
A Flexible C++ Library for Wavelet Transforms of 3-D Polygon Meshes

by

Shengyang Wei

B.A.Sc., Huazhong University of Science and Technology, 2013

A Report Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF ENGINEERING

in the Department of Electrical and Computer Engineering

c© Shengyang Wei, 2019
University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

A Flexible C++ Library for Wavelet Transforms of 3-D Polygon Meshes

by

Shengyang Wei

B.A.Sc., Huazhong University of Science and Technology, 2013

Supervisory Committee

Dr. Michael Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Pan Agathoklis, Departmental Member
(Department of Electrical and Computer Engineering)

iii

ABSTRACT

The lifted wavelet transforms of 3-D polygon meshes are introduced, and the details of Loop and Butterfly wavelet
transforms are studied. Then, a library that implements a framework for computing lifted wavelet transforms of
polygon meshes is presented. To compute Loop and Butterfly wavelet transforms, users can employ the built-in
functionality of the library. In addition, users can also define custom wavelet transforms via a secondary application
programming interface provided by the library. Some application programs implemented with this library are also
provided for demonstration purposes, including application that perform wavelet-based polygon mesh simplification
and denoising. Finally, the run-time performance of the library are measured. Our library is shown to perform lifted
wavelet transforms, except the subdivision detection step in linear time with respect to the number of vertices. The
main bottleneck is the subdivision detection step, since it includes sorting, which has a time complexity greater than
linear.

iv

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Listings x

Table of Contents x

1 Introduction 1
1.1 Wavelet Transform of 3-D Triangle Mesh . 1
1.2 Historical Perspective . 2
1.3 Overview and Organization of Report . 4

2 Background 5
2.1 Introduction . 5
2.2 Polygon Meshes . 5
2.3 Subdivision . 6

2.3.1 Topologic Refinement Rules . 7
2.3.2 Geometric Refinement Rules . 7
2.3.3 Loop Subdivision . 8

2.4 Multiresolution Analysis and WTs . 9
2.4.1 Lifting Scheme . 13
2.4.2 Vertex Partition and Coarsening . 13
2.4.3 Lifted Loop Subdivision . 14
2.4.4 Lifted Loop WT . 16
2.4.5 Lifted Butterfly WT . 19

3 Software 23
3.1 Introduction . 23
3.2 Software Installation . 23
3.3 Concepts . 24
3.4 Library . 24

3.4.1 Usage of API . 24
3.4.2 Loop and Butterfly WTs Built-in Functions . 30

3.5 Programs . 32
3.5.1 The wtt fwt and wtt iwt Programs . 32

vi

3.5.2 Wavelet Denoising and Compression . 34

4 Results and Analysis 39
4.1 Introduction . 39
4.2 Datasets . 39
4.3 Experimental Results . 39
4.4 Run-Time Performance . 42

4.4.1 Analysis of Execution Time . 42
4.4.2 Analysis of Memory Usage . 47

5 Conlusions and Future Work 51
5.1 Conclusions . 51
5.2 Future Work . 51

Bibliography 53

vii

List of Tables

4.1 The test meshes and their characteristics . 42
4.2 The execution time (in milliseconds) of Butterfly and Loop FWT and IWT. 45
4.3 The execution time and percentages of functions that internally implement the Butterfly FWT. 45
4.4 The execution time and percentages of functions that internally implement the Butterfly IWT. 46
4.5 The execution time and percentages of functions that internally implement the Loop FWT. 46
4.6 The execution time and percentages of functions that internally implement the Loop IWT. 47
4.7 First-level (L1) and last-level (LL) cache misses in function lift of the Loop wavelet transform. . . . 47
4.8 Comparison of cache misses and execution times (in milliseconds) of function lift for hand and

hand rnd. 47
4.9 Memory usages of each vertex, halfedge, and face of the (a) mesh and (b) MCDS. 48
4.10 The peak memory usage and bytes per vertex in the FWT and IWT. 49

viii

ix

List of Figures

1.1 Examples of triangle meshes. (a) A sphere, (b) a torus, (c) a strip, and (d) a monkey. 1

1.2 Example of subdivision. (a) Coarse mesh. (b), (c), (d) are generated meshes after repeating the
refinement process once, twice, and ad infinitum. 2

1.3 Example of WT. (a) A refined mesh. Resulting mesh and wavelet coefficients after applying (b) one,
(c) two, (d) three, and (e) four levels of the FWT, where W1, W2, and W3 represent wavelet coefficients
at resolution level 1, 2, and 3, respectively. 3

1.4 Example of wavelet compression.(a) A bunny. (b) A coarse approximation after applying four levels
of the FWT. (c) Reconstructed mesh by using the wavelet coefficients whose magnitudes are in the
top 5%. 3

2.1 Example of a triangle mesh and its elements. (a) A triangle mesh. (b) vertices, (c) edges, (d) faces of
the mesh. 5

2.2 Example of non-manifolds. (a) Four triangles joining by a common edge. (b) Two cones intersecting
at a common vertex. 6

2.3 Example of subdivision for a monkey head. (a) A coarse mesh. Refined mesh after applying (b) one,
(c) two, and (d) three levels of subdivision. 7

2.4 Primal triangle quadrisection. (a) The topology of a mesh. (b) The topology of the mesh after inserting
edge vertices. (c) Splitting faces by connecting edge vertices. (d) The final topology of the mesh after
applying primal triangle quadrisection. 7

2.5 The masks used in geometric refinement of Loop subdivision. The mask used to compute (a) an
interior edge vertex, (b) an old interior vertex, (c) a boundary edge vertex, and (d) an old boundary
vertex. 9

2.6 An example of multiresolution analysis of a mesh. (a) A bunny. The multiresolution representation of
the bunny, which includes four resolution levels. (b) The base mesh is at resolution level-0. (c) The
mesh at resolution level- 1. (d) The mesh at resolution level-2. (e) The mesh at resolution level-3. . . 10

2.7 Example of a WT. (a) Applying two levels of the FWT to a cow mesh decreases the resolution level
of the mesh by two and obtains two sets of wavelet coefficients denoted by W1 and W2, where W1
encodes the details at resolution level 1, and W2 encodes the details at resolution level 2. (b) Applying
two levels of the IWT to the result of the 2-level FWT increases the resolution level of the mesh and
recovers the original mesh at full resolution. 11

2.8 Example of meshes with PTQ subdivision connectivity. 12

2.9 Example of meshes without PTQ subdivision connectivity. 13

2.10 Diagrams of the lifted WT steps. (a) The steps of the IWT. (b) The steps of the FWT. The sign of a
box indicates the used operator in a lifting or scaling step. 14

2.11 Example of reversing quadrisecting on a triangle f to build its tile T . Vertices v1, v2, and v3 are corners
of T , and vertices of f are corners of T . 15

x

2.12 Example of detecting subdivision connectivity. (a) The mesh. (b) The set of tiles that passes the
vertex mapping check. The black and white dots are corners and covered vertices of the tiles. (c)
Vertex classification based on the result of subdivision connectivity detection. White dots represent
vertices that constitute the set of new vertices, and black dots represent vertices that constitute the set
of old vertices. 15

2.13 Example of coarsening the mesh shown in Figure 2.8(b). Empty dots and dashed lines in the right
mesh refer to vertices and edges to be removed. 15

2.14 Masks of the lifted Loop subdivision for a closed triangle mesh. 17
2.15 The FWT for a one-level lifted Loop WT. 17
2.16 Masks for the lifted Loop WT. 20
2.17 The IWT for a single-level Loop WT. 20
2.18 The FWT of a single-level Butterfly WT. 20
2.19 Masks used in the lifted Butterfly WT. 21
2.20 The IWT for a single-level lifted Butterfly WT. 21

3.1 Example of 3-level Butterfly wavelet compression with compression rate 5%. (a) The original mesh
(vase . off). (c) The output mesh (vase from compression. off) . 36

3.2 Screenshots obtained from running wtl demo. The (a) original, (b) noisy, (c) the Butterfly denoised,
and (d) the Loop denoised bunny. 37

3.3 Screenshots obtained from running wtl demo. The (a) original, (b) noisy, (c) the Butterfly denoised,
and (d) the Loop denoised dragon. 38

4.1 Example of 2-level Loop wavelet compression. (a) The original mesh. (b) Reconstructed mesh by
using 1843 wavelet coefficients whose magnitudes are in the top 1%. (c) Reconstructed mesh by
using 9216 wavelet coefficients whose magnitudes are in the top 5%. (d) Reconstructed mesh by
using 18432 wavelet coefficients whose magnitudes are in the top 10%. 40

4.2 Example of 2-level Butterfly wavelet compression. (a) The original mesh. (b) Reconstructed mesh
by using 1843 wavelet coefficients whose magnitudes are in the top 1%. (c) Reconstructed mesh by
using 9216 wavelet coefficients whose magnitudes are in the top 5%. (d) Reconstructed mesh by using
18432 wavelet coefficients whose magnitudes are in the top 10%. 41

4.3 Example of 3-level wavelet denoising on mesh bunny. The (a) original, (b) noisy, (c) the Butterfly
denoised, and (d) the Loop denoised bunny. 43

4.4 Example of 3-level wavelet denoising on mesh dragon. The (a) original, (b) noisy, (c) the Butterfly
denoised, and (d) the Loop denoised dragon. 44

xi

List of Listings

3.1 Example of defining and computing a WT. 24
3.2 Example program of computing the Loop FWT and IWT on a triangle mesh. 30
3.3 Example program of computing the Butterfly FWT and IWT on a closed triangle mesh. 31

xii

1

Chapter 1

Introduction

1.1 Wavelet Transform of 3-D Triangle Mesh
Three-dimensional (3-D) modeling and animation play essential roles in various industries related to video games,
virtual reality, films, and medicine. In 3-D modeling, a polygon mesh is one of the most popular representations of 3-
D objects, where polygons are joined together to represent or approximate the surface of an object. The triangle mesh
where all the polygons are triangles is the preferred representation in most modern graphical applications. Figure 1.1
includes some examples to illustrate triangle meshes.

Since triangles are planar, approximating a smooth surface with triangle meshes typically requires a large number
of faces. To model real-world objects realistically, meshes could easily consist of millions of triangles. Such meshes
would consume excessive resources to render, store, and transmit. Subdivision and multiresolution analysis are prac-
tical solutions to this kind of problem. Subdivision is capable of characterizing a smooth surface by a very simple
mesh (i.e., with relatively few faces). In other words, a smooth surface is calculated on demand in a subdivision pro-
cess. Subdivision provides a set of refinement rules such that repeatedly applying these rules to a coarse mesh results
in an increasingly smooth mesh. An example of a subdivision process is shown in Figure 1.2. Figure 1.2(a) shows a
sphere, and Figures 1.2(b), (c), and (d) show the sphere after applying subdivision one, two, and an infinite number of
times, respectively.

An alternative approach, multiresolution analysis, handles the problem in a different yet similar way. By using
a multiresolution analysis, a complicated mesh can be represented with multiple levels of detail, which has a flexi-
ble resource cost. A multiresolution representation of a complicated mesh consists of a coarse approximation mesh
plus finer detail in increasing levels of resolution. Then, the mesh at a desirable resolution can be represented by
the approximation incorporating the details that are at and below the desired resolution. Typically, a multiresolution
analysis is calculated using a wavelet transform (WT). That is, for a complicated mesh, a WT iteratively computes
an approximation at a lower resolution level and encodes the difference between meshes at two successive resolu-
tions (i.e., the details) into a set of wavelet coefficients. Then, to obtain the mesh at a desirable level of resolution,

(a) (b) (c) (d)

Figure 1.1: Examples of triangle meshes. (a) A sphere, (b) a torus, (c) a strip, and (d) a monkey.

2 1.2. HISTORICAL PERSPECTIVE

(a) (b) (c) (d)

Figure 1.2: Example of subdivision. (a) Coarse mesh. (b), (c), (d) are generated meshes after repeating the refinement process once, twice, and ad
infinitum.

a WT repetitively incorporate a set of wavelet coefficients to the approximation from the lowest resolution level to
the desired one. In addition, a WT provides two basic operations. An operation that obtains a coarse mesh along
with a set of wavelet coefficients is called the forward WT (FWT) (or wavelet analysis). An operation that combines
a set of wavelet coefficients to a coarse mesh is called the inverse WT (IWT) (or wavelet synthesis). An example
of the result obtained from wavelet analysis is shown in Figure 1.3. A refined mesh is shown in Figure 1.3(a), and
the resulting mesh incorporating wavelet coefficients after one, two, and three levels of wavelet analysis is shown in
Figures 1.3(b), (c), and (d), each of which shows the multiresolution representation of the refined mesh in two, three,
and four resolution levels, respectively. In these figures, the approximation mesh is at resolution level 0, and sets of
wavelet coefficients that capture details at resolution level 1, 2, and 3 are denoted by W1, W2, and W3, respectively.
Since wavelet synthesis is an inverse of wavelet analysis, Figure 1.3 also illustrates an example of wavelet synthesis.
Applying one, two, and three levels of wavelet synthesis to the mesh and wavelet coefficients shown in Figures 1.3(b),
(c), and (d), respectively, we can obtain the refined mesh shown in Figure 1.3(a).

Obviously, we can manipulate the wavelet coefficients calculated from wavelet analysis to change the mesh ob-
tained from wavelet synthesis. For this reason, WTs are useful in many applications. A typical example is multires-
olution editing. Instead of editing a mesh at full resolution, users can adjust the mesh under different resolutions by
changing the corresponding sets of wavelet coefficients. Moreover, WTs can be used for mesh compression or sim-
plification. After obtaining wavelet coefficients from wavelet analysis, a mesh can be reconstructed within a desirable
error tolerance by using an appropriate portion of the wavelet coefficients. Figure 1.4 presents an example for wavelet
compression. Figure 1.4(a) shows a bunny, and Figure 1.4(b) shows an approximation of the bunny after applying
four levels of wavelet analysis. After four levels of wavelet synthesis, a reconstructed bunny by using the wavelet
coefficients whose magnitudes are in the top 5% is shown in Figure 1.4(c).

Although not immediately obvious, the WT has a close relationship to subdivision. Subdivision provides the
mathematical foundation for designing WTs of polygon meshes. Specifically, the subdivision connectivity which will
be discussed in Chapter 2 is a prerequisite for WTs. Indeed most WT algorithms are derived from corresponding
subdivision schemes.

1.2 Historical Perspective

Lounsbery [16] and Lounsbery et al. [17] innovatively extended the multiresolution analysis theory [18] to polygon
meshes with subdivision connectivity, which serves as the mathematical foundation for the WT designs considered
herein. In addition to the multiresolution analysis, these papers present an implementation of WTs for polygon meshes.
The implementation utilizes a filterbank algorithm, where the coarse approximation is calculated by an averaging op-
eration called lowpass filtering, and then the wavelet coefficients are calculated by a differencing operation called
highpass filtering. The lowpass and highpass filters are designed to yield invertible transforms. Inspired by Louns-
bery’s work and combining with the lifting scheme [25], Schröder and Sweldens [23] proposed the second generation
WT on polygon meshes, known as the lifted WT. The lifting scheme was initially developed for the custom design
of classical wavelets. The basic idea behind lifting scheme is to start from trivial operations and construct new more

CHAPTER 1. INTRODUCTION 3

(a)

along with wavelet

coefficients W1

(b)

along with wavelet

coefficients W1, W2

(c)

along with wavelet

coefficients W1, W2, W3

(d)

Figure 1.3: Example of WT. (a) A refined mesh. Resulting mesh and wavelet coefficients after applying (b) one, (c) two, (d) three, and (e) four
levels of the FWT, where W1, W2, and W3 represent wavelet coefficients at resolution level 1, 2, and 3, respectively.

(a) (b) (c)

Figure 1.4: Example of wavelet compression.(a) A bunny. (b) A coarse approximation after applying four levels of the FWT. (c) Reconstructed
mesh by using the wavelet coefficients whose magnitudes are in the top 5%.

4 1.3. OVERVIEW AND ORGANIZATION OF REPORT

performant ones by adjusting these operations. In case of polygon meshes, a realization of a lifted WT is obtained
by factorizing operations in subdivision into a combination of local calculations and then lifting these operations to
achieve the desired properties. Since all the calculations are local, the lifting scheme can speed up the WTs. Along
with the establishment of the generalized lifted WT, Schröder and Sweldens [23] have also included a Butterfly WT,
where they use a Butterfly subdivision template to customize the wavelet construction. Powered by the lifting scheme,
Bertram [3] introduced the Loop WT, which is derived from Loop subdivision [15]. Wang et al. [30] considered the
mesh-boundary case of the Loop WT in the presentation of a lifted wavelet construction for triangle/quad mesh by
using Loop/Catmull-Clark [6] templates. Also, Wang et al. [29] proposed the lifted

√
3 WT for triangle meshes based

on
√

3 subdivision [14].

1.3 Overview and Organization of Report
In this report, we mainly focus on the implementation details of the lifted Loop and Butterfly WTs for triangle
meshes. Since designing a lifted WT is quite complicated and beyond the scope of this report, the design of WTs
is not considered herein. Because subdivision connectivity is a prerequisite for WTs, we include a discussion of a
subdivision connectivity detection algorithm proposed by Taubin [26]. To help users of our library, detailed documen-
tation, demonstration applications, and performance profiling of our library are included in this report as well. The
remainder of this report is organized as follows.

Chapter 2 introduces the essential background information needed to understand the material presented herein.
First, polygon and triangle meshes, as well as related concepts, are introduced. This is then followed by a discussion
of subdivision. After that, we introduce multiresolution mesh representations and present the algorithms for the lifted
Loop and Butterfly WTs. Lastly, a general description of the subdivision connectivity detection algorithm is given.

Chapter 3 presents the software developed by the author. This chapter begins with an overview of the software
which is then followed by instructions on how to build and install the software. Then, we introduce the high-level
application programming interfaces (APIs) of the library that can be used to compute the Loop and Butterfly WTs.
After that, the low-level APIs used to define a custom WT is documented. The command line interfaces of the
demonstration programs are provided at the end.

Chapter 4 evaluates the performance of this library. To begin, some examples produced by the demonstration
programs are presented. This is then followed by an overview of the test datasets. Next, we profile the code in order
to determine the time consumed by each stage in the lifted WT. In addition, the memory consumption of this library
is analyzed.

Chapter 5 concludes this report with some closing remarks and some suggestions for future work.

5

Chapter 2

Background

2.1 Introduction
This chapter provides the necessary background information for readers to understand the work presented by this
report. We start by introducing the concept of a polygon mesh and some related concepts. This is then followed
by a description of subdivision including the Loop subdivision. After that, the lifting scheme, which is used for
implementing lifted a WT, is discussed. Then, we illustrate a subdivision connectivity detection algorithm which is a
preprocessing step in the WT implementation. Finally, algorithms for the Loop and Butterfly WTs are presented.

2.2 Polygon Meshes
A polygon mesh is a collection of vertices, edges, and faces, and their adjacency relationships. A vertex is a point, and
an edge is a line segment that has two vertices as endpoints. A face is a polygon, which is a 2-D shape enclosed by a
finite number of edges. In 3-D modelling, faces are joined together by common edges and vertices to approximate the
surface of an object. A triangle mesh is a polygon mesh whose faces are all triangles. In Figure 2.1, we provide an
example of a triangle mesh. Figure 2.1(a) shows a simple triangle mesh. Figures 2.1(b), (c), and (d) show the vertices,
edges, and faces of the mesh, respectively. In this report, we are interested primarily in triangle meshes.

A polygon mesh consists of two types of information: 1) geometric information and 2) topologic information. The
geometry of a mesh is essentially the positions (i.e., the x, y, and z coordinates) of its vertices. The topology of a mesh
is the adjacency relationships between its vertices, edges, and faces. Next, we introduce some concepts about polygon
meshes that will be used in the subsequent sections. Two faces are adjacent if they are incident on the same edge. Two
edges are adjacent if they are incident on the same vertex. Two vertices are adjacent if they are connected by the same
edge. The 1-ring neighbours of a vertex v are the vertices that are adjacent to the vertex v. The valence of a vertex
is the number of its 1-ring neighbours, which is also the number of its incident edges. The edges and vertices of a
polygon mesh can be categorized as interior, boundary, or singular [26]. An interior edge is an edge with exactly

(a) (b) (c) (d)

Figure 2.1: Example of a triangle mesh and its elements. (a) A triangle mesh. (b) vertices, (c) edges, (d) faces of the mesh.

6 2.3. SUBDIVISION

(a) (b)

Figure 2.2: Example of non-manifolds. (a) Four triangles joining by a common edge. (b) Two cones intersecting at a common vertex.

two incident faces, and a boundary edge is an edge with exactly one incident face, and a singular edge is an edge with
more than two incident faces. A closed polygon mesh has interior edges only. A vertex is said to be interior if all of
its incident edges are interior, while a vertex is said to be boundary if exactly two of its incident edges are boundary
and other incident edges are interior. For either an interior vertex or a boundary vertex, the edges that connect its
1-ring neighbours must form exactly one loop or open path. Otherwise, it is singular. A polygon mesh is said to
be a manifold if none of its edges and vertices is singular. Since non-manifolds are special, in order to illustrate the
case clearly, we provide some examples of non-manifolds in Figure 2.2. Because the mesh presented in Figure 2.2(a)
has a singular edge and the mesh presented in Figure 2.2(b) has a singular vertex, they are non-manifolds. In this
report, we only consider meshes that are manifold. In addition, for a triangle mesh, interior vertices with a valence
of six or boundary vertices with a valence of four are said to be regular. Vertices with other valences are said to be
extraordinary.

2.3 Subdivision

A surface represented by a polygon mesh is approximated by planar faces. The denser the faces, the better is the
approximation. To represent an object accurately, a mesh with a potentially very large number of polygon faces would
be required, which would consume excessive amounts of memory. In this section, we introduce a solution to this
problem, namely, subdivision. Subdivision can characterize a complicated mesh by a much simpler one. That is, a
refined mesh can be obtained by algorithmically inserting vertices, edges, and faces into a coarse mesh. The coarse
mesh that serves as the starting point of subdivision is called the control mesh. Repeating subdivision iteratively
refines the mesh, and as a result, the number of vertices, edges, and faces in the mesh is increased. A smooth surface
obtained from repeating subdivision ad infinitum is called the limit surface. In practice, a subdivision process is
defined so as to yield a smooth limit surface. In Figure 2.3, we present an example of subdivision for a monkey
head. Figure 2.3(a) shows a coarse mesh that roughly models a monkey head. The refined meshes, after repeating
subdivision one, two, and three times are shown in Figures 2.3 (b), (c), and (d), respectively.

Since inserting vertices leads to changes in both topology and geometry of a mesh, a subdivision scheme requires
specific topologic and geometric refinement rules to control the changes in topology and geometry. Generally, one
round of subdivision is completed by applying topologic refinement rules followed by geometric refinement rules to
a mesh. In what follows, we explain the topologic and geometric refinement rules in detail.

CHAPTER 2. BACKGROUND 7

(a) (b) (c) (d)

Figure 2.3: Example of subdivision for a monkey head. (a) A coarse mesh. Refined mesh after applying (b) one, (c) two, and (d) three levels of
subdivision.

(a) (b) (c) (d)

Figure 2.4: Primal triangle quadrisection. (a) The topology of a mesh. (b) The topology of the mesh after inserting edge vertices. (c) Splitting faces
by connecting edge vertices. (d) The final topology of the mesh after applying primal triangle quadrisection.

2.3.1 Topologic Refinement Rules
A topologic refinement rule determines how the connectivity of a mesh is to be modified to insert new vertices. The
geometry is not modified by such a rule, however. Depending on whether vertices or faces are split, a topologic refine-
ment rule is either dual or primal, respectively. For triangle meshes, one of the most common topologic refinement
rules is primal triangle quadrisection (PTQ). The name PTQ suggests the type of modifications made to a mesh’s
topology, namely, each face is split in four in order to insert new vertices. In Figure 2.4, we illustrate the process of
applying PTQ to a mesh. Figure 2.4(a) shows the topology of a mesh with a boundary. First, PTQ splits each edge in
two by inserting a new vertex called an edge vertex, as shown in Figure 2.4(b). The new vertices are placed arbitrarily
at the midpoint of each edge for illustration only, since a topologic refinement rule does not define vertex positions.
Then, PTQ splits each face in four by connecting the three edge vertices for each face, as shown in Figure 2.4(c).
Finally, Figure 2.4(d) shows the topology obtained after applying PTQ to the mesh.

Observe that PTQ always introduces interior vertices with a valence of six and boundary vertices with a valence
of four, and maintains the regularity of old vertices. Therefore, the new vertices of a mesh obtained from PTQ are all
regular. Furthermore, a new vertex has exactly two old vertices as 1-ring neighbours, and the 1-ring neighbours of an
old vertex are all new vertices. That is, the regular new vertices isolate the old vertices in the refined mesh. Such a
mesh is said to have subdivision connectivity. Subdivision connectivity is not limited to PTQ. If a refined mesh can
be obtained from a simpler mesh by applying several levels of topologic refinement rules, regardless of geometry, we
say the refined mesh has subdivision connectivity.

2.3.2 Geometric Refinement Rules
Since the positions of the vertices are not specified by topologic refinement, another rule known as a geometric
refinement rule is required to determine the positions of old and new vertices after topologic refinement. The topology
of the mesh is not altered in the geometric refinement. To update the geometry of a mesh, geometric refinement rule
is applied to each vertex whose position is to be computed. The vertex whose position is being computed is called a

8 2.3. SUBDIVISION

target vertex. The position of a target vertex is computed as a weighted sum of the old nearby vertices only. In other
words, each vertex of a mesh obtained from subdivision is a linear combination of the vertices of the original mesh.
That is how a simple control mesh can characterize a more complicated one. The control mesh can yield a sequence
of progressively refined meshes via several levels of subdivision.

A geometric refinement rule is usually defined by a mask which can be viewed as a filter. A mask specifies the
vertices and corresponding weights used to calculate the position of a target vertex. The vertices that participate in
this computation are called support vertices. Each support vertex is assigned an individual weight in the calculation.
Then, the mask slides over the mesh and uses the support vertices to modify each target vertex. Through this process,
the new geometry of the mesh is obtained. For instance, Figure 2.5 shows the four masks used in the Loop subdivision.
In Figure 2.5, a solid or empty dot refers to a vertex, and a solid or dashed line refers to an edge. Each of the masks
describes the topologic relations between the support vertices and the target vertex. The target vertex is denoted by
a solid dot, and the support vertices are denoted by empty dots with weights. The other empty dots without weights
represent vertices that are used as references in locating the support vertices correctly. Typically, the reference vertices
and support vertices have different types (i.e., new and old) so that the support vertices of a target vertex can be fetched
from the mesh without ambiguity. In one geometric updating step of the Loop subdivision, the center of a mask is
aligned first to each target vertex to determine its support vertices. Then, the new position of the vertex is computed
from the support vertices and their respective weights. To further illustrate subdivision, we provide the details of the
Loop subdivision in the following sections.

2.3.3 Loop Subdivision
The Loop subdivision, originally proposed in [15], is defined for triangle meshes with or without boundaries. The
topologic refinement rule employed is PTQ. To perform Loop subdivision, PTQ is first applied to the mesh in order to
introduce new vertices. After topologic refinement, the vertices of the mesh fall into two types: edge vertices (i.e., new
vertices) and old vertices, and both of them are modified in geometric refinement. In addition, the Loop subdivision
has different treatment to vertices depending on whether they are on the boundary. Thus, four types of vertices need to
be handled in geometric refinement: 1) interior edge vertices, 2) old interior vertices, 3) boundary edge vertices, and
4) old boundary vertices. Loop subdivision provides four masks, as shown in Figure 2.5 to handle these four cases.
We use a solid dot to represent the target vertex and empty dots to represent the support vertices, in each of the masks
shown in Figure 2.5. To avoid confusion, we use a dashed line to represent an edge that connects two edge vertices
and use a solid line to represent an edge that connects an old vertex and an edge vertex. Then, the new positions of
the four types of vertices are computed in turn as follows:

1. Interior edge vertex. First, we consider computing the position of an interior edge vertex. Let ve be an interior
edge vertex, and v1, v2, v3, and v4 be the support vertices. The support vertices’ weights and their topologic
relation to ve are specified by the mask shown in Figure 2.5(a). Then, ve is chosen as

ve =
3
8
(v1 + v2)+

1
8
(v3 + v4).

2. Old interior vertex. Next, we consider computing the position of an old interior vertex. Let v be an old interior
vertex, and {vi}n

i=1 be the support vertices. The support vertices’ weights and their topologic relation to v are
specified by the mask shown in Figure 2.5(b). The original position of v also participates in the computation.
Then, the new position v′ of v is given by

v′ = (1−nβn)v+βn

n

∑
i=1

vi,

where

βn =
1
n

[
5
8
−
(

3
8
+

1
4

cos
2π

n

)2
]

and n is the valence of v.

CHAPTER 2. BACKGROUND 9

ve
3
8 v1

3
8 v2

1
8 v3

1
8 v4

(a) (b)

βnv1

βnv2

βnv3

βnvn−1

βnvn

(1−nβn)v

βn =
1
n

[5
8 − (3

8 +
1
4 cos 2π

n)
]

(c)

ve

1
2 v1

1
2 v2

(d)

3
4 v1

8 v1
1
8 v2

Figure 2.5: The masks used in geometric refinement of Loop subdivision. The mask used to compute (a) an interior edge vertex, (b) an old interior
vertex, (c) a boundary edge vertex, and (d) an old boundary vertex.

3. Boundary edge vertex. Next, we consider computing the position of a boundary edge vertex. Let ve be an
boundary edge vertex, and v1 and v2 be the support vertices. The support vertices’ weights and their topologic
relation to ve are specified by the mask shown in Figure 2.5(c). Note that v1 and v2 are also on the boundary of
the mesh. Then, ve is chosen as

ve =
1
2
(v1 + v2).

4. Old boundary vertex. Finally, we consider computing the position of an old boundary vertex. Let v be an
old boundary vertex, and v1 and v2 be the support vertices. The support vertices’ weights and their topologic
relation to v are specified by the mask shown in Figure 2.5(d). Note that all the vertices in the mask are on the
boundary and v1 and v2 are old vertices. Then, the new position v′ of v is given by

v′ =
3
4

v+
1
2
(v1 + v2).

2.4 Multiresolution Analysis and WTs
Having described subdivision, we now introduce the concept of a multiresolution analysis, which has a close relation-
ship to subdivision. With a multiresolution analysis a mesh is represented at several levels of resolution. In particular,
we have mesh approximation corresponding to the lowest level of resolution and additional detail for each higher
resolution. When more detail is required, the representation at a higher or full resolution can be used; when some
detail can be ignored, the representation at a lower resolution can be used. Multiresolution analysis guarantees that the
representation of the mesh at any intermediate resolution can be computed from the corresponding intermediate mesh
plus detail information. This allows a mesh with a desired level of detail to be computed on demand. In Figure 2.6,
we provide an example of multiresolution analysis of a mesh. Figure 2.6(a) shows the original mesh, which is a bunny
at full resolution. Figure 2.6(b) shows the multiresolution representation of the bunny, where the mesh is decomposed
using four resolution levels. The mesh in Figure 2.6(b) is at resolution level 0. Let W1, W2, and W3 denote details
at level 1, 2, and 3, respectively. Then, incorporating W1 into the level 0 mesh yields the bunny at resolution level-1

10 2.4. MULTIRESOLUTION ANALYSIS AND WTS

(a) (b)

(c) (d) (e)

Figure 2.6: An example of multiresolution analysis of a mesh. (a) A bunny. The multiresolution representation of the bunny, which includes four
resolution levels. (b) The base mesh is at resolution level-0. (c) The mesh at resolution level- 1. (d) The mesh at resolution level-2. (e) The mesh
at resolution level-3.

as shown in Figure 2.6(c); incorporating W2 into the level-1 mesh yields the bunny at resolution level-2 as shown in
Figure 2.6(d); incorporating W3 into the level-2 mesh yields the bunny at resolution level-3 as shown in Figure 2.6(e).

A multiresolution analysis is associated with a WT. A WT consists of two operations: a FWT and an IWT. For a
mesh M at a given resolution level, a single-level FWT (i.e., wavelet analysis) yields a coarser mesh approximating M
at the next lower resolution level along with a set of wavelet coefficients that encodes the difference between the coarse
mesh and M. A single-level IWT (i.e., wavelet synthesis) combines a coarser mesh and a set of wavelet coefficients
to recover the mesh at the next higher resolution level. To give a general sense of a FWT and IWT, we provide an
example in Figure 2.7. Figure 2.7(a) illustrates applying a two-level FWT to a cow mesh. After each level of the FWT,
the resolution level of the mesh decreases by one, and a set of wavelet coefficients is produced. So, after two levels
of the FWT, two sets of wavelet coefficients are produced, denoted by W1 and W2. Then, Figure 2.7(b) illustrates
applying a two-level IWT to the result of the two-level FWT to compute the mesh at an intermediate resolution and,
finally, recover the original mesh at full resolution. In each level of the IWT, a set of wavelet coefficients is used to
recover the mesh at the next higher resolution level.

A WT modifies both the geometry and topology of a mesh. The IWT refines the mesh and introduces detail

CHAPTER 2. BACKGROUND 11

full resolution resolution level 2 resolution level 1

FWT FWT

W2 W1

W2

(a)

full resolutionresolution level 2resolution level 1

IWT IWT

W1

W2

W2

(b)

Figure 2.7: Example of a WT. (a) Applying two levels of the FWT to a cow mesh decreases the resolution level of the mesh by two and obtains two
sets of wavelet coefficients denoted by W1 and W2, where W1 encodes the details at resolution level 1, and W2 encodes the details at resolution level
2. (b) Applying two levels of the IWT to the result of the 2-level FWT increases the resolution level of the mesh and recovers the original mesh at
full resolution.

12 2.4. MULTIRESOLUTION ANALYSIS AND WTS

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Example of meshes with PTQ subdivision connectivity.

(i.e., wavelet coefficients), and the FWT removes detail and produces an approximation. In an implementation, the
geometric and topologic modifications are completed in two stages. For the IWT, a refinement step first employs
a topologic refinement rule (e.g., PTQ) to introduce new vertices, thereby refining the mesh. Then, the wavelet
coefficients are used to determine the positions of the vertices in the refined mesh. For the FWT, the vertices of
the mesh are used to determine a set of wavelet coefficients. Then, the vertices corresponding to detail captured
by the wavelet coefficients are discarded in a coarsening step to yield the coarse mesh. The FWT, however, has an
additional requirement for the input mesh, namely, subdivision connectivity. According to Lounsbery et al. [17], the
theoretical basis of the WTs considered herein, subdivision connectivity guarantees the existence of a multiresolution
analysis for a mesh. In other words, subdivision connectivity determines which vertices are used to construct the
coarse mesh and which vertices are essentially turned into wavelet coefficients. Although some methods [9, 22]
extend the WT to arbitrary meshes, they internally convert the input to a mesh with subdivision connectivity. A
mesh M is said to have subdivision connectivity if there exists another mesh M′ such that applying the topologic
refinement rule for subdivision some number of times to M′ yields a mesh with the same topology as M. A mesh
that has subdivision connectivity with respect to the PTQ topologic refinement rule is said to have PTQ subdivision
connectivity. To facilitate understanding, we present some meshes with and without PTQ subdivision connectivity in
Figures 2.8 and 2.9. The meshes shown in Figures 2.8(a), (b), and (c) can be yielded from the coarser meshes shown in
Figures 2.8(d), (e), and (f) by PTQ, respectively. For the meshes shown in Figure 2.9, we cannot find coarser meshes
from which PTQ can yield them, so they do not have PTQ subdivision connectivity.

WTs usually have a relationship to subdivision. A subdivision scheme can be viewed as an IWT with all wavelet
coefficients set to zero. Then, inverting the operations of the subdivision scheme obtains the corresponding FWT
computation. Such a WT that is derived directly from a subdivision scheme is called a lazy WT. Nonetheless, a
lazy WT may not have desirable properties in practice. Thus, modifications to a lazy WT are required to improve
its properties (e.g., stability or greater smoothness). In the next section, we introduce the lifting scheme which is
commonly used to implement WTs.

CHAPTER 2. BACKGROUND 13

(a) (b) (c)

Figure 2.9: Example of meshes without PTQ subdivision connectivity.

2.4.1 Lifting Scheme
The lifting scheme, proposed by Sweldens [25], is a framework for the design, analysis, and implementation of a WT.
The lifting scheme guarantees that the implemented WT can be computed in linear time with respect to the number
of vertices, and the inverse transform can be yielded trivially. In computation, the lifting scheme first requires the
input data (i.e., the vertices of a mesh) to be partitioned into several disjoint sets. Thus, the lifted WT needs to first
classify the vertices into disjoint sets. In the single-level IWT, the vertices before topological refinement constitute the
set of old vertices, and the vertices introduced by topologic refinement constitute the set of new vertices. Depending
on the topologic refinement rule being used, the new vertex set can be further split into multiple sets based on the
type of the new vertices. In the single-level FWT, an additional step, subdivision connectivity detection, is required to
ensure the WT is well defined (e.g., the vertices can be correctly partitioned). As described earlier, for a mesh M with
subdivision connectivity, there exists a control mesh M′ such that topologic refinement of M′ yields a mesh with the
same topology as M. The vertices that exist in both M and M′ constitute the set of old vertices, and the vertices that
exist in M but not in M′ constitute the set of new vertices. Also, the set of new vertices can be further split depending
on the topologic refinement rule being used. In the following section, we will illustrate how to detect subdivision
connectivity and classify vertices in detail.

After vertex classification, the lifting scheme applies several cascaded lifting steps and scaling steps to the sets of
vertices to compute the final result. A lifting step adds (or subtracts) a filtered version of one or more sets to another
set. Specifically, a lifting step updates a vertex in a set by adding (or subtracting) a linear combination of vertices in
other sets to the vertex. The vertices involved in the computation are usually specified by a mask. A scaling step scales
(i.e., multiply or divide a scalar) each of the vertices in a set. By employing the lifting scheme, the computations in a
single-level WT are realized as a sequence of lifting steps and scaling steps. In each step, the positions of the vertices
in one set are updated, and the updated vertices will be used to modify the vertices in other sets in the following steps.
In addition, a lifted WT is trivially invertible by simply reversing the order of the lifting and scaling and inverting
their operators. That is, changing addition to subtraction and changing multiplication to division and then reversing
the steps in a transform yields its inverse transform. Suppose that a single-level lifted IWT is implemented as a
refinement step, a lifting step, a scaling step, and a lifting step. The operations can be illustrated by the diagram
shown in Figure 2.10(a), where the sign of a box indicates the operator used in a lifting or scaling step. Then, the
inverse of the IWT, the FWT, is defined by the diagram shown in Figure 2.10(b), which includes reversed lifting and
scaling steps and a coarsening step. The coarsening step will be illustrated in the following section. Furthermore,
repeating the single-level lifted WT yields the multi-level WT. Besides, a multi-level FWT requires the input mesh
with the same levels of subdivision connectivity so that the computation steps are well defined.

2.4.2 Vertex Partition and Coarsening
Since vertex partition and mesh coarsening are non-trivial steps, before proceeding further to the lifting framework,
we introduce the algorithms of vertex partition and mesh coarsening first. We start by the subdivision connectivity
detection algorithm. Based on the detection result, we can partition the vertices as well as coarsen the mesh. Hor-

14 2.4. MULTIRESOLUTION ANALYSIS AND WTS

Refinement
Lifting I

+
Scaling I
×

Lifting II
+

Lifting II
−

Scaling I
÷

Lifting I
− Coarsening

(a)

(b)

Figure 2.10: Diagrams of the lifted WT steps. (a) The steps of the IWT. (b) The steps of the FWT. The sign of a box indicates the used operator in
a lifting or scaling step.

mann [11] and Taubin [26] proposed two subdivision connectivity detection algorithms. Hormann’s method, however,
has a serious limitation. It cannot applied to a mesh in which all of the vertices are regular. Thus, in what follows, we
introduce Taubin’s covering mesh method, which is used in our lifted WT implementation.

The covering mesh method can detect subdivision connectivity with respect to any topologic refinement rules. In
this section, PTQ detection is the primary case in illustrating this method. Since the geometry of a mesh is not relevant
to the covering mesh method, we consider only topology. Generally, the covering mesh method identifies subdivision
connectivity by two steps: 1) reversing quadrisection on each triangle to produce a coarse triangle known as a tile and
2) filtering the tiles. Reversing quadrisection is realized as merging each triangle with its three adjacent triangles to
produce a tile for the triangle. The process of reversing quadrisection on a triangle f can be shown in Figure 2.11,
where T is the obtained tile. Vertices v1, v2, and v3 are the vertices that compose f ’s adjacent triangles and are not in
f , and they become the corners of T . The vertices of f are now the covered vertices of T . Reversing quadrisection
is skipped on triangles without three adjacent neighbours. The next step is filtering the obtained tiles. Filtering the
tiles is realized as grouping the tiles into sets by their connectivity. Two tiles are said to be connected if they share
two corners. Then, we check if one of the sets is equivalent to the original mesh, which is realized as checking if all
the covered vertices and corners have a one-to-one mapping to the vertices of the original mesh. If there exists a set
of tiles that passes this check, the original mesh has subdivision connectivity. Otherwise, the original mesh does not
have subdivision connectivity.

Based on the result, we can classify the vertices of the mesh. Clearly, applying PTQ to the satisfied set of tiles yield
the original mesh, and the covered vertices of the set of tiles are vertices introduced by PTQ, so they constitute the
set of new vertices. The other vertices, all the corners of the set of tiles, constitute the set of old vertices. Figure 2.12
shows an example of detecting subdivision connectivity and classifying vertices of a mesh. Figure 2.12(b) shows the
satisfied set of tiles obtained from applying Taubin’s method to the mesh shown in Figure 2.12(a). The white dots are
the covered vertices of all the tiles, and the black dots are corners of all the tiles. Thus, the vertices of the mesh are
classified as shown in Figure 2.12(c). The white dots represent vertices that constitute the set of new vertices, as they
were identified as covered vertices in the detection, and the black dots represent vertices that constitute the set of old
vertices.

Also, mesh coarsening can be well defined based on the result of subdivision connectivity detection. For a mesh
with vertices being classified, the coarsening step is done by removing the new vertices and the edges that connect
two new vertices and then linking the broken edges previously joined by a new vertex to reconstruct coarse faces.
Figure 2.13 illustrates coarsening the classified mesh shown in Figure 2.12(c), where empty dots and dashed lines in
the left mesh refer to vertices and edges to be removed. The remaining old vertices and edges and faces that link them
constitute the coarsened mesh.

2.4.3 Lifted Loop Subdivision
Back to the lifting framework, to facilitate understanding, we present a lifted version of Loop subdivision as follows.
Consider a closed triangle mesh, of which the vertices are denoted by an old vertex set Vold . After the topologic

CHAPTER 2. BACKGROUND 15

v2

v3 v1

f

v2

v3 v1

T
reverse

quadrisection

(a) (b)

Figure 2.11: Example of reversing quadrisecting on a triangle f to build its tile T . Vertices v1, v2, and v3 are corners of T , and vertices of f are
corners of T .

(a) (b) (c)

Figure 2.12: Example of detecting subdivision connectivity. (a) The mesh. (b) The set of tiles that passes the vertex mapping check. The black and
white dots are corners and covered vertices of the tiles. (c) Vertex classification based on the result of subdivision connectivity detection. White
dots represent vertices that constitute the set of new vertices, and black dots represent vertices that constitute the set of old vertices.

Coarsen

Figure 2.13: Example of coarsening the mesh shown in Figure 2.8(b). Empty dots and dashed lines in the right mesh refer to vertices and edges to
be removed.

16 2.4. MULTIRESOLUTION ANALYSIS AND WTS

refinement, PTQ introduces new vertices denoted by a new vertex set Vnew to the mesh. The vertices in the mesh now
can be viewed as in two disjoint sets, the old and new vertex set, which satisfy the partition requirement of the lifting
scheme. The lifted Loop subdivision consists of two lifting steps and one scaling step. These steps are sequentially
performed, and a single step updates either the new vertex set or the old vertex set. The computations of the three
steps are defined as follows:

1. Lifting I. The first lifting step adds a filtered version of the old vertex set to the new vertex set. Let v be a vertex
in Vnew and v1, v2, v3, and v4 be vertices in Vold . The topologic relations between v1, v2, v3, and v4 and v are
specified by the mask shown in Figure 2.14(a). Then, the position of v is given by

v =
3
8
(v1 + v2)+

1
8
(v3 + v4).

2. Scaling. The scaling step multiplies the old vertex set by a scalar. Let v be a vertex in Vold with valence n.
Then, the updated value v′ of v is given by

v′ = βnv,

where

βn =
8
5

(
3
8
+

1
4

cos
2π

n

)2

.

3. Lifting II. The second lifting step adds a filtered version of the new vertex set to the old vertex set. Let v be
a vertex in Vold , and v1, v2 ..., and vn be the n 1-ring neighbours of v, which are also in Vnew. Their topologic
relations are specified by the mask shown in Figure 2.14(b). Then, the updated value v′ of v is given by

v′ = v+δn

n

∑
i=1

ei,

where

δn =
1
n

[
1− 8

5

(
3
8
+

1
4

cos
2π

n

)2
]
.

The reader can verify that the lifted Loop subdivision produces the same result as the classical Loop subdivision.
The advantage is that the lifted Loop subdivision is reversible, which serves as a starting point for designing a lifted
WT. Also, additional lifting or scaling steps can be introduced to improve the mathematical properties of the transform.
In the following section, we present the lifted Loop WT which is derived from the lifted Loop subdivision.

2.4.4 Lifted Loop WT
Bertram [3] introduced an additional lifting step to the lifted Loop subdivision to define the Lifted Loop WT for
a closed mesh. Then, Wang et al. [30] introduce more lifting steps to extend the lifted Loop WT to meshes with
boundaries. As described earlier, the lifting scheme guarantees the WT is trivially invertible. We start by introducing
the lifted Loop FWT. Then the IWT can be yielded by reversing the operations of the FWT.

The computations in the single-level FWT consists of six lifting steps and a scaling step. After incorporating the
coarsening step, the operations of lifted Loop FWT can be illustrated by the diagram shown in Figure 2.15, where
the sign of a box indicates the operator used in a lifting or scaling step. According to Wang et al. [30], for the FWT,
the vertices of a mesh are split into two sets: an old vertex set Vold and a new vertex set Vnew. The vertices that have
been introduced by PTQ belong to Vnew, and the other vertices belong to Vold . Given the partition of the vertices, the
computations in FWT are defined as below:

1. Lifting I. The first lifting step subtracts a filtered version of the boundary vertices in Vnew from those in Vold .
Let v be a boundary vertex in Vold , and v1 and v2 be boundary vertices from Vnew. The relative positions of v1
and v2 to v are specified by the mask shown in Figure 2.16(a). Then, the updated value v′ of v is given by

v′ = v− 1
4
(v1 + v2) .

CHAPTER 2. BACKGROUND 17

v
v1v2

v3

v4

(a)

v1

v2

v3

vn−1
vn

v

(b)

Figure 2.14: Masks of the lifted Loop subdivision for a closed triangle mesh.

Lift I
−

Lift II
−

Lift III
−

Scale
÷

Lift IV
−

Lift V
−

Lift VI
−

Coarsen

Figure 2.15: The FWT for a one-level lifted Loop WT.

2. Lifting II. The second lifting step subtracts a filtered version of the boundary vertices in Vold from those in
Vnew. Let v be a boundary vertex in Vnew, and v1 and v2 be vertices from Vold . The relative positions of v1 and v2
to v are specified by the mask shown in Figure 2.16(b). Then, the updated value v′ of v is given by

v′ = v− 1
2
(v1 + v2) .

3. Lifting III. The third lifting step subtracts a filtered version of the interior vertices in Vnew from those in Vold .
Let v be a vertex in Vold , and v1, v2 ..., and vn be the n 1-ring neighbours of v, which are also in Vnew. The
relative positions of v1, v2 ..., and vn to v are specified by the mask shown in Figure 2.16(c). Then, the updated
value v′ of v is given by

v′ = v−δn

n

∑
j=1

v j,

where

δn =
1
n

[
1− 8

5

(
3
8
+

1
4

cos
2π

n

)2
]
.

4. Scaling. The scaling step divides the interior vertices in Vold by a scalar. Let v be an interior vertex of valence
n in Vold . The updated value of v′ of v is given by

v′ =
v

βn
,

where

βn =
8
5

(
3
8
+

1
4

cos
2π

n

)2

.

5. Lifting IV. The fourth lifting step subtracts a filtered version of the vertices in Vold from the interior vertices in
Vnew. Let v be an interior vertex in Vnew, and v1, v2, v3, and v4 be vertices from Vold . The relative positions of v1,

18 2.4. MULTIRESOLUTION ANALYSIS AND WTS

v2, v3, and v4 to v are specified by the mask shown in Figure 2.16(d). Then, the updated value v′ of v is given by

v′ = v−
[

3
8
(v1 + v2)+

1
8
(v3 + v4)

]
.

6. Lifting V. The fifth lifting step subtracts a filtered version of the boundary vertices in Vnew from those in Vold
Let v1, v2, v3, and v4 be boundary vertices in Vold , and v be a boundary vertex from Vnew. The relative positions
of v1, v2, v3, and v4 to v are specified by the mask shown in Figure 2.16(e). Then, the updated values of v′1, v′2,
v′3, and v′4 of v1, v2, v3, and v4 are given by

v′i = vi−ηiv ∀i = 1,2,3,4,

where

η1 = η4 =−0.525336 and η2 = η3 = 0.189068.

7. Lifting VI. The last lifting step subtracts a filtered version of the interior vertices in Vnew from the vertices in
Vold . Let v1, v2, v3, and v4 be vertices in Vold , and v be an interior vertex from Vnew. The relative positions of
v1, v2, v3, and v4 to v are specified by the mask shown in Figure 2.16(f). Let αi, βi, γi, and δi and ωi be the
coefficients and weight associated with vi of valence ni, where i ∈ {1,2,3,4}. Coefficients αi, βi, γi, and δi are
defined as

αi =
3
8
+

(
3
8
+

1
4

cos
2π

ni

)2

,

βi =
8
5

(
3
8
+

1
4

cos
2π

ni

)2

,

γi =
1
ni

[
5
8
−
(

3
8
+

1
4

cos
2π

ni

)2
]
, and

δi =
1
ni

[
1− 8

5

(
3
8
+

1
4

cos
2π

ni

)2
]
.

The four weights ωi (i = 1,2,3,4) are calculated by solving the following linear equation:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

ω1
ω2
ω3
ω4

=

b1
b2
b3
b4

 . (2.1)

CHAPTER 2. BACKGROUND 19

The elements of the left side 4×4 matrix in Equation 2.1 are given by

a11 = α
2
1 + γ

2
2 + γ

2
3 + γ

2
4 +

1
256

(n0−3)+
5
32

n0,

a12 = a21 = α1γ1 + γ2α2 + γ
2
3 + γ

2
4 +

21
64

,

a13 = a31 = α1γ1 + γ
2
2 + γ3α3 +

85
256

,

a14 = a41 = α1γ1 + γ
2
2 + γ4α4 +

85
256

,

a22 = γ
2
1 +α

2
2 + γ

2
3 + γ

2
4 +

1
256

(n1−3)+
5
32

n1,

a23 = a32 = γ
2
0 +α1γ1 + γ2α2 +

85
256

,

a24 = a42 = γ
2
0 +α1γ1 + γ3α3 +

85
256

,

a33 = γ
2
0 + γ

2
1 +α

2
2 +

1
256

(n2−2)+
5
32

n2,

a34 = a43 = γ
2
0 + γ

2
1 +

1
64

, and

a44 = γ
2
0 + γ

2
1 +α

2
3 +

1
256

(n3−2)+
5
32

n3.

The elements of the right side 4×1matrix in Equation 2.1 are given by

b1 = α0δ0 + γ1δ1 +
3
8
, b2 = γ0δ0 +α1δ1 +

3
8
, and b3 = b4 = γ0δ0 + γ1δ1 +

1
8
.

Then, the updated value v′i of vi is given by

v′i = vi−ωiv ∀i = 1,2,3,4.

After the computations, a coarsening step, as described earlier, is employed in order to remove the vertices in Vnew
from the input mesh. These new vertices then become wavelet coefficients, and the old vertices remain in the coarse
mesh.

The single-level IWT can be easily defined by reversing the operations of the single-level FWT. First, PTQ is
employed in order to refine the input mesh, and the vertices are also partitioned. The vertices introduced by PTQ
belong to the new vertex set, and the other vertices belong to the old vertex set. The vertices have the same classi-
fication as in the FWT. In addition, wavelet coefficients are used as the initial positions for the new vertices. Then,
the IWT applies the lifting/scaling steps in the reverse order to compute the refined mesh. The operations in the IWT
are illustrated by the diagram in Figure 2.17. In each step, the computation is defined as inverting the operator (e.g.,
changing subtraction to addition or changing division to multiplication) of the corresponding step in the FWT. The
masks shown in Figure 2.16 are also used in the corresponding steps in the IWT.

2.4.5 Lifted Butterfly WT
Having described the lifted Loop WT, we now introduce the lifted Butterfly WT, originally proposed by Sweldens
et al. [24] for closed triangle meshes. The lifted Butterfly WT shares the same coarsening and refinement operations
with the lifted Loop WT. Therefore, in what follows, we focus on introducing the lifting computations. We start by
the single-level FWT. It consists of two lifting steps. The diagram shown in Figure 2.18 illustrates the operations in
the FWT, where the sign of a box indicates the operator used in a lifting step. The Butterfly FWT separates vertices
in the same way as in the Loop FWT. For the input mesh, the vertices that have been introduced by PTQ are classified
as in a new vertex set Vnew, and the other vertices are classified as in an old vertex set Vold . Given this vertex partition,
the computations in the single-level FWT are defined as below:

20 2.4. MULTIRESOLUTION ANALYSIS AND WTS

vv1 v2

(a)

vv1 v2

(b)

v1

v2

v3

vn−1
vn

v

(c)

v
v1 v2

v3

v4

(d)

vv1 v2 v3 v4

(e)

v
v1 v2

v3

v4

(f)

Figure 2.16: Masks for the lifted Loop WT.

Refine
Lift VI

+

Lift V
+

Lift IV
+

Scale
×

Lift III
+

Lift II
+

Lift I
+

Figure 2.17: The IWT for a single-level Loop WT.

Lift I
−

Lift II
+

Coarsen

Figure 2.18: The FWT of a single-level Butterfly WT.

CHAPTER 2. BACKGROUND 21

v
v1 v2

v3

v4

v5 v6

v7v8

(a)

v
v1 v2

(b)

Figure 2.19: Masks used in the lifted Butterfly WT.

Refine
Lift II
−

Lift I
+

Figure 2.20: The IWT for a single-level lifted Butterfly WT.

1. Lifting I. The first lifting step subtracts a filtered version of the vertices in Vold from those in Vnew. Let v be a
vertex from Vnew, and {vi}8

i=1 be vertices from Vold . The relative positions of {vi}8
i=1 to e are specified by the

mask shown in Figure 2.19(a). Then, the updated value v′ of v is given by

v′ = v−
[

1
2
(v1 + v2)+

1
8
(v3 + v4)−

1
16

(v5 + v6 + v7 + v8)

]
.

2. Lifting II. The second lifting step adds a filtered version of the vertices in Vnew to those in Vold . Let v1 and v2
be vertices from Vold , and v be a vertex from Vnew. The relative positions of v1 and v2 to v are specified by the
mask shown in Figure 2.19(b). Then, the updated values v′1 and v′2 of v1 and v2 are given by

v′i = vi + siv ∀i = 1,2, (2.2)

where si is a weight of vi. The calculation of si will be discussed later.

As with obtaining the IWT from the Loop FWT, the Butterfly IWT is defined as first employing PTQ and then
reversing the two lifting steps and their operators. The operations in the single-level IWT are illustrated in Figure 2.20.

The multi-level Butterfly WT can be implemented by iteratively applying the single-level FWT or IWT. Next, we
consider the calculation of the weight si used in Equation 2.2, which is affected by the number of levels in the FWT or
IWT. From the originally proposed calculation [24], we conclude a closed formula for computing the weights, which
works on a closed mesh. Let L be the number of levels in the WT, and let j denote the current level in the WT, where
j ∈ {1,2, . . . ,L} and j = 1 is the coarsest level and j = L is the finest level. Then, the weight si for vertex vi can be
computed using the formula:

si =
4L− j−1

2

[
1+

n
6
(4L− j−1−1)

] ,
where n is the valence of vi.

22 2.4. MULTIRESOLUTION ANALYSIS AND WTS

23

Chapter 3

Wavelet Transform Toolkit

3.1 Introduction
This chapter introduces the Wavelet Transform Toolkit (WTT), the software developed by the author. The WTT
consists of a C++ header-only library and three application programs. The library provides application programming
interface (API) for computing multi-level WTs on a 3-D mesh. The API is sufficiently generic that allows users to
add definitions of custom WTs. For convenient use, the library provides several built-in functions to assist in defining
a WT. In the case that the Loop and Butterfly WTs are of interest, the library offers some wrapper functions that
users can call directly to perform the WTs for a triangle mesh. The application programs demonstrate WT-based
applications, including compression and denoising.

The remainder of this chapter is organized as follows. We start by explaining how to build and install the WTT.
This is then followed by an introduction to some basic concepts related to the WTT. After that, we give an overview
of and describe its APIs. Lastly, descriptions of the demonstration application programs are given.

3.2 Software Installation
The WTT is written in C++ and utilizes many C++17 features. Therefore, in order to build the WTT, a compiler
with C++17 support is needed. The use of GCC 7.2.0 or higher and Clang 5.0.0 or higher are recommended as C++
compilers. Since the WTT has the Boost Library [5] and the Computational Geometry Algorithm Library (CGAL)
[7] as dependencies, these dependencies should be installed prior to building the WTT. The following library versions
have been verified to work with the WTT:

• CGAL 4.2.0 and above (CGAL 5.0 is recommended).

• Boost 1.58.0 and above (Boost 1.71.0 is recommended).

The WTT supports a build process based on CMake [13]. In what follows, let $SOURCE_DIR denote the top-
level directory of the WTT software distribution, $BUILD_DIR denote a directory where build files are created, and
$INSTALL_DIR denote a directory where the software is to be installed. To build and install the WTT, perform the
following steps (in order):

1. Generate the native build files by running the command:

cmake -H$SOURCE_DIR -B$BUILD_DIR -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR

2. Build the software by running the command:

cmake --build $BUILD_DIR --clean -first

3. Install the software by running the command:

cmake --build $BUILD_DIR --target install

24 3.3. CONCEPTS

3.3 Concepts
Before proceeding further, we introduce some basic concepts related to the WTT. Readers are expected to be familiar
with the basics of C++. The WTT is developed based on CGAL and uses the template class CGAL::Polyhedron_3

as the type of a mesh. The type Polyhedron_3 utilizes the halfedge data structure [19, 31] and provides member
functions to access the vertices, edges, and faces of a mesh. A vertex is accessed through the Vertex_handle and
Vertex_const_handle handle classes. Users can use the handles to query and modify the position (i.e., x, y, and z
coordinates) of a vertex and access its adjacent vertices.

In addition to the position, we introduce additional properties (i.e., the level, type, ID, and border properties) to
a vertex. The level property, an integer starting from 0, represents the resolution of a vertex. The type property, an
integer, generally represents the type of a vertex produced by a topologic refinement rule. The ID property, an integer,
is the unique identifier of a vertex. Lastly, the border property, a boolean, indicates if a vertex is on the boundary.

3.4 Library
The library provides the capability to define and compute multi-level WTs on a 3-D mesh. Since this library is
header-only, users only need to include the corresponding headers to use the library. The library provides a generic
API, which is composed of several template classes, to allow users to add definitions to customize a WT. The library
decomposes computing a WT into several operations. Users could add their own definitions to the operations (e.g.,
vertex classification, topologic modifications, lifting computations,) for customization. For convenience of use, some
predefined operations are provided to assist in defining a WT. If PTQ is employed in a WT, users can use built-in
functions for classifying vertices and coarsening and refining the mesh. By defining the lifting computations, one can
customize the WT. Furthermore, the library offers built-in functions that implement the Loop and Butterfly WTs for
direct use. In what follows, we illustrate the usage of the library in detail.

3.4.1 Usage of API
We start by describing the generic API for defining and computing a multi-level WT. In order to define a custom WT,
users can provide definitions of the special classes. Based on the functionality, the classes are divided into compu-
tational classes and operational classes. Generally, defining a custom WT is realized as instantiating the operational
classes first and then using them to instantiate the computational classes. The objects of the instantiated computa-
tional classes can be used as normal function calls to compute the FWT and IWT. The computational classes are
1) Wavelet_analyze and 2) Wavelet_synthesize, which implement the functionality for computing the multi-level
FWT and IWT, respectively. They accept the operational classes as template parameters for instantiation. The oper-
ational classes are 1) Wavelet_mesh_operations which specifies operations to vertices, and 2) Wavelet_analysis_ops
and 3) Wavelet_synthesis_ops, which abstract the operations of the FWT and IWT. User-defined functions can be
used to instantiate the three classes, and these functions finally propagate to the computational classes to compute a
custom WT. Next, we consider a code example to illustrate how to define a custom WT as well as use some of the
built-in functions.

A complete example of defining and computing a WT is shown in Listing 3.1. In lines 1 to 20, we include the
required headers and define several handy type aliases. As described earlier, in order to define a WT, the operational
classes, Wavelet_mesh_operations, Wavelet_analysis_ops, and Wavelet_synthesis_ops, need to be instantiated first.
The three template classes define the interfaces of the operations in the FWT and IWT. User-defined functions, which
realize the operations, are passed in via the template parameters and constructors of the operational classes and
wrapped in their member functions. The operational classes are used as adaptors that the computational class can
use to access the user-defined operations for computing a custom WT through their member functions. Illustrating the
instantiations of Wavelet_mesh_operations, Wavelet_analysis_ops, and Wavelet_synthesis_ops with a description
of the code is given in what follows.

Listing 3.1: Example of defining and computing a WT.

1 #include <wtlib/ptq_impl/classify_vertices.hpp>
2 #include <wtlib/ptq_impl/subdivision_modifier.hpp>

CHAPTER 3. SOFTWARE 25

3 #include <wtlib/wavelet_mesh_operations.hpp>
4 #include <wtlib/wavelet_operations.hpp>
5 #include <CGAL/Polyhedron_3.h>
6 #include <CGAL/Simple_cartesian.h>
7 #include <map>
8
9 using K = CGAL::Simple_cartesian <double>;

10 using Mesh = CGAL::Polyhedron_3 <K>;
11 using Vector3 = Mesh::Traits::Vector_3;
12 using Vertex_handle = Mesh::Vertex_handle;
13 using Vertex_const_handle = Mesh::Vertex_const_handle;
14
15 struct Vertex_info {
16 int level;
17 int type;
18 int id;
19 bool border;
20 };
21
22 int main() {
23 std::map<Vertex_const_handle , Vertex_info > properties;
24 auto get_level = [&properties](Vertex_const_handle v) -> int {
25 return properties.at(v).level;
26 };
27 auto set_level = [&properties](Vertex_handle v, int level) -> void {
28 properties[v].level = level;
29 };
30
31 auto get_type = [&properties](Vertex_const_handle v) -> int {
32 return properties.at(v).type;
33 };
34 auto set_type = [&properties](Vertex_handle v, int type) -> void {
35 properties[v].type = type;
36 };
37
38 auto get_id = [&properties](Vertex_const_handle v) -> int {
39 return properties.at(v).id;
40 };
41 auto set_id = [&properties](Vertex_handle v, int id) -> void {
42 properties[v].id = id;
43 };
44
45 auto get_border = [&properties](Vertex_const_handle v) -> bool {
46 return properties.at(v).border;
47 };
48 auto set_border = [&properties](Vertex_handle v, bool border) -> void {
49 properties[v].border = border;
50 };
51
52 using Mesh_ops = wtlib::Wavelet_mesh_operations <Mesh ,
53 decltype(get_id),
54 decltype(set_id),
55 decltype(get_level),
56 decltype(set_level),
57 decltype(get_type),
58 decltype(set_type),
59 decltype(get_border),

26 3.4. LIBRARY

60 decltype(set_border)>;
61
62 Mesh_ops mesh_ops(get_id , set_id ,
63 get_level , set_level ,
64 get_type , set_type ,
65 get_border , set_border);
66
67 auto get_num_types = [](Mesh& mesh , const Mesh_ops& mesh_ops) -> int {
68 /**
69 * Return the number of types of vertices, which depends on the topologic
70 * refinement rule. If PTQ is used, this function return 2, as below.
71 */
72 return 2;
73 };
74
75 auto classify = [](Mesh& mesh , const Mesh_ops& mesh_ops , int num_levels ,
76 std::vector <Vertex_handle >& vertices ,
77 std::vector <Vertex_handle*>& bands) -> bool {
78 /**
79 * Detect subdivision connectivity and classify vertices. If PTQ is used in
80 * the WT, the implementation below can be used.
81 */
82 return wtlib::ptq_impl::
83 PTQ_classify_vertices <Mesh , Mesh_ops >::
84 classify(mesh , mesh_ops , num_levels , vertices , bands , true);
85 };
86
87 auto fwt_init = [](Mesh& mesh , const Mesh_ops& mesh_ops , int num_levels) -> void

{
88 // Do any necessary initialization before lifting.
89 };
90
91 auto fwt_cleanup = [](Mesh& mesh , const Mesh_ops& mesh_ops) -> void {}
92 // Cleanup resources acquired in initialization after the FWT is done.
93 };
94
95 auto fwt_lift = [](Mesh& mesh , const Mesh_ops& mesh_ops ,
96 Vertex_handle** first ,
97 Vertex_handle** last) -> void {
98 // Do lifting calculation.
99 };

100
101 auto coarsen = [](Mesh& mesh , const Mesh_ops& mesh_ops , int num_levels) -> void {
102 /**
103 * Coarsen the mesh after lifting, depending on the topologic refinement
104 * rule. If PTQ is used, the implementation below can be used.
105 */
106 wtlib::ptq_impl::PTQ_subdivision_modifier <Mesh , Mesh_ops >::coarsen(mesh ,

mesh_ops , num_levels);
107 };
108
109 using FWT_ops = wtlib::Wavelet_analysis_ops <Mesh , Mesh_ops ,
110 decltype(get_num_types),
111 decltype(classify),
112 decltype(fwt_init),
113 decltype(fwt_cleanup),
114 decltype(fwt_lift),

CHAPTER 3. SOFTWARE 27

115 decltype(coarsen)>;
116
117 FWT_ops fwt_ops(get_num_types , classify , fwt_init ,
118 fwt_cleanup , fwt_lift , coarsen);
119
120 auto get_mesh_size = [](Mesh& mesh ,
121 const Mesh_ops& mesh_ops ,
122 int num_levels) -> int {
123 /**
124 * Predicate the number of vertices in the final mesh after num_levels
125 * levels IWT. If PTQ is used, the implementation below could be used.
126 */
127 return wtlib::ptq_impl::
128 PTQ_subdivision_modifier <Mesh , Mesh_ops >::
129 get_mesh_size(mesh , mesh_ops , num_levels);
130 };
131
132 auto iwt_init = [](Mesh& mesh , const Mesh_ops& mesh_ops , int num_levels) -> void

{
133 // Do any necessary initialization before lifting.
134 };
135
136 auto iwt_cleanup = [](Mesh& mesh , const Mesh_ops& mesh_ops) -> void {
137 // Cleanup resources acquired in initialization after the IWT is done.
138 };
139
140 auto refine = [](Mesh& mesh , const Mesh_ops& mesh_ops ,
141 int num_levels ,
142 std::vector <Vertex_handle >& vertices ,
143 std::vector <Vertex_handle*>& bands) -> void {
144 /**
145 * Refine the mesh by a topologic refinement rule before lifting. If PTQ is
146 * used, the implementation below can be used.
147 */
148 wtlib::ptq_impl::
149 PTQ_subdivision_modifier <Mesh , Mesh_ops >::
150 refine(mesh , mesh_ops , num_levels , vertices , bands);
151 };
152
153 auto iwt_lift = [](Mesh& mesh , const Mesh_ops& mesh_ops ,
154 Vertex_handle** first ,
155 Vertex_handle** last) -> void {
156 // Do lifting calculation.
157 };
158
159 using IWT_ops = wtlib::Wavelet_synthesis_ops <Mesh ,
160 Mesh_ops ,
161 decltype(get_num_types),
162 decltype(get_mesh_size),
163 decltype(iwt_init),
164 decltype(iwt_cleanup),
165 decltype(refine),
166 decltype(iwt_lift)>;
167
168 IWT_ops iwt_ops(get_num_types ,
169 get_mesh_size ,
170 iwt_init ,

28 3.4. LIBRARY

171 iwt_cleanup ,
172 refine ,
173 iwt_lift);
174
175 using FWT = wtlib::Wavelet_analyze <Mesh_ops , FWT_ops >;
176 using IWT = wtlib::Wavelet_synthesize <Mesh_ops , IWT_ops >;
177 FWT fwt(mesh_ops , fwt_ops);
178 IWT iwt(mesh_ops , iwt_ops);
179
180 Mesh mesh;
181 if (!std::cin >> mesh) {
182 std::cerr << "Fail to read mesh.\n";
183 std::exit(1);
184 }
185 std::vector <std::vector <Vector3 >> coefs;
186 int num_levels = 4;
187
188 if (!fwt(mesh , coefs , num_levels)) {
189 std::cerr << "Mesh does not have "
190 << num_levels
191 << " levels subdivision connectivity.\n";
192 std::exit(1);
193 }
194
195 iwt(mesh , coefs , num_levels);
196 return 0;
197 }

Usage of Wavelet mesh operations

Proceeding to the main function, lines 23 to 65 instantiate the Wavelet_mesh_operations class as Mesh_ops and define
an object named as mesh_ops. Class Wavelet_mesh_operations specifies the operations of accessing the level, type,
ID, and border properties of a vertex. First, line 23 defines a vertex property map, where the properties of each
vertex are to be stored. Then, lines 24 to 50 define several lambda functions for getting/setting each of the properties.
The implementation of the property access is not limited to lambda functions, which could be functions or functional
objects as long as their interfaces match with that of the corresponding lambda functions. After that, line 52 instantiates
Wavelet_mesh_operations as Mesh_ops by the declared types of the lambdas. Line 62 constructs the Mesh_ops object
mesh_ops by these lambda functions, and each of these lambda functions is wrapped in a corresponding member
function of mesh_ops.

Usage of Wavelet analysis ops

Next, lines 67 to 118 instantiate the Wavelet_analysis_ops class as FWT_ops and define an object named as fwt_ops.
Class Wavelet_analysis_ops abstracts the operations of the FWT. lines 67 to 107 define several lambda functions that
implement the required operations. Descriptions of the lambda functions are given in what follows.

The lambda function defined in line 67 provides the number of vertex types in the WT. Generally, the number of
types is determined by the number of types of vertices introduced in topologic refinement plus one. Suppose that PTQ
is used in the WT. In this case, the function should return 2.

Line 75 defines a lambda function where detecting subdivision connectivity and classifying vertices should be
implemented. Since this operation is not trivial, the built-in function for the PTQ case is used. For a custom imple-
mentation, the following requirements should be satisfied in order to embed the implementation into the WTT library
correctly. The return value is a boolean flag indicating if levels levels of subdivision connectivity was successfully
detected in the mesh. If successful, the level, type, and ID properties should be assigned to each vertex. Handles of all
the vertices should be placed in the array vertices and sorted by level, type, and ID in ascending order. Array bands

CHAPTER 3. SOFTWARE 29

should be populated continuously by pointers to the starting vertex handle of each type of each level in vertices and
the pointer to the end of vertices.

The lambda functions defined in lines 87 and 91 are used to perform any necessary initialization and cleanup
before and after the multi-level FWT computations. Additional resources can be allocated and released in this pair of
functions.

Line 95 defines a lambda function where the lifting steps of the single-level FWT should be populated. This
function is called iteratively to perform the multi-level FWT. For a single level WT, the vertices that participate in the
computations are determined by *first and *last. Users could design custom lifting computations for these vertices.
The vertices below the current level (i.e., the old vertices) can be accessed continuously through the handles in between
*first and *(first+1), and the vertices at the current level (i.e., the new vertices) can be accessed continuously
through the handles in between *(first+1) and *last. Incrementing *(first+1) and dereferencing it obtains the
pointer to the handle of the starting vertex of the next type among the new vertices, if there is more than one type.

Line 101 defines a lambda function where the coarsening should be implemented. This function is also called
iteratively to perform the multi-level FWT. Since this operation is not trivial, the built-in implementation for the PTQ
case is used. In a custom implementation, the vertices whose levels equal to level are expected to be removed from
the mesh.

After all the required operations are defined, line 109 instantiates Wavelet_analysis_ops as FWT_ops by the de-
clared types of the lambdas. line 177 constructs the FWT_ops object fwt_ops by these lambda functions, and each of
these lambda functions is wrapped in a corresponding member function of fwt_ops.

Usage of Wavelet synthesis ops

Proceeding further with the code example, lines 120 to 173 instantiate the Wavelet_synthesis_ops class as IWT_ops

and define an object named as iwt_ops. The class Wavelet_synthesis_ops abstracts the operations of the IWT.
lines 120 to 157 define several lambda functions that implement the required operations for the WT. Descriptions
of the lambda functions are given in what follows.

The lambda function defined in line 120 is used to determine the final number of vertices in the mesh after
num_levels levels of refinement. The returned result is used by the library to allocate adequate memory for internal
buffers. The final number can be calculated based on the topologic refinement rule used in the WT, since a topologic
refinement rule determines the relationship between the numbers of vertices, edges, and faces before and after the
refinement. In the case of PTQ, the built-in function could be employed as shown in line 129.

The lambda functions defined in lines 132 and 136 are used to perform any necessary initialization and cleanup
before and after the multi-level IWT computations. Additional resources can be allocated and released in this pair of
functions.

Line 140 defines a lambda function where the topologic refinement should be implemented. This function is
called iteratively to perform multi-level topologic refinement on the mesh. Since this operation is not trivial, the built-
in function for the PTQ case is used. For a custom implementation, the following requirements should be satisfied in
order to be incorporated into the WTT library correctly. First, a well-defined topologic refinement rule needs to be
implemented. For the vertices introduced by the rule, the parameter level should be assigned to their level property.
The type and ID of these vertices should also be assigned, depending on the rule. Then, the handles of the introduced
vertices should be appended to the array vertices and sorted by type and ID in ascending order. Pointers to the end
of the new vertex handles of each type in vertices should be appended to bands.

Line 153 defines a lambda function where the lifting steps of the single-level IWT should be implemented. This
function is called iteratively to perform the multi-level IWT. The parameters have the same meaning as that in the
fwt_lift. Users can use the parameters to navigate to the vertices for which a custom lifting step is designed.

After all the required operations are defined, line 159 instantiates Wavelet_synthesis_ops as IWT_ops by the de-
clared types of the lambdas. Since the IWT and FWT usually have the same number of vertex types, the get_num_types

lambda function being used in instantiating Wavelet_analysis_ops can be reused here. Then, line 168 constructs the
IWT_ops object iwt_ops by these lambda functions, and each of these lambda functions is wrapped in a corresponding
member function of iwt_ops.

30 3.4. LIBRARY

Usage of Wavelet analyze and Wavelet synthesize

Having defined all the operational classes, we can use them to define the computational classes, Wavelet_analyze and
Wavelet_synthesize. lines 175 and 176 instantiate the computational classes as FWT and IWT by the defined Mesh_ops,
FWT_ops and IWT_ops. lines 177 and 178 constructs the objects fwt and iwt by mesh_ops, fwt_ops, and iwt_ops. The
objects fwt and iwt can later be used via the function call operator to compute the multi-level FWT and IWT.

Next, lines 180 and 181 defines the input mesh and reads data from standard input to construct the input mesh.
line 185 defines a container where the wavelet coefficients obtained from the multi-level FWT are stored. The layout
of the wavelet coefficients is given as follows. Since a wavelet coefficient is associated with a vertex, the position of
the wavelet coefficient in coefs is determined by the level, type, and ID of the original vertex. The wavelet coefficients
are sorted by the level and type of the original vertices in ascending order, and each inner array of coefs stores the
wavelet coefficients with the same type and level. In an inner array of coefs, the wavelet coefficients are sorted by the
ID of original vertices in ascending order.

Then, line 186 defines the number of levels of the WT as 4. line 188 compute the 4 levels of FWT for the input
mesh. Since the FWT could fail, we add a block following line 188 to handle the failure case. For a successful result,
the input mesh is coarsened 4 times, and coefs is filled with the wavelet coefficients. After that, line 195 computes
a 4-level IWT based on the mesh and wavelet coefficients. The mesh is refined 4 times, and the wavelet coefficients
are sequentially loaded from the beginning of coefs for computations. For a well-defined WT, the original mesh is
recovered after iwt returns.

3.4.2 Loop and Butterfly WTs Built-in Functions
In case of the Loop and Butterfly WTs, the WTT library provides functions that can be used directly to compute those
WTs on a mesh. A function performs either the FWT or IWT in the Loop or Butterfly case. Next, we illustrate the
built-in WT functions, starting with the Loop case.

Loop WT Functions

The built-in functions for computing the Loop WT are: 1) loop_analyze and 2) loop_synthesize. Function loop_analyze

computes the multi-level Loop FWT on a triangle mesh, and function loop_synthesize computes the multi-level Loop
IWT. Both the functions have a template parameter that specifies the type of the mesh. The accepted type of the mesh
should be inherited from CGAL::Polyhedron_3. An example program is shown in Listing 3.2 to demonstrate the usage
of the two functions.

Listing 3.2: Example program of computing the Loop FWT and IWT on a triangle mesh.

1 #include <wtlib/loop_wavelet_transform.hpp>
2 #include <CGAL/IO/Polyhedron_iostream.h>
3 #include <CGAL/Simple_cartesian.h>
4 #include <CGAL/Polyhedron_3.h>
5
6 using Kernel = CGAL::Simple_cartesian <double>;
7 using Vector3 = Kernel::Vector_3;
8 using Mesh = CGAL::Polyhedron_3 <Kernel >;
9

10 int main() {
11 Mesh mesh;
12 if (!std::cin >> mesh) {
13 std::cerr << "Fail to read mesh.\n"
14 return 1;
15 }
16 if (!mesh.is_pure_triangle()) {
17 std::cerr << "The input mesh is not a pure triangle.\n";
18 return 1;
19 }

CHAPTER 3. SOFTWARE 31

20
21 std::vector <std::vector <Vector3 >> coefs;
22
23 bool res = wtlib::loop_analyze <Mesh >(mesh , coefs , 3);
24 if (res) {
25 wtlib::loop_synthesize <Mesh >(mesh , coefs , 3);
26 } else {
27 std::cerr << "The input mesh does not have 3 levels of subdivision

connectivity.\n";
28 return 1;
29 }
30 return 0;
31 }

The program loads a mesh from standard input and computes a three level FWT and IWT. A description of the
program follows. After including the required headers, some handy type aliases are defined by lines 6 to 8. At the
beginning of the main function, lines 11 to 19 constructs a mesh by the data read from standard input and checks
if the input mesh is a pure triangle mesh. Then, a multi-dimensional array coefs is created by line 21 to buffer the
wavelet coefficients obtained from the FWT. After that, line 23 computes a three level FWT and stores the returned
status. The mesh is coarsened three times, and the coefs is filled with wavelet coefficients. Each of the inner arrays
of coefs contains the wavelet coefficients at the same level, in ascending order. If the returned status is true, line 25
computes a three level IWT to recover the original mesh. Otherwise, the program prints an error message to standard
error, indicating the input mesh does not have three levels of subdivision connectivity.

Butterfly WT Functions

The built-in functions for the Butterfly WT are: 1) butterfly_analyze and 2) butterfly_synthesize. Function
butterfly_analyze computes the multi-level Butterfly FWT on a closed triangle mesh, and butterfly_synthesize

computes the multi-level Butterfly IWT. Except for the internal computations, the two functions have the same in-
terfaces as loop_analyze and loop_synthesize, respectively. Besides, since the Butterfly WT is defined on closed
triangle meshes, before calling the two functions, we have to check if the input mesh is closed. Otherwise, the behav-
ior is undefined. In Listing 3.3, we present a program to demonstrate the usage of the Butterfly WT functions. The
program also computes three levels the FWT and IWT on a triangle mesh read from standard input. The program is
the same as that in Listing 3.2, except that lines 21 to 24 are inserted to check if the input mesh is closed.

Listing 3.3: Example program of computing the Butterfly FWT and IWT on a closed triangle mesh.

1 #include <wtlib/butterfly_wavelet_transform.hpp>
2 #include <CGAL/IO/Polyhedron_iostream.h>
3 #include <CGAL/Simple_cartesian.h>
4 #include <CGAL/Polyhedron_3.h>
5
6 using Kernel = CGAL::Simple_cartesian <double>;
7 using Vector3 = Kernel::Vector_3;
8 using Mesh = CGAL::Polyhedron_3 <Kernel >;
9

10 int main() {
11 Mesh mesh;
12 if (!std::cin >> mesh) {
13 std::cerr << "Fail to read mesh.\n"
14 return 1;
15 }
16 if (!mesh.is_pure_triangle()) {
17 std::cerr << "The input mesh is not a pure triangle.\n";
18 return 1;
19 }
20

32 3.5. PROGRAMS

21 if (!mesh.is_closed()) {
22 std::cerr << "The Butterfly wavelet transform only supports closed mesh.\n"
23 return 1;
24 }
25
26 std::vector <std::vector <Vector3 >> coefs;
27
28 bool res = wtlib::butterfly_analyze <Mesh >(mesh , coefs , 3);
29 if (res) {
30 wtlib::butterfly_synthesize <Mesh >(mesh , coefs , 3);
31 } else {
32 std::cerr << "The input mesh does not have 3 levels of subdivision

connectivity.\n";
33 return 1;
34 }
35 return 0;
36 }

3.5 Programs
In addition to the library, the WTT includes some wavelet-based application programs that use the library. These
application programs perform FWT and IWT computation, and wavelet denoising and compression. In what follows,
we describe each application program in turn.

3.5.1 The wtt fwt and wtt iwt Programs
The WTT provides two application programs for computing multi-level Loop and Butterfly WTs: wtt_fwt and
wtt_iwt. The program wtt_fwt computes the FWT on a triangle mesh and outputs the coarsened mesh and wavelet
coefficients. The program wtt_iwt computes the IWT on a triangle mesh with wavelet coefficients and outputs the
refined mesh. Detailed descriptions of the two programs are given as below.

The wtt fwt Program

This program reads a triangle mesh from a file or standard input, computes the L-level Loop or Butterfly FWT of
the mesh, and outputs the coarsened mesh and wavelet coefficients to files or standard output. Both the input and
output mesh are in OFF format [1]. The input mesh is required to have at least L levels of subdivision connectivity.
Otherwise, the program exits with an error. In the wavelet coefficient output, each wavelet coefficient (i.e., three
real numbers separated by spaces) occupies a line, and a blank line separates wavelet coefficients of two consecutive
levels. The synopsis and command-line options of this program are given below.

Synopsis

wtt_fwt -l $levels -m $scheme
[-c $path] [-i $path] [-o $path]

Options

-l $levels

This required option sets the number of levels for the FWT to $levels. Argument $levels accepts a non-negative
integer.

-m $scheme

This required option sets the type of WT to $scheme. Argument $scheme accepts Butterfly or Loop.

CHAPTER 3. SOFTWARE 33

-c $path

This option sets the file path for the output wavelet coefficients to $path. If no file is specified, standard output is used.

-i $path

This option sets the file path for the input mesh to $path. If no file is specified, standard input is used.

-o $path

This option sets the file path for the output mesh to $path. If no file is specified, standard output is used.

The wtt_iwt Program

This program reads a triangle mesh and wavelet coefficients from files or standard input, computes the L-level Butterfly
or Loop IWT, and outputs the refined mesh to a file or standard output. Both the input and output mesh are in OFF
format. The requirements on the wavelet coefficient input are as follows. Each wavelet coefficient should occupy
a single line and be composed of three real numbers separated by spaces. A blank line should separate wavelet
coefficients in two consecutive levels. Otherwise, the behavior is undefined. It is recommended to use the wavelet
coefficients obtained from wtt_fwt, since the order of wavelet coefficients is managed internally. If the input mesh
and wavelet coefficients are from wtt_fwt, the original mesh is guaranteed to be recoverable. The synopsis and
command-line options of this program are given below.

Synopsis

wtt_iwt -l <levels > -m $scheme [-A]
[-c $path] [-i $path] [-o $path]

Options

-l $levels

This required option sets the number of levels for the IWT to $levels. Argument $levels accepts a non-negative
integer.

-m $scheme

This required option sets the type of WT to $scheme. Argument $scheme accepts Butterfly or Loop.

-A

This option enables auto-adjusting wavelet coefficients. Without this option, the program checks if the number of
wavelet coefficients matches the required number. If the check fails, the program exits with an error. With this option,
the program pads missing wavelet coefficients with zeros or truncates the extra wavelet coefficients.

-c $path

This option sets the file path for the input wavelet coefficients to $path. If no file is specified, standard input is used.

-i $path

This option sets the file path for the input mesh to $path. If no file is specified, standard input is used.

-o $path

This option sets the file path for the output mesh to $path. If no file is specified, standard output is used.

Examples

A few examples of using the above application programs are provided in what follows.

34 3.5. PROGRAMS

EXAMPLE 3.1 Given a triangle mesh file bunny.off, shipped with WTT, users can compute the 3-level Butterfly FWT
and dump the coarsened mesh to file bunny_fwt.off and wavelet coefficient to file bunny.coefs, with the command:

wtt_fwt -l 3 -m Butterfly -c bunny.coefs \
-i bunny.off -o bunny_fwt.off

�

EXAMPLE 3.2 Given a triangle mesh file bunny_fwt.off and wavelet coefficient file bunny.coefs obtained from
Example 3.1, users can compute the 3-level Butterfly IWT and output the refined mesh to file bunny_iwt.off, with
the command:

wtt_iwt -l 3 -m Butterfly -c bunny.coefs \
-i bunny_fwt.off -o bunny_iwt.off

�

EXAMPLE 3.3 Given a triangle mesh file bunny.off, users can compute the 2-level Loop IWT with all-zero wavelet
coefficients and output the refined mesh to file bunny_iwt_zero.off, with the command:

wtt_iwt -l 3 -m Butterfly -c /dev/null -A \
-i bunny_fwt.off -o bunny_iwt.off

�

3.5.2 Wavelet Denoising and Compression
In this section, we introduce another two application programs: wtt_filter and wtt_demo, which are developed for
wavelet denoising and compression. Descriptions of the two programs are given below.

The wtt_filter Program

This program demonstrates Butterfly and Loop wavelet compression on a triangle mesh. It loads a mesh in OFF
format, applies multi-level Butterfly or Loop FWT to the mesh, filters the wavelet coefficients, and performs the same
levels of the IWT to construct the output mesh. Filtering is realized as setting some of the wavelet coefficients to zero.
Different filtering schemes can be selected via the command-line options. The synopsis and command-line options of
this program are given below.

Synopsis

wtt_filter -l $levels -m $scheme [-i $path] [-o $path]
(-L $level | -c $percentage | -t $threshold)

Options

-l $levels

This required option sets the number of levels of for the FWT and IWT to $levels. Argument $levels accepts a
non-negative integer.

-m $scheme

This required option sets the type of WT to $scheme. Argument $scheme accepts a string literal Butterfly or Loop.

-i $path

This option sets the file path for the input mesh to $path. If no file is specified, standard input is used.

CHAPTER 3. SOFTWARE 35

-o $path

This option sets the file path for the output mesh to $path. If no file is specified, standard output is used.

-L $level

This option sets the filtering scheme to lowpass, which sets the wavelet coefficients whose level is higher than the
given $level to zero.

-c $percentage

This option sets the filtering scheme to compression. A percentage $percentage of wavelet coefficients with larger
magnitudes are preserved, and the other wavelet coefficients are set to zero. Argument $percentage accepts a real
number within the range 0 to 100.

-t $threshold

This option sets the filtering scheme to hard-thresholding. The wavelet coefficients whose magnitudes are smaller
than the threshold $threshold are set to zero. Argument $threshold accepts a real number.

Example of Usage

An example of using the wtt_filter program for compression is given in what follows.

EXAMPLE 3.4 Given a triangle mesh file vase.off, one can compress the wavelet coefficients to 5% with a 3-level
Butterfly WT by using the command:

wtt_wavelet_filter -l 3 -m Butterfly -c 5 \
-i vase.off -o vase_from_compression.off

In this example, 183860 out of 193536 wavelet coefficients are set to zero. The input and output meshes of the
example are shown in Figure 3.1(a) and (b), respectively. �

The wtt_demo Script

This script demonstrates Butterfly and Loop wavelet denoising by running the wtt_filter program on two example
meshes: a dragon and a bunny. The original mesh, the noisy mesh, and the denoised mesh by Butterfly and Loop are
rendered by MeshLab [20]. Since this script relies on MeshLab for rendering, users should have MeshLab installed
beforehand. Figures 3.2 and 3.3 show some screenshots captured from running wtt_demo. The original mesh and
obtained denoised mesh are shown in Figures 3.2 and 3.3, for the cases of the bunny and dragon meshes respectively.

36 3.5. PROGRAMS

(a) (b)

Figure 3.1: Example of 3-level Butterfly wavelet compression with compression rate 5%. (a) The original mesh (vase.off). (c) The output mesh
(vase_from_compression.off)

CHAPTER 3. SOFTWARE 37

(a) (b)

(c) (d)

Figure 3.2: Screenshots obtained from running wtl_demo. The (a) original, (b) noisy, (c) the Butterfly denoised, and (d) the Loop denoised bunny.

38 3.5. PROGRAMS

(a) (b)

(c) (d)

Figure 3.3: Screenshots obtained from running wtl_demo. The (a) original, (b) noisy, (c) the Butterfly denoised, and (d) the Loop denoised
dragon.

39

Chapter 4

Results and Analysis

4.1 Introduction

In this chapter, we present some results obtained with the applications in the WTT. The application results considered
Butterfly and Loop wavelet denoising and compression on 3-D triangle meshes. Also, the run-time performance of the
WTT library is evaluated by measuring execution time and memory consumption, and the performance bottlenecks
are analyzed. This chapter starts with a description of the test datasets used in our experiments.

4.2 Datasets

In Table 4.1, some basic information about each of the trianlge meshes used in our experiments is given, including
the number of vertices and faces, whether the mesh is closed, and the source of the mesh. These meshes have been
widely used in the research literature. Since the FWT requires subdivision connectivity, all the test meshes have been
subdivided or remeshed as needed in order to ensure at least one level of subdivision connectivity.

4.3 Experimental Results

In this section, we present the experimental results for Butterfly and Loop wavelet compression and denoising. They
are both implemented by computing the FWT, adjusting the wavelet coefficients, and computing the IWT. Wavelet
compression preserves a given percentage of wavelet coefficients with larger magnitudes and sets the remaining coef-
ficients to zero. Wavelet denoising sets wavelet coefficients at one or more resolution levels to zero.

Examples of Loop and Butterfly wavelet compression are respectively shown in Figure 4.1 and 4.2. In the exper-
iment, the 2-level Loop and Butterfly FWT were computed on the mesh lion-vase first. Then, the 2-level Loop and
Butterfly IWT were computed with the wavelet coefficients whose magnitudes are in the top 1%, 5%, and 10% and
other zero wavelet coefficients, respectively. The sub-figures of Figures 4.1 and 4.2 present (a) the original mesh, and
the Loop and Butterfly reconstructed meshes with a wavelet coefficient compression rate of (b) 1%, (c) 5%, and (d)
10%. Examples of wavelet denoising are provided in Figures 4.3 and 4.4. We first introduce noise to two meshes, a
bunny and a dragon, as shown in Figures 4.3(a) and (b) and 4.4(a) and (b). Then we apply 3-level Loop and Butterfly
wavelet denoising to the noisy meshes. For the bunny, the wavelet coefficients above level 1 are discarded (i.e., set
to zero) in order to remove noise. The denoised bunny obtained in the Butterfly and Loop cases are shown in Fig-
ures 4.3(c) and (d). For the dragon, all the wavelet coefficients are discarded. The denoised dragon obtained in the
two cases are shown in Figures 4.4 (c) and (d).

40 4.3. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

Figure 4.1: Example of 2-level Loop wavelet compression. (a) The original mesh. (b) Reconstructed mesh by using 1843 wavelet coefficients whose
magnitudes are in the top 1%. (c) Reconstructed mesh by using 9216 wavelet coefficients whose magnitudes are in the top 5%. (d) Reconstructed
mesh by using 18432 wavelet coefficients whose magnitudes are in the top 10%.

CHAPTER 4. RESULTS AND ANALYSIS 41

(a) (b)

(c) (d)

Figure 4.2: Example of 2-level Butterfly wavelet compression. (a) The original mesh. (b) Reconstructed mesh by using 1843 wavelet coefficients
whose magnitudes are in the top 1%. (c) Reconstructed mesh by using 9216 wavelet coefficients whose magnitudes are in the top 5%. (d)
Reconstructed mesh by using 18432 wavelet coefficients whose magnitudes are in the top 10%.

42 4.4. RUN-TIME PERFORMANCE

Table 4.1: The test meshes and their characteristics

Name Vertices Faces Closed Source

torus 12288 24576 yes [4]

bunny 16386 32768 yes [21]

bulb 28162 56320 yes [8]

dragon 32000 64000 yes [2]

torusknot 40960 81920 yes [4]

kid 49154 98304 yes [12]

gargoyle 65538 131072 yes [21]

horse 65538 131072 yes [21]

tyra 98306 196608 yes [21]

hand 188241 376320 no [27]

vase 196610 393216 yes [12]

armardillo 262146 524288 yes [21]

cow 393218 786432 yes [21]

venus 1048578 2097152 yes [21]

4.4 Run-Time Performance
Next, we consider the run-time performance, which is evaluated by measuring the execution time and memory con-
sumption of the functions for computing FWT and IWT for the Loop and Butterfly cases. Before proceeding further,
we briefly introduce the hardware that was employed to conduct the experiments. The experimental results were col-
lected on a computer with a 3.7 GHz Intel Core i7-8700k CPU and 32 GB of RAM. All the code was compiled with
full optimization enabled. In what follows, we consider the execution time for computing the FWT and IWT.

4.4.1 Analysis of Execution Time
The analysis of execution time consists of two parts. First, we present the execution time of the FWT and IWT
function calls on the 14 meshes, which covers the case of tens of thousands to millions of vertices. It provides a
general relationship between the number of vertices and the execution time of the FWT and IWT. Second, we present
the profiling of the functions that internally implement the FWT and IWT, which reveals the execution time percentage
of each internal function and the bottlenecks of the FWT and IWT. Both the Loop and Butterfly FWT and IWT are
evaluated in our experiments. For each of the 14 meshes in the datasets, we run the wtt_fwt and wtt_iwt programs
50 times to gather run-time data. In each run, the one-level FWT followed by the one-level IWT are computed. The
gprof [10] tool was employed to perform the analysis. Although gprof is primarily used for profiling instead of
measuring execution time, we still use the execution time results obtained from gprof to ensure the data consistency
in the two parts. The median execution time of the Loop and Butterfly FWT and IWT are given in Table 4.2. Since the
mesh hand is a mesh with boundaries, where the Butterfly WT is not supported, the execution time is not available.

To begin, we explore the relationship between the execution time and the number of vertices. We expect the
execution time increases with the number of vertices, and two meshes with similar vertices should consume a similar
time. Since the FWT includes a non-trivial vertex classification step, the execution time of the FWT is expected to
be higher than the IWT. Furthermore, the classification step is implemented by Taubin’s subdivision detection with a
linear-time complexity [26] and sorting with a time complexity of O(n logn). Thus, the execution time of the FWT

CHAPTER 4. RESULTS AND ANALYSIS 43

(a) (b)

(c) (d)

Figure 4.3: Example of 3-level wavelet denoising on mesh bunny. The (a) original, (b) noisy, (c) the Butterfly denoised, and (d) the Loop denoised
bunny.

is expected to be always higher than the IWT. In comparing the Loop and Butterfly, since the lifting steps of Loop
consist of solving a linear system, the FWT and IWT of Loop are expected to consume more time than Butterfly. Our
expectations are confirmed by the execution time results in Table 4.2. Observe that meshes horse and gargoyle with
the same number of vertices have different execution times. The reason is that it is impossible to reproduce the same
environment (e.g., CPU loads) to measure the execution time on different meshes. Also, since the sampling interval of
gprof is 0.01 seconds, the difference within 10 milliseconds is unreliable. As their execution time difference is within
10 milliseconds, we consider they have the same execution time.

Next, we proceed to profile the functions that internally implement the Butterfly and Loop transform to analyze
the bottlenecks. Tables 4.3, 4.4, 4.5, and 4.6 list the execution time of these functions and their percentages of the
total FWT and IWT time. Observe that function classify occupies the majority of the execution time of the FWT in
both Loop and Butterfly. The reason is not only sorting but also Taubin’s algorithm. Although Taubin’s algorithm has
a linear time complexity with respect to the number of vertices, it requires complex data structures and operations to
implement, which is time-consuming.

In what follows, we consider the execution time of function lift, which implements the lifting computations. The
execution time should be linear to the number of vertices. The experimental results in Tables 4.3, 4.4, 4.5, and 4.6

44 4.4. RUN-TIME PERFORMANCE

(a) (b)

(c) (d)

Figure 4.4: Example of 3-level wavelet denoising on mesh dragon. The (a) original, (b) noisy, (c) the Butterfly denoised, and (d) the Loop denoised
dragon.

CHAPTER 4. RESULTS AND ANALYSIS 45

Table 4.2: The execution time (in milliseconds) of Butterfly and Loop FWT and IWT.

Name Vertices
Butterfly Loop

FWT
(milliseconds)

IWT
(milliseconds)

FWT
(milliseconds)

IWT
(milliseconds)

torus 12288 13.40 8.00 14.40 8.00

bunny 24578 31.20 14.90 34.00 14.70

bulb 28162 52.40 23.60 58.00 30.00

dragon 32000 64.00 30.60 77.10 33.20

torusknot 40960 90.00 35.80 103.00 45.10

kid 49154 98.20 45.80 108.20 48.50

horse 65538 154.41 69.00 161.61 76.70

gargoyle 65538 156.71 70.00 167.51 74.80

tyra 98306 241.41 113.00 254.31 120.81

hand 188241 N/A* N/A* 391.42 187.31

vase 196610 503.52 242.21 521.02 254.51

armardillo 262146 701.13 344.22 746.93 363.02

cow 393218 1080.00 509.12 1130.00 534.72

venus 1048578 3120.00 1420.00 3250.00 1500.0

* This result is unavailable as the Butterfly wavelet transform does not support meshes with boundaries.

Table 4.3: The execution time and percentages of functions that internally implement the Butterfly FWT.

Name Vertices get num types classify initialize lift coarsen cleanup

torus 12288 0.00 (0.00%) 7.95 (59.36%) 0.00 (0.00%) 3.02 (22.44%) 1.62 (12.08%) 0.00 (0.00%)

bunny 24578 0.00 (0.00%) 17.84 (57.20%) 0.00 (0.00%) 7.32 (23.51%) 3.36 (10.83%) 0.00 (0.00%)

bulb 28162 0.00 (0.00%) 27.92 (53.28%) 0.00 (0.00%) 17.63 (33.72%) 5.64 (10.81%) 0.00 (0.00%)

dragon 32000 0.00 (0.00%) 36.25 (56.71%) 0.00 (0.00%) 19.82 (30.90%) 7.62 (11.86%) 0.00 (0.00%)

torusknot 40960 0.00 (0.00%) 49.69 (55.24%) 0.00 (0.00%) 26.10 (28.98%) 10.74 (11.90%) 0.00 (0.00%)

kid 49154 0.00 (0.00%) 55.50 (56.54%) 0.00 (0.00%) 33.24 (33.80%) 9.05 (9.15%) 0.00 (0.00%)

gargoyle 65538 0.00 (0.00%) 83.07 (53.08%) 0.00 (0.00%) 48.38 (30.90%) 18.84 (12.05%) 0.00 (0.00%)

horse 65538 0.00 (0.00%) 81.74 (52.96%) 0.00 (0.00%) 47.56 (30.90%) 16.61 (10.72%) 0.00 (0.00%)

tyra 98306 0.00 (0.00%) 131.87 (54.58%) 0.00 (0.00%) 79.75 (32.95%) 25.99 (10.81%) 0.00 (0.00%)

vase 196610 0.00 (0.00%) 264.94 (52.62%) 0.00 (0.00%) 163.89 (32.63%) 58.86 (11.75%) 0.00 (0.00%)

armardillo 262146 0.00 (0.00%) 379.56 (54.10%) 0.00 (0.00%) 222.93 (31.79%) 79.43 (11.28%) 0.00 (0.00%)

cow 393218 0.00 (0.00%) 590.00 (54.42%) 0.00 (0.00%) 340.00 (31.31%) 120.00 (11.24%) 0.00 (0.00%)

venus 1048578 0.00 (0.00%) 1780.00 (56.98%) 0.00 (0.00%) 930.00 (29.70%) 330.00 (10.53%) 0.00 (0.00%)

46 4.4. RUN-TIME PERFORMANCE

Table 4.4: The execution time and percentages of functions that internally implement the Butterfly IWT.

Name Vertices get num types get mesh size initialize refine lift cleanup

torus 12288 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 2.19 (27.44%) 5.61 (70.23%) 0.00 (0.00%)

bunny 24578 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 4.96 (33.26%) 9.62 (64.44%) 0.00 (0.00%)

bulb 28162 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 5.83 (24.75%) 17.02 (72.03%) 0.00 (0.00%)

dragon 32000 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 9.24 (30.13%) 19.66 (64.14%) 0.00 (0.00%)

torusknot 40960 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 10.77 (30.11%) 24.43 (68.21%) 0.00 (0.00%)

kid 49154 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 13.09 (28.69%) 30.66 (66.93%) 0.00 (0.00%)

gargoyle 65538 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 22.73 (32.48%) 45.67 (65.35%) 0.00 (0.00%)

horse 65538 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 22.66 (32.86%) 44.37 (64.11%) 0.00 (0.00%)

tyra 98306 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 32.83 (28.98%) 78.48 (69.39%) 0.00 (0.00%)

vase 196610 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 73.26 (30.23%) 160.79 (66.47%) 0.00 (0.00%)

armardillo 262146 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 112.14 (32.68%) 223.57 (64.97%) 0.00 (0.00%)

cow 393218 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 155.86 (30.55%) 336.81 (66.19%) 0.00 (0.00%)

venus 1048578 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 460.00 (32.50%) 930.00 (65.21%) 0.00 (0.00%)

Table 4.5: The execution time and percentages of functions that internally implement the Loop FWT.

Name Vertices get num types classify initialize lift coarsen cleanup

torus 12288 0.00 (0.00%) 6.59 (45.81%) 0.00 (0.00%) 4.60 (31.94%) 1.61 (11.13%) 0.00 (0.00%)

bunny 24578 0.00 (0.00%) 16.67 (48.98%) 0.00 (0.00%) 9.10 (26.47%) 4.23 (12.41%) 0.00 (0.00%)

bulb 28162 0.00 (0.00%) 25.97 (44.83%) 0.00 (0.00%) 22.40 (38.61%) 6.23 (10.71%) 0.00 (0.00%)

dragon 32000 0.00 (0.00%) 39.44 (51.16%) 0.00 (0.00%) 27.58 (35.82%) 9.46 (12.24%) 0.00 (0.00%)

torusknot 40960 0.00 (0.00%) 51.67 (50.12%) 0.00 (0.00%) 34.38 (33.42%) 11.34 (11.06%) 0.00 (0.00%)

kid 49154 0.00 (0.00%) 56.01 (51.80%) 0.00 (0.00%) 37.62 (34.78%) 13.80 (12.80%) 0.00 (0.00%)

gargoyle 65538 0.00 (0.00%) 88.61 (52.87%) 0.00 (0.00%) 57.40 (34.25%) 17.39 (10.38%) 0.00 (0.00%)

horse 65538 0.00 (0.00%) 80.97 (50.06%) 0.00 (0.00%) 57.60 (35.60%) 16.44 (10.19%) 0.00 (0.00%)

tyra 98306 0.00 (0.00%) 126.17 (49.56%) 0.00 (0.00%) 91.00 (35.74%) 27.53 (10.77%) 0.00 (0.00%)

hand 188241 0.00 (0.00%) 228.15 (58.31%) 0.00 (0.00%) 107.40 (27.37%) 39.66 (10.10%) 0.00 (0.00%)

vase 196610 0.00 (0.00%) 265.85 (51.01%) 0.00 (0.00%) 184.32 (35.39%) 57.36 (10.96%) 0.00 (0.00%)

armardillo 262146 0.00 (0.00%) 390.36 (52.28%) 0.00 (0.00%) 258.41 (34.56%) 78.55 (10.51%) 0.00 (0.00%)

cow 393218 0.00 (0.00%) 600.00 (52.92%) 0.00 (0.00%) 390.00 (33.88%) 120.00 (10.66%) 0.00 (0.00%)

venus 1048578 0.00 (0.00%) 1790.00 (55.29%) 0.00 (0.00%) 1060.00 (32.24%) 330.00 (10.20%) 0.00 (0.00%)

CHAPTER 4. RESULTS AND ANALYSIS 47

Table 4.6: The execution time and percentages of functions that internally implement the Loop IWT.

Name Vertices get num types get mesh size initialize refine lift cleanup

torus 12288 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 2.80 (35.07%) 5.02 (62.62%) 0.00 (0.00%)

bunny 24578 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 5.20 (35.40%) 9.48 (64.80%) 0.00 (0.00%)

bulb 28162 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 8.80 (29.36%) 19.98 (66.55%) 0.00 (0.00%)

dragon 32000 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 7.30 (22.08%) 24.20 (73.02%) 0.00 (0.00%)

torusknot 40960 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 15.78 (35.05%) 29.28 (65.30%) 0.00 (0.00%)

kid 49154 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 15.05 (31.11%) 30.80 (63.55%) 0.00 (0.00%)

gargoyle 65538 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 22.50 (30.02%) 50.88 (67.88%) 0.00 (0.00%)

horse 65538 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 23.05 (30.05%) 52.02 (67.94%) 0.00 (0.00%)

tyra 98306 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 33.71 (27.90%) 84.40 (69.94%) 0.00 (0.00%)

hand 188241 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 76.20 (40.72%) 106.92 (56.89%) 0.00 (0.00%)

vase 196610 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 74.85 (29.42%) 175.82 (69.23%) 0.00 (0.00%)

armardillo 262146 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 108.08 (29.71%) 244.51 (67.43%) 0.00 (0.00%)

cow 393218 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 163.48 (30.53%) 363.73 (68.10%) 0.00 (0.00%)

venus 1048578 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 480.00 (31.76%) 1000.00
(66.19%)

0.00 (0.00%)

Table 4.7: First-level (L1) and last-level (LL) cache misses in function lift of the Loop wavelet transform.

Name Vertices
FWT IWT

L1 Miss (rate) LL Miss (rate) L1 Miss (rate) LL Miss (rate)

hand 188241 5991053 (0.19%) 4822251 (0.15%) 5956614 (0.19%) 4809613 (0.15%)

vase 196610 8793885 (0.27%) 8230943 (0.25%) 8608764 (0.26%) 8123280 (0.25%)

Table 4.8: Comparison of cache misses and execution times (in milliseconds) of function lift for hand and hand_rnd.

Name
FWT IWT

L1 misses (rate) LL misses (rate) time L1 misses (rate) LL misses (rate) time

hand 5991053 (0.19%) 4822251 (0.15%) 107.40 5956614 (0.19%) 4809613 (0.15%) 106.92

hand_rnd 7151901 (0.23%) 6806742 (0.22%) 146.70 7169598 (0.23%) 6817019 (0.22%) 144.70

demonstrate that lift exhibits approximately linear-time behavior for all of the meshes in our test set except hand. In
this exceptional case, observe that the number of vertices in hand is close to that of vase, but the lifting computation
time for hand is nearly half of that of vase. The reason could be that the cache misses are fewer in computing hand

than in computing vase. To show that this is a factor, we employ the tool callgrind [28] to collect statistics on cache
misses and the cache miss rate, including the first-level (L1) cache misses and last-level (LL) cache misses. The
results are given in Table 4.7. The cache miss rate of hand is shown to be somewhat less than vase. Furthermore, we
suspect the cache performance is affected by the layout of vertices (i.e., the order of vertices in memory). Although
function classify performs sorting, it sorts the vertex handles instead of vertices themselves, so the original layout is
unmodified. To confirm our suspicion, we randomized the vertices of hand and reran the experiments. The comparison
of cache misses and execution times for the function lift for the original and randomized cases are shown in Table 4.8.
From the results, we can see changing the original vertex layout affects cache misses and execution time significantly.

4.4.2 Analysis of Memory Usage

Having analyzed the time complexity of the library, we now consider the memory complexity, which is evaluated
by measuring the memory required to compute the FWT and IWT. We primarily focus on the peak memory usage,

48 4.4. RUN-TIME PERFORMANCE

Table 4.9: Memory usages of each vertex, halfedge, and face of the (a) mesh and (b) MCDS.

(a) Mesh

Primitives Sizes (bytes)

vertex (Bv) 80

halfedge (Bh) 56

face (B f) 56

(b) MCDS

Primitives Sizes (bytes)

vertex (B′v) 40

halfedge (B′h) 56

face (B′f) 32

since it determines the memory requirement of running our software. For each of the test meshes, we run the wtt_fwt

program to compute the FWT, then run the wtt_iwt program based on the result of the FWT to compute the IWT, and
record the peak memory usage of both programs. In addition, we first estimate the peak memory usage by analyzing
the size of the main data structures used in the implementation.

We start by the FWT. From our knowledge of the implementation, the main data structures used in the FWT are
the input mesh and a mesh-connectivity data structure (MCDS) that mirrors the topology of the mesh for implement-
ing vertex classification. The MCDS is designed to avoid breaking the original mesh’s topology while identifying
subdivision connectivity and classifying vertices. Thus, the main memory usage would be the sum of the sizes of the
mesh and the MCDS. Both the mesh and the MCDS are extensions of CGAL::Polyhedron_3, which consist of vertices,
halfedges, and faces. In a general case, we assume the sizes of a vertex, a halfedge, and a face, in the mesh, are Bv,
Bh, and B f bytes; the sizes of a vertex, a halfedge, and a face, in the MCDS are B′v, B′h, and B′f bytes, respectively. For
a triangle mesh with V vertices, H halfedges, and F triangle faces, where the MDCS also has V vertices, H halfedges,
and F faces, the estimated peak memory usage can be denoted by

(BvV +BhH +B f F)+(B′vV +B′hE +B′f F).

According to the Euler’s formula, the relationship between the number of halfedges and faces and the number of
vertices can be given by

H ≈ 6V and F ≈ 2V.

Thus, the peak memory usage represented with the number of vertices can be approximately given by

(Bv +6Bh +2B f +B′v +6B′h +2B′f)V. (4.1)

Since the same implementation of the mesh and MCDS is used in the Loop and Butterfly FWT, the equation above
applies for both cases. The actual sizes of each vertex, halfedge, and faces of the mesh and MCDS depend on the
compiler/machine and the customization of CGAL::Polyhedron_3. On the experiment machine, these sizes are listed
in Tables 4.9(a) and (b). By populating the statistics into Equation 4.1, the actual peak memory usage (in bytes)
represented by the number of vertices is given by

(80+6×56+2×56+40+6×56+2×32)V = 968V.

For the IWT, we apply a similar analysis. The main data structure used in the IWT is the mesh itself only. A mesh
will be refined in the IWT, which requests memory for the introduced vertices, halfedges, and faces. Thus, the peak
memory usage would be the size of the mesh after refinement. Since, in our experiments, the input of the IWT is the
output of the FWT for each of the test meshes, the original mesh is recovered. The peak memory usage is expected
to be the size of the original mesh. We use the same notations as in the FWT for the sizes of a vertex, a halfedge,
and a face of the mesh to analyze the peak memory usage in general. For a mesh with V vertices, H halfedges, and F
triangles, by combining with the Euler’s formula, the estimated peak memory usage (in bytes) is given by

BvV +BhH +B f F ≈ (Bv +6Bh +2B f)V. (4.2)

CHAPTER 4. RESULTS AND ANALYSIS 49

Table 4.10: The peak memory usage and bytes per vertex in the FWT and IWT.

Name Vertices FWT (bytes) bytes/vertex IWT (bytes) bytes/vertex

torus 12288 13842552 1126.5 8362232 680.5

bunny 24578 27605512 1123.2 16644504 677.2

bulb 28162 31619624 1122.8 18945416 672.7

dragon 32000 35920024 1122.5 21410552 669.1

torusknot 40960 45955272 1122.0 27162856 663.2

spot 47618 53410344 1121.6 32222648 676.7

kid 49154 55130664 1121.6 33208760 675.6

horse 65538 73480744 1121.2 43727288 667.2

gargoyle 65538 73480744 1121.2 43727288 667.2

tyra 98306 110181048 1120.8 66337176 674.8

hand 188241 210852984 1120.1 127193984 675.7

vase 196610 220281576 1120.4 132598104 674.4

armardillo 262146 293686024 1120.3 174672232 666.3

cow 393218 440486872 1120.2 265112008 674.2

venus 1048578 1174498824 1120.1 698440072 666.1

Also, as the same representation of the mesh is used in both the Loop and Butterfly IWT, their peak memory usage
can be calculated by the above equation. Then, by populating the actual statistics from Table 4.9(a) into Equation 4.2,
the peak memory usage represented by the number of vertices on the experiment machine is given by

(80+6×56+2×56)V = 472V.

Given the analysis, the memory complexity of both the FWT and IWT, in theory, is O(n), where n is number
of vertices of the input mesh. In what follows, we consider the peak memory usage in practice. The peak memory
usage was tracked by the tool massif [28], which counts system calls of memory allocation to measure memory
usage. Table 4.10 lists the actual peak memory usage and relationship to the number of vertices in the FWT and IWT
programs. The experimental results confirm our expectation that the peak memory usage is linear to the number of
vertices. Also, since the peak memory usages of Loop and Butterfly are the same, Table 4.10 does not separate the
different cases.

Next, we analyze the actual peak memory usage. From the results shown in Table 4.10, we can see computing
the FWT and IWT require 13.2 MB to 1.12 GB and 7.9 MB to 666.1MB memory for meshes with 12288 to 1048578
vertices. Observed that the actual memory complexity of the FWT and IWT is linear with respect to the number of
vertices as we have analyzed. By comparing the actual peak memory usage to the theoretical memory consumption
analysis, we found the actual peak memory is 1.15 to 1.4 times higher than the estimated value. The reasons for the
differences are explained as follows. First, some third-party libraries are used to implement the functionalities, which
might allocate additional memory that is not counted in the memory analysis. Second, the memory allocated by some
auxiliary data structures (e.g., vector, queue, and set) is not counted in the memory analysis as well.

50 4.4. RUN-TIME PERFORMANCE

51

Chapter 5

Conclusions and Future Work

5.1 Conclusions
In this project, the Loop and Butterfly WTs for 3-D meshes and the lifting framework have been studied. As part of
the work, the author has developed the WTT, which consists of a library for computing and implementing lifted WTs
and some example application programs. The library can be easily used for computing the Loop and Butterfly WTs on
a triangle mesh and implementing a custom WT. Moreover, Loop and Butterfly wavelet denoising and compression on
triangle meshes have been demonstrated. The time and memory complexity of the library have been studied. The time
complexity of the library was analyzed by considering the execution time, and our implementation is able to compute
the FWT and IWT with time complexities O(n logn) and O(n) with respect to the number of vertices, respectively.
The memory complexity of the library was analyzed by measuring the peak memory usage, and our implementations
have been demonstrated to have a memory complexity of O(n) with respect to the number of vertices. Our results
have shown that the library computes the Loop and Butterfly WT reasonably fast.

5.2 Future Work
Although our implementations have achieved the desired level of performance, there is still potential work worth
exploring in the future. As mentioned in Section 4.4.2, the mesh-connectivity data structure used for identifying
subdivision connectivity is simply an extension of CGAL::Polyhedron 3, which might not be efficient in terms of
memory utilization. Some research on data structure improvement could be done to reduce the memory requirement.

In addition, as mentioned in Section 3.4.1, defining a lifted WT requires not only the lifting functions but also
functions regarding topology (i.e., subdivision connectivity and topologic refinement and coarsening). Although the
WTT is able to handle arbitrary 3-D meshes, we only provide the topology related functions for the PTQ case on
triangle meshes. Users have to provide their own definitions for these functions. Nonetheless, the vast majority of
work for defining a WT is implementing the topology related functions. Further researches on implementing these
functions on other types of 3-D meshes (e.g., quadrilateral meshes) could reduce the work of users.

52 5.2. FUTURE WORK

53

Bibliography

[1] Object File Format, November 2019. http://shape.cs.princeton.edu/benchmark/documentation/off_
format.html.

[2] M. D. Adams. Course: Multiresolution signal and geometry processing with c++, November 2019. https:
//www.ece.uvic.ca/˜mdadams/waveletbook.

[3] M. Bertram. Biorthogonal loop-subdivision wavelets. Computing, 72(1-2):29–39, April 2004.

[4] Blender Foundation. Blender, November 2019. https://www.blender.org/.

[5] Boost. The Boost Library, November 2019. http://www.boost.org.

[6] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-
Aided Design, 10(6):350–355, 1978.

[7] CGAL. The Computational Geometry Algorithms Library, November 2019. http://www.cgal.org.

[8] K. Crane. 3-D Model Repository, November 2019. https://www.cs.cmu.edu/˜kmcrane/Projects/
ModelRepository/.

[9] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary
meshes. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pages 173–182. ACM, 1995.

[10] Free Sofware Foundation, Inc. The GNU Profiler, November 2019. https://ftp.gnu.org/old-gnu/
Manuals/gprof-2.9.1/html_mono/gprof.html.

[11] K. Hormann. An easy way of detecting subdivision connectivity in a triangle mesh. 2002.

[12] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant field-aligned meshes. ACM
Transactions on Graphics., 34(6), October 2015. https://github.com/wjakob/instant-meshes.

[13] Kitware Inc. Cmake, November 2019. https://cmake.org/.

[14] L. Kobbelt.
√

3 Subdivisionn. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 103–112, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[15] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, Univer-
sity of Utah, UT, USA, 1987.

[16] M. Lounsbery. Multiresolution Analysis for Surfaces of Arbitrary Topological Type. PhD thesis, University of
Washington, WA, USA, 1994.

[17] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary topological type.
ACM Transactions on Graphics, 16(1):34–73, January 1997.

http://shape.cs.princeton.edu/benchmark/documentation/off_format.html
http://shape.cs.princeton.edu/benchmark/documentation/off_format.html
https://www.ece.uvic.ca/~mdadams/waveletbook
https://www.ece.uvic.ca/~mdadams/waveletbook
https://www.blender.org/
http://www.boost.org
http://www.cgal.org
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://github.com/wjakob/instant-meshes
https://cmake.org/

54 BIBLIOGRAPHY

[18] S. G. Mallet. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(7):674–693, July 1989.

[19] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, Inc., New York, NY, USA, 1987.

[20] MeshLab. The open source system for processing and editing 3D triangular meshes., November 2019. http:
//www.meshlab.net.

[21] E. Praun and H. Hoppe. Data files correspond to Spherical Parametrization and Remeshing, 2003. http:
//hhoppe.com/proj/sphereparam/.

[22] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on Graphics, 22(3):340–
349, July 2003.

[23] Schröder, P. and Sweldens, W. Spherical wavelets: Efficiently representing functions on the sphere. In Proceed-
ings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages
161–172, New York, NY, USA, 1995. ACM.

[24] Schröder, P. and Sweldens, W. Spherical wavelets: Texture processing. In Rendering Techniques ’95, pages
252–263, Vienna, 1995. Springer Vienna.

[25] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Com-
putational Harmonic Analysis, 3(2):186–200, 1996.

[26] G. Taubin. Detecting and reconstructing subdivision connectivity. The Visual Computer, 18, August 2001.

[27] TurboSquid Inc. Free3d, November 2019. https://free3d.com.

[28] ValgrindTM Developers. Valgrind Tool Suite, November 2019. http://valgrind.org/.

[29] H. Wang, K. Qin, and H. Sun.
√

3-subdivision-based biorthogonal wavelets. IEEE Transactions on Visualization
and Computer Graphics, 13, October 2007.

[30] H. Wang and K. Tang. Biorthogonal wavelet construction for hybrid quad/triangle meshes. The Visual Computer,
25(4):349–366, Apr 2009.

[31] K. Weiler. Edge-based data structures for solid modeling in curved-surface environments. IEEE Computer
Graphics and Applications, 5(1):21–40, Jan 1985.

http://www.meshlab.net
http://www.meshlab.net
http://hhoppe.com/proj/sphereparam/
http://hhoppe.com/proj/sphereparam/
https://free3d.com
http://valgrind.org/

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Table of Contents
	1 Introduction
	1.1 Wavelet Transform of 3-D Triangle Mesh
	1.2 Historical Perspective
	1.3 Overview and Organization of Report

	2 Background
	2.1 Introduction
	2.2 Polygon Meshes
	2.3 Subdivision
	2.3.1 Topologic Refinement Rules
	2.3.2 Geometric Refinement Rules
	2.3.3 Loop Subdivision

	2.4 Multiresolution Analysis and WTs
	2.4.1 Lifting Scheme
	2.4.2 Vertex Partition and Coarsening
	2.4.3 Lifted Loop Subdivision
	2.4.4 Lifted Loop WT
	2.4.5 Lifted Butterfly WT

	3 Software
	3.1 Introduction
	3.2 Software Installation
	3.3 Concepts
	3.4 Library
	3.4.1 Usage of API
	3.4.2 Loop and Butterfly WTs Built-in Functions

	3.5 Programs
	3.5.1 The wtt_fwt and wtt_iwt Programs
	3.5.2 Wavelet Denoising and Compression

	4 Results and Analysis
	4.1 Introduction
	4.2 Datasets
	4.3 Experimental Results
	4.4 Run-Time Performance
	4.4.1 Analysis of Execution Time
	4.4.2 Analysis of Memory Usage

	5 Conlusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography

