Image Representation with Explicit Discontinuities Usingafgle Meshes

by

XiTu
B.Sc., Shanghai Jiao Tong University, 2008

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical Engineering

© Xi Tu, 2012
University of Victoria

All rights reserved. This thesis may not be reproduced inlevboin part, by
photocopying or other means, without the permission of tliba.



Image Representation with Explicit Discontinuities Usingafgle Meshes

by

XiTu
B.Sc., Shanghai Jiao Tong University, 2008

Supervisory Committee

Dr. Michael D. Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member
(Department of Electrical and Computer Engineering)



Supervisory Committee

Dr. Michael D. Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member
(Department of Electrical and Computer Engineering)

ABSTRACT

Triangle meshes can provide an effective geometric reptasen of images. Although
many mesh generation methods have been proposed to datepfhem do not explicitly
take image discontinuities into consideration. In thisthea new mesh model for images,
which explicitly represents discontinuities (i.e., imagges), is proposed along with two
corresponding mesh-generation methods that determin@dise-model parameters for a
given inputimage. The mesh model is based on constrainexubay triangulations (DTs),
where the constrained edges correspond to image edges.

One of the proposed methods is named explicitly-repredafiseontinuities-with error
diffusion (ERDED), and is fast and easy to implement. In the ERDnethod, the error
diffusion (ED) scheme is employed to select a subset of sapgihts that are not on the
constrained edges. The other proposed method is called ERIDGRe ERDGPI method,
a constrained DT is first constructed with a set of prespebtistrained edges. Then, the
greedy point insertion (GPI) scheme is employed to insegt oint into the constrained
DT in each iteration until a certain number of points is reath

The ERDED and ERDGPI methods involve several parameters winist be provided
as input. These parameters can affect the quality of thdtiregumage approximations,
and are discussed in detail. We also evaluate the perfoemainour proposed ERDED
and ERDGPI methods by comparing them with the highly effecE®d and GPI schemes.
Our proposed methods are demonstrated to be capable ofgomgdomage approximations
of higher quality both in terms of PSNR and subjective gyadlitan those generated by
other schemes. For example, the reconstructed imagesqaody the proposed ERDED
method are often about 3.77 dB higher in PSNR than those peafloy the ED scheme, and



our proposed ERDGPI scheme produces image approximatioaisooft 1.08 dB higher
PSNR than those generated by the GPI approach.
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Chapter 1

Introduction

1.1 Mesh Modelling and Mesh Generation

In the last several years, there has been a growing intergstametric representations for
images, that is, the modelling of images using geometriaigiies. This is largely due
to the fact that, geometric representations are conteaqite@ and capable of capturing
geometric structure in images. In contrast, when regulapsiag (i.e., lattice-based sam-
pling) is employed, the sampling density is too low in regievhere the signal is changing
rapidly, and too high in regions where the signal is varyilogvly or not at all. Geometric
representations allow the modelling of large areas of piwéth basic geometric primitives.
For example, a large region can be represented by a few padyigstead of by hundreds of
pixels. Various image representations that attempt tooéxble geometric structure in im-
ages have been studied and developed, including ridgédletsurvelets [2], framelets [3],
edgelets [4], contourlets [5] [6], wedgelets [7], band[8]s and normal meshes [9] [10].

Among the numerous geometric representations, those masgulygonal meshes
(e.q., triangle or quadrilateral meshes) [11] [12] [13]pedally those based on triangle
meshes [10] [14], have received considerable attentiorpameen to be particularly effec-
tive. Such representations for images are knowmash models Mesh models have many
advantages. They often have greater compactness; theyfallGeome operations on im-
ages to be performed more easily; and they are able to #eilihethods that yield higher
quality approximations. There are numerous applicatibas¢an benefit from image rep-
resentations based on mesh models, such as computer \iSippéttern recognition [16],
image restoration [17], and image/video compression [38-2

If a mesh is to be used to represent an image, however, weatlypiteed a way to



choose a good subset of sample points from the original ir@fggm a mesh approxima-
tion. This is the so called thmesh generationproblem. Due to the necessity for solutions
to this problem, mesh generation methods are of fundamiempairtance.

1.2 Historical Perspective

Due to the numerous advantages of mesh modelling, a great ofamesh generation
methods and frameworks have been developed over the yeass.okthem can be catego-
rized into two classes, the methods that determine all thpkapoints in one step and the
mesh-refinement based methods. Yang, Wernick, and Brank@oged a scheme named
error diffusion (ED) [13] which determines all the samplen® in one step. It is fast and
easy to implement. The ED method uses Floyd-Steinberg éiffasion [24] to generate a
set of sample points, distributed such that the local dgo$isample points is proportional
to the largest magnitude second-order directional dévavaif the image.

Different from the methods that determine all the sampl@{san one step, the mesh-
refinement based schemes begin with an initial model of thegen(such as a coarse,
regular mesh), then refine the model iteratively until gitaeertain error (e.g., absolute
error or squared error) between the current mesh approximand the original image
is reached or a certain number of sample points is obtainéd-2i]. For example, the
greedy point insertion (GPI) scheme of Adams [29] inspirgdhe work of Garland and
Heckbert [10] is a mesh-refinement based algorithm. It filstoses a triangulation of
the image bounding box to form an initial approximation, éinein repeatedly inserts the
sample point corresponding to the largest absolute ertottie triangulation. The greedy
point removal (GPR) scheme of Demaret and Iske [30], in cehtfiast constructs a DT of
all of the sample points of the image, and then repeatedlpvemthe point that yields the
smallest increase in the squared error of the mesh appraogima/arious types of triangle
meshes can be used as the model in mesh-refinement basedspstieh as those based on
Delaunay triangulations (DTs) [31] and data-dependeahgulations [32] [33]. The DT
minimizes the maximum interior angle of all triangles in thi@ngulation, consequently
avoiding sliver (i.e., long-thin) triangles to whatevetet is possible. The data-dependent
triangulation uses the values of the image function at thgpéa points in addition to their
positions [32, 33] to determine triangulation connecyivwit order to reduce approximation
errors. Data-dependent triangulations can achieve lopgoimation error than DTs, but
tend to be associated with methods of higher complexity.

The methods that determine all sample points in one stepy/pieatly faster than the



mesh-refinement based methods. The quality of image appatixins produced by the
methods that determine all sample points in one step, hayaxe typically lower than
those generated by the mesh-refinment based schemes. foabigh quality mesh in an
efficient manner, some methods, that combine the advantégpesh kinds of the methods,
have been developed. One of these methods is proposed bysAdalted GPR from subset
with ED (GPRFS-ED) [14]. It first uses the ED scheme to seleertat number of sample
points, and then employs the GPR method to remove unneggssiats until the desired
mesh size is reached. It is faster than the GPR scheme andetdimyage approximations
of higher quality than those generated by the ED scheme.

To evaluate the performance of the mesh-generation metpedk signal-to-noise ra-
tio (PSNR) is usually employed to measure the objective tyuafi the resulting image
approximations. Besides objective measures (e.g., PSNBgctive measures also play
an important role in evaluating the quality of a mesh appr@tion. Human eyes are often
drawn more to high frequencies than low frequencies. Trasgjisvalent to saying that, hu-
man eyes are quite sensitive to image discontinuities (image edges). Therefore, mesh
generation methods that can explicitly represent imageodiinuities [34] [35] are of
great interest. Among the numerous possibilities, thetcamgd DT is a good choice for
modelling image discontinuities, since image edges carahdlbd as constrained edges in
a constrained DT.

1.3 Overview and Contribution of the Thesis

In this thesis, we first introduce a mesh model that expjic#presents image discontinu-
ities (i.e., image edges). Then, to select the model pases&ir a given input image, we
propose two mesh generation methods, called explicippyagented discontinuities with
ED (ERDED) and explicitly-represented discontinuitieshw@PIl (ERDGPI), which em-
ploy the ED and GPI schemes respectively to select a subsbeafample points. The
proposed methods are shown to be capable of producing mesbxapations of higher
quality than previously-proposed highly-effective mesneration schemes in terms of
both objective and subjective measures.

The remainder of this thesis is organized as follows. Chapietroduces the back-
ground necessary to understand the work presented in #sssthSome of the notation
and terminology used herein are presented, followed bydrackd information pertain-
ing to computational geometry (e.g., triangulations aniglp@® simplification) and image
processing (e.g., edge detection, anti-aliasing and ssgrapling). At last, we introduce



some fundamental concepts related to mesh modelling,dmgumesh generation, scan
conversion and evaluation of image approximations.

In Chapter 3, we first introduce two highly effective mesh gatien methods, namely
the ED scheme of Yang, Wernick, and Brankov, and the GPI scloéivdams. After that,
we mention that the discontinuity (i.e., image edge) is apartant feature of an image
and easy to be captured by human eyes. Although many stdlte-@lirt mesh generation
methods have been proposed to date, many of them do not takg idiscontinuities into
consideration explicitly. We then propose a new mesh mdmbded on the constrained
DT, that explicitly represents image discontinuities. ekfthat, two mesh-generation ap-
proaches, that select mesh model parameters for a giverjraegproposed and analyzed.
One of the proposed methods is named ERDED, which employsDisckeme to select a
subset of sample points that are not on the constrained efige®ther proposed method is
called ERDGPI, where the GPI scheme is employed to selectseesabthe sample points.
The ERDED and ERDGPI methods require the specification of akparameters. We
also propose an automated scheme which chooses these marseitectively. Through
experimental results, we evaluate the performance of mpgsed ERDED and ERDGPI
methods. PSNR is used to measure the quality of the recotstrimages in our work.
By comparison, we find that the image approximations prodbyeslir proposed ERDED
method are often about 3.77 dB higher in PSNR than those peadoy the ED scheme,
and our proposed ERDGPI method can generate reconstrucéggtsnof about 1.08 dB
higher PSNR than those produced by the GPI scheme. Sinceapoged methods explic-
itly model image edges, the resulting image approximatiostsonly have higher PSNR,
but also have higher subjective quality.

Chapter 4 concludes the thesis by summarizing the resukepied in this thesis and
suggesting some related topics for future research.



Chapter 2

Preliminaries

2.1 Overview

To facilitate a better understanding of the work presentetiis thesis, some fundamental
concepts related to this work are introduced in this chapterbegin with an introduction
to some of the notation and terminology used herein. Theipresent some basic concepts
from computational geometry and image processing. AtVestntroduce some rudimen-
tary concepts related to mesh modelling, including meskeggion, scan conversion and
mesh evaluation.

2.2 Notation and Terminology

Before proceeding further, a brief digression is in orderceoning the notation and termi-
nology used herein. The sets of integers and real numbedeamted ag. andR, respec-
tively. The notation(a,b), [a,b), (a,b], and[a,b] denote the open intervdk € R: a <
X < b}, the half-closed half-open interv@k € R : a < x < b}, the half-open half-closed
interval{x € R: a< x<b}, and the closed intervdk € R : a < x < b}, respectively.
Fora € R, the notation a | and[a| denote the largest integer no more thag.e., the
floor function) and the smallest integer no less thafi.e., the ceiling function), respec-
tively. Form,n € Z, we define thenod function as mo¢n,n) =m—n| ™ |. The cardinality
of a setSis denotedS.
Matrices and vectors are denoted by uppercase and lowdsolface letters, respec-
tively. The Euclidean norm of = [vg,Vv,--- ,vn_l]T is denoted by|v||, which is defined




as

\|V||=\/v0+v1+ V2 (2.1)

For matrices, their dimensions are specified by the suliscriore specificallyM,, de-
notes am x n matrix, and anm x n matrix is denoted a®l «n.
For a functionf defined orlR?, its gradient, denotet f, is defined as

of af]’
Vi =5 5 2.2
The Laplacian off, denotedAf, is defined as
0%f  0°f
Af(xy) =72 (xy) = P +a—y2. (2.3)

For two complex-valued functionsandg defined onR, their convolution, denoted as
f xg, is defined as

(fg)(t / f(1)g(t —1)d (2.4)

Furthermore, for sequencésandg defined orZ, their convolution is given by

(fxg)[n m_Zoo flm (2.5)
One of the extensively used numeric measurements, knovpeals signal-to-noise
ratio (PSNR), is the ratio between the maximum possible magnitii@desagynal and the
magnitude of corrupting noise. Since many signals haveyawele dynamic range, PSNR
is usually expressed in terms of the logarithmic decibel (sf2)e.
To help formally define the PSNR, tlmeean squared error(MSE) is introduced. For
an imagep of sizemx n and its approximatiorp, the MSE is computed as

MSE— mi:nzi 2. (2.6)

The PSNR is then defined by

p_
PSNR= 20log; <\2/M—S:ILE) : (2.7)

wherep is the number of bits per sample in image



2.3 Computational Geometry

The process of mesh modelling involves numerous geomegazithms, including trian-
gulation and polyline simplification. In what follows, baglound related to triangulations
are presented first, followed by the introduction of the Dasg?eucker polyline simplifi-
cation algorithm and a C++ open source library for computetigeometry, known as the
Computational Geometry Algorithms Library (CGAL).

2.3.1 Triangulations

Triangulation is one of the fundamental concepts extehsivged in computational geom-
etry. Particularly, it is an important concept in geomeiniage representations. In what
follows, we first introduce the concepts of convex set andvewrhull, followed by the
formal definition of a triangulation [36] [37].

Definition 2.1 (Convex set) A set P of points ifR? is said to be convex if and only if,
for every pair of points pg € P, the straight line segmenmq that joins p and q is also
contained in P.

.
Y

) (b)

Figure 2.1: Example of sets that are (a) convex and (b) notecon

The definition of a convex set is illustrated in Figure 2.1. &§a see from Figure 2.1(a)
that, for every pair of points, y in the set, the line segmexy is also in the set. Therefore,
the set in Figure 2.1(a) is convex. In the set shown in Figut¢b2, there exists a pair
of pointsx andy that, the line segmerxy that joinsx andy is not in the set shown in
Figure 2.1(b). Therefore, the set in Figure 2.1(b) is novean

Definition 2.2 (Convex hull) The convex hull of a set P of points is the intersection of all
convex sets that contain P (i.e., it is the smallest convezas#aining P).



(a) (b)
Figure 2.2: Convex hull example. (a) A $&bf points, and (b) the convex hull &

The definition of the convex hull is illustrated in Figure 2Rgure 2.2(a) shows a set
P of points inR?, and Figure 2.2(b) depicts the convex hulRofThe notion of convex hull
is helpful for defining a triangulation.

Definition 2.3 (Triangulation) A triangulation of a set P of points iR is a subdivision
of the convex hull of P into a set T of triangles such that theriars of any two triangles
in T never intersect, and the set of points that are the vestaf T coincides with P.

For a given se§ of points, there are typically very many triangulationsSofor the set
P of points in Figure 2.3(a), two triangulations Bfamong the numerous possibilities are
illustrated in Figure 2.3(b) and Figure 2.3(c). We can sag the edges of the triangulation
in Figure 2.3(b) and those of the triangulation in Figurg®.are different. Triangulations
are a key ingredient for mesh representations of imagespAroaimation of an image can
be easily formed when the image domain is partitioned inémgles, since a large region
in the image domain might be represented by a few triangletead of by hundreds of
pixels.

Various types of triangulations have been proposed oveydhes. One important and
widely used type of triangulation, which has a number of ulsgfoperties, is the Delaunay
triangulation (DT) [31]. To help define a DT, it is necessamyiritroduce the concept of
a circumcircle. In geometry, the circumcircle of a triangleéhe unique circle that passes
through all three vertices of the triangle. With this in mitide definition of a DT is then
as follows.

Definition 2.4 (Delaunay triangulation (DT))A triangulation T is said to be Delaunay if
each triangle in T is such that the interior of its circumd&@ontains no vertices of T.
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Figure 2.3: Triangulation example. (a) A a $eof points, (b) a triangulation d?, and (c)
another triangulation d®.

An example of a DT is illustrated in Figure 2.4. The circuralgs of the triangles in
the triangulation are also shown by dashed lines in the figaseshown in the figure, in
the triangulation, each circumcircle contains no vertigkethe triangulation in its interior.
Therefore, the triangulation in Figure 2.4 is a DT. A DT maies the minimum interior
angle of all triangles in the triangulation [36]. Conseqlient tends to avoid sliver (i.e.,
long-thin) triangles. The DT of a set of points is not guaeaatto be unique. More specif-
ically, the DT of a set of points is guaranteed to be uniqueifaur points in the set are
co-circular. In the case that a set of points is a subset aftamgular array of points (e.g.
raster image), there will typically be many co-circularqsiand therefore multiple DTs.
Some methods have been proposed for choosing a unique DTHenumerous possibili-
ties in those situations, including the symbolic pertudramethod discussed in [36,38—40]
and the preferred directions approach presented in [41].

In some applications, we want certain prescribed edgegteaapn a triangulation. The
prescribed edges (i.e., line segments) that are imposaupydine triangulation process are
calledconstrained edgesA triangulation with constrained edges is calledaastrained
triangulation [42]. To help understand the concept of constrained trikatgun, we first
introduce the notion of a planar straight line graph (PS@jich is defined as below.

Definition 2.5 (Planar straight line graph (PSLG)A planar straight line graph is a set P
of points inR? and a set E of line segments denotBcE ), such that: each line segment of
E must have its endpoints in P, and any two line segments of Eeitlisr be disjoint or
intersect at most at a common endpoint.

An example of a PSLG is shown in Figure 2.5. The PSLG in the égamsists of a
set of eight points and a set of two constrained edges. A @net triangulation can be
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Figure 2.4: Example of a DT. The circumcircle of each trigngbntains no vertices of the
DT.

considered as a triangulation of the pointBetf a PSLG, where the line-segment Eeof
the PSLG correspond to constrained edges.

Having introduced the concepts of DT and constrained ta&tmn, we now present a
triangulation known as constrained DT [42]. The constrdibd combines the features of
a constrained triangulation and a DT. Therefore, constthIDTs are extensively used in
many applications.

To help define a constrained DT, the notionvdibility must first be introduced. In
a triangulation, two pointg andq are visible if and only if the line segmepg does not
intersect any constrained edge. Furthermore, a goissaid to be visible from the interior
of a triangle/At if and only if, for every pointg inside At, the line segmenpg does not
intersect any constrained edge. Figure 2.6(a) gives an@eamha pointp that is visible
from the interior of a triangle\t. We can see from the figure that, for any pajin At,
there is no line segmemq intersecting a constrained edge. Thpdgs visible from the
interior of At. An example of a poinp that is not visible from the interior of a triangle
At is illustrated in Figure 216(b). In this figure, the line segrpgq intersects with the
constrained edgab at pointo. Thus, p is not visible from the interior ofAt. Having
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Figure 2.5: Example of a PSLG with two constrained line segse

introduced the concept of visibility, we now define a consed DT as follows.

Definition 2.6 (Constrained DT.) Given a PSLGP,E), a triangulation of P is said to be
constrained Delaunay if each triangle T in the triangulatis such that the interior of T
does not intersect any constrained edge in E; and no verwagerthe circumcircle of T is
visible from the interior of T.

An example of a constrained DT is shown in Figure 2.7. Figuréad and (b) show the
given PSLG and its corresponding constrained DT, respaygtifhe thick line segmentee
andegin Figure 2.7(b) are the constrained edges of the consttddie which correspond
to the setE of line segments in the PSLG illustrated in Figure 2.7(a).Figure 2.7(b),
the circumcircle of each triangle in the triangulation iawn with a dash line as well. As
shown in the figure, the circumcircles of trianglésabe Aade Aefgand Aeghhave
vertices of the triangulation in their interiors. Poahts inside the circumcircle of triangle

b b
p p

(@ (b)

Figure 2.6: Examples of visibility. (g is visible from the interior of trianglé\t, and (b)
p is not visible from the interior of trianglé\t.
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(b)

Figure 2.7: Example of a constrained DT. (a) Given PSLG, #dadrresponding (b) con-
strained DT.

Aabe Since the line segments connecting pargnd any point inside the triangle inter-
sects the constrained segmaet d is not visible from the interior of the triangléabe
Similarly, pointb, which is inside the circumcircle of triangl&ade is not visible from
the interior of triangleAAade point h, which is inside the circumcircle of triangleefg

is not visible from the interior of trianglé\ade and pointsd and f, which are inside the
circumcircle of triangle\egh are not visible from the interior of trianglaegh Therefore,
the triangulation in Figure 2.7(b) is a constrained DT. $amio a DT, a constrained DT
also tends to avoid sliver triangles, except those formesHiigfying the edge constraints.
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2.3.2 Polyline and Polyline Simplification

In geometry, golyline is a connected series of line segments with no self-intémsedt is
used to approximate a curve in many applications. An exaof@eolyline that consists of
eight points is shown in Figure 2.8. Often a polyline has t@mynpoints for an application.
That is, the points on a polyline are too close together. k@stke of efficiency, it is better
to find a simplified polyline with fewer points to approximdtes original polyline. To
achieve this, golyline simplification method, which reduces the number of points in a
polyline to produce a simplified polyline that approximaties original within a specified
tolerance, is needed.

Figure 2.8: Example of a polyline

Many polyline simplification methods have been proposedite.dOne of the classical
algorithms is the Douglas-Peucker algorithm [43], whiclex¢ensively used in computer
graphics and geographic information systems. Given a ipelythe Douglas-Peucker al-
gorithm produces a simplified polyline consisting of a stlifethe points that defined
the original polyline, by discarding points based on a dptitolerancee. The Douglas-
Peucker algorithm automatically marks the first and the pastts of the polyline to be
kept. It starts with a line segment connecting the first astipaints of the polyline, and
then finds a poinp that is furthest from the line segment with a distadcelf d, is larger
thang, the pointp is marked to be kept and the algorithm continued, lis smaller than
€, the algorithm stops and all the unmarked points betweeritfteand last points are
discarded.

The process of Douglas-Peucker algorithm is illustrateBigure| 2.9, where the tol-
eranceg is specified in the top-left corner. The original polylinbcde fghis shown in
Figure 2.8. In Figure 2/9(a), firstly, we mark the first paanand the last poinh of the
polyline to be kept. We then calculate the distance betwaeh point fromb to g and the
line segmenah, and find the poing with the largest distanod,. Sinced, is larger thare,

g is marked to be kept. Till now, three points, namajy andh, are marked to be kept. In
Figure 2.9(b), similarly, we find a poirtbetweena andg that is furthest fronag with a
distanced, greater tharg, while no point is found betweegmpandh. Thereforec is marked
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(d)

Figure 2.9: Douglas-Peucker polyline simplification algon. (a)-(c) the procedures of
polyline simplification, and (d) the simplified polyline.

to be kept and the algorithm continues. In Figure 2.9(c) piiat e is found to be the fur-
thest point frontg with a distancel, greater tharg. Thus,eis marked to be kept. Finally,
a simplified polyline consisting of all the points that haweh marked as kept (i.&,c, e,
g, andh), is generated as in Figure 2.9(d), . We can see from the fiatethe simplified
polyline aceghis a reasonably good approximation of the original abede fgh

2.3.3 Computational Geometry Algorithms Library (CGAL)

Several libraries are utilized in the software developadlie research described herein.
One such library is the Computational Geometry Algorithmsrary (CGAL). CGAL is an
open-source project that aims to provide easy access teeaffand reliable solutions and
methods in computational geometry in the form of a C++ librdtyprovides many data
structures and algorithms for geometric computation, @schonvex hull, triangulations,
DTs and constrained DTs. Besides those, interfaces to thiry goftware, such as Qt,
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Geomview, and the Boost Graph Library, are also providedtheéamore, CGAL makes
extensive use of templates, which facilitates the devetoyrof efficient and flexible code.

2.4 Image Processing

Before presenting our work, some image processing conceptglgorithms need to be

introduced. These concepts and algorithms are employadt iproposed mesh-generation
methods, and include binomial filters, bilinear interpigiaf Canny edge detection, anti-
aliasing, and super-sampling. In what follows, the detafiihese concepts and algorithms
are presented.

2.4.1 Binomial Filter

Binomial filters are simple and efficient low-pass filters. ¥inave reasonably-good fre-
guency responses that form a compact approximation of soeete Gaussian [44]. Com-
pared to Gaussian filters [45], an appealing feature of biabfilters is that they do not
require multiplications, which has potential benefits imts of computational complexity.
Therefore, binomial filters are widely used in many applaa instead of Gaussian filters,
especially in hardware implementations.

The transfer functiom,, of the nth order one dimensional (1-D) binomial fiItbﬁlD)
with zero-phase and unity DC gain is

n—1
Hn(2) = 2" /2 (% + %z‘l) : (2.8)

wheren is odd. Alternatively, the coefficients of binomial fiItelnélD) correspond to the
normalizedn'” row (starting from 0) of Pascal’ s triangle. For example, tioezero coef-
ficients of the impulse responsetsf™ are (233
A nth order two dimensional (2-D) binomial filter, denotedbas can be generated as
the tensor product of 1-D filtetx(qlD). For example, a second order 2-D binomial filberis
calculated by tensor product frohélD). The nonzero coefficients of the impulse response
1

12
of the 2-D binomial filteto, are |2 4 2| .
121
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2.4.2 Bilinear Interpolation

In signal and image processinigterpolation is defined as a method of calculating the
values of new data points which are in the range of a discedtefsknown data points.
Interpolation is extensively used in many applications|uding image scaling and signal
upsampling, as one of the basic resampling techniques.

In 1-D, one of the fundamental interpolation methods isdmiaterpolation. Though
not precise, linear interpolation is quick and easy to im@at, which makes it popular in
applications. Linear interpolation takes two data poiris functionf, Py = x; andP, = Xp
illustrated in Figure 2.10, to calculate the interpolant @it the poiniQ = x, which is given

by
X—X1

X2 — X1

F(Q) = f(P1) + (f(P2) — f(P1)) (2.9)
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Figure 2.10: Linear interpolation.

Bilinear interpolation [46] is an extension of linear intel@tion to two dimensions,
which is extensively used to interpolate a functibrdefined onR? at a point inside a
rectangular grid, as shown in Figure 2.11(a). The key id€hailwfear interpolation is to
perform linear interpolation first in one direction, andrifegain in the other direction. To
interpolate the function value at a poipt bilinear interpolation takes a weighted average
of the function values of the 4 points, which are the closesZeighborhood surrounding
p, to estimate the function value pt The weight on each of the function values at the 4
points is based on the distance from each of the 4 poings to

Suppose that we want to find the value of an unknown fundtiatthe poinQ = (x,y),
as shown in Figure 2.11(a), and we know the valud at the four point;1 = (x1,¥1),
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Figure 2.11: Bilinear interpolation. (a) We need to integtela 2-D functionf at an
unknown poinQ = (x,y) within a rectangular grid. (b) We first perform linear intelgtion
in y direction to calculatd (C;) and f (Cy), then again irx direction, to calculate f(Q).

Pi2 = (X1,¥2), P21 = (X2,y1), andPa2 = (x2,y2). We first apply linear interpolation in y-
direction, as shown in Figure 2.11(b), which calculatesttenated values of the function
at two pointsCy = (xg,y) andC, = (x2,Y), as

f(c) = 2 Y tpy)+ T 1 (pyy),

Yo —VY1 Y2—Y1
£(Co) = L2Vt (Py)+ L (Py).
Yo2—Y1 Y2—Y1

With the approximated values of the poil@s andC,, we continue to do linear inter-
polation in x-direction to calculate the value bht pointQ = (x,y) as
Xo —X

f(Q) = f(Cy) +

_X2—X1 X2 —X1

X—X1

f(Ca).
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Thus, the desired approximation bt pointQ = (x,y) is obtained by

f(P11)
(X2 —X1)(Y2— Y1)

f(Pa1) _ _
(X2 — 1) (y2— Y1) bz y) (2.10)

f(P12)

(o xa)(ya —yr) 29
f(P22)

(X2 —x1)(Y2—Y1)

fQ) = (2 —x)(y2—Y)

(X=x2)(y=y1).

2.4.3 Canny Edge Detection

Edgesare one of the most fundamental features of an image, andinargeful information
for a number of applications. An edge is a collection of gxehich have a significant
change in brightness compared with the pixels around themmaore formally, represent
discontinuities.Edge detectionis a process which aims at identifying edges in a digital
image to capture important events and changes in prop@4ii@$48] [49]. Typically, the
process of edge detection producesdge map which is a binary image containing only
edge information. In the binary edge map, the points withra&zeoo value are edge points,
while those with a zero value are nonedge points. Edge dateist extensively used in
many applications, including image processing [50], pattecognition [51] and computer
vision [52]. Figure 2.12 gives an example of edge detectidre original image is shown
in Figure 2.12(a), and its corresponding edge map produgedde detection is illustrated
in Figure 2.12(b).

Suppose we have an image functipnEdges ofp can usually be determined from ei-
ther, (1) the local maxima df; ¢|, or (2) the zero-crossings d@f@. Since derivative oper-
ations are sensitive to noise, a smoothing stage, typibailymial or Gaussian smoothing,
is employed to reduce the noise. Often the edges in the edp@emeerated are very thick,
as shown in Figure 2.13. Therefore, an edge thinning alyor[63] is usually applied at
the final stage to obtain a desirable edge map,

One of the most extensively used edge detectors, known aSahey edge detector,
was proposed by Canny in 1986 [49]. It is still a popular edgedater today. In many
applications, it tends to perform quite well. Canny edge dé&ie consists of four stages:
(1) noise reduction, (2) gradient calculation, (3) locahfmaxima suppression, and (4)
hysteresis thresholding. In what follows, the detail ofresiage is presented.

NOISE REDUCTION. Most types of real world imagery contain noise from a va-
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Figure 2.12: Example of edge detection. (a) The originalgejaand (b) the edge map
produced by the edge detector.

riety of sources. Since the derivatives of images are seasd noise, we need to find a
means to reduce the noise. A 2-D binomial fillbgrwhich approximates Gaussian filter is
a good choice. Lep denote the image function. The convolution of raw image fianap
with a 2-D binomial filterb,,, will generate a image functiohwith reduced noise,

f = (p*bn

GRADIENT CALCULATION. After obtaining the image functioh with reduced
noise, we need to compute the magnitude of its gradient. T$teofider partial derivatives
of the imagey, = %f andgy = %f can be obtained by the convolution of the edge detection
operator (e.g., Roberts, Prewitt, Sobel) withGiven such estimates of first order partial
derivatives, the magnitude and direction of the gradiemicamputed respectively as

g=,/02+97, and (2.11)

0 = atan2gy, Ox). (2.12)

NON-MAXIMA SUPPRESSION. Given an estimate of the image gradient, for
every pixel of the image, a test is carried out to determinethér the gradient magnitude
at each pixel position assumes a local maximum in the gradisgction. That is, for every
pixel a, linear interpolation is employed to interpolate the geatlimagnitudes of the two
points in the gradient direction @ on rectangular grid. If the gradient magnitude of the
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Figure 2.13: Thick edge example

pixel ais greater than the gradient magnitudes of both of the intated points, the pixel

is considered as a local maximum and marked as an edge paistpiocess is illustrated
in Figure/ 2.14. As shown in the figure, to test the piagive first find two pointsp and

g which are the intersection of the line in the gradient dimetbf a with the rectangular
grid. The gradient magnitudeg p) andg(q) are then interpolated based on the gradient
magnitudesy(a_1,—1), 9(a-1,0), 9(ar0), andg(as,1). The pixela is marked as an edge
point only wheng(a) is larger than botlg(p) andg(qg). At this stage, an edge map,,
which consists of a set of edge points, is obtained.

HYSTERESIS THRESHOLDING. In most cases, pixels with larger gradient mag-
nitudes are more likely to correspond to edges. Itis difficudwever, to determine whether
a pixel with given gradient magnitude corresponds to an ¢ageat or not with only one
prespecified threshold. Therefore, the Canny edge detests hysteresis thresholding,
which requires two thresholds, a high threshg|dand a low threshold,. We begin with
generating an edge may, which contains the edge points we can be fairly certain are
authentic. To generatd},, we first compare the gradient magnitugieof each pointp in
Meto th. If gp is larger thar,, we markp as an edge point and add ithk,. To further
detect faint edges, we need to add true edge poilig,tivom M. We first find the starting
points inM¢, which are the points iM ¢ and adjacents to the points i, but not inMy,.
The edges are then traced through the edgelvhafsom the starting points, and the points
with gradient magnitude greater thgrare marked as edge points and addelltp
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Figure 2.14: Local nonmaxima suppression. To test a @itiie gradient magnitudes of
two pointsp, g in the gradient direction od are interpolated.

To demonstrate the efficiency of hysteresis thresholdimg;eonsider a modified version
of Canny edge detection, which use only one threshold. The edgp produced with
hysteresis thresholding is illustrated in Figure 2.15¢#)ile the edge map generated with
only one threshold specified is shown in Figure 2.15(b). Wesze from the figures that
the edges obtained with hysteresis thresholding are mutérlikan those obtained with
only one threshold.

Once the above process is complete, a final edge map, whitaiesthe information
of the desired edges, is generated. Figure 2.12(b) meuntieadier is an example of the
edge map produced by Canny edge detector.

2.4.4 Modified Canny Edge Detector

The Canny edge detector is one of the most widely used edgetadetelue to its charac-
teristics of good detection, good localization, and simglgponse. Some important edge
points, however, especially those points at the crossingofedges, are usually missing
in the edge map produced by the Canny edge detector. For ahimnage shown in Fig-
ure 2.17(a), the edge map generated by Canny edge detedligstimted in Figure 2.17(b).
We can see that the edges obtained with the Canny edge detextartconsistent that is,

an edge point near the crossing of two edges is missing. Bglglexamining the gradient
magnitude and direction at the missing edge point, we fing #tiough the gradient mag-
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Figure 2.15: Comparison between (a) edge map generated ysthrhsis thresholding,
and (b) edge map produced with only one threshold specified.

nitude at the missing edge-point is larger than those of mgéigoints at opposing sides
8-connected to them, it is not the maximum in the gradierdddion at the missing edge
point. Near the crossing of two edges, intensity values efgbints are changed in two
different directions normal to the two edges. Thus the ntages of those points are af-
fected by those two edges and may no longer be the maxima #ilerggadient directions.
Therefore, the edge point near the crossing of two edgegur&2.17(b) is missing.

To avoid missing points at the crossings of the edges gesterdtemodified Canny
edge detectorwas proposed [54]. Since the problem is that the gradiennhimales at
those missing edge points are maxima not in the gradienttdire the modified Canny
edge detector employs a post-processing step to add thessngpoints to the final edge
map. Let us call edges produced by the Canny edge detectoraimeedges We will then
mark a point as a part of theecondary edged its gradient magnitude is larger than any
pair of points 8-connected to it and at opposing sides buneogssarily in the gradient
direction. As shown in Figure 2.16, suppose the gradientmihade of image is denoted as
g, the pointais marked as a secondary edge point if wgéa is larger than botlg(a_1 1)
andg(ay 1), or bothg(a_1,0) andg(as o), or bothg(a_1.1) andg(as,—1), or bothg(ap —1)
andg(ag,1).

According to the definitions, the main edges are a subseedd@hondary edges. Recall
that the main edges are obtained by the Canny edge detectioh ate demonstrated to
correspond to the true edges. On the other hand, some ofdbiedaay edges correspond to
the true edges, while others represent false edges. We osegdrate the true secondary
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Figure 2.16: Local nonmaxima suppression of modified Cangg elétector. The poira
is marked as a secondary edge point wh@) is greater than any pair of points at opposing
sides.

edges from the false ones. To achieve this, we first parttiensecondary edges at the
branch points, and remove the branches that do not contgiimam edge points. We
then trace through the secondary edge contours and onlythegoints in the secondary
edges that connect the main edges. Combining the main eddéseamarked points in the
secondary edges, we obtain the final edge map shown in Figliféc2. We can see from
the figure that, the edges generated by the modified Canny edgetar have no missing
point at the crossing of two edges. Thus they are more censigtan those produced by
the Canny edge detector.

2.4.5 Anti-aliasing and Super-sampling

In the context of computer graphics and rasterization #lgos, aliasing refers to the
jagged and pixelated edges in a rendered image. In ordergmim the quality of an
image, we need to minimize aliasing (i.e., reduce the jaggiegs) in the image.

The technique of minimizing aliasing is known as anti-ahgs An example of the
effect of anti-aliasing during rasterization is illustedtin Figure 2.18. Figure 2.18(a) and
(b) show an image rendered without anti-aliasing and witir@rased, respectively. We
can see from the example that, with anti-aliasing, the jdggsges in the image without
anti-aliasing are eliminated, and the anti-aliased imag&d much better than the one
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(b) (c)

Figure 2.17: For a (a) given input image, the comparison efeffects of (b) the Canny
edge detector and (c) the modified Canny edge detector.

produced without anti-aliasing.

One common anti-aliasing technique is called super-sagfi5]. In super-sampling,
the image is first rendered at a much higher resolution tharfitkal resolution desired.
Extra samples are then taken inside a pixel (usually folhgwaome fixed pattern), and the
average value of the samples inside the pixel is calculabd.image is downsampled to
the desired size at the end, and the value of each pixel inadhashmpled image is the
average value of the samples inside the pixel of the oridirggier resolution image.

Many types of super-sampling have been proposed to datec@nmonly used type
is known as the grid algorithm. The grid algorithm is simphel @asy to implement. In the
grid algorithm, the pixel is split in several sub-pixelsdamsample is taken from the center
of each. An example of 4 4 grid algorithm is shown in Figure 2.19. In the figure, the
pixel is divided into a 4 4 array of sub-pixels, and 16 samples are selected from titerce
of the sub-pixels. The value of the pixel is computed as tlegagye value of the sub-pixel
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Figure 2.18: Example of anti-aliasing. (a) the image withgad edges, and (b) the image
after anti-aliasing.

samples.

2.4.6 Triangle Scan Conversion

With a given triangle mesh model of an image functipdefined orZ?2, in order to obtain
an approximatiomp of @, we need to interpolate the value of all the pointgir\n efficient
way of producing an image approximatigrirom a triangle mesh of the imaggis known
astriangle scan conversion Generally speaking, triangle scan conversion is a tecieniq
for converting geometric object defined on continuous donbaidiscrete lattice-sampled
representation.
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Figure 2.19: Example of super-sampling using 4 grid algorithm,
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In triangle scan conversion, each triangle of the mesh isrexh sequentially, and the
value of the points oi)in each triangle is then uniquely determined by a planarpaiant
that passes through the three vertices of the triangle. Téeeps of scanning a triangle
is shown in Figure 2.20. For each triangle in the triangatatithe interpolation is done
on each point in the triangle sequentially, starting fromp to bottom, left to right. As
shown in Figure 2.20, for each triangle, a horizontal s@a@;lwhich start fromymay is
used to do the interpolation. At eaghke [ymin, Ymax N Z, the horizontal scan-line intersects
the triangle edges at two point8,(x,y) and P (x:,y), respectively. The interpolation is
then carried out on the points(xp,y) € 72 located between the pair of intersectiofs,
andP;, from left to right. The process of triangle scan converstops when the scan-
line reacheymin, Which means all the points inside the triangle (includihg points on
triangle edges) have been interpolated. Due to the pregesfithe triangle, the points on
the edges are interpolated twice, which increases the catiqual complexity of triangle
scan conversion. One of the methods for solving this propienich is presented in [56],
is uniquely assign each point to a triangle. Once the progietsgngle scan conversion is
completed, the approximatiamof the image functiompis generated.

YV max e

Scanline

ymin

Figure 2.20: Triangle scan conversion.
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2.5 Mesh Modelling

An image can be modeled as a 2-D function defined on a contndomnain (a subset of
RR?), where the value of the function corresponds to the brigggrof the image. For exam-
ple, the image in Figure 2.21(a) can be modeled as a surfalbesasted in Figure 2.21(b)
by using the brightness of the image as the height of the sadhove the plane. In im-
age processing and computational geometry, mesh modalargapproach for modelling
objects by representing them using mesh elements (i.gggos$). Particularly, mesh mod-
elling of an image is an approach for approximating the infagetion ¢, which involves
partitioning the image domain into a collection of non-¢apping mesh elements (e.g.,
triangles). In other words, a mesh model of an image can bsidered as a geometric
representation of the image using non-uniform samples,hoéiwthe image samples are
adaptively placed according to the local content of the imna@gmong the numerous possi-
bilities of polygon meshes, triangle meshes have receivediderable attention. To form
a triangle mesh model of an image, we first need to select & sahaple points from the
image, and then construct a triangulation of the sampletgoin

.
300
200 250

150
300 50 10

(@) (b)

Figure 2.21: Image modeled as a function defined on contsidomain. (a) The original
image, and (b) image modeled as surface.

A mesh approximation of the image in Figure 2.21(a) with aglarg density (which
will be defined later) of % is shown in Figure 2.22. The mesh model used here is the
most commonly used mesh model, which we refer to ad#séc modelherein. The basic
model is quite simple and employs Delaunay triangulationsth the basic model, the
sample pointd are chosen as a subsetAf andP is triangulated using the Delaunay
triangulation. Over each (triangle) face in the triang'ola,tfp Is defined as the unique
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Figure 2.22: Mesh approximation of Image (sampling der&H@o). (a) The triangulation
of the original image, (b) resulting triangle mesh, and (@ teconstructed image.

linear function that interpolategat the three vertices of the face. Thus, the approximating
function @ is continuous and interpolatgsat each point iP. Furthermore, this model is
completely characterized by the sample poRendq(p) for p € P. Figure 2.22(a) shows
the triangulation of the original image domain and the r@sgltriangle mesh is illustrated

in Figure 2.22(b).

With a mesh model of an image, an approximation of the imagebeareconstructed.
Among the numerous image construction methods, triangle sonversion, which is in-
troduced earlier in Sectian 2.4.6, is an efficient and extehsused scheme. In triangle
scan conversion, the value of the pom Z? inside each triangle is determined by a
unigue planar interpolant that passes through the sampreatiébn values at three vertices
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of the triangle. With triangle scan conversion, the imagpragmation shown in Fig-
ure 2.22(c) is reconstructed from the mesh model illustrate=igure 2.22(b). From the
Figure 2.22(c), we can see that, although the sampling geissquite low (05%), the
image approximation obtained is still of good quality.
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Chapter 3

Proposed Mesh-Generation Methods

3.1 Overview

In this chapter, we begin with an introduction of two prestyuproposed mesh-generation
methods that are employed in our work, namely the ED and Gidrses. Then, we pro-
pose a mesh model that explicitly represents image disuaitigs along with two mesh-
generation approaches that select the model parametexrgjieen input image. After that,
we discuss the selection of the parameters and variatidhe pfoposed approaches that af-
fect the quality of the results. Experimental results shoat bur proposed mesh-generation
methods can produce image approximations of higher quality those generated by the
highly effective ED and GPI schemes in terms of both PSNR abgestive quality. Some
of our results presented in this chapter have also beenghidliin [35].

3.2 Previously Proposed Mesh Generation Methods

Before presenting our approaches, we first introduce twor ckiensively used mesh-
generation methods, namely teéeor diffusion (ED) scheme and thgreedy point inser-
tion (GPI) scheme. The mesh model used in these two mesh-gemeraéthods is the
basic model described in Chapter 2, which is based on DT anBeaniquely character-
ized by a set of sample points along with the correspondingpavalues. In what follows,
the ED scheme and the GPI scheme are presented in detalil.
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3.2.1 ED Scheme

The ED scheme was proposed by Yang, Wernick, and Brankov [L2P03. It is fast
and easy to implement. It uses Floyd-Steinberg error ddfu§24] to generate the set
of desired sample points, hence the name. For a given impatgfined on the domain
A =[0,W—1] x [0,H —1]NZ?, to select a desired numbkr of sample points, the ED
scheme first calculates a sample-point density funaidrom the maximum magnitude
second-order directional-derivative (MMSODD) of @ at each pointx,y) € A, and then
employs Floyd-Steinberg error-diffusion to select aSef K sample points according to
the density functioro. One desired property of the ED scheme is that, the localadpat
density of the sample points is proportional to the MMSOD[@of

In more detail, the ED method consists of the following st@p®rder):

1. We first computel, which is the MMSODD ofp, at each poinp = (x,y) € A as
d(X,y) :maX{‘)\1+)\2|,’}\1—)\2‘}, (31)

whereA1 andA; are computed by

M=t axy)+ L axy)), and (3.2)
1—2 ze(p Y ayz(p Y ) .

92 02 2 02 2
o \/ i (o0 - gp009) + (gyemn) . @3

The density functiom is then computed as

dix,y)1Y
oixy) = | G2 3.4)
max
wheredmax = maxyca d(X,Y), andy is a positive real constant adjusting the sen-
sitivity of the location of sample points to edges in the imaghich we refer to as

contrast sensitivity parameter herein.

2. In order to select approximate|$§ = K sample points, the threshofdof Floyd-
Steinberg error diffusion can be chosen as,

1 M N
p= o [_; 5 ol j)] . 35)
i=1 =
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A binary imageb defined onA is generated frono using Floyd-Steinberg error
diffusion with p in serpentine scanning order [13]. Each pdixty) € A satisfying
b(x,y) # 0 is then placed in a s& of sample points.

3. If |S]is close enough t{§ (i.e.,K), setSto S; otherwise, the threshofpineed to be
adjusted, and then go to step 2.

4. Atlast, a DT is constructed on the &bf sample points to produce a mesh model.

Since the ED method has a number of degrees of freedom, wehagten our work,
we consider the variant of this method that employs a thideobinomial filter for noise
removal during MMSODD estimation, a contrast sensitivilygmeter of 1, and the ser-
pentine scan order for error diffusion. Also, the first- aadand-order derivative operators
used in the calculation of the MMSODD were approximated kgl with transfer func-
tions %z— 22*1 andz— 2+ z 1, respectively. Lastly, we note that, during filtering, sign
boundaries are handled by zero extension (i.e., paddifgaeitos).

3.2.2 Greedy Point Insertion Scheme

Garland and Heckbert proposed a mesh-generation scher88%10] which is referred

to as Garland-Heckbert(GH) method. The GH scheme refinastal model successively
until either a certain approximation error is reached orréag® number of sample points
is obtained. The refinement of the GH scheme is done by ingeotie point into a trian-

gulation in each iteration based on the maximum absolute.eirmodified version of the

GH scheme was proposed by Adams [29], which employs the sduaror of the faces
instead of the maximum absolute error, and achieves a gngabvement in the quality of
the resulting image approximations. In the remainder optyeer, the modified version of
the GH scheme proposed by Adams is called greedy pointiosfGPl) scheme.

Before presenting the GPI scheme in detail, we first introciacee concepts and no-
tations used in the method. For a given imgpaefined on/\, in each iteration, the GPI
scheme derives an approximatifprlirom @. The absolute errag,y ) of a pointp(x,y) is
computed as

€p = |Q(X.y) — @(x,Y)|, (3.6)
and the sum of squared erraym of a facef is the sum of the squared errarsf all the
pointsinf,

pef
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In the triangulation of a sd? of points, letF denote the set of all the faces in the triangula-
tion, and each poinp € A is assigned to exactly one fa¢en F, denoted byfacg p) = f.
Thecandidate pointof a triangle is defined as the point with the maximum absauater
€ within the triangle, denoted byand(f).

The GPI scheme is involved in the following four steps.

1. Construct a DT with the sé&t of four corner points on the convex hull @f

2. Derive a mesh approximation from the DT using trianglenszanversion, and then
calculate the absolute errarof each point. For each fack of the DT, find its
candidate pointand(f).

3. For each face in the DT, calculate the sum of squared egigr Then find the face
fm with maximumesym

4. Insert the candidate point of fadg into the DT. If the total number of vertices of
the triangulation reaches the desired nunmbethe algorithm stops. Otherwise, go
to step 2.

To implement the algorithm efficiently, a heap based pyagiteue is used to maintain
the information of the faces and the candidate points. Alffites are stored in the priority
gueue keyed on their sum of squared ergars, During each iteration, we simply extract
the candidate point of the fadg, with maximumeg,m cand fy), from the top of the pri-
ority queue and insert it in to the DT. One problem, which impatationally expensive, is
the recalculation of the approximation errors after a cdai@i point is inserted in each iter-
ation. Once a candidate point is inserted, the structureeofriangulation will be changed,
consequently the approximation errors need to be recaézllin fact, only a small number
of triangles in the triangulation are affected by the inserof a candidate point. Therefore,
to solve this problem, we first find the set of triangles whichaffected by the insertion of
the candidate point, and then only recalculate the errdisose triangles.

3.3 A Mesh Model with Explicit Discontinuities

The basic mesh model used by the ED and GPI schemes (intcheéacker) is always as-

sociated with an approximating function that is continudosages, however, often contain
a significant number of discontinuities (i.e., image edgd$)s observation motivated us
to propose a new mesh model that explicitly represents disugties in images, known as
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the ERD model (where ERD stands for “explicit representation of discamties”). Our
ERD model makes use of constrained Delaunay triangulatié2ls Consider an image
defined at the pointd = {0,1,... W—1} x{0,1,...,H — 1} (i.e., an image sampled on a
rectangular grid of widthV and heigh#H). Letl = [0,W — 1] x [0,H — 1]. A mesh model
for @is completely characterized by:

1. asel = {p;} of sample points, wherg = (x,Yi) € %sz r;
2. aset of constrained edges (i.e., a set of pairs of sample poiois #); and

3. for each sample poim;, one or more wedge values (where the ta@vatdge value”
will be defined precisely later).

The quantitied? and E along with the associated wedge values are used to deteanine
function @ defined o™, wheregis an approximation of. Note that, with our model, the
sample points if® are chosen on twice as fine a grid as the original image beprgsented
(.e., ' N %Zz as opposed té NZ?). This is done in order to allow for more accurate
representation of image edges. As we will spés chosen to interpolate at each point
in Z2NP. As a matter of terminology, we refer to the quanti®)/|A| as thesampling
density. In what follows, we explain hovr]) is defined in terms oP, E, and the wedge
values.

First, we construct a constrained DT Biwith the constrained edgés which serves
to partition the image domaih into triangle faces. The constrained edges are chosen
to correspond to image edges. For each vewtexP, the set of faces incident onis
partitioned into what are called wedges. In particulawealgeis a set of consecutive faces
in aloop around a vertexthat are not separated by any constrained edge. This dexfirsti
illustrated in Figure 3.1. If the number of constrained edligeident on the vertexis zero
or one, all faces incident onform a single wedge, as shown in Figure 3.1(a). Otherwise, if
n constrained edges are incidentwofwheren > 2), the faces incident onform n wedges,
as shown in Figure 3.1(b). Wedges are used to facilitate theeiting of discontinuities
(i.e., image edges). Since constrained edges are chosemrés@ond to image edges, a
vertexv € P that has more than one wedge must be located along a disgityt{ne.,
image edge). Each wedge of a vertex has associated with ttisvballed a wedge value.
The wedge valuez of the wedgew belonging to vertex specifies the limit ofp( p) asp
approaches from points inside the wedge.

Now, we specify precisely how the functi(&ris defined at each poimte I'. There are
two cases to consider: D)is not on a constrained edge; R)s on a constrained edge.
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(@) (b)

Figure 3.1: The relationship between vertices, constchieeges, and wedges. The
(a) single-wedge, and (b) multiple-wedge cases.

Case 1.First, let us consider the case thmis not on a constrained edge. Lietlenote
a face of the triangulation with verticgs = (x,Yi), pj = (Xj,Yyj), andpx = (X, Yk) that
contains the poinp. Let z, zj, andz denote the wedge values for the falceorrespond-
ing to the vertices;, pj, and p, respectively. Therfp( p) = g(p), where the functiory
is the unique planar interpolant that passes through thet0i,yi,z), (Xj,Y;j,zj), and
(X, Yk, Z)- The three possible situations whpiis not on a constrained edge are shown in
Figure 3.2.

aq aq

az az az

as as as
(a) (b) (©)

Figure 3.2: Three cases when the pqgins not on a constrained edge. (@)s inside a
triangle, (b)p is on a edge that is not a constrained edge, ang (€p vertex of a triangle,
but not incident to a constrained edge.

Case 2.Next, let us consider the case thats on a constrained edge. pfis not an
endpoint of a constrained edgg(p) is the average of the values on the two sides of the
image discontinuity (computed as in case 1). On the othed hiérp is an endpoint of
a constrained edge (i.e., a vertex in the triangulatiﬁlﬁp) is the average of all wedge
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values for (the vertexp. The two possible situations whgnis on a constrained edge are
illustrated in Figure 3.3.

ai ai

aq4 aq4

az a:

as as
(a) (b)

Figure 3.3: Two cases when the pomis on a constrained edge. (pjs not an end point
of a constrained edge, and (p)s an end point of a constrained edge.

From the mesh modep, a lattice-sampled image can be reconstructed by straightf
ward rasterization algorithms. Due to the fact that our ERCleh@xplicitly represents
discontinuities, image edges could produce undesiradsiag effects if the samples of
the (discrete) image reconstruction were generated bylgievaluatingg at points inA.
Consequently, in the case of our ERD model, rasterizationrf®peed using the well-
known 4x 4 supersampling technique [55], as this approach avoids aliasing effects.

3.4 Proposed Mesh-Generation Methods

Having introduced our ERD mesh model, we now propose two rgesieration methods,
called ERDED and ERDGPI, to be used in conjunction with this eho&or a given im-
age@ sampled at the points of the rectangular ghideach of these methods selects the
parameters of the model (i.&?, E, and wedge values) so as to obtain the best possible
approximation ofp for a specified target numb#&t of sample points (i.e/P| = N). Since

the ERDED and ERDGPI methods fit into the same general algadtframework, we
first introduce this framework. Then, we give the specificeath of these methods. The
algorithmic framework employed by both methods consistheffollowing steps:



37

1. INITIAL TRIANGULATION . Select initial values folP andE. This determines
the initial triangulation (i.e., the constrained Delautagngulation ofP with edge
constraintE). LetNp = |P| (i.e., Ng is the initial mesh size).

2. INITIAL WEDGE VALUES . For each vertex € P, calculate the wedge value for
each wedge of.

3. POINT SELECTION . Select a new sample poipt to add to the mesh.

4. POINT INSERTION . Insert the pointp* in the (constrained Delaunay) triangula-
tion. If p* is on a constrained edge, split the edgeainto two constrained edges,
and compute the wedge value for each wedge of the vgrtexdf p* is not on a
constrained edge, the wedges remain the same and no wedgs waed to be re-
computed.

5. STOPPING CRITERION . If [P| <N, go to step B (i.e., add another sample point to
the mesh).

In the framework above, steps 1 and 2 choose an initial conesh of sizeNp, and
steps 3 to 5 iteratively refine the mesh by addig Ng sample points to the mesh. The
initial coarse mesh selection (i.e., steps 1 and 2) is paddrin an identical manner for
both the ERDED and ERDGPI methods. The two methods differ orillye approach used
to refine the mesh (i.e., steps 3 to 5). First, we describe irerdetail steps 1 and 2, which
are identical for both the ERDED and ERDGPI methods.

3.4.1 Initial Coarse Mesh Selection

Recall that, with our ERD model, the sample poiRtare chosen as a subsetlof %ZZ.
That is, the grid on which the sample points lie is a grid withspacing in the horizontal
and vertical directions each reduced by half relative togithe A on which@is originally
sampled. Since the original imageis sampled on &/ by H grid, this implies that the
sample points (irfP) are chosen to fall on €W — 1) by (2H — 1) grid. The relationship
between these two grids is illustrated in Figure 3.4 for theecof a 4x 4 image (i.e.,
W =H =4). In what follows, IetEdenote the function defined dnformed by the bilinear
interpolation [46] ofp. By definition,cﬁsatisfiesxﬁ( p) = @(p) forall pe A.

STEP 1. In step 1 of our framework, the selection of the initial tigaiation consists
of four substeps, which are numbered 1.1 to 1.4 below. Thelssteps are described in
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Figure 3.4: Relationship between grids for & 4 image.

detail in the paragraphs that follow and are also illusttétg way of the example shown in
Figure 3.5.

1.1) LOCATE EDGES. First, we employ the (modified) Canny edge detector in [54] to
locate edges in the imaggwith half-pixel resolution. To accomplish this, we appleth
edge detector t(isampled on the rectangular gfid) %ZZ to produce a binary edge map
of dimensiong2W — 1) x (2H — 1). (An entry in the edge map is one if it corresponds
to an edge pixel, and zero otherwise.) Note that the grid oimrwq_n is sampled here is
twice as fine (in each dimension) as the ghidn which the original image is sampled.
By applying the edge detector to this higher resolution wersif the original image, we
can locate edges with half-pixel accuracy. The Canny edgetigtworks by computing
the gradient magnitude and direction and then using tha@mdition in conjunction with
hysteresis thresholding to select edge pixels. Two paennhetust be specified as input to
the edge detector, namely, the low and high thresholds fetehgsis thresholding, denoted
herein ast|,,, andtygn, respectively. In our method, these edge-detector thtéslaoe
controlled by the paramete@isandr. The quantityt,;g, is chosen such that the fraction of
pixels (fromcE) whose corresponding gradient magnitude is greater thajaal toty,g,
is B (i.e., the edge detector will nominally produce at Iggi§t N $Z2| edge pixels). Then,
Tiow IS Selected asj,y = I'Thigh. TO reduce the effects of noise, a smoothing operation
(i.e., lowpass filter) is included in the convolution kernmsled for gradient calculation.
That is, the filter used to estimate each partial derivasweé composition of a first-order
derivative operator and smoothing operator, where thedndr derivative operator is a
filter with transfer functionsz— 3z~ and the smoothing operator is a fifth-order binomial
filter [44]. Since edges in the edge map can be more than oeéwide, we apply the line
thinning algorithm from [53] to reduce the thickness of exlgEhe edge detection process
is illustrated in Figure 3.5. In particular, given the inpotage in Figure 3.5(a), edge
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detection would produce a binary image resembling that shiowFigure 3.5(b), where
edge pixels are shown in black.

1.2) CONSTRUCT POLYLINES FOR EDGES. Having generated the edge map, we next
construct a polyline representation of each edge in the edge To accomplish this, 8-
connected edge pixels in the edge map are joined (by line esaiginto form polylines. In
cases where a polyline has one or more self-intersectiomsu@@ng loops), the polyline
is split at each intersection point. In this way, the finalgfepolylines is guaranteed not
to have any self-intersections (excluding loops). Thiscpss is illustrated in Figure 3.5.
Given the edge map shown in Figure!3.5(b), we would produe afgolylines like that
shown in Figure 3.5(c).

1.3) SMPLIFY POLYLINES . After polylines have been constructed to represent image
edges, we need to simplify these polylines. In other wordsgefch polyline we find a
new polyline with fewer vertices (i.e., control points) theell approximates the original
polyline. To perform polyline simplification, we employ thwell knownDouglas-Peucker
(DP) [43] algorithm. For a given polyline, the DP scheme repdgt@dsing a greedy
approach) adds points to a trivial two-point approximatbthe polyline until the resulting
approximation error is less than a prespecified tolerantc@ut method, each polyline is
simplified using the DP algorithm with toleranee Then, we discard any polylines with
fewer than/ vertices, where is a parameter of our method. Polylines with only a few
points are eliminated, as such polylines tend to be assotwith false edges introduced
by noise and degrade mesh quality. This process is illestriat Figure 3.5. Given the set
of polylines shown in Figure 3.5(c), we would produce a sesinfplified polylines like
that shown in Figure 3.5(d).

1.4) LECT P AND E FROM POLYLINES . Having obtained the set of simplified
polylines, we now use those polylines in order to seeahdE. Since the extreme convex-
hull points ofA (i.e., the four corner points of image bounding box) mustraduided in
P, these four points are always forced to be includeB.iwe chooséd® as the union of all
of the polyline vertices and seleEtas the set of line-segments from all of the polylines.
Then, we form the constrained Delaunay triangulatio® @fith edge constraintg. This
process is illustrated in Figure 3.5. Given the simplifieti/[ies shown in Figure 3.5(d),
we would produce the triangulation shown in Figure 3.5(¢)em constrained edges are
denoted by thick lines.

STEP 2. Having selected the initial triangulation, we now need toage the wedge
values. In particular, for each wedgeof each vertew € P, we must select the corre-
sponding wedge value The selection ot is performed in one of two ways, depending
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Table 3.1: Choice of3 for the ERDEDable 3.2: Choice of3 for the ERDGPI

method method
Samp. Density Samp. Density
(%) B (%) B
[0.00,0.20) 0.0095 [0.00,0.20) 0.0110
[0.20,0.35) 0.0095 [0.20,0.35) 0.0115
[0.35,0.75) 0.0118 [0.35,0.75) 0.0118
[0.75,1.20) 0.0280 [0.75,1.20) 0.0280
[1.20,2.50) 0.0550 [1.20,2.50) 0.0550
[2.50,3.50) 0.0830 [2.50,3.50) 0.0830
[3.50,5.00) 0.0950 [3.50,5.00) 0.0950

on the numben of wedges associated with the vertexif n= 1, we simply choose as
z= @(v). Otherwise (i.e., ih > 2), we proceed as follows. Ldtdenote the MMSODD of
¢ (which is calculated according to equation (6) in [13]) agiclidenote a unit vector in the
direction of the ray originating froma and bisecting the wedge. We selecz asz= cB(\/),
whereV' = v+a*d anda* = argmax(; 1 5 f(v+0ad). In other wordsy' is chosen as the
result of a local line search that maximizes the MMSODD althvgray bisectingv. The
line search is restricted € [1,1.5] in order to prevent’ from falling far outside of the
(triangle) face with whichw is associated. As a practical mattér(as defined above) is
calculated with a fifth-order binomial filter for smoothing.

SELECTION OF [3, 1, ¢, AND €. As seen above, the selection of the initial triangula-
tion (in step 1 of our framework) requires the specificatibthe parameter§, r, ¢, and
€. Rather than requiring these parameters be chosen manuallyyopose an automated
scheme for their selection, which was developed based @am&ixe experimentation. In
our framework, we always choose- 0.4. The remaining parametess/, ande are chosen
as described below. In what follows, ltandD denote the number of sample points (i.e.,
N = |P|) and the sampling density of the mesh model, respectively.

As a matter of terminology, we refer to an imagesample if it contains an abnormally
low amount of edges. How we seldgt/, ande depends on whether the image is simple.
First, we make a determination of whether the image is simptedo this, we perform
step 1 of our framework with the fixed choices [df= 0.055, ¢ = 5, ande = 1. If this
results in an initial triangulation where the number of \e&$ that are endpoints of con-
strained edges is less tha®O1|I" N 5Z2|, the image is deemed to be simple; otherwise, it
is deemed not to be simple.

Next, we make an initial choice f@, ¢, ande. If the image is not simple, we proceed
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as follows. Set =5. If D > 0.01, sete = 1; otherwise, sed = 2. Finally, make the initial
choice of3 based on the sampling density as given by Tables 3.1 and BtRfd&ERDED
and ERDGPI methods, respectively. If the image is simple, \akerthe initial choice of
B, ¢, ande asp =0.03,/ =1, ande = 1.

Next, we iteratively updat@, ¢, ande. This is accomplished by the following steps:
1) Perform edge detection (i.e., step 1.1 which y3esdr). 2) Perform polyline sim-
plification (i.e., steps 1.2 and 1.3 which ugeand/). If the number of sample points on
constrained edges is less thaBdN, (i.e., too few sample points are obtained), set 1
and redo polyline simplification. 3) If the actual number ohstrained sample points is
greater than ON, setf3 := 0.7503, set/ := 2¢, and go to step 1 (i.e., the start of the loop).
4) Output the current values 8f r, ¢, ande as the final selected values.

3.4.2 Mesh Refinement for the ERDED Method

As mentioned above, mesh refinementis performed diffgrendur ERDED and ERDGPI
methods. In particular, in step 3 of our framework, the stygtused to select the new point
p* to add to the mesh is different in these two cases. In whaivigl] we describe how
step 3 is performed in the ERDED case.

Let Sdenote the set of sample points to be added to the mesh. Simaeitial mesh
has sizeNy, we require that§ = N — Np. With the ERDED methodS is selected all at
once. So, if step 3 is being encountered for the first ti&ie,chosen (in its entirety) before
any other processing is performed. Then (W&having been initialized), we arbitrarily
assign a point fronsto p* and then leS:= S\ {p*}. As for howSis initially chosen, we
will describe this shortly. Theoretically, it is possiblerfone or more of the points i&to
fall on a constrained edge. To avoid unnecessarily contpligaur ERDED method, we
discard any such points. Since it is extremely rare for tiiigation to arise, the impact on
the target sampling density is negligible.

The setSis chosen using the error-diffusion technique from the ERhoe@ [13] as
described earlier. In order to permit the error-diffusienhnique to work more effectively
with our ERDED method, we made several modifications to tlukrigue. First, the edge
sensitivity parametey was chosen ag= 0.5 and the smoothing operator employed (for
MMSODD calculation) was selected as a fifth-order binomig&ifi Second, the density
functiond used for error diffusion was modified. Instead of simply ckingd as the MM-
SODD,d was chosen such that it equals the MMSODD at points wherediresponding
edge map entry (obtained from edge location in step 1.1 offramnework) is zero, and
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(b)

Figure 3.6: Mirroring the image. (a) original image and (bjage obtained after mirroring.

zero otherwise.

The third modification to the error diffusion scheme sereesliminate an undesirable
startup effect. In particular, when the number of sampl@tsdaio be chosen is sufficiently
low (i.e., at low sampling densities), error diffusion wiltten result in an abnormally low
number of sample points being selected in the region of tleg@processed first (namely,
the top of the image). This abnormally low number of samplefsdeads to very high
distortion in this region, degrading overall performande. eliminate this startup effect,
we extend the image to be processed by mirroring it aboutrgsriw so as to obtain an
image of twice the original height. That is, for the origimalage shown in Figure 3.6(a),
we extend it by mirroring and obtain the resulting image shawFigure 3.6(b). Then, we
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Figure 3.7: Startup effect in error diffusion. Triangutatiobtained (a) without mirroring
and (b) with mirroring.

apply error diffusion to extended image, discarding any@amoints that are chosen in
the mirrored region. To demonstrate the benefit of this mmgpprocess, we provide an
example in Figure 3!7. In particular, Figures|3.7(a) ands(tmw the triangulation obtained
without and with the use of mirroring. Observe that in themiororing case, an abnormally
low number of sample points is selected in the first few roves,(iop) of the image, which
ultimately leads to higher approximation error. In contraise mirroring case does not
suffer from this problem.

3.4.3 Mesh Refinement for the ERDGPI Method

Now, we describe how step 3 of our proposed framework is pad in the ERDGPI
case. In the ERDGPI case, a new pgntto add to the mesh is selected using the process
described in what follows. During mesh refinement (i.e pst&to 5 of our framework), we
maintain the image approximaticingenerated from the current mesh model. This image
approximationpis generated from the mesh model parameters as specifiedtior8.3.
Each time a new point is added to the mesh, the image apprtamigis updated to reflect
the change in the mesh. For a fakcen the triangulation, let point$ ) denote all points in

A belonging tof. Using the current image approximatignwe choosep* in two steps.
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Table 3.3: Test images

Image Size, Bits/Sample Description

bul | 1024x 768, 8 computer-generated bull [60]
ct 512x512, 12 CT scan of head [57]

gl asses?2 | 1024x 768, 8 raytraced glasses [60]

| ena 512x512, 8 woman [59]

ni 256x256, 11 MRI scan of head [57]
peppers | 512x512, 8 collection of peppers [59]

First, we select the facg® with the greatest squared error. That is,

f*=argmax 5 (®(p)—9(p))?,
feF  pepointy f)
whereF is the set of all faces in the triangulation. Then, we seleetgointp* in f* with
the greatest absolute error. That is,

p* = argmax |@(p) — (p)|.
pepointg f*)

3.5 Evaluation of Proposed Methods

Before proceeding further, a brief digression is in orderceoning the test data used herein.
In our work, we employed 41 (grayscale) images that weratakestly from standard test
sets, such as the JPEG-2000 test set [57], Kodak test seafsBUSC image database [59].
Herein, we focus our attention on the representative sutbsét images listed in Table 3.3,
which were deliberately chosen to include computer-geadranedical, and photographic
imagery.

ERROR DIFFUSION STARTUP IN ERDED METHOD . Earlier, in the context of our
ERDED method, we mentioned that error diffusion can oftentean undesirable startup
behavior and to combat this problem we introduced a mirgpsicheme. Now, we present
some results to demonstrate the effectiveness of this nmgscheme. For several test
images and sampling densities, we generated a mesh usingERiDEand without mir-
roring and measured the resulting approximation error imseof peak signal-to-noise
ratio (PSNR). The results obtained are shown in Table 3.4, with the besiitren each
case being highlighted ibold. Clearly, the mirroring scheme employed in our ERDED
method is highly effective, outperforming the approachheitt mirroring in 22/24 of the
test cases by a margin of up to 4.31 dB. It was due to this extglerformance of mirror-
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Table 3.4: Effectiveness of the strategy for mitigating skeatup effect in error diffusion

Samp.
Density PSNR (dB)
Image (%) No Mirroring | Mirroring
bul | 0.125 21.97 24.68
0.250 28.28 28.86
0.500 34.69 35.15
1.000 39.22 39.02
ct 0.125 15.83 15.63
0.250 24.09 25.97
0.500 25.75 30.06
1.000 35.55 36.51
gl asses2 | 0.500 18.19 20.54
1.000 23.21 24.80
2.000 26.80 28.71
3.000 30.06 30.85
| ena 0.500 20.19 20.56
1.000 24.65 25.82
2.000 28.09 29.28
3.000 30.64 31.31
ni 0.250 11.56 12.55
0.500 22.46 24.79
1.000 28.69 30.33
2.000 32.13 33.14
peppers | 0.500 21.37 22.14
1.000 24.75 25.97
2.000 28.56 29.00
3.000 29.91 30.18

ing that we chose to include it in our ERDED method (as intreduearlier).
ComPARISON WITH ED AND GPI METHODS. Having introduced our proposed
ERDED and ERDGPI methods, we now compare their performandeatoof two com-
peting methods, namely the ED and GPI schemes (describkereatn terms of com-
putational complexity, the ERDED method is most comparabléhe ED scheme, and
the ERDGPI method is most comparable to the GPI scheme. Tnerafe compare the
ERDED method to the ED scheme and the ERDGPI method to the GBingchFor the
images in our test set and several sampling densities, wkaseh of the ERDED, ED,
ERDGPI, and GPI methods to generate a mesh and then measearegstitting approx-
imation error in terms of PSNR. A representative subset ofélselts obtained is shown
in Table 3.5 for the ERDED and ED methods and in Table 3.6 foBREGPI and GPI
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Table 3.5: Comparison of the mesh qualiple 3.6: Comparison of the mesh quality
obtained with the ERDED and ED methodsbtained with the ERDGPI and GPI methods

Samp. Samp.
Density PSNR (dB) Density PSNR (dB)
Image (%) ERDED | ED Image (%) ERDGPI| GPI
bul | 0.125 24.68 | 14.66| | bul | 0.125 35.47 | 30.56
0.250 28.86 | 17.36 0.250 38.33 | 35.30
0.500 35.15 | 27.79 0.500 40.16 | 38.72
1.000 39.02 | 34.16 1.000 41.39 | 40.95
ct 0.125 15.63 | 12.99]| | ct 0.125 27.19 | 24.69
0.250 25.97 | 13.23 0.250 32.11 | 29.93
0.500 30.06 | 17.47 0.500 36.31 | 35.12
1.000 36.51 | 20.82 1.000 39.49 | 39.82
gl asses2 | 0.500 20.54 | 16.55| | gl asses2 | 0.500 24,94 | 23.65
1.000 24.80 | 21.78 1.000 28.56 | 27.01
2.000 28.71 | 26.02 2.000 32.11 | 31.00
3.000 30.85 | 27.98 3.000 33.86 | 33.53
| ena 0.500 20.56 | 17.60| | lena 0.500 25.58 | 24.22
1.000 25.82 | 22.45 1.000 28.35 | 26.96
2.000 29.28 | 26.90 2.000 30.79 | 29.74
3.000 31.31 | 28.54 3.000 32.30 | 31.36
nri 0.250 12,55 | 10.87| | nri 0.250 27.14 | 26.34
0.500 24.79 | 16.10 0.500 29.55 | 29.07
1.000 30.33 | 15.55 1.000 33.01 | 32.14
2.000 33.14 | 19.94 2.000 35.21 | 35.08
peppers 0.500 22.14 | 17.53| | peppers 0.500 25.99 | 24.66
1.000 25.97 | 22.42 1.000 28.40 | 27.49
2.000 29.00 | 27.10 2.000 30.42 | 29.99
3.000 30.18 | 29.06 3.000 31.50 | 31.19

methods. In these tables, the best result in each test cagmighted inbold.

ERDED versus EDFirst, we compare the ERDED and ED methods. From the results
of Table 3.5, we can see that the ERDED method outperforms EhedBeme in 24/24
of the test cases, by a margin of 1.12 to 15.69 dB (with a meafié77 dB). Subjective
image quality was found to correlate reasonably well wittNRSAs examples to illus-
trate subjective quality, the image approximations for bfithe test cases from Table 3.5
are shown in Figure 3.8 and Figure 3.9, respectively. Theesponding image-domain
triangulations are also shown, with constrained edgesh@nBRDED case) denoted by
thick lines. Clearly, our ERDED method produces vastly suypemage approximations
(relative to the ED scheme), preserving image edges much faihfully.
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ERDGPI versus GPINow, we compare the ERDGPI and GPI methods. From the re-
sults of Table 3.6, we can see that the ERDGPI method outpesftne GPl scheme in
23/24 of the test cases, by margin of up to 4.91 dB (with a nmealid..08 dB). Again, sub-
jective quality was found to correlate well with PSNR. As exdes to illustrate subjective
guality, the image approximations for two of the test casemfTable 3.6 are shown in
Figure 3.10 and Figure 3.11, respectively. The correspmnidnage-domain triangulations
are also shown, with constrained edges (in the ERDGPI case}etd by thick lines. A
close inspection of the two image approximations showsttt@ERDGPI method more
faithfully reproduces image edges and generally has Igssfisant distortion, relative to
the GPI scheme. With the ERDGPI method, the constrained edgestriangulation align
well with image edges, allowing for better image-edge rdpodion.

Computational complexityFor the images in our test set and sampling densities in
the range 0.5% to 3%, we used each of the ERDED, ED, ERDGPI, ahan€fhods to
generate a mesh and then measured the computational caypfeach method in terms
of execution time. A representative subset of the resultaioed is shown in Table 3.7.
These execution times were obtained on relatively modesinee (namely, a three-year
old notebook computer with a 2.0 GHz Intel Core2 Duo CPU and 1 GBAM) with an
implementation of our methods that was not optimized forcaken time. We note that
our ERDED and ERDGPI schemes are both quite modest in termiofctbmputational
requirements compared to the ED and GPI methods. From Tablevé can see that for
the images in our test set and sampling densities in the 1&bge to 3%, the ERDED, ED,
ERDGPI, and GPI methods have average execution times ofdapmately 3.1234 seconds,
0.1293 seconds, 5.0134 seconds, and 1.2468 seconds,tredpe&rom the results, we
notice that, although our proposed ERDED and ERDGPI methadslewer than the ED
and the GPI schemes, they are still fairly fast. The diffeesn(in absolute terms) between
the execution times of all the four methods are not large.c&iour proposed ERDED
can produce much better results than the ED method, and th&sPRMethods can also
generate much better image approximations than the GPlothesluch small differences
in execution times can be neglected due to the large impreméein the quality of the
resulting image approximations. Further more, since th@ementations of our proposed
ERDED and ERDGPI methods are not optimized, we can optimizentpementations of
our ERDED and ERDGPI methods to reduce the execution times.

COMPARISON WITH GVS METHOD . As an additional point of reference, we com-
pare our ERDED and ERDGPI methods to tharcia-Vintimilla-Sappa (GVS) scheme
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Figure 3.8: Comparison of the ERDED and ED methods. Part ofrifagé approxima-
tion obtained for thébul | image at a sampling density of 0.125% with the (a) ERDED
(24.68 dB) and (b) ED (14.66 dB) methods, and (c) and (d) thehesponding triangula-

tions.
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Figure 3.9: Comparison of the ERDED and ED methods. Part ofritagé approxima-
tion obtained for th@epper s image at a sampling density of 0.125% with the (a) ERDED

(25.97 dB) and (b) ED (22.42 dB) methods, and (c) and (d) thenresponding triangula-
tions.
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Figure 3.10: Comparison of the ERDGPI and GPI methods. Pahieohtage approxima-
tion obtained for théoul | image at a sampling density of 0.125% with the (a) ERDGPI
(35.47 dB) (b) GPI (30.56 dB) methods, and (c) and (d) theireasgronding image-domain
triangulations.
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Figure 3.11: Comparison of the ERDGPI and GPI methods. Patteoimhage approxi-
mation obtained for thpepper s image at a sampling density of 1% with the (a) ERDGPI

(28.40 dB) (b) GPI (27.49 dB) methods, and (c) and (d) theireasronding image-domain
triangulations.
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Table 3.7: Comparison of the computational complexity offRDED, ED, ERDGPI, and
GPI methods

Samp.

Density Time (s)
Image (%) | ERDED| ED | ERDGPI| GPI
| ena 0.5 1.9777 | 0.0587| 2.7205 | 0.5528

1.0 2.0850 | 0.0665| 2.7773 | 0.6498
2.0 2.0639 | 0.0694| 3.0731 | 0.8632
3.0 2.2055 | 0.0773] 3.2111 | 0.9745
peppers 0.5 2.0551 | 0.0587| 2.5124 | 0.4578
1.0 2.1145 | 0.0653| 2.8348 | 0.5612
2.0 2.1054 | 0.0700| 3.1626 | 0.7954
3.0 2.1858 | 0.0809| 3.2087 | 0.8787
gl asses 0.5 6.1296 | 0.1758| 8.4193 | 1.9404
1.0 6.4190 | 0.1845| 9.0583 | 2.2983
2.0 6.6875 | 0.2346| 10.444 | 2.8436
3.0 6.6337 | 0.3000| 10.714 | 3.5033
ni 0.5 0.4666 | 0.0143| 0.5664 | 0.0996
1.0 0.4912 | 0.0185| 0.6816 | 0.1233
2.0 0.5024 | 0.0168| 0.7521 | 0.1681
3.0 0.5141 | 0.0182| 0.8227 | 0.1920
ct 0.5 1.9978 | 0.0621| 2.4622 | 0.4809
1.0 1.9759 | 0.0640| 2.7363 | 0.5699
2.0 2.0957 | 0.0719| 3.2155 | 0.7663
3.0 2.1037 | 0.0779| 3.5545 | 0.8995
bul | 0.5 5.9541 | 0.1787| 10.379 | 1.8231
1.0 6.0737 | 0.1979| 10.889 | 2.2144
2.0 6.2095 | 0.5043| 10.529 | 2.7384
3.0 6.0999 | 0.5805| 11.597 | 3.5295
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Table 3.8: Comparison of the mesh quality obtained with the ERCERDGPI, and GVS
methods

PSNR (dB)
Image Mesh Size| ERDED | ERDGPI| GVS
house 1649 29.52 31.52 | 27.62
| ena 7492 29.69 31.76 | 28.30
peppers 7224 28.82 31.12 | 26.48

from [12], which is based on constrained Delaunay trianguda. In [12], some mesh-
generation results are provided for three standard tegfas@drom the USC image database),
namely, théhouse, | ena, andpepper s images. Using our ERDED and ERDGPI methods,
we generated meshes to match the sizes of the meshes pradyded and then mea-
sured the resulting approximation error in terms of PSNR. 1@swlts along with the ones
from [12] are given in Table 3.8 for comparison. Examining tiesults of this table, we
can see that our ERDED and ERDGPI methods each outperform tBesGeme in every
case by a margin of 1.39 to 2.34 dB and 3.46 to 4.64 dB, respégcti@learly, our ERDED
and ERDGPI methods are both superior to the GVS scheme.

COMPARISON WITH THE RESULTS OBTAINED WITH CHOOSING PARAMETE RS
MANUALLY . As we mentioned earlier, the paramet@rg, ¢, ande in the ERDED and
ERDGPI methods are chosen by the automated scheme propoSedtion 3.4.1. Al-
though the automated scheme chooses the parametergendilj the results obtained can
still be improved by manually choosing a better set of patamse To demonstrate this, for
the images in our test set and several sampling densitiessageach of the ERDED and
ERDGPI methods with the set of parameters carefully chosemaily to generate meshes,
measured the quality of the results in terms of PSNR, and tbepared with the results
obtained by choosing the parameters automatically. A sgmtative subset of the results
obtained is shown in Table 3.9 for ERDED method and Table 2ABRDGPI method. We
can see that, with the parameters chosen manually, bothRBEP and ERDGPI meth-
ods outperforms the proposed methods with an automatedpsgachoosing scheme in
all 24/24 of the test cases by margin of up to 2.64 dB (with aeraye of 0.55 dB) and
0.41 dB (with an average of 0.22 dB), respectively.

Although we can obtain better results by manually choodnegset of parameters, the
process of parameters selection is fairly tedious and toresuming. We need to try many
times before we can obtain a better set of parameters thamstichosen automatically.
Also, for those people who are not familiar with the paramst# is not easy to choose
the parameters. Therefore, although the proposed autdrmpatameter selection scheme
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Table 3.9: Comparison of the mesh qualiple 3.10: Comparison of the mesh quality

obtained with the ERDED method obtained with the ERDGPI method
Samp. Samp.
Density PSNR (dB) Density PSNR (dB)
Image (%) Auto | Manual Image (%) Auto | Manual
bul | 0.125 || 24.68| 25.65 bul | 0.125 || 35.47| 35.85
0.250 || 28.86| 30.61 0.250 || 38.33| 38.41
0.500 || 35.15| 35.52 0.500 || 40.16| 40.23
1.000 || 39.02| 39.16 1.000 || 41.39| 41.43
ct 0.125 || 15.63| 17.29 ct 0.125 || 27.19| 27.25
0.250 || 25.97| 26.02 0.250 || 32.11| 32.51
0.500 || 30.06| 30.53 0.500 || 36.31| 36.62
1.000 || 36.51| 36.85 1.000 || 39.49| 39.61
glasses2 | 0.500 || 20.54| 20.96 glasses2 | 0.500 || 24.94| 25.34
1.000 || 24.80| 25.17 1.000 || 28.56| 28.97
2.000 || 28.71| 28.97 2.000 || 32.11| 32.21
3.000 || 30.85| 30.89 3.000 || 33.86| 33.94
| ena 0.500 || 20.56| 23.20 | ena 0.500 || 25.58| 25.96
1.000 || 25.82| 26.56 1.000 || 28.35| 28.73
2.000 || 29.28| 29.48 2.000 || 30.79| 30.98
3.000 || 31.31| 31.35 3.000 || 32.30| 32.39
ni 0.250 || 12.55| 13.06 nri 0.250 || 27.14| 27.34
0.500 || 24.79| 25.17 0.500 || 29.55| 29.95
1.000 || 30.33| 30.75 1.000 || 33.01| 33.24
2.000 || 33.14| 33.51 2.000 || 35.21| 35.60
peppers 0.500 || 22.14| 22.58 peppers 0.500 || 25.99| 26.12
1.000 || 25.97| 26.43 1.000 || 28.40| 28.55
2.000 || 29.00| 29.10 2.000 || 30.42| 30.55
3.000 || 30.18| 30.25 3.000 || 31.50| 31.55

usually yields somewhat poorer results than manual selggdtiis vastly superior to manual
selection in a practical sense (i.e., in terms of usability)
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Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we studied geometric image representabbased on triangle meshes. In
particular, we proposed a new mesh model that explicitlyeggnts image discontinuities
along with two mesh-generation methods that select the hpadameters for a given input
image. The main contributions of the thesis are summarizedhiat follows.

As mentioned earlier, the discontinuity (i.e., image edgedn important feature of
an image that is easily captured by human eyes. Many of thegqu&y-proposed mesh
models do not explicitly take image discontinuities intasigeration. In our work, we pro-
posed a new mesh model that explicitly represents imagemtiseiities. This mesh model
is based on constrained DTs, where the constrained edgespond to image edges.

Having introduced this mesh model, we then proposed twocaabies that select the
model parameters for a given input image. One of the propostidods is named ERDED,
which employs the ED scheme to select sample points thabdrihe constrained edges.
The other method is called ERDGPI, where the GPI method is@megIto select a subset
of the sample points.

The proposed methods have several parameters that afeecfutlity of the image
approximation obtained. The selection of these parame&tassanalyzed, including the
selection of contrast parametgiof ED schemef3 andr in hysteresis thresholding, and
the tolerance in the Douglas-Peucker polyline simplification algorithRurthermore, we
proposed an automated parameters selection scheme tlseshbese parameters intelli-
gently.

Through experimental results, we evaluated the performahour proposed ERDED
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and ERDGPI methods in terms of both PSNR and subjective imaajéyy By comparison,

we found that the image approximations produced by our megpdRDED method are
often about 3.77 dB higher in PSNR than those produced by esdheme, and our
proposed ERDGPI method can generate reconstructed imagasoaf 1.08 dB higher
PSNR than those produced by the GPI scheme.

4.2 Future Research

In this thesis, we first presented a mesh model that expli@presents image discontinu-
ities, and then proposed two mesh-generation methodsdleat $he model parameters for
a given input image. Although our proposed mesh-generatietihods work fairly well,
additional work to further refine these methods could be figiakand may lead to higher
quality meshes.

As discussed earlier, edge detection is a key step in ouradéthfind the constrained
edges for a constrained DT, and the accuracy and consistéribg edges obtained are
extremely important. In our methods, the modified Canny edgeatior is employed for
the sake of the consistency of the edges, and the edges aotedkin half-pixel resolution
to improve the accuracy. As future work one might try to findaywo further improve the
accuracy and the consistency of the edges. For example, siany edge detection meth-
ods have been proposed to date, a better edge detector whictet on the consistency of
the edges might be beneficial. Furthermore, we can also épplydge detector to an even
higher resolution version of the input image to enhance tiearacy of the detected edges.

In the hysteresis thresholding employed by the edge detigctur work, two parame-
ters need to be specified, nam@lgndr. These parameters greatly affect the quality of the
image approximations that are obtained. It is not easy, tiexw& choose good values for
these parameters, since the best values are dependent samtpéng density. Although
in our work, we propose an automated parameters selecti@emss; based on numerous of
experiments, this scheme could probably be improved. Rgbdetter means for selecting
these hysteresis thresholding parameters would be aratbefor future work.

In the mesh model presented in our work, the wedge is an impbfeature, which
facilitates the modelling of image discontinuities. THere, the way in which the wedge
value is chosen for wedges is very important. In our work, wesented a wedge value
selection method that is based on the MMSODD of the image. d&fect, however, of
proposed wedge selection method is that the second-ordieatilees are very sensitive
to noise. Although a binomial filter is employed to smooth itim@ge before calculating
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the MMSODD, this blurs the image, which degrades the resyitnage approximations
obtained with the method. Therefore, the development ofgeadlue selection scheme
that does not have this weakness might be beneficial.



59

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D. L. Donoho, “Orthonormal ridgelets and linear singitias,” Journal on Mathe-
matical Analysis of the Society for Industrial and Appliedthematicsvol. 31, no. 5,
pp. 1062-1099, Dec. 2000.

E. Candes and D. Donoho, “Curvelets: A surprisingly effechonadaptive represen-
tation of objects with edges,” In Curves and Surfaces. Vdntiésniversity Press,
Nashville, TN, USA, 1999, pp. 105-120.

R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, “kégblution image
reconstruction with displacement errors: A framelet apphy’ International Journal
of Imaging Systems and Technolpggl. 14, no. 3, pp. 91-104, Sep. 2004.

D. Donoho and X. Huo, “Combined image representation gisaagelets and
wavelets,” vol. 3813, Wavelet Applications in Signal andaje Processing VII, in
Proceedings SPIE. Denver, Colorado, Oct. 1999, pp. 468-476.

M. N. Do and M. Vetterli, “The contourlet transform: anfiefent directional mul-
tiresolution image representationZEE Transactions on Image Processingl. 14,
no. 12, pp. 2091-2106, Dec. 2005.

D. D.-Y. Po and M. N. Do, “Directional multiscale modegjrof images using the
contourlet transform,/IEEE Transactions on Image Processingl. 15, no. 6, pp.
1610-20, Jun. 2006.

D. L. Donoho, “Wedgelets: nearly minimax estimation afges,”Annals Statistics
vol. 27, no. 3, pp. 859-897, 1999.

E. L. Pennec and S. Mallat, “Sparse geometric image sgpriation with bandelets,”
IEEE Transactions on Image Processingl. 14, no. 4, pp. 423-438, Apr. 2005.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

60

R. B. M. Jansen and S. Lavu, “Multiscale approximation aqawise smooth two-
dimensional functions using normal triangulated meshAgplied and Computa-
tional Harmonic Analysisvol. 19, no. 1, pp. 92—-130, Jul. 2005.

M. Garland and P. S. Heckbert, “Fast polygonal appration of terrains and height
fields,” vol. 95-181. School of Computer Science, CarnegiddndUniversity, Sep.
1995.

D. Terzopoulos and M. Vasilescu, “Sampling and recartdion with adaptive
meshes,” IEEE International Conference on Computer VisiahRattern Recogni-
tion. Hawaii, USA, Jun. 1991, pp. 70-75.

M. A. Garcia, B. Vintimilla, and A. Sappa, “Approximaticand processing of inten-
sity images with discontinuity-preserving adaptive tgaltar meshes,” Sixth Euro-
pean Conference on Computer Vision. LNCS Vol. 1842, SpringeiayeDublin,
Ireland, Jul. 2000, pp. 844—-855.

Y. Yang, M. N. Wernick, and J. G. Brankov, “A fast approdohn accurate content-
adaptive mesh generatiolEEE Transactions on Image Processingl. 12, no. 8,
pp. 866—881, Aug. 2003.

M. D. Adams, “An improved content-adaptive mesh-gatien method for image
represnetation,” IEEE International Conference on Imageéssing. Hong Kong,
China, Sep. 2010, pp. 873-876.

M. Sarkis and K. Diepold, “A fast solution to the appromation of 3-d scattered
point data from stereo images using triangular meshes fandedings of IEEE-RAS
International Conference on Humanoid Robots.  Pittsburgh, U, Nov. 2001,

pp. 235-241.

——, “Texture recognition from sparsely and irregujadampled data,Computer
Vision and Image Understandingol. 102, no. 1, pp. 95-104, Apr. 2006.

J. G. Brankov, Y. Yang, and N. P. Galatsanos, “Image rast;n using content-
adaptive mesh modeling,” vol. 2. in Proceedings of IEEErmé&onal Conference
on Image Processing, 2003, pp. 997-1000.

M. D. Adams, “Progressive lossy-to-lossless codingrbiitrarily-sampled image data
using the modified scattered data coding method,” in Prangedf IEEE Interna-



61

tional Conference on Acoustics, Speech, and Signal PraxessiTaipei, Taiwan,
China, Apr. 2009, pp. 1017-1020.

[19] G. Ramponi and S. Carrato, “An adaptive irregular sangpéifyorithm and its appli-
cation to image coding,mage and Vision Computingol. 19, no. 7, pp. 451-460,
May 2001.

[20] P. Lechat, H. Sanson, and L. Labelle, “Image approxiomaby minimization of a ge-
ometric distance applied to a 3d finite elements based niodél2. in Proceedings
of IEEE International Conference on Image Processing, 199.7724—727.

[21] Y. Wang, O. Lee, and A. Vetro, “Use of two-dimensionafatenable mesh structures
for video coding, part iithe analysis problem and a regiasdal coder employing an
active mesh representatiodEEE Transactions on Circuits and Systems for Video
Technologyvol. 6, no. 6, pp. 647—-659, Dec. 1996.

[22] F. Davoine, M. Antonini, J.-M. Chassery, and M. BarlauBrdctal image compres-
sion based on delaunay triangulation and vector quardgizalEEE Transactions on
Image Processingrol. 5, no. 2, pp. 338-346, Feb. 1996.

[23] M. D. Adams, “An efficient progressive coding method &obitrarily-sampled image
data,”IEEE Signal Processing Lettergol. 15, pp. 629-632, Oct. 2008.

[24] R. Floyd and L. Steinberg, “An adaptive algorithm for 8abgreyscale,’Proceedings
of the Society for Information Displayol. 17, no. 2, pp. 75-77, 1976.

[25] C.L.Huang and C. Y. Hsu, “A new motion compensation mettoodmage sequence
coding using hierarchical grid interpolationZEE Transactions on Circuits and Sys-
tems for Video Technologyol. 4, pp. 44-51, Sep. 1994.

[26] T. Gevers and A. W. Smeulders, “Combining region spigtiand edge detection
through guided delaunay image subdivision.” |EEE Inteéomatl Conference on
Computer Vision and Pattern Recognition, Jun. 1997, pp. 10226-

[27] M. A. Garcia, B. X. Vintimilla, and A. D. Sappa, “Approxiation of intensity images
with adaptive triangular meshes: Toward a processible cesspd representation,” in
Proceeding Irish Machine Vision and Image Processing Center. Dublin, Ireland,
Sep. 1999, pp. 241-249.



62

[28] ——, “Efficient approximation of gray-scale image thgtubounded error triangular

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

meshes,” vol. 1, IEEE International Conference on Imageddsing. Kobe, Japan,
Oct. 1999, pp. 168-170.

M. D. Adams, “An evaluation of several mesh-generatmethods using a simple
mesh-based image coder,” in Proceedings of IEEE Intemmatidonference on Image
Processing. San Diego, CA, USA, Oct. 2008, pp. 1041-1044.

L. Demaret and A. Iske, “Advances in digital image coegsion by adaptive thin-
ning,” vol. 3, in Annals of the Marie-Curie Fellowship Assation. Marie Curie
Fellowship Association, Feb. 2004, pp. 105-109.

B. Delaunay, “Sur la sphere vide, izvestia akademii nassr,” Otdelenie Matem-
aticheskikh i Estestvennykh Nawkl. 7, no. 6, p. 793800, 1934.

N. Dyn, D. Levin, and S. Rippa, “Data dependent triangates for piecewise linear
interpolation,”The IMA Journal of Numerical Analysigsol. 10, no. 1, pp. 137-154,
Jan. 1990.

S. Rippa, “Adaptive approximation by piecewise lineatymomials on triangulations
of subsets of scattered dat&TAM Journal on Scientific and Statistical Computing
vol. 13, no. 5, pp. 1123-1141, Sep. 1992.

D. Salesin, D. Lischinski, and T. DeRose, “Reconstrigtilumination functions with
selected discontinuities,” im Third Eurographics Workshop on Renderji®92, pp.
99-112.

X. Tu and M. D. Adams, “Image representation using tgignmeshes with explicit
discontinuities,” Proceedings of IEEE Pacific Rim ConfereangCommunications,
Computers and Signal Processing. Victoria, BC, Canada, Aud., 2@l 97-101.

J. O'Rourke Computational Geometry in.C Cambridge University Press, 1997.
M. Berg, Computational Geometry Algorithms and Application$pringer, 1998.

O. Devillers and M. Teillaud, “Perturbations and vertemoval in a 3d delaunay
triangulation,”14th ACM-Siam Symposium on Algorithmpp. 313-319, 2003.

H. Edelsbrunner and E. P. Mucke, “Simulation of simjic a technique to cope
with degenerate cases in geometric algorithrA&M Transaction on Graphics 9p.
67-104, 1990.



63

[40] E. P. Mucke, “A robust implementation for three-dimemal delaunay triangula-
tions,” International Journal of Computational Geometry and Apaiions 8 pp.
255-276, 1998.

[41] C. Dyken and M. S. Floater, “Preferred directions foolegg the non-uniqueness of
delaunay triangulationsComputational Geometry Theory and Applicatiovsl. 34,
no. 2, pp. 96-101, 2006.

[42] L. P. Chew, “Constrained Delaunay triangulatiomslgorithmica vol. 4, pp. 97-108,
1989.

[43] D. Douglas and T. Peucker, “Algorithms for the reduntiaf the number of points
required to represent a digitized line or its caricatuggitographica: The Interna-
tional Journal for Geographic Information and Geovisualionn, vol. 10, no. 2, pp.
112-122, Oct. 1973.

[44] M. Aubury and W. Luk, “Binomial filters,” Journal of VLSI Signal Processing
vol. 12, no. 1, pp. 35-50, Jan. 1996.

[45] R. Haddad and A. Akansu, “A class of fast gaussian binbfiliars for speech and
image processingJEEE Transactions on Acoustics, Speech and Signal Praugssi
vol. 39, no. 3, pp. 723727, Mar. 1991.

[46] W. K. Pratt,Digital Image Processingdth ed. Hoboken, NJ, USA: Wiley, 2007.

[47] D. Marr and E. Hildreth, “Theory of edge detection,” v&8-207, no. 1167, Proceed-
ings of the Royal Society. London, Feb. 1980, pp. 187-217.

[48] R. Haralick, “Digital step edges from zero crossing af@ed directional derivatives,”
IEEE Trans. on Pattern Analysis and Machine Intelligeniam.

[49] J. Canny, “A computational approach to edge detectii#ZE Transactions on Pat-
tern Analysis and Machine Intelligencel. PAMI-8, no. 6, pp. 679-698, Nov. 1986.

[50] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Segmentatiowl @bject recognition
using edge detection techniquelsiternational Journal of Computer Science and In-
formation Technologyol. 2, no. 6, pp. 153-161, Dec. 2010.

[51] R. Malladi and J. A. Sethian, “A topology independentshanodeling schemelh
SPIEs Geometric Methods in Computer Visianvbl. SPIE 2031, pp. 246-255, Jun.
1993.



64

[52] N. Paragios and R. Deriche, “Geodesic active contoutlderel sets for the detection
and tracking of moving objectslEEE Transaction on Pattern Analysis and Machine
Intelligence vol. 22, no. 3, pp. 266—280, Mar. 2000.

[53] Z. Guo and R. W. Hall, “Parallel thinning with two-suhigion algorithms, Commu-
nications of the ACMvol. 32, no. 3, pp. 359-373, Mar. 1989.

[54] L. Dingand A. Goshtasby, “On the canny edge detecRattern Recognitioyvol. 34,
no. 3, pp. 721-725, Mar. 2001.

[55] M. K. Agoston,Computer Graphics and Geometric Modeling: Implementatind a
Algorithms London, UK: Springer, 2005.

[56] K. Fleischer and D. Salesin, “Accurate polygon scanveosion using half-open in-
tervals,” inGraphics Gems IlID. Kirk, Ed. Academic Press, 1992, pp. 362—-365.

[57] “JPEG-2000 test images,” ISO/IEC JTC 1/SC 29/WG 1 N 545,1997.
[58] “Kodak lossless true color image suite,” 2011, httpi/us/graphics/kodak.
[59] “USC-SIPI image database,” 2011, http://sipi.usc/ddtabase.

[60] “Michael Adams’ research datasets,” 2011, http://wease.uvic.ca’imdadams/datasets.


http://r0k.us/graphics/kodak
http://sipi.usc.edu/database
http://www.ece.uvic.ca/~mdadams/datasets

65

Appendix A

Software

A.1 Overview

During the course of his research, the author of this thesigldped software implemen-
tations of several methods described herein. This softwaewritten in C++, involves
some fairly complicated algorithms and data structured,amsists of more than 14,000
lines of code. The software implements four mesh-generatiethods, the ED scheme,
the GPI scheme, the proposed ERDED method, and the propose@ERDethod. With
a given input image and several appropriate parametersofh@are can produce a mesh
model of the original image with a prespecified mesh-ger@rahethod, reconstruct an
image approximation from the mesh model, and calculatefpeoximation error in terms
of PSNR. The software utilizes the classes provided by the CBary for 2-D triangu-
lations, and 2-D constrained Delaunay triangulations. ipat image is restricted to be in
the plain PNM format, which can be easily converted from oihiage formats.

A.2 Extracting the Software

The software is distributed in the form of a Zip file. Therefom order to extract the
contents of this file, a program capable of handling Zip asehis required. Such software
is readily available for many different computing platf&nand can be obtained from:

e Info-Zip Web Site (i.e.,htt p: //www. i nf o- zi p. org). Unzip software for many
different computing platforms (e.g., UNIX, DOS, MacOS,.gtc

e WinZip Web Site (i.e.,http://wwmv. wi nzi p. com). Zip/Unzip software for Mi-
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crosoft Windows.

A.3 Building the Software

Building software refers to the process of converting sowade files into into an exe-
cutable program. The software is intended to be built usiegtandard UNIX make utility,
a utility that automatically builds executable programsd &hraries from source code by
reading files called makefiles which specify how to derivetdrget program. The Make
utility needs to compile and link the various files, in thereat order. If the source code in
a particular file has not changed then it may not need to bempited. A C++ compiler
is also needed to build the software. If you need a C++ compjiter can obtain the GNU
Compiler Collection (GCC) from the GNU Project web site (i.etptitwww.gnu.org). If
you need an implementation of the make utility, you can alsaio GNU Make from the
GNU Project web site. All GNU software is free software.

A.3.1 Building Process

In what follows,$TOPDI R denotes the top level directory of the software distributido
build the software, the following steps are required (ineoyd

1. Extract the contents of the archive file containing the savdsstribution to$TOPDI R.

2. Set the current working directory to the top level directofytte software distribu-
tion.

To set the current working directory as required, type:
cd $TOPDIR

(where$TOPDI Ris defined as described above).

3. Compile and link the software.

This is accomplished via theke command. To run the make program, type:
make

4. Install the software.
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This step may require special (e.g., superuser/admitos}narivileges depending on
the target directory for installation. (The default inkiibn directories are normally
under$TOPDI R/ bi n.) To install the executables, type:

make install

Presuming that the build was successful, the executahlésdsoftware programs can be
found in the directorysTOPDI R/ bi n.

A.3.2 Dependencies on Other Software

In order to have access to the full functionality of the saitey you may need to install
some additional libraries on your system. Since the so&wdifizes many data structures
and algorithms provided by CGAL library, to build the soft@aCGAL must be installed.
You can download and install the free CGAL library which isitatale from the CGAL
web site (i.e.htt p: // www. cgal . or g).

A.4 Image Models Used in the Software

Two image models are utilized in the software. The first imamelel is the basic model
described in Chapter 2, which is based on the DT, and can baelgigharacterized by a set
of sample points together with the associated sample valtresbasic model is generated
by the ED and GPI methods. The second image model is the ERDInmbabeluced in
Section 3.8, which can be generated by our proposed ERDED BBXGlP| methods. In
our software, the simple model is represented by a file ofreskbv@. nodel , and the ERD
model is represented by a file of extensia@rd. The. model (i.e., the basic model) and
.erd(i.e., the ERD model) formats used in our software are desdrib detail in what
follows.

A.4.1 The format of the basic model.

For the basic model, the file format typically uses theddel ” file name extension. The
format consists of a maximum intensity value(i.e., a nurjhdelowed by vertex and face
data.

The vertex data consists of the following information (irder): 1) The number of
vertices in the mesh, 2) the information of each vertex inntiesh, followed by a newline
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C(0,99),64 D(99,99),0 C(0,99) D(99,99),0

73

73

A(0,0),127 B(99,0),64 A(0,0),127 B(99,0)
(a) (b)
Figure A.1: Example of (a) the basic model and (b) the ERD model

character. In particular, for each vertex in the mesh, theviing information is given: the
X, y coordinates of the vertex and the value of the approximdtingtion at the pointx,y)
(in that order) separated by whitespace and followed by dinewharacter.

The above vertex data is then followed by face data. The fate consists of the
following information (in order): 1) the number of faces imetmesh, 2) the information of
each face in the mesh, followed by a newline character. Itiqodar, for each face in the
mesh, the following information is provided separated byt@gpace: a) for each vertex in
the face (in CCW order), the index of the vertex, b) a newlinegattar. Note that vertices
are indexed starting from zero.

An example of a file for a mesh model with two faces and, foutiees(i.e.,A(0,0),
B(0,99), C(99,0), andD(99,99) along with the corresponding intensity values) named
si npl e. model is shown below. The image-domain mestsofipl e. nodel is illustrated
in Figure A.1(a).

si npl e. model

255

0 0 127
0 99 64
99 0 64
99 99 0
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2
012
123

A.4.2 The format of the ERD model.

For the ERD model, the file format typically uses theer'd” file name extension. The
.erd format is similar to the nodel format. The. erd format consists of a maximum
intensity value, followed by vertex, face and wedge data.

The vertex data consists of the following information (irder): 1) The number of
vertices in the mesh. 2) the information of each vertex inntiesh, followed by a newline
character. In particular, for each vertex in the mesh, theving information is given: the
X, y coordinates of the vertex and the value of the approximdtingtion at the pointx,y)
(in that order) separated by whitespace and followed by dinewharacter. For any vertex
that has more than one wedge, the vertex’s function valgnisred since the value should
be the average values of all the wedges around the vertex.

The above vertex data is then followed by face data. The fate consists of the
following information (in order): 1) the number of faces imetmesh, 2) the information of
each face in the mesh, followed by a newline character. Itiqodar, for each face in the
mesh, the following information is provided separated bytegpace: a) for each vertex in
the face (in CCW order), the index of the vertex, b) a newlingattar. Note that vertices
are indexed starting from zero.

The above face data is finally followed by wedge data (onlyvéices have more
than one wedges are presented). In particular, for eachevedipe mesh, the following
information is provided separated by whitespace: 1) Thexraf the vertex of the wedge,
2) The index of a face that belongs to the wedge, 3) The wedge v a newline character.
Note that faces are indexed starting from zero.

An example of a file for a mesh model with two faces, four vesice., A(0,0),
B(0,99), C(99,0), andD(99,99) along with the corresponding intensity values) and four
wedge values namesil npl e. er d is shown below. The image-domain mesksiofpl e. erd
isillustrated in Figure A.1(b), where a constrained edgejpsesented by a thick line. Note
that the vertices in the ERD model fall on a grid with half-pisesolution. That is, a vertex
Vi = (x;,y|) must be such that € 3Z2N[0,W — 1] x [0,H — 1]. In the data file, however,
vertex coordinates are scaled so that the coordinate vapexsfied in the file are always
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integer value. In particular, for a vertex with coordinatgsy; ), the values stored in the
data file correspond to the point with the coordinat®s,2y;), which will always be a
point with integer coordinates.

sinple.erd

255

0 0 127
0 99 64
99 0 64
99 99 0

o N

12
23

[N

4
1073
1154
2 073
2 154

A.5 Application Programs

The software can accomplish three tasks, that are prodagimgsh model for a given input
image, reconstructing an image approximation from the nmestiel, and evaluating the
reconstructed image approximation in terms of PSNR. Thezefbe software is divided
into three parts, and each part accomplishes a certainidmadity described above. The
detail of each part is described as below.

A.5.1 Producing the Mesh Model

Besides our proposed ERDED and ERDGPI methods, two other sshearaely the ED
scheme and GPI scheme, are also implemented for the purposenparison. This soft-
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ware contains four commandsab, gpi , erd_ed, ander d_gpi , respectively. These com-
mands can produce the mesh models described earlier, witlera igput image and some
appropriate parameters. The details of the four commarddescribed as follows.

The ywb Command

Synopsis

ywb [options]

Description

Theywb command is an implementation of the ED scheme introduceceaticéh 3.2.1.
With an input image, and a desired numtierof sample points or a desired sampling
densityd, theywb command uses the ED scheme to generate a basic moaek( file)

of the given input image.

Options
The ywb command accepts the following options:
-i $inputFile
Read the input image from the file nantichput Fi | e in the format of plain pnm.
-d $sanpl eDensity
Set the sampling density &sanpl eDensi t y(%). The default value is(86).

-n $num
Set the number of sampling pointstioum The default value is 7864. $sanpl eDensi ty
is set,$numis ignored.

-0 $outputFile

Output the image model to the file nam&alit put Fi | e in the format of. model .

-t $triangulationFile

Output the triangulation data to the file nangdi angul ati onFi | e in the triangu-
lation format used by iviewer software.
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-p $polylineFile
Output the polyline data to the file nam®gbl yl i neFi | e in the polyline set format
used by iviewer software.

-1 $exi t Mode

1) If $exi t Mode= 0, then the program will print an error message to standard er
ror and then exit with an exit status of 3 (by calling “exit{(3f the sampling den-
sity cannot be satisfied exactly; the error message shoubd the form (all on one
line) “ERROR: target sampling density not achieved exacty@ested XXX but got
YYY)".

2) If $exi t Mode = 1, then the program will still complete normally if the sampl
density cannot be satisfied exactly, but the program shaird g warning message
of the form “WARNING: target sampling density not achievedetty (requested
XXX but got YYY)” to standard error.

3) If $exi t Mode= 2, then the program will still complete normally if the saimpgl|
density cannot be satisfied exactly and no warning messasguisd.

The default value ofexi t Mbde is 0.

Examples

For example, a basic modet¢na. nodel of thel ena. pnmimage at a sampling density of
3% is produced by running the following command:

ywb -i lena.pnm-d 3 -0 |ena.nodel

The gpi Command
Synopsis

gpi [options]

Description

Thegpi command is an implementation of the GPI scheme introduc&kation 3.2.2.
With an input image, and a desired numlbeiof sampling points or a desired sampling
densityd, thegpi command uses the GPI scheme to generate a basic model of/éme gi
input image.
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Options
Thegpi command accepts the following options:

-i $inputFile

Read the input image from the file nam&ichput Fi | e in the format of plain pnm.

-d $sanpl eDensity
Set the sampling density &sanpl eDensi t y(%). The default value is(350).

-n $num

Set the number of sampling pointsioum The default value is 7864

-0 $outputFile
Output the image model to the file nam&alit put Fi | e in the format of. nodel .

-t $triangulationFile

Output the triangulation data to the file nangdi angul ati onFi | e in the triangu-
lation format used by iviewer software.

-p $polylineFile

Output the polyline data to the file nam@gbl yl i neFi | e in the polyline set format
used by iviewer software.

-Xx $exit Mode

1) if $exi t Mode = 0, then the program will print an error message to standard e
ror and then exit with an exit status of 3 (by calling “exit{(3f the sampling den-
sity cannot be satisfied exactly; the error message shoubd the form (all on one
line) “ERROR: target sampling density not achieved exacty@ested XXX but got
YYY)".

2) if $exi t Mode = 1, then the program will still complete normally if the sding
density cannot be satisfied exactly, but the program shaind g warning message
of the form “WARNING: target sampling density not achievedetty (requested
XXX but got YYY)” to standard error.

3) if $exi t Mode = 2, then the program will still complete normally if the sding
density cannot be satisfied exactly and no warning messasggisd.

The default value o$exi t Mode is 0.
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Examples

After running the example shown below, a basic mddasla. model of thel ena. pnmim-
age at a sampling density of 1% is produced.

gpi -i peppers.pnm-d 1 -0 peppers. nodel

The erd _ed command
Synopsis

erd_ed [options]

Description

Theerd_ed command is an implementation of our proposed ERDED methodh Wi
input image, a desired numbi€rof sampling points or a desired sampling densifyand
some appropriate parameters, the_ed command uses the ERDED method to generate
an ERD model of the given input image.

Options
Theerd_ed program accepts the following options:
-i $inputFile
Read the input image from the file nam&ichput Fi | e in the format of plain pnm.

-d $sanpl eDensity
Set the sampling density g&sanpl eDensi t y(%). The default value is(86).

-n $num
Set the number of sampling points§oum The default value is 7864. If the param-
eter$sanpl eDensi ty is set,$numis ignored.

-0 $outputFile
Output the image model to the file nam&alit put Fi | e in the format of. er d.

-t $triangulationFile

Output the triangulation data to the file nangdi angul ati onFi | e in the triangu-
lation format used by iviewer software.
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-p $polylineFile
Output the polyline data to the file nam#gbl yl i neFi | e in the polyline set format
used by iviewer software.

-1 $nminLength
Set the minimum length of the polylines to be kept$to nLengt h. Any polyline
generated with fewer points th&mi nLengt h is discarded. The default value of
$nmi nLengt h is 5.

-b $beta
Set the proportion parametBrused in hysteresis thresholding of edge detection to
$bet a. The default value afbet a is 0.095.

-r $ratio
Set the ratio parameteiused in hysteresis thresholding of edge detectidm &bi o.
The default value o$rati o is 0.4.

-e $tol erance
Set the tolerance applied in DP polyline simplification algorithm tt ol er ance.
The default value o$t ol er ance is 1.

-f $control Fl ag

Set the flag used in choosing the point selection methdkt oot r ol Fl ag. If the
value of$control Fl ag is 1, the program uses ED scheme to select sample points;
otherwise, random selection method is applied. The devallie of$cont r ol Fl ag

is 1.

-w $dFl ag

Set the flag used in choosing the wedge value selection sctefuel ag. If the
value of$dFl ag is 1, the program uses MMSODD method to select wedge value;
otherwise, fixed distance method is applied. The defaultevaf$dFl ag is 1.

-s $ksi ze

Set the size of the binomial filter used in MMSODD method of gedalue selection
to $ksi ze. The default value o$ksi ze is 5.
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-x $exit Mode

1) if $exi t Mode= 0, then the program will print an error message to standard er
ror and then exit with an exit status of 3 (by calling “exit{(3f the sampling den-
sity cannot be satisfied exactly; the error message shoubd the form (all on one
line) “ERROR: target sampling density not achieved exactyg@ested XXX but got
YYY)".

2) if $exi t Mode= 1, then the program will still complete normally if the sampl
density cannot be satisfied exactly, but the program shaid @ warning message
of the form “WARNING: target sampling density not achievedetty (requested
XXX but got YYY)” to the standard error.

3) if $exi t Mode= 2, then the program will still complete normally if the sampl
density cannot be satisfied exactly and no warning messasgisd.

The default value fo$exi t Mode is O.

-B $startUp

1) if $start Up= 0, then the mirroring method will be applied to solve the tstgr
effect;

2) if $start Up= 1, then the forcing method will be applied to solve the stgrt-
effect;

3) if $st art Up= 2, then nothing will be done about the start-up effect.

The default value fo$st art Up is 0, that is, using the mirroring method to solve the
start-up problem.

-S $isSinple
If $i sSi npl e= 0, set the type of the input image to simple; otherwise, styhe

of the input image to nonsimple. The default value$osSi npl e is determined by
the software automatically based on the content of the impage.

Examples

Suppose we want to generate an ERD model of éma image at a sampling density of 4%
with a particular manually chosen set of parameters usimgmposed ERDED method,
we can run ther d_ed command as follows:

erd ed -i lena.pnm-d 4 -1 3 -b 0.17 -r 0.4 -0 lena.erd
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Theerd _gpi command
Synopsis

erd_gpi [options]

Description

Theerd_gpi command is an implementation of our proposed ERDGPI methagn@&n
input image, and a desired numbéif sampling points or a desired sampling density
theerd_gpi command uses the ERDGPI method to generate an ERD model ofpihie in
image.

Options

Theerd_gpi program accepts the following options:

-i $inputFile

Read the input image from the file nanichput Fi | e in the format of plain pnm.

-d $sanpl eDensity
Set the sampling density &sanpl eDensi t y(%). The default value is(360).

-n $num
Set the number of sampling points $oum The default value is 7864. If the
parametebsanpl eDensi ty is set,$numwill be ignored.

-0 SoutputFile

Output the image model to the file namalit put Fi | e in the format of. er d.

-t $triangul ationFile
Output the triangulation data to the file nangdi angul ati onFi | e in the triangu-
lation format used by iviewer software.

-p $polylineFile

Output the polyline data to the file nam#gbl yl i neFi | e in the polyline set format
used by iviewer software.
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-1 $mi nLengt h

Set the minimum length of the polylines to be keptto nLengt h. Any polyline
generated with fewer points tha&mi nLengt h is discarded. The default value of
$m nLengt h is 5.

-b $beta
Set the proportion parametBrused in hysteresis thresholding of edge detection to
$bet a. The default value afbet a is 0.095.
-r $ratio
Set the ratio parametemused in hysteresis thresholding of edge detecticdn &bi o.
The default value o$rati o is 0.4
-e $tol erance
Set the tolerance applied in DP polyline simplification algorithm tt ol er ance.
The default value o$t ol er ance is 1.
-w $dFl ag

Set the flag used in choosing the wedge value selection sdiocuiel ag. If $dFl ag=
1, the program uses the MMSODD method to select the wedgesabtherwise, the
fixed distance method is applied. The default valug&dsi ag is 1.

-s $ksi ze

Set the size of the binomial filter used in MMSODD method in gedalue selection
to $ksi ze. The default value o$ksi ze is 5.

-Xx $exit Mode

1) If $exi t Mode= 0, then the program will print an error message to standard er
ror and then exit with an exit status of 3 (by calling “exit{3if the sampling den-
sity cannot be satisfied exactly; the error message shoubd the form (all on one
line) “ERROR: target sampling density not achieved exac#yg@ested XXX but got
YYY)".

2) If $exi t Mode= 1, then the program will still complete normally if the saimgl
density cannot be satisfied exactly, but the program shaird g warning message
of the form “WARNING: target sampling density not achievedaetty (requested
XXX but got YYY)” to standard error.
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3) If $exi t Mode= 2, then the program will still complete normally if the saimgl
density cannot be satisfied exactly and no warning messagguisd.

The default value o$exi t Mode is 0.

-S $isSinple

If $i sSi mpl e= 0, set the type of input image to simple; otherwise, set tpe tf
input image to non-simple. The default value$o&Si npl e is determined by the
software automatically based on the content of the inpugena

Examples

Suppose we want to generate an ERD model of #ma image at a sampling density of 3%
with a manually chosen set of parameters using our propoR&I°| method, we could
run theer d_ed command as follows:

erd gpi -i lena.pnm-d 3 -1 5-e1-b0.4-01lena.erd

A.5.2 Image reconstruction

In order to reconstruct an image approximation from the nmastel, triangle scan con-
version is applied to scan convert each triangle in the neeshierpolating the value of the
points inside the triangles. Since there are two kinds offnmesdels in our software, two
commands, namely thergsyn andi ngsyn_aa, are used to reconstruct images from these
two mesh models.

Thei mgsyn command
Synopsis

I ngsyn

Description

Thei ngsyn command reads the basic model of an imagmdel format) from the stan-
dard input and writes the reconstruct image in the formatlainppnm to the standard
output.
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Example

An image approximation is reconstructed from the simple ehbena. model by running
the following command:

i ngsyn < | ena.nodel > |ena_reconstructed _nodel . pnm

Theingsyn_aa command
Synopsis

i ngsyn_aa

Description

Thei ngsyn_aa utilizes 4x 4 super-sampling to reconstruct an image approximatian fro
the ERD model(er d format). The command reads ERD model from the standard input i
. erd format and writes the reconstructed image approximatigelam pnm format to the
standard output.

Example

To reconstruct an anti-aliased image approximation froeERD model ena. erd, we
run the commands as follows:

ingsyn_aa < lena.erd > | ena_reconstructed erd. pnm

A.5.3 Quality evaluation

To evaluate the quality of the reconstructed images, theRPiSNalculated usinGal _PSNR
command.

The Cal _PSNR command
Synopsis

Cal _PSNR $ori gi nal _i mage $reconstructed_i mage
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Description

TheCal _PSNRtakes two images of plain pnm format as input, the originalge$or i gnal _i mage
and the reconstructed ima@eeconst ruct ed_i mage, and writes the PSNR of the recon-
structed image to standard output.

Example

The PSNR of the reconstructed imdgmma_r econst r uct ed. pnmcan be obtained by run-
ning the command:

Cal _PSNR | ena. pnm | ena_reconstructed. pnm

A.6 ABugin CGAL

With regard to CGAL(version 3.5.1), a bug was found and fixethefunction:

tenpl ate <class QutputltFaces, class QutputltBoudaryEdges>
std:: pai r<CutputltFaces, QutputltBoundaryEdges>

cdt.get _conflicts_and_boundary(Point p, QutputltFaces fit
Qut put | t Boundar yEdges eit, Face _handl e start)

const,

The preceding function is a member function of the class
Constrained_Del aunay_triangul ation_2<Traits, Tds, Itag>

The function is intended to query the getof faces and the sdi of boundary edges in
conflict with a pointp. In the constrained Delaunay triangulation, the constciedges
are considered as obstacles blocking the view from a pottigtanterior of a face. A point
p is said to be in conflict with a facé if and only if p is visible from the interior off and
included in the circumcircle of.

When the pointp is inserted, only the faces ia are affected. For efficiency, in each
iteration afterp is inserted, we only want to recalculate the absolute egaf the points
of the faces inF. Therefore, this functioget conflict_and_boundary is extensively
used and extremely important.

When the pointp inserted lies on a constrained edge, however, thé sdtfaces and
the setE of boundary edges that are in conflict wighare incorrectly calculated by the



82

function and only contain part of the desired sets. The fancstarts to search the face
that haspin its interior, then propagates to the faces incident to three directions until a
constrained edge is met or the faces searched are no longanfiict with p. The problem

is that, when the poinp lies on a constrained edge, it searches the faces only ondme s
of the constrained edge, the faces and boundary edges othtresae of the constrained
edge are missing. We found and fixed this bug, makirandE calculated by the function
contain all the faces and boundary edges that are in conilicttihae pointp.

A.7 Listing and Description of Source Files

The source code consists of a large number of files of varionstionalities. To have a
better understanding of our software, in what follows, la# source files of the software
along with the corresponding functionalities are desctibe
ywb. cpp
The file contains the main function of the ED scheme.
gpi . cpp
The file contains the main function of the GPI scheme.
erd_ed. cpp

The file contains the main function of our proposed ERDED metho
erd_gpi.cpp

The file contains the main function of our proposed ERDGPI weth
i ngsyn. cpp

The file contains the main function of reconstructing imaiges the basic model.

I Nngsyn_aa. cpp

The file contains the main function of reconstructing imafyes the ERD model,
using 4x 4 super-sampling.

Cal _PSNR. cpp

The file contains the main function of calculating PSNR tdeate the quality of an
image approximation.
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config.h

A configuration file which defines the parameters used thrauglhe programs.

typedef ip.h

The file contains header file declaration and type definitid@Pl scheme.

t ypedef _nyED. h
The file contains header file declaration and type definitioouo proposed ERDED
method.

t ypedef.h
The file contains header file declaration and type definiticouo proposed ERDGPI
method.

Array2. hpp
The file contains the definition of a 2-D matrix clagsy ay2, which is used to rep-

resent images in our software.

Pri Que. hpp
The file contains the definition of a class of a heap-basedifyriqueue, which is
used to extract the face with the maximum squared error alatigits candidate
point during greedy point insertion.

ViedgeTri . hpp
The file contains the definition of a triangulation with wedgehich is derived from
the constrained Delaunay triangulation in CGAL.

Pol yl i neG hpp

The file contains the definition of a class used for polylineegation.

Pol yl i ned ass. hpp
The file contains the definition of a class for polyline sirfipiition using the Douglas-
Peucker algorithm.

increnental _ip.h

The file contains the definition of a method which inserts fgimto the triangulation
based on the error measurement obtained.
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scanface_ip.h
The file contains the definition of a method which recalcdalte absolute errors of
the points in the faces that are affected by inserting a point

funcDecl aration. h

The file contains the declaration of all the functions useauinsoftware.

i mageProcessing. h
The file contains the implementations of image processiggridhms, such as con-
volution, modified Canny edge detector, bilinear interpotaind so on.

binomal Filter.h

The file contains the method of generating a 2-D binomialrfltih a given size.

creat Constraint.h
The file contains the definition of a method which generatesitained edges used
in the constrained DT.

geoModel . h
The file contains the definition of a method which construatsmstrained DT on a
set of points with a set of constrained edges, and produedSRD model.

Myener ati on_Yang. hpp
The file contains the definition of a method which uses the Efiese to select
nonedge points with the mirroring method to solve the sipréeffect.

Myener ati on_Yangl. hpp
The file contains the definition of a method which uses the Hiese to select
nonedge points with the forcing method to solve the starftgrt.

Myener ati on_Yang2. hpp
The file contains the definition of a method which uses the Hiese to select
nonedge points without anything to solve the start-up éffec

random sel ecti on. hpp

The file contains the definition of a method which randomlgstd nonedge points.
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scanFace. h

The file contains the definition of a method which calculates dbsolute error of
each point in the face and the squared error of the face.

scanTriangl e. h
The file contains the definition of a method which interpdagach point in the
triangle during the greedy insertion process.

secondOr der Derivative. h
The file contains the definition of a method which calculdbesthaximum magnitude
second-order directional-derivative of a given image.

incremental . h

The file contains the definition of a method which inserts apoto the triangulation
in each iteration based on the error measurement until aicertmber of points is
reached.
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