commonly used range of sampling density is
between 0.125% and 0.3%. Our software needs one and only one of these two options.

The mesh-generation method is the last input parameter of our software. Each method
includes several sub-parameters as follows:

• the face-selection method, which corresponds to the -k option;

• the candidate-point-selection method, which corresponds to the -p option;

• the main edge-flip criterion, which corresponds to the -c option;

• whether to employ the final edge-connectivity adjustment or not, which corresponds
to the -f option;

• the edge-flip criterion for the final edge-connectivity adjustment if it is enabled,
which corresponds to the -C option;

• whether the final edge-flip adjustment should be edge propagating or non-propagating,
which corresponds to the -g option;

Some additional input options are -A, -G, -W, and -s.

A.5.3 Outputs of the Software

Now let us talk about the outputs of our software. All the outputs are optional, meaning we
can omit all of the output options. We, however, usually want to output three main items:

1. the mesh, which corresponds to the -t option;

2. the reconstructed image, which corresponds to the -o option; and

3. a text file that includes mesh quality information, which corresponds to the -r option.

The output triangulation data file with tri as extension consists of the following fields
(in order), with fields being separated by white space:

• The total number of vertices in the triangulation.

• The total number of faces in the triangulation.

• For each vertex, its x and y coordinates.

79

• For each face, the indices of the three vertices, where the first vertex has index 0, the
second vertex has index 1, and so on.

The output image format corresponds with that of the input image (P5). All the information
regarding the mesh quality that our program generates will be stored in a txt file. This file
contains the following information:

• PSNR, mean square error, and the peak absolute error of the reconstructed image;

• the number of vertices that have the different function value as the input image;

• time cost of the program;

• the number of non-Delaunay edges in the mesh;

• the total number of edges in the mesh;

• the number of edges that can be validly flipped in the mesh; and

• the memory usage.

One needs to note that the number of total edges and non-Delaunay edges are only calcu-
lated when -d option is enabled and the number of flippable edges is computed only when
-F option is enabled. If the corresponding option are not enabled, then these three numbers
will be initialized to -1.

Other available output options are -b, -B, -H, -O, and -T. The ployline format data
file has dat as file extension, and it is compatible with the iviewer program developed by
Dr. Michael Adams. The iviewer program is an application that takes pnm format images,
triangulation files (with tri extension) and polyline format files (with dat extension) as
inputs and displays them for visualization purposes.

The -O option will generate a file that has a similar format as an OFF file as follows.
This format can be used to view the triangulation mesh in 3D.

the number of vertex the number of faces the number of edges

the x, y, z coordinates (x y z) for each vertex form 0, 1, ..., to vertex count-1 (one
line for each vertex)

the indices of three vertices (i j k) of each face in the triangulation (one line for each
triangle face)

80

A.5.4 Examples of Mesh-Generation Schemes

Here in this section, some mesh-generation methods and their corresponding commands
will be provided as examples to show how to use our software.

Example A:

Suppose we want to generate a mesh for the lena image with the following requirements:

• target sampling density sets to 0.1%;

• use GSE face-selection method;

• use AMSE-PAE as candidate-selection method;

• use SQSE as main edge-flip criterion;

• employ propagating final edge connectivity adjustment with SE edge-flip criterion;

• output the reconstructed image and mesh quality information, such as the PSNR
values, the time cost for this program.

We can type the following command line to obtain the mesh that satisfies the above require-
ments.

makemesh -i lena.pnm -n 0.001 -k 1 -p 3 -c 2 -f 1 -g 1 -C 1 \

-t triMesh.tri -o reconsImage.pnm -r stat.txt

Example B:

Suppose we want to output more information about the changes made to the mesh during
the mesh-generation process. Take the peppers image as the input, and generate a mesh
with the following requirements:

• insert 2500 sample points;

• use GAE face-selection method;

• use PAE candidate-selection method;

• use ABN as main edge-flip criterion;

• no final edge connectivity adjustment;

81

• output a reconstructed image together with some mesh quality information, such as
the PSNR values, the time cost for this program.

• output a file that contains all the flippable edges in the output mesh.

In order to accomplish the above, we can type:

makemesh -i peppers.pnm -N 2500 -k 0 -p 0 -c 20 -f 0 -t \

triMesh.tri -o reconsImage.pnm -r stat.txt \

-F flippableEdgeFile.txt

Example C:

Suppose we want to use the proposed mesh-generation method to generate a mesh for the
bull image with sampling density sets to 0.5%. As we know, the proposed mesh-generation
method set the parameters of our framework as follows:

• use GSE face selection method;

• use hybrid as candidate-selection method;

• use JNDSE as main edge-flip criterion;

• enable the propagating final edge-connectivity adjustment with SE edge-flip crite-
rion;

Besides the mesh, we also want to output a reconstructed image, a file contains some mesh
quality information, such as the PSNR values and the time cost for this program. The
command to generate such a mesh using the proposed method is as follows:

makemesh -i bull.pnm -n 0.005 -k 1 -c 10 -p 5 -f 1 -g 1 -C 1 \

-o lena_0.01.pnm -t lena_0.01.tri -r lena_0.01_stat.txt

82

83

Bibliography

[1] S. A. Coleman, B. W. Scotney, and M. G. Herron, “Image feature detection on
content-based meshes,” in Proc. of IEEE International Conference on Image Pro-

cessing, vol. 1, 2002, pp. 844–847.

[2] M. Petrou, R. Piroddi, and A. Talebpour, “Texture recognition from sparsely and ir-
regularly sampled data,” Computer Vision and Image Understanding, vol. 102, pp.
95–104, 2006.

[3] M. Sarkis and K. Diepold, “A fast solution to the approximation of 3-D scattered point
data from stereo images using triangular meshes,” in Proc. of IEEE-RAS International

Conference on Humanoid Robots, Pittsburgh, PA, USA, Nov. 2007, pp. 235 – 241.

[4] J. G. Brankov, Y. Yang, and N. P. Galatsanos, “Image restoration using content-
adaptive mesh modeling,” in Proc. of IEEE International Conference on Image Pro-

cessing, vol. 2, 2003, pp. 997–1000.

[5] J. G. Brankov, Y. Yang, and M. N. Wernick, “Tomographic image reconstruction
based on a content-adaptive mesh model,” IEEE Trans. on Medical Imaging, vol. 23,
no. 2, pp. 202–212, Feb. 2004.

[6] M. A. Garcia and B. X. Vintimilla, “Acceleration of filtering and enhancement op-
erations through geometric processing of gray-level images,” in Proc. of IEEE Inter-

national Conference on Image Processing, vol. 1, Vancouver, BC, Canada, 2000, pp.
97–100.

[7] D. Su and P. Willis, “Image interpolation by pixel-level data-dependent triangulation,”
Computer Graphics Forum, vol. 23, no. 2, pp. 189–201, 2004.

[8] M. D. Adams, “Progressive lossy-to-lossless coding of arbitrarily-sampled image data
using the modified scattered data coding method,” in Proc. of IEEE International

84

Conference on Acoustics, Speech, and Signal Processing, Taipei, Taiwan, Apr. 2009,
pp. 1017–1020.

[9] G. Ramponi and S. Carrato, “An adaptive irregular sampling algorithm and its appli-
cation to image coding,” Image and Vision Computing, vol. 19, pp. 451–460, 2001.

[10] P. Lechat, H. Sanson, and L. Labelle, “Image approximation by minimization of a
geometric distance applied to a 3D finite elements based model,” in Proc. of IEEE

International Conference on Image Processing, vol. 2, 1997, pp. 724–727.

[11] Y. Wang, O. Lee, and A. Vetro, “Use of two-dimensional deformable mesh structures
for video coding, part II–the analysis problem and a region-based coder employing an
active mesh representation,” IEEE Trans. on Circuits and Systems for Video Technol-

ogy, vol. 6, no. 6, pp. 647–659, Dec. 1996.

[12] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud, “Fractal image compres-
sion based on Delaunay triangulation and vector quantization,” IEEE Trans. on Image

Processing, vol. 5, no. 2, pp. 338–346, Feb. 1996.

[13] K.-L. Hung and C.-C. Chang, “New irregular sampling coding method for transmit-
ting images progressively,” IEE Proceedings Vision, Image and Signal Processing,
vol. 150, no. 1, pp. 44–50, Feb. 2003.

[14] M. D. Adams, “An efficient progressive coding method for arbitrarily-sampled image
data,” IEEE Signal Processing Letters, vol. 15, pp. 629–632, 2008.

[15] ——, “An evaluation of several mesh-generation methods using a simple mesh-based
image coder,” in Proc. of IEEE International Conference on Image Processing, San
Diego, CA, USA, Oct. 2008, pp. 1041–1044.

[16] L. Demaret and A. Iske, “Advances in digital image compression by adaptive thin-
ning,” in Annals of the Marie-Curie Fellowship Association. Marie Curie Fellowship
Association, Feb. 2004, vol. 3, pp. 105–109.

[17] M. Garland and P. S. Heckbert, “Fast polygonal approximation of terrains and height
fields,” School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, Tech. Rep. CMU-CS-95-181, Sep. 1995.

85

[18] K. Wang, C.-P. Lo, G. A. Brook, and H. R. Arabnia, “Comparison of existing tri-
angulation methods for regularly and irregularly spaced height fields,” International

Journal of Geographical Information Science, vol. 15, no. 8, pp. 743–762, 2001.

[19] M. D. Adams, “An incremental/decremental delaunay mesh-generation framework
for image representation,” in Proc. of IEEE International Conference on Image Pro-

cessing, 2011, pp. 189–192.

[20] M. Garland and P. S. Heckbert, “Fast triangular approximation of terrains and height
fields,” draft manuscript, 1997, dated May 2, 1997 (19 pages).

[21] S. Rippa, “Adaptive approximation by piecewise linear polynomials on triangulations
of subsets of scattered data,” SIAM Journal on Scientific and Statistical Computing,
vol. 13, no. 5, pp. 1123–1141, 1992.

[22] N. Dyn, D. Levin, and S. Rippa, “Data dependent triangulations for piecewise linear
interpolation,” IMA Journal of Numerical Analysis, vol. 10, pp. 137–154, 1990.

[23] N. Dyn, “Data-dependent triangulations for scattered data interpolation and finite el-
ement approximation,” Applied Numerical Mathematics, vol. 12, pp. 89–105, 1993.

[24] E. Quak and L. L. Schumaker, “Least squares fitting by linear splines on data depen-
dent triangulations,” in Curves and Surfaces, P. J. Laurent, A. L. Mehaute, and L. L.
Schumaker, Eds. Boston, MA, USA: Academic Press, 1991, pp. 387–390.

[25] L. Alboul, G. Kloosterman, C. Traas, and R. van Damme, “Best data-dependent trian-
gulations,” Journal of Computational and Applied Mathematics, vol. 119, pp. 1–12,
2000.

[26] J. Weisz and R. Bodnar, “A refined “angle between normals” criterion for scattered
data interpolation,” Computers and Mathematics with Applications, vol. 41, pp. 531–
534, 2001.

[27] X. Yu, B. S. Morse, and T. W. Sederberg, “Image reconstruction using data-dependent
triangulation,” IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 62–68,
May 2001.

[28] N. Dyn, D. Levin, and S. Rippa, “Algorithms for the construction of data dependent
triangulations,” in Algorithms for Approximation II, J. C. Mason and M. G. Cox, Eds.
London: Chapman and Hall, 1990, pp. 185–192.

86

[29] C. L. Lawson, “Software for C1 surface interpolation,” in Mathematical Software III,
J. R. Rice, Ed. New York, NY, USA: Academic Press, 1977, pp. 161–194.

[30] J. L. Brown, “Vertex based data dependent triangulations,” Computer Aided Geomet-

ric Design, vol. 8, pp. 239–251, 1991.

[31] D. Su and P. Willis, “Demosaicing of colour images using pixel level data-dependent
triangulation,” in Proc. of the Theory and Practice of Computer Graphics, 2003, pp.
16–23.

[32] B. Lehner, G. Umlauf, and B. Hamann, “Image compression using data-dependent
triangulations,” Lecture Notes in Computer Science, vol. 4841, pp. 351–362, 2007.

[33] M. Bertram, J. C. Barnes, B. Hamann, K. I. Joy, H. Pottmann, and D. Wushour,
“Piecewise optimal triangulation for the approximation of scattered data in the plane,”
Computer Aided Geometric Design, vol. 17, pp. 767–787, 2000.

[34] P. K. Agarwal and S. Suri, “Surface approximation and geometric partitions,” in Proc.

of ACM-SIAM Symposium on Discrete Algorithms, Jan. 1994, pp. 24–33.

[35] Y. Yang, M. Wernick, and J. Brankov, “A fast approach for accurate content-adaptive
mesh generation,” Image Processing, IEEE Transactions on, vol. 12, no. 8, pp. 866 –
881, aug. 2003.

[36] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proceed-

ings of the Society for Information Display, vol. 17, no. 2, pp. 75–77, 1976.

[37] Y. Yang, J. Brankov, and M. Wernick, “Content-adaptive mesh modeling for fully-3d
tomographic image reconstruction,” in Image Processing. 2002. Proceedings. 2002

International Conference on, vol. 2, 2002, pp. II–621 – II–624 vol.2.

[38] M. A. Garcia and A. D. Sappa, “Efficient generation of discontinuity-preserving
adaptive triangulations from range images,” IEEE Trans. on Systems, Man, and

Cybernetics—Part B: Cybernetics, vol. 34, no. 5, pp. 2003–2014, Oct. 2004.

[39] N. Dyn, M. S. Floater, and A. Iske, “Adaptive thinning for bivariate scattered data,”
Journal of Computational and Applied Mathematics, vol. 145, pp. 505–517, 2002.

[40] H. Weimer and J. Warren, “Fast approximating triangulation of large scattered
datasets,” Advances in Engineering Software, vol. 30, pp. 389–400, 1999.

87

[41] B. Delaunay, “Sur la sphere vide,” Bulletin of the Academy of Sciences of the USSR,

Classe des Sciences Mathematiques et Naturelle, vol. 7, no. 6, pp. 793–800, 1934.

[42] C. Dyken and M. S. Floater, “Preferred directions for resolving the non-uniqueness
of Delaunay triangulations,” Computational Geometry—Theory and Applications,
vol. 34, pp. 96–101, 2006.

[43] M. D. Adams, “A flexible content-adaptive mesh-generation strategy for image rep-
resentation,” IEEE Transactions on Image Processing, vol. 20, no. 9, pp. 2414–2427,
2011.

[44] S. Rippa, “Long and thin triangles can be good for linear interpolation,” SIAM Journal

on Numerical Analysis, vol. 29, no. 1, pp. 257–270, 1992.

[45] Z. Toth, I. Viola, A. Ferko, and E. Groller, “n-dimensional data-dependent recon-
struction using topological changes,” in Topology-Based Methods in Visualization,
ser. Mathematics and Visualization, H. Hauser, H. Hagen, and H. Theisel, Eds. New
York: Springer, 2007, pp. 183–198.

[46] L. Rila and A. G. Constantinides, “Image coding using data-dependent triangulation,”
in Proc. of International Conference on Digital Signal Processing, vol. 2, 1997, pp.
531–534.

[47] L. L. Schumaker, “Computing optimal triangulations using simulated annealing,”
Computer Aided Geometric Design, vol. 10, pp. 329–345, 1993.

[48] O. Kreylos and B. Hamann, “On simulated annealing and the construction of linear
spline approximations for scattered data,” IEEE Trans. on Visualization and Computer

Graphics, vol. 7, no. 1, pp. 17–31, Jan. 2001.

[49] P. Li and M. D. Adams, “An effective mesh-generation strategy for image representa-
tion using data-dependent triangulation,” under review.

[50] ——, “An improved mesh-generation strategy for image representation base on data-
dependent triangulation,” under review.

[51] M. Aubury and W. Luk, “Binomial filters,” Journal of VLSI Signal Processing,
vol. 12, pp. 35–50, 1996.

88

[52] C. L. Lawson, “Transforming triangulations,” Discrete Mathematics, vol. 3, pp. 365–
372, 1972.

[53] E. Osherovich and A. M. Bruckstein, “All triangulations are reachable via sequences
of edge-flips: an elementary proof,” Computer Aided Geometric Design, vol. 25, pp.
157–161, 2008.

[54] X. Tu and M. D. Adams, “Image representation using triangle meshes with explicit
discontinuities,” Victoria, BC, Canada, Aug. 2011, pp. 97–101.

[55] K. Fleischer and D. Salesin, “Accurate polygon scan conversion using half-open in-
tervals,” in Graphics Gems III, 1995, pp. 362–365.

[56] “JPEG-2000 test images,” ISO/IEC JTC 1/SC 29/WG 1 N 545, Jul. 1997.

[57] “Kodak lossless true color image suite,” 2011. [Online]. Available: http:
//r0k.us/graphics/kodak

[58] “USC-SIPI image database,” 2011. [Online]. Available: http://sipi.usc.edu/database

[59] “Michael Adams’ research datasets,” 2011. [Online]. Available: http://www.ece.uvic.
ca/∼mdadams/datasets

http://r0k.us/graphics/kodak
http://r0k.us/graphics/kodak
http://sipi.usc.edu/database
http://www.ece.uvic.ca/~mdadams/datasets
http://www.ece.uvic.ca/~mdadams/datasets

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Dedication
	Introduction
	Mesh Representation of Images
	Historical Perspective
	Overview and Contribution of the Thesis

	Preliminaries
	Overview
	Notation and Terminology
	Image Processing
	Computational Geometry
	Mesh Models of Images
	Grid-Point to Face Mapping

	Proposed Mesh-Generation Framework and Method
	Overview
	Local Optimization Procedure (LOP)
	Proposed Mesh-Generation Framework
	Face- and Candidate-Selection Policies
	Edge-Flip Criteria

	Proposed Mesh-Generation Method and Its Development
	Choice of Face- and Candidate-Selection Policies
	Choice of Main Edge-Flip Criterion
	Choice of Final Edge-Flip Criterion
	Extra Experiments
	Proposed Mesh-Generation Method

	Evaluation of Proposed Mesh-Generation Method

	Conclusions and Future Research
	Conclusions
	Future Research

	Software User Manual
	Introduction
	Building the Software
	Software Functionality
	Organization of Source Code
	Application Programs
	The @makemesh@ Command
	Inputs of the Software
	Outputs of the Software
	Examples of Mesh-Generation Schemes

	Bibliography

