#### A Flexible C++ Library for Wavelet Transforms of 3-D Polygon Meshes

Shengyang Wei

Feburary 4, 2020

#### Abstract

- Polygon meshes: modelling 3-D objects by joined planar polygons.
  - Triangle meshes: all polygons being triangles.



Wavelet Transforms of 3-D Meshes

#### Polygon Meshes

#### 2 Subdivision

- 3 Multiresolution Analysis and Wavelet Transforms
  - 4 Lifting Scheme and Lifted Wavelet Transforms
- 5 Wavelet Transform Toolkit
- Demonstration

#### **Polygon Meshes**

Primitives: vertices, edges, and faces.



- Geometry: positions of vertices.
- **Topology**: adjacency relationships between vertices, edges, and faces.
- Boundary edge:has exactly one incident face.
- Interior edge: has exactly two incident faces.
- Boundary vertex: has exactly two incident boundary edges.
- Interior vertex: has incident interior edges only.
- Closed mesh: has no boundary edges.

#### Subdivision

#### Subdivision

- Subdivision algorithmically inserts vertices, edges, and faces to a simple control mesh to yield a refined one.
- A refined mesh can be obtained by several round of subdivision.



 Subdivision is defined by two rules: 1) topologic refinement rules and 2) geometric refinement rules.

#### Primal Triangle Quadrisection (PTQ)

- A topologic refinement rule defined on triangle meshes.
- Each triangle is split into four to insert new vertices and edges:
  - insert a vertex on each edge.
    - 2 connect the new vertices by edges to split each triangle.

## • The obtained mesh is said to have **subdivision connectivity** (PTQ connectivity).

#### **Geometric Refinement Rules**

- A geometric refinement rule modifies the positions of new vertices (and probably old vertices).
- The vertices whose positions will be updated are called target vertices.
- The vertices that participate in the computation are called support vertices.
- A geometric refinement rule is defined by a mask.
- A mask specifies the target vertex and support vertices and their weights.
- The position of a target vertex is updated by weighted sum of vertices on a mask.



#### Loop Subdivision



Apply Mask I to each new interior vertex v<sub>e</sub>:

$$v_e = \frac{3}{8}(v_1 + v_2) + \frac{1}{8}(v_3 + v_4).$$

Apply Mask II to each old interior vertex v:

$$v' = (1 - n\beta_n)v + \beta_n \sum_{i=1}^n v_i.$$



Apply Mask III to each new boundary vertex v<sub>e</sub>:

$$v_e = \frac{1}{2}(v_1 + v_2).$$



Apply Mask IV to each old boundary vertex v:

$$v' = \frac{3}{4}v + \frac{1}{2}(v_1 + v_2).$$

 $1 - n\beta_n$ ß.  $\beta_n = \frac{1}{n} \left[ \frac{5}{8} - \left( \frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right) \right]$ 



#### Multiresolution Analysis and Wavelet Transforms

#### Multiresolution Analysis (MRA)

 MRA represents a complicated mesh in a multiresolution form: a coarse approximation in the lowest resolution and sets of wavelet coefficient that encode information in each higher resolutions.



Wavelet Transforms of 3-D Meshes

#### Wavelet Transform I

- A multiresolution analysis is associated with a wavelet transform.
- A level of **forward wavelet transform** (FWT) yields a coarse mesh in the next lower resolution and a set of wavelet coefficients.



• A FWT requires subdivision connectivity [1], which guarantees the existence of a multiresolution analysis.

 A level of inverse wavelet transform (IWT) incorporate a set of wavelet coefficients into a coarse mesh to recover the mesh in the next higher resolution.



#### Lifting Scheme and Lifted Wavelet Transforms

#### Lifting Scheme

- a framework, proposed by Sweldens [3], for designing, analyzing, and implementing a WT.
- can yield the inverse transform trivially.
- can compute the WT in linear time.
- computation steps:
  - partition data into disjoint sets.
  - Iifting step: add (subtract) a filtered version of other sets to (from) a set.
  - scaling step: multiply (divide) a set by a scalar.

#### Lifted Wavelet Transforms

- IWT (one level):
  - Refine the mesh by a topologic refinement rule (naturally classify vertices as old and new vertex sets).
    - 2 Initialize the positions of new vertices with wavelet coefficients.
  - Perform cascaded lifting steps and scaling steps.
- FWT (one level):
  - Partition vertices based on subdivision connectivity. For PTQ connectivity, vertices are classified into old and new vertex sets.
  - Perform reversed lifting steps and scaling steps.
  - Ocarsen mesh (new vertices become wavelet coefficients).



#### Vertex Parition and Coarsening I

#### Topologic examples

- Partitioning depends on subdivision connectivity.
- Examples with PTQ connectivity:



#### Vertex Parition and Coarsening II

Topologic examples

• Examples without PTQ connectivity:



#### **PTQ Connectivity Detection**

- Taubin's covering mesh method [4] (consider topology only).
  - Construct tiles by reversing PTQ on each triangle.





Oheck if a group of tiles can yield the topology of the original mesh.

#### **PTQ Connectivity Detection**

**Construct tiles** 

#### PTQ Connectivity Detection

Filter tiles

#### Coarsening

- Identify the vertices introduced by PTQ (new vertices).
- Remove the new vertices and the edges that connect them.



- an old vertex
- a new vertex

- defined on triangle meshes with or without boundaries.
- proposed by Bertram [5] and Wang et al. [6].
- consists of six lifting steps and one scaling step.



partition vertices in two groups: new vertices and old vertices.

Shengyang Wei

Wavelet Transforms of 3-D Meshes

Vertex Parition

 Detect PTQ connectivity and classify vertices as new vertices and old vertices.





Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$





Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

Lift a new boundary vertex v by old boundary vertices v<sub>1</sub> and v<sub>2</sub>:

$$v' = v - \frac{1}{2} \left( v_1 + v_2 \right)$$





Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

3 Lift a new boundary vertex v by old boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{2}(v_1 + v_2)$$

4 Lift an old interior vertex v by n new interior vertices {v<sub>i</sub>}:

$$v' = v - \delta_n \sum_{i=1}^n v$$





Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

Lift a new boundary vertex v by old boundary vertices v<sub>1</sub> and v<sub>2</sub>:

$$v' = v - \frac{1}{2} \left( v_1 + v_2 \right)$$

Lift an old interior vertex v by n new interior vertices {v<sub>i</sub>}:

$$v' = v - \delta_n \sum_{i=1}^n v_i$$

Scale an old interior vertex v with a valence n by a scalar:

$$v' = \frac{v}{\beta_n}$$

Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

Lift a new boundary vertex v by old boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{2}(v_1 + v_2)$$

Lift an old interior vertex v by n new interior vertices  $\{v_i\}$ :

$$v' = v - \delta_n \sum_{i=1}^n v_i$$

Scale an old interior vertex v with a valence n by a scalar:

$$v' = \frac{v}{\beta_n}$$

Lift a new interior vertex v by old vertices v1, v2, v3, and v4:

$$v' = v - \left[\frac{3}{8}(v_1 + v_2) + \frac{1}{8}(v_3 + v_4)\right]$$



Lift an old boundary vertex v by new boundary vertices v<sub>1</sub> and v<sub>2</sub>:

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

3 Lift a new boundary vertex v by old boundary vertices v<sub>1</sub> and v<sub>2</sub>:

$$v' = v - \frac{1}{2} \left( v_1 + v_2 \right)$$

4 Lift an old interior vertex v by n new interior vertices {v<sub>i</sub>}:





Scale an old interior vertex *v* with a valence *n* by a scalar:

$$v' = \frac{v}{\beta_i}$$



Lift a new interior vertex v by old vertices  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$ :

$$v' = v - \left[\frac{3}{8}(v_1 + v_2) + \frac{1}{8}(v_3 + v_4)\right]$$

Lift old boundary vertices  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$  by a new boundary vertex v:

$$v_i' = v_i - \eta_i v \ \forall i = 1, 2, 3, 4$$



Lift an old boundary vertex v by new boundary vertices  $v_1$  and  $v_2$ :

$$v' = v - \frac{1}{4} \left( v_1 + v_2 \right)$$

3 Lift a new boundary vertex v by old boundary vertices v<sub>1</sub> and v<sub>2</sub>:

$$v' = v - \frac{1}{2} \left( v_1 + v_2 \right)$$

Lift an old interior vertex v by n new interior vertices {v<sub>i</sub>}:

$$v' = v - \delta_n \sum_{i=1}^n v_i$$

Scale an old interior vertex v with a valence n by a scalar:

$$v' = \frac{v}{\beta_i}$$

Lift a new interior vertex v by old vertices v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, and v<sub>4</sub>:

$$v' = v - \left[\frac{3}{8}(v_1 + v_2) + \frac{1}{8}(v_3 + v_4)\right]$$

Lift old boundary vertices  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$  by a new boundary vertex v:

$$v_i' = v_i - \eta_i v \ \forall i = 1, 2, 3, 4$$

Lift old vertices  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$  by a new interior vertex v:

$$v_i' = v_i - \omega_i v \ \forall i = 1, 2, 3, 4$$

Remove the new vertices from the mesh.



#### Lifted Butterfly WT

- defined on closed triangle meshes.
- proposed by Sweldens [2].
- consists of two lifting steps.



• partition vertices in two groups: new vertices and old vertices.

Shengyang Wei

# Lifted Butterfly FWT

• Lift a new vertex v by old vertices  $\{v_i\}_{i=1}^8$ :

$$v' = v - \left[\frac{1}{2}(v_1 + v_2) + \frac{1}{8}(v_3 + v_4) - \frac{1}{16}(v_5 + v_6 + v_7 + v_8)\right]$$



2 Lift old vertices  $\{v_i\}_{i=1}^2$  by a new vertex *v*:

$$v'_{i} = v_{i} + s_{i}v \ \forall i = 1,2$$
$$s_{i} = \frac{4^{L-j} - 1}{2\left[1 + \frac{n}{6}(4^{L-j-1} - 1)\right]}$$

*L* is the number of levels, and  $j \in \{1, 2, ..., L\}$  is the current level.



#### Wavelet Transform Toolkit

- Wavelet Transform Toolkit:
  - **O** https://github.com/uvic-aurora/wtt.git
  - a C++ header-only library for defining and computing lifted wavelet transforms.
  - wavelet-based application programs.
- Library:
  - an application programming interface (API) for defining custom wavelet transforms.
  - built-in functions that implement Loop and Butterfly wavelet transforms, detecting PTQ connectivity, PTQ-based coarsening and refinement, etc.
- Application programs:
  - FWT and IWT computations.
  - wavelet-based compression, approximation, and denoising.

- can compute FWT in O(nlog n) time and IWT in O(n) time on a mesh with n vertices.
- can compute FWT and IWT with *O*(*n*) memory on a mesh with *n* vertices.
- Execution time and memory cost(collected on a computer with Core i7-8700k CPU and 32GB RAM):

|            | Vertices | Time (ms) |         |         |        | Memory (MB) |       |
|------------|----------|-----------|---------|---------|--------|-------------|-------|
| Name       |          | Butterfly |         | Loop    |        | EWT         | IWT   |
|            |          | FWT       | IWT     | FWT     | IWT    |             |       |
| torus      | 12288    | 13.40     | 8.00    | 14.40   | 8.00   | 13.8        | 8.3   |
| bunny      | 24578    | 31.20     | 14.90   | 34.00   | 14.70  | 27.6        | 16.6  |
| bulb       | 28162    | 52.40     | 23.60   | 58.00   | 30.00  | 31.6        | 18.9  |
| dragon     | 32000    | 64.00     | 30.60   | 77.10   | 33.20  | 35.9        | 21.4  |
| torusknot  | 40960    | 90.00     | 35.80   | 103.00  | 45.10  | 45.9        | 27.1  |
| kid        | 49154    | 98.20     | 45.80   | 108.20  | 48.50  | 55.1        | 33.2  |
| horse      | 65538    | 154.41    | 69.00   | 161.61  | 76.70  | 73.4        | 43.7  |
| gargoyle   | 65538    | 156.71    | 70.00   | 167.51  | 74.80  | 73.4        | 43.7  |
| tyra       | 98306    | 241.41    | 113.00  | 254.31  | 120.81 | 110.1       | 66.3  |
| vase       | 196610   | 503.52    | 242.21  | 521.02  | 254.51 | 220.2       | 132.5 |
| armardillo | 262146   | 701.13    | 344.22  | 746.93  | 363.02 | 293.6       | 174.6 |
| COW        | 393218   | 1080.00   | 509.12  | 1130.00 | 534.72 | 440.4       | 265.1 |
| venus      | 1048578  | 3120.00   | 1420.00 | 3250.00 | 1500.0 | 1174.4      | 698.4 |

#### Demonstration

## Q & A

#### References



#### lounsbery, M.

Multiresolution Analysis for Surfaces of Arbitrary Topological Type University of Washington, WA, USA, 1994



Schröder, P. and Sweldens, W.

Spherical Wavelets: Texture Processing Rendering Techniques '95, 1995



#### Sweldens, W.

The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets Applied and Computational Harmonic Analysis, 1996



#### Taubin, G.

Detecting and Reconstructing Subdivision Connectivity The Visual Computer, 2001



#### Bertram, M.

Biorthogonal Loop-subdivision Wavelets Computing, 2004



Wang, H. and Tang, K.

Biorthogonal Wavelet Construction for Hybrid Quad/Triangle Meshes The Visual Computer, 2009