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ABSTRACT

Triangle meshes can provide an effective geometric representation of images. Although

many mesh generation methods have been proposed to date, many of them do not explicitly

take image discontinuities into consideration. In this thesis, a new mesh model for images,

which explicitly represents discontinuities (i.e., imageedges), is proposed along with two

corresponding mesh-generation methods that determine themesh-model parameters for a

given input image. The mesh model is based on constrained Delaunay triangulations (DTs),

where the constrained edges correspond to image edges.

One of the proposed methods is named explicitly-represented discontinuities-with error

diffusion (ERDED), and is fast and easy to implement. In the ERDED method, the error

diffusion (ED) scheme is employed to select a subset of sample points that are not on the

constrained edges. The other proposed method is called ERDGPI. In the ERDGPI method,

a constrained DT is first constructed with a set of prespecified constrained edges. Then, the

greedy point insertion (GPI) scheme is employed to insert one point into the constrained

DT in each iteration until a certain number of points is reached.

The ERDED and ERDGPI methods involve several parameters whichmust be provided

as input. These parameters can affect the quality of the resulting image approximations,

and are discussed in detail. We also evaluate the performance of our proposed ERDED

and ERDGPI methods by comparing them with the highly effective ED and GPI schemes.

Our proposed methods are demonstrated to be capable of producing image approximations

of higher quality both in terms of PSNR and subjective quality than those generated by

other schemes. For example, the reconstructed images produced by the proposed ERDED

method are often about 3.77 dB higher in PSNR than those produced by the ED scheme, and
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our proposed ERDGPI scheme produces image approximations ofabout 1.08 dB higher

PSNR than those generated by the GPI approach.
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Chapter 1

Introduction

1.1 Mesh Modelling and Mesh Generation

In the last several years, there has been a growing interest in geometric representations for

images, that is, the modelling of images using geometric primitives. This is largely due

to the fact that, geometric representations are content-adaptive and capable of capturing

geometric structure in images. In contrast, when regular sampling (i.e., lattice-based sam-

pling) is employed, the sampling density is too low in regions where the signal is changing

rapidly, and too high in regions where the signal is varying slowly or not at all. Geometric

representations allow the modelling of large areas of pixels with basic geometric primitives.

For example, a large region can be represented by a few polygons instead of by hundreds of

pixels. Various image representations that attempt to exploit the geometric structure in im-

ages have been studied and developed, including ridgelets [1], curvelets [2], framelets [3],

edgelets [4], contourlets [5] [6], wedgelets [7], bandlets[8], and normal meshes [9] [10].

Among the numerous geometric representations, those basedon polygonal meshes

(e.g., triangle or quadrilateral meshes) [11] [12] [13], especially those based on triangle

meshes [10] [14], have received considerable attention andproven to be particularly effec-

tive. Such representations for images are known asmesh models. Mesh models have many

advantages. They often have greater compactness; they allow for some operations on im-

ages to be performed more easily; and they are able to facilitate methods that yield higher

quality approximations. There are numerous applications that can benefit from image rep-

resentations based on mesh models, such as computer vision [15], pattern recognition [16],

image restoration [17], and image/video compression [18–23].

If a mesh is to be used to represent an image, however, we typically need a way to



2

choose a good subset of sample points from the original imageto form a mesh approxima-

tion. This is the so called themesh generationproblem. Due to the necessity for solutions

to this problem, mesh generation methods are of fundamentalimportance.

1.2 Historical Perspective

Due to the numerous advantages of mesh modelling, a great many of mesh generation

methods and frameworks have been developed over the years. Most of them can be catego-

rized into two classes, the methods that determine all the sample points in one step and the

mesh-refinement based methods. Yang, Wernick, and Brankov proposed a scheme named

error diffusion (ED) [13] which determines all the sample points in one step. It is fast and

easy to implement. The ED method uses Floyd-Steinberg errordiffusion [24] to generate a

set of sample points, distributed such that the local density of sample points is proportional

to the largest magnitude second-order directional derivative of the image.

Different from the methods that determine all the sample points in one step, the mesh-

refinement based schemes begin with an initial model of the image (such as a coarse,

regular mesh), then refine the model iteratively until either a certain error (e.g., absolute

error or squared error) between the current mesh approximation and the original image

is reached or a certain number of sample points is obtained [25–28]. For example, the

greedy point insertion (GPI) scheme of Adams [29] inspired by the work of Garland and

Heckbert [10] is a mesh-refinement based algorithm. It first chooses a triangulation of

the image bounding box to form an initial approximation, andthen repeatedly inserts the

sample point corresponding to the largest absolute error into the triangulation. The greedy

point removal (GPR) scheme of Demaret and Iske [30], in contrast, first constructs a DT of

all of the sample points of the image, and then repeatedly removes the point that yields the

smallest increase in the squared error of the mesh approximation. Various types of triangle

meshes can be used as the model in mesh-refinement based methods, such as those based on

Delaunay triangulations (DTs) [31] and data-dependent triangulations [32] [33]. The DT

minimizes the maximum interior angle of all triangles in thetriangulation, consequently

avoiding sliver (i.e., long-thin) triangles to whatever extent is possible. The data-dependent

triangulation uses the values of the image function at the sample points in addition to their

positions [32,33] to determine triangulation connectivity in order to reduce approximation

errors. Data-dependent triangulations can achieve lower approximation error than DTs, but

tend to be associated with methods of higher complexity.

The methods that determine all sample points in one step are typically faster than the
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mesh-refinement based methods. The quality of image approximations produced by the

methods that determine all sample points in one step, however, are typically lower than

those generated by the mesh-refinment based schemes. To obtain a high quality mesh in an

efficient manner, some methods, that combine the advantagesof both kinds of the methods,

have been developed. One of these methods is proposed by Adams, called GPR from subset

with ED (GPRFS-ED) [14]. It first uses the ED scheme to select a certain number of sample

points, and then employs the GPR method to remove unnecessary points until the desired

mesh size is reached. It is faster than the GPR scheme and can yield image approximations

of higher quality than those generated by the ED scheme.

To evaluate the performance of the mesh-generation methods, peak signal-to-noise ra-

tio (PSNR) is usually employed to measure the objective quality of the resulting image

approximations. Besides objective measures (e.g., PSNR), subjective measures also play

an important role in evaluating the quality of a mesh approximation. Human eyes are often

drawn more to high frequencies than low frequencies. This isequivalent to saying that, hu-

man eyes are quite sensitive to image discontinuities (i.e., image edges). Therefore, mesh

generation methods that can explicitly represent image discontinuities [34] [35] are of

great interest. Among the numerous possibilities, the constrained DT is a good choice for

modelling image discontinuities, since image edges can be handled as constrained edges in

a constrained DT.

1.3 Overview and Contribution of the Thesis

In this thesis, we first introduce a mesh model that explicitly represents image discontinu-

ities (i.e., image edges). Then, to select the model parameters for a given input image, we

propose two mesh generation methods, called explicitly-represented discontinuities with

ED (ERDED) and explicitly-represented discontinuities with GPI (ERDGPI), which em-

ploy the ED and GPI schemes respectively to select a subset ofthe sample points. The

proposed methods are shown to be capable of producing mesh approximations of higher

quality than previously-proposed highly-effective mesh generation schemes in terms of

both objective and subjective measures.

The remainder of this thesis is organized as follows. Chapter2 introduces the back-

ground necessary to understand the work presented in this thesis. Some of the notation

and terminology used herein are presented, followed by background information pertain-

ing to computational geometry (e.g., triangulations and polyline simplification) and image

processing (e.g., edge detection, anti-aliasing and super-sampling). At last, we introduce
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some fundamental concepts related to mesh modelling, including mesh generation, scan

conversion and evaluation of image approximations.

In Chapter 3, we first introduce two highly effective mesh generation methods, namely

the ED scheme of Yang, Wernick, and Brankov, and the GPI schemeof Adams. After that,

we mention that the discontinuity (i.e., image edge) is an important feature of an image

and easy to be captured by human eyes. Although many state-of-the-art mesh generation

methods have been proposed to date, many of them do not take image discontinuities into

consideration explicitly. We then propose a new mesh model,based on the constrained

DT, that explicitly represents image discontinuities. After that, two mesh-generation ap-

proaches, that select mesh model parameters for a given image, are proposed and analyzed.

One of the proposed methods is named ERDED, which employs the ED scheme to select a

subset of sample points that are not on the constrained edges. The other proposed method is

called ERDGPI, where the GPI scheme is employed to select a subset of the sample points.

The ERDED and ERDGPI methods require the specification of several parameters. We

also propose an automated scheme which chooses these parameters effectively. Through

experimental results, we evaluate the performance of our proposed ERDED and ERDGPI

methods. PSNR is used to measure the quality of the reconstructed images in our work.

By comparison, we find that the image approximations producedby our proposed ERDED

method are often about 3.77 dB higher in PSNR than those produced by the ED scheme,

and our proposed ERDGPI method can generate reconstructed images of about 1.08 dB

higher PSNR than those produced by the GPI scheme. Since our proposed methods explic-

itly model image edges, the resulting image approximationsnot only have higher PSNR,

but also have higher subjective quality.

Chapter 4 concludes the thesis by summarizing the results presented in this thesis and

suggesting some related topics for future research.
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Chapter 2

Preliminaries

2.1 Overview

To facilitate a better understanding of the work presented in this thesis, some fundamental

concepts related to this work are introduced in this chapter. We begin with an introduction

to some of the notation and terminology used herein. Then, wepresent some basic concepts

from computational geometry and image processing. At last,we introduce some rudimen-

tary concepts related to mesh modelling, including mesh generation, scan conversion and

mesh evaluation.

2.2 Notation and Terminology

Before proceeding further, a brief digression is in order concerning the notation and termi-

nology used herein. The sets of integers and real numbers aredenoted asZ andR, respec-

tively. The notation(a,b), [a,b), (a,b], and[a,b] denote the open interval{x ∈ R : a <

x < b}, the half-closed half-open interval{x ∈ R : a ≤ x < b}, the half-open half-closed

interval{x∈ R : a < x≤ b}, and the closed interval{x∈ R : a≤ x≤ b}, respectively.

Forα ∈ R, the notation⌊α⌋ and⌈α⌉ denote the largest integer no more thanα (i.e., the

floor function) and the smallest integer no less thanα (i.e., the ceiling function), respec-

tively. Form,n∈Z, we define themod function as mod(m,n) = m−n
⌊

m
n

⌋

. The cardinality

of a setS is denoted|S|.
Matrices and vectors are denoted by uppercase and lowercaseboldface letters, respec-

tively. The Euclidean norm ofv = [v0,v1, · · · ,vn−1]
T is denoted by||v||, which is defined
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as

||v|| =
√

v2
0 +v2

1 + · · ·+v2
n−1. (2.1)

For matrices, their dimensions are specified by the subscripts. More specifically,Mn de-

notes ann×n matrix, and anm×n matrix is denoted asMm×n.

For a functionf defined onR2, its gradient, denoted▽ f , is defined as

▽ f (x,y) =

[

∂ f
∂x

∂ f
∂y

]T

. (2.2)

The Laplacian off , denoted△ f , is defined as

△ f (x,y) = ▽2 f (x,y) =
∂2 f
∂x2 +

∂2 f
∂y2 . (2.3)

For two complex-valued functionsf andg defined onR, their convolution, denoted as

f ∗g, is defined as

( f ∗g)(t) =
Z ∞

−∞
f (τ)g(t − τ)dτ. (2.4)

Furthermore, for sequencesf andg defined onZ, their convolution is given by

( f ∗g)[n] =
∞

∑
m=−∞

f [m]g[n−m]. (2.5)

One of the extensively used numeric measurements, known aspeak signal-to-noise

ratio (PSNR), is the ratio between the maximum possible magnitude of a signal and the

magnitude of corrupting noise. Since many signals have a very wide dynamic range, PSNR

is usually expressed in terms of the logarithmic decibel (dB)scale.

To help formally define the PSNR, themean squared error(MSE) is introduced. For

an imageφ of sizem×n and its approximation̂φ, the MSE is computed as

MSE=
1

mn

m−1

∑
i=0

n−1

∑
j=0

[φ(i, j)− φ̂(i, j)]2. (2.6)

The PSNR is then defined by

PSNR= 20log10

(

2p−1√
MSE

)

, (2.7)

wherep is the number of bits per sample in imageφ.
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2.3 Computational Geometry

The process of mesh modelling involves numerous geometric algorithms, including trian-

gulation and polyline simplification. In what follows, background related to triangulations

are presented first, followed by the introduction of the Douglas-Peucker polyline simplifi-

cation algorithm and a C++ open source library for computational geometry, known as the

Computational Geometry Algorithms Library (CGAL).

2.3.1 Triangulations

Triangulation is one of the fundamental concepts extensively used in computational geom-

etry. Particularly, it is an important concept in geometricimage representations. In what

follows, we first introduce the concepts of convex set and convex hull, followed by the

formal definition of a triangulation [36] [37].

Definition 2.1 (Convex set). A set P of points inR2 is said to be convex if and only if,

for every pair of points p,q ∈ P, the straight line segmentpq that joins p and q is also

contained in P.

x

y

(a)

x

y

(b)

Figure 2.1: Example of sets that are (a) convex and (b) not convex.

The definition of a convex set is illustrated in Figure 2.1. Wecan see from Figure 2.1(a)

that, for every pair of pointsx, y in the set, the line segmentxy is also in the set. Therefore,

the set in Figure 2.1(a) is convex. In the set shown in Figure 2.1(b), there exists a pair

of pointsx andy that, the line segmentxy that joinsx andy is not in the set shown in

Figure 2.1(b). Therefore, the set in Figure 2.1(b) is not convex.

Definition 2.2 (Convex hull). The convex hull of a set P of points is the intersection of all

convex sets that contain P (i.e., it is the smallest convex set containing P).
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(a) (b)

Figure 2.2: Convex hull example. (a) A setP of points, and (b) the convex hull ofP.

The definition of the convex hull is illustrated in Figure 2.2. Figure 2.2(a) shows a set

P of points inR
2, and Figure 2.2(b) depicts the convex hull ofP. The notion of convex hull

is helpful for defining a triangulation.

Definition 2.3 (Triangulation). A triangulation of a set P of points inR2 is a subdivision

of the convex hull of P into a set T of triangles such that the interiors of any two triangles

in T never intersect, and the set of points that are the vertices of T coincides with P.

For a given setSof points, there are typically very many triangulations ofS. For the set

P of points in Figure 2.3(a), two triangulations ofP among the numerous possibilities are

illustrated in Figure 2.3(b) and Figure 2.3(c). We can see that, the edges of the triangulation

in Figure 2.3(b) and those of the triangulation in Figure 2.3(c) are different. Triangulations

are a key ingredient for mesh representations of images. An approximation of an image can

be easily formed when the image domain is partitioned into triangles, since a large region

in the image domain might be represented by a few triangles instead of by hundreds of

pixels.

Various types of triangulations have been proposed over theyears. One important and

widely used type of triangulation, which has a number of useful properties, is the Delaunay

triangulation (DT) [31]. To help define a DT, it is necessary to introduce the concept of

a circumcircle. In geometry, the circumcircle of a triangleis the unique circle that passes

through all three vertices of the triangle. With this in mind, the definition of a DT is then

as follows.

Definition 2.4 (Delaunay triangulation (DT)). A triangulation T is said to be Delaunay if

each triangle in T is such that the interior of its circumcircle contains no vertices of T.
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(a) (b) (c)

Figure 2.3: Triangulation example. (a) A a setP of points, (b) a triangulation ofP, and (c)
another triangulation ofP.

An example of a DT is illustrated in Figure 2.4. The circumcircles of the triangles in

the triangulation are also shown by dashed lines in the figure. As shown in the figure, in

the triangulation, each circumcircle contains no verticesof the triangulation in its interior.

Therefore, the triangulation in Figure 2.4 is a DT. A DT maximizes the minimum interior

angle of all triangles in the triangulation [36]. Consequently, it tends to avoid sliver (i.e.,

long-thin) triangles. The DT of a set of points is not guaranteed to be unique. More specif-

ically, the DT of a set of points is guaranteed to be unique if no four points in the set are

co-circular. In the case that a set of points is a subset of a rectangular array of points (e.g.

raster image), there will typically be many co-circular points and therefore multiple DTs.

Some methods have been proposed for choosing a unique DT fromthe numerous possibili-

ties in those situations, including the symbolic perturbation method discussed in [36,38–40]

and the preferred directions approach presented in [41].

In some applications, we want certain prescribed edges to appear in a triangulation. The

prescribed edges (i.e., line segments) that are imposed during the triangulation process are

calledconstrained edges. A triangulation with constrained edges is called aconstrained

triangulation [42]. To help understand the concept of constrained triangulation, we first

introduce the notion of a planar straight line graph (PSLG),which is defined as below.

Definition 2.5 (Planar straight line graph (PSLG)). A planar straight line graph is a set P

of points inR
2 and a set E of line segments denoted(P,E), such that: each line segment of

E must have its endpoints in P, and any two line segments of E must either be disjoint or

intersect at most at a common endpoint.

An example of a PSLG is shown in Figure 2.5. The PSLG in the figure consists of a

set of eight points and a set of two constrained edges. A constrained triangulation can be
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Figure 2.4: Example of a DT. The circumcircle of each triangle contains no vertices of the
DT.

considered as a triangulation of the point setP of a PSLG, where the line-segment setE of

the PSLG correspond to constrained edges.

Having introduced the concepts of DT and constrained triangulation, we now present a

triangulation known as constrained DT [42]. The constrained DT combines the features of

a constrained triangulation and a DT. Therefore, constrained DTs are extensively used in

many applications.

To help define a constrained DT, the notion ofvisibility must first be introduced. In

a triangulation, two pointsp andq are visible if and only if the line segmentpq does not

intersect any constrained edge. Furthermore, a pointp is said to be visible from the interior

of a triangle△t if and only if, for every pointq inside△t, the line segmentpq does not

intersect any constrained edge. Figure 2.6(a) gives an example of a pointp that is visible

from the interior of a triangle△t. We can see from the figure that, for any pointq in △t,

there is no line segmentpq intersecting a constrained edge. Thus,p is visible from the

interior of △t. An example of a pointp that is not visible from the interior of a triangle

△t is illustrated in Figure 2.6(b). In this figure, the line segment pq intersects with the

constrained edgeab at pointo. Thus, p is not visible from the interior of△t. Having
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Figure 2.5: Example of a PSLG with two constrained line segments.

introduced the concept of visibility, we now define a constrained DT as follows.

Definition 2.6 (Constrained DT). Given a PSLG(P,E), a triangulation of P is said to be

constrained Delaunay if each triangle T in the triangulation is such that the interior of T

does not intersect any constrained edge in E; and no vertex inside the circumcircle of T is

visible from the interior of T .

An example of a constrained DT is shown in Figure 2.7. Figure 2.7(a) and (b) show the

given PSLG and its corresponding constrained DT, respectively. The thick line segmentsae

andeg in Figure 2.7(b) are the constrained edges of the constrained DT, which correspond

to the setE of line segments in the PSLG illustrated in Figure 2.7(a). InFigure 2.7(b),

the circumcircle of each triangle in the triangulation is drawn with a dash line as well. As

shown in the figure, the circumcircles of triangles△abe, △ade, △e f g and△egh have

vertices of the triangulation in their interiors. Pointd is inside the circumcircle of triangle

p

a

b

c

q

(a)

p

a

b

c

q
o

(b)

Figure 2.6: Examples of visibility. (a)p is visible from the interior of triangle△t, and (b)
p is not visible from the interior of triangle△t.
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(a)

a
b

c d

e

f

g h

(b)

Figure 2.7: Example of a constrained DT. (a) Given PSLG, and its corresponding (b) con-
strained DT.

△abe. Since the line segments connecting pointd and any point inside the triangle inter-

sects the constrained segmentae, d is not visible from the interior of the triangle△abe.

Similarly, pointb, which is inside the circumcircle of triangle△ade, is not visible from

the interior of triangle△ade; point h, which is inside the circumcircle of triangle△e f g,

is not visible from the interior of triangle△ade; and pointsd and f , which are inside the

circumcircle of triangle△egh, are not visible from the interior of triangle△egh. Therefore,

the triangulation in Figure 2.7(b) is a constrained DT. Similar to a DT, a constrained DT

also tends to avoid sliver triangles, except those formed bysatisfying the edge constraints.
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2.3.2 Polyline and Polyline Simplification

In geometry, apolyline is a connected series of line segments with no self-intersection. It is

used to approximate a curve in many applications. An exampleof a polyline that consists of

eight points is shown in Figure 2.8. Often a polyline has too many points for an application.

That is, the points on a polyline are too close together. For the sake of efficiency, it is better

to find a simplified polyline with fewer points to approximatethe original polyline. To

achieve this, apolyline simplification method, which reduces the number of points in a

polyline to produce a simplified polyline that approximatesthe original within a specified

tolerance, is needed.

a

b

c

d e

f

g

h

Figure 2.8: Example of a polyline

Many polyline simplification methods have been proposed to date. One of the classical

algorithms is the Douglas-Peucker algorithm [43], which isextensively used in computer

graphics and geographic information systems. Given a polyline, the Douglas-Peucker al-

gorithm produces a simplified polyline consisting of a subset of the points that defined

the original polyline, by discarding points based on a specified toleranceε. The Douglas-

Peucker algorithm automatically marks the first and the lastpoints of the polyline to be

kept. It starts with a line segment connecting the first and last points of the polyline, and

then finds a pointp that is furthest from the line segment with a distancedl . If dl is larger

thanε, the pointp is marked to be kept and the algorithm continues. Ifdl is smaller than

ε, the algorithm stops and all the unmarked points between thefirst and last points are

discarded.

The process of Douglas-Peucker algorithm is illustrated inFigure 2.9, where the tol-

eranceε is specified in the top-left corner. The original polylineabcde f ghis shown in

Figure 2.8. In Figure 2.9(a), firstly, we mark the first pointa and the last pointh of the

polyline to be kept. We then calculate the distance between each point fromb to g and the

line segmentah, and find the pointg with the largest distancedl . Sincedl is larger thanε,

g is marked to be kept. Till now, three points, namelya, g andh, are marked to be kept. In

Figure 2.9(b), similarly, we find a pointc betweena andg that is furthest fromag with a

distancedl greater thanε, while no point is found betweeng andh. Therefore,c is marked
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dl

ε

a

b

c

d e
f

g

h

(a)

dl

ε

a

b

c

d e
f

g

h

(b)

dl

ε

a

b

c

d e
f

g

h

(c)
ε

a

b

c

d e
f

g

h

(d)

Figure 2.9: Douglas-Peucker polyline simplification algorithm. (a)-(c) the procedures of
polyline simplification, and (d) the simplified polyline.

to be kept and the algorithm continues. In Figure 2.9(c), thepoint e is found to be the fur-

thest point fromcg with a distancedl greater thanε. Thus,e is marked to be kept. Finally,

a simplified polyline consisting of all the points that have been marked as kept (i.e.,a, c, e,

g, andh), is generated as in Figure 2.9(d), . We can see from the figurethat, the simplified

polylineaceghis a reasonably good approximation of the original oneabcde f gh.

2.3.3 Computational Geometry Algorithms Library (CGAL)

Several libraries are utilized in the software developed for the research described herein.

One such library is the Computational Geometry Algorithms Library (CGAL). CGAL is an

open-source project that aims to provide easy access to efficient and reliable solutions and

methods in computational geometry in the form of a C++ library. It provides many data

structures and algorithms for geometric computation, suchas convex hull, triangulations,

DTs and constrained DTs. Besides those, interfaces to third party software, such as Qt,
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Geomview, and the Boost Graph Library, are also provided. Furthermore, CGAL makes

extensive use of templates, which facilitates the development of efficient and flexible code.

2.4 Image Processing

Before presenting our work, some image processing concepts and algorithms need to be

introduced. These concepts and algorithms are employed in our proposed mesh-generation

methods, and include binomial filters, bilinear interpolation, Canny edge detection, anti-

aliasing, and super-sampling. In what follows, the detailsof these concepts and algorithms

are presented.

2.4.1 Binomial Filter

Binomial filters are simple and efficient low-pass filters. They have reasonably-good fre-

quency responses that form a compact approximation of the discrete Gaussian [44]. Com-

pared to Gaussian filters [45], an appealing feature of binomial filters is that they do not

require multiplications, which has potential benefits in terms of computational complexity.

Therefore, binomial filters are widely used in many applications instead of Gaussian filters,

especially in hardware implementations.

The transfer functionHn of the nth order one dimensional (1-D) binomial filterb(1D)
n

with zero-phase and unity DC gain is

Hn(z) = z(n−1)/2
(

1
2

+
1
2

z−1
)n−1

, (2.8)

wheren is odd. Alternatively, the coefficients of binomial filtersb(1D)
n correspond to the

normalizednth row (starting from 0) of Pascal’ s triangle. For example, thenonzero coef-

ficients of the impulse response ofb(1D)
2 are

[1
4

1
2

1
4

]

.

A nth order two dimensional (2-D) binomial filter, denoted asbn, can be generated as

the tensor product of 1-D filtersb(1D)
n . For example, a second order 2-D binomial filterb2 is

calculated by tensor product fromb(1D)
2 . The nonzero coefficients of the impulse response

of the 2-D binomial filterb2 are 1
16







1 2 1

2 4 2

1 2 1






.
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2.4.2 Bilinear Interpolation

In signal and image processing,interpolation is defined as a method of calculating the

values of new data points which are in the range of a discrete set of known data points.

Interpolation is extensively used in many applications, including image scaling and signal

upsampling, as one of the basic resampling techniques.

In 1-D, one of the fundamental interpolation methods is linear interpolation. Though

not precise, linear interpolation is quick and easy to implement, which makes it popular in

applications. Linear interpolation takes two data points of a function f , P1 = x1 andP2 = x2

illustrated in Figure 2.10, to calculate the interpolant off at the pointQ= x, which is given

by

f (Q) = f (P1)+( f (P2)− f (P1))
x−x1

x2−x1
. (2.9)

P2

P1

Q

x1 x2x

Figure 2.10: Linear interpolation.

Bilinear interpolation [46] is an extension of linear interpolation to two dimensions,

which is extensively used to interpolate a functionf defined onR
2 at a point inside a

rectangular grid, as shown in Figure 2.11(a). The key idea ofbilinear interpolation is to

perform linear interpolation first in one direction, and then again in the other direction. To

interpolate the function value at a pointp, bilinear interpolation takes a weighted average

of the function values of the 4 points, which are the closest 2×2 neighborhood surrounding

p, to estimate the function value atp. The weight on each of the function values at the 4

points is based on the distance from each of the 4 points top.

Suppose that we want to find the value of an unknown functionf at the pointQ= (x,y),

as shown in Figure 2.11(a), and we know the value off at the four pointsP11 = (x1,y1),
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P12 P22

P11 P21

Q

x1 x2x

y2

y1

y

(a)

P12 P22

P11 P21

QC1 C2

x1 x2x

y2

y1

y

(b)

Figure 2.11: Bilinear interpolation. (a) We need to interpolate a 2-D functionf at an
unknown pointQ= (x,y) within a rectangular grid. (b) We first perform linear interpolation
in y direction to calculatef (C1) and f (C2), then again inx direction, to calculate f(Q).

P12 = (x1,y2), P21 = (x2,y1), andP22 = (x2,y2). We first apply linear interpolation in y-

direction, as shown in Figure 2.11(b), which calculates theestimated values of the function

at two points,C1 = (x1,y) andC2 = (x2,y), as

f (C1) =
y2−y
y2−y1

f (P11)+
y−y1

y2−y1
f (P12),

f (C2) =
y2−y
y2−y1

f (P21)+
y−y1

y2−y1
f (P22).

With the approximated values of the pointsC1 andC2, we continue to do linear inter-

polation in x-direction to calculate the value off at pointQ = (x,y) as

f (Q) =
x2−x
x2−x1

f (C1)+
x−x1

x2−x1
f (C2).
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Thus, the desired approximation off at pointQ = (x,y) is obtained by

f (Q) =
f (P11)

(x2−x1)(y2−y1)
(x2−x)(y2−y)

+
f (P21)

(x2−x1)(y2−y1)
(x−x1)(y2−y)

+
f (P12)

(x2−x1)(y2−y1)
(x2−x)(y−y1)

+
f (P22)

(x2−x1)(y2−y1)
(x−x1)(y−y1).

(2.10)

2.4.3 Canny Edge Detection

Edgesare one of the most fundamental features of an image, and contain useful information

for a number of applications. An edge is a collection of pixels which have a significant

change in brightness compared with the pixels around them or, more formally, represent

discontinuities.Edge detectionis a process which aims at identifying edges in a digital

image to capture important events and changes in properties[47] [48] [49]. Typically, the

process of edge detection produces anedge map, which is a binary image containing only

edge information. In the binary edge map, the points with a nonzero value are edge points,

while those with a zero value are nonedge points. Edge detection is extensively used in

many applications, including image processing [50], pattern recognition [51] and computer

vision [52]. Figure 2.12 gives an example of edge detection.The original image is shown

in Figure 2.12(a), and its corresponding edge map produced by edge detection is illustrated

in Figure 2.12(b).

Suppose we have an image functionφ. Edges ofφ can usually be determined from ei-

ther, (1) the local maxima of|▽φ|, or (2) the zero-crossings of△φ. Since derivative oper-

ations are sensitive to noise, a smoothing stage, typicallybinomial or Gaussian smoothing,

is employed to reduce the noise. Often the edges in the edge map generated are very thick,

as shown in Figure 2.13. Therefore, an edge thinning algorithm [53] is usually applied at

the final stage to obtain a desirable edge map,

One of the most extensively used edge detectors, known as theCanny edge detector,

was proposed by Canny in 1986 [49]. It is still a popular edge detector today. In many

applications, it tends to perform quite well. Canny edge detection consists of four stages:

(1) noise reduction, (2) gradient calculation, (3) local non-maxima suppression, and (4)

hysteresis thresholding. In what follows, the detail of each stage is presented.

NOISE REDUCTION. Most types of real world imagery contain noise from a va-
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(a) (b)

Figure 2.12: Example of edge detection. (a) The original image, and (b) the edge map
produced by the edge detector.

riety of sources. Since the derivatives of images are sensitive to noise, we need to find a

means to reduce the noise. A 2-D binomial filterbn which approximates Gaussian filter is

a good choice. Letφ denote the image function. The convolution of raw image function φ
with a 2-D binomial filterbn, will generate a image functionf with reduced noise,

f = φ∗bn.

GRADIENT CALCULATION. After obtaining the image functionf with reduced

noise, we need to compute the magnitude of its gradient. The first order partial derivatives

of the imagegx = ∂
∂x f andgy = ∂

∂y f can be obtained by the convolution of the edge detection

operator (e.g., Roberts, Prewitt, Sobel) withf . Given such estimates of first order partial

derivatives, the magnitude and direction of the gradient are computed respectively as

g =
√

g2
x +g2

y, and (2.11)

θ = atan2(gy,gx). (2.12)

NON-MAXIMA SUPPRESSION. Given an estimate of the image gradient, for

every pixel of the image, a test is carried out to determine whether the gradient magnitude

at each pixel position assumes a local maximum in the gradient direction. That is, for every

pixel a, linear interpolation is employed to interpolate the gradient magnitudes of the two

points in the gradient direction ofa on rectangular grid. If the gradient magnitude of the
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Figure 2.13: Thick edge example

pixel a is greater than the gradient magnitudes of both of the interpolated points, the pixela

is considered as a local maximum and marked as an edge point. This process is illustrated

in Figure 2.14. As shown in the figure, to test the pixela, we first find two pointsp and

q which are the intersection of the line in the gradient direction of a with the rectangular

grid. The gradient magnitudesg(p) andg(q) are then interpolated based on the gradient

magnitudesg(a−1,−1), g(a−1,0), g(a1,0), andg(a1,1). The pixela is marked as an edge

point only wheng(a) is larger than bothg(p) andg(q). At this stage, an edge mapMe,

which consists of a set of edge points, is obtained.

HYSTERESIS THRESHOLDING. In most cases, pixels with larger gradient mag-

nitudes are more likely to correspond to edges. It is difficult, however, to determine whether

a pixel with given gradient magnitude corresponds to an edgepoint or not with only one

prespecified threshold. Therefore, the Canny edge detector uses hysteresis thresholding,

which requires two thresholds, a high thresholdτh and a low thresholdτl . We begin with

generating an edge mapMh which contains the edge points we can be fairly certain are

authentic. To generateMh, we first compare the gradient magnitudegp of each pointp in

Me to τh. If gp is larger thanτh, we markp as an edge point and add it toMh. To further

detect faint edges, we need to add true edge points toMh from Me. We first find the starting

points inMe, which are the points inMe and adjacents to the points inMh but not inMh.

The edges are then traced through the edge mapMe from the starting points, and the points

with gradient magnitude greater thanτl are marked as edge points and added toMh.
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p

q

a-1,-1

a

a0,-1 a1,-1

a-1,0 a1,0

a-1,1 a0,1 a1,1

Figure 2.14: Local nonmaxima suppression. To test a pointa, the gradient magnitudes of
two pointsp, q in the gradient direction ofa are interpolated.

To demonstrate the efficiency of hysteresis thresholding, we consider a modified version

of Canny edge detection, which use only one threshold. The edge map produced with

hysteresis thresholding is illustrated in Figure 2.15(a),while the edge map generated with

only one threshold specified is shown in Figure 2.15(b). We can see from the figures that

the edges obtained with hysteresis thresholding are much better than those obtained with

only one threshold.

Once the above process is complete, a final edge map, which contains the information

of the desired edges, is generated. Figure 2.12(b) mentioned earlier is an example of the

edge map produced by Canny edge detector.

2.4.4 Modified Canny Edge Detector

The Canny edge detector is one of the most widely used edge detectors due to its charac-

teristics of good detection, good localization, and singleresponse. Some important edge

points, however, especially those points at the crossing oftwo edges, are usually missing

in the edge map produced by the Canny edge detector. For an input image shown in Fig-

ure 2.17(a), the edge map generated by Canny edge detector is illustrated in Figure 2.17(b).

We can see that the edges obtained with the Canny edge detectorare notconsistent, that is,

an edge point near the crossing of two edges is missing. By closely examining the gradient

magnitude and direction at the missing edge point, we find that, although the gradient mag-
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(a) (b)

Figure 2.15: Comparison between (a) edge map generated with hysteresis thresholding,
and (b) edge map produced with only one threshold specified.

nitude at the missing edge-point is larger than those of a pair of points at opposing sides

8-connected to them, it is not the maximum in the gradient direction at the missing edge

point. Near the crossing of two edges, intensity values of the points are changed in two

different directions normal to the two edges. Thus the magnitudes of those points are af-

fected by those two edges and may no longer be the maxima alongthe gradient directions.

Therefore, the edge point near the crossing of two edges in Figure 2.17(b) is missing.

To avoid missing points at the crossings of the edges generated, themodified Canny

edge detectorwas proposed [54]. Since the problem is that the gradient magnitudes at

those missing edge points are maxima not in the gradient direction, the modified Canny

edge detector employs a post-processing step to add those missing points to the final edge

map. Let us call edges produced by the Canny edge detector themain edges. We will then

mark a point as a part of thesecondary edgesif its gradient magnitude is larger than any

pair of points 8-connected to it and at opposing sides but notnecessarily in the gradient

direction. As shown in Figure 2.16, suppose the gradient magnitude of image is denoted as

g, the pointa is marked as a secondary edge point if wheng(a) is larger than bothg(a−1,−1)

andg(a1,1), or bothg(a−1,0) andg(a1,0), or bothg(a−1,1) andg(a1,−1), or bothg(a0,−1)

andg(a0,1).

According to the definitions, the main edges are a subset of the secondary edges. Recall

that the main edges are obtained by the Canny edge detector, which are demonstrated to

correspond to the true edges. On the other hand, some of the secondary edges correspond to

the true edges, while others represent false edges. We need to separate the true secondary
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a-1,1 a0,1 a1,1

Figure 2.16: Local nonmaxima suppression of modified Canny edge detector. The pointa
is marked as a secondary edge point wheng(a) is greater than any pair of points at opposing
sides.

edges from the false ones. To achieve this, we first partitionthe secondary edges at the

branch points, and remove the branches that do not contain any main edge points. We

then trace through the secondary edge contours and only markthe points in the secondary

edges that connect the main edges. Combining the main edges and the marked points in the

secondary edges, we obtain the final edge map shown in Figure 2.17(c). We can see from

the figure that, the edges generated by the modified Canny edge detector have no missing

point at the crossing of two edges. Thus they are more consistent than those produced by

the Canny edge detector.

2.4.5 Anti-aliasing and Super-sampling

In the context of computer graphics and rasterization algorithms, aliasing refers to the

jagged and pixelated edges in a rendered image. In order to improve the quality of an

image, we need to minimize aliasing (i.e., reduce the jaggededges) in the image.

The technique of minimizing aliasing is known as anti-aliasing. An example of the

effect of anti-aliasing during rasterization is illustrated in Figure 2.18. Figure 2.18(a) and

(b) show an image rendered without anti-aliasing and with anti-aliased, respectively. We

can see from the example that, with anti-aliasing, the jagged edges in the image without

anti-aliasing are eliminated, and the anti-aliased image looks much better than the one
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(a)

(b) (c)

Figure 2.17: For a (a) given input image, the comparison of the effects of (b) the Canny
edge detector and (c) the modified Canny edge detector.

produced without anti-aliasing.

One common anti-aliasing technique is called super-sampling [55]. In super-sampling,

the image is first rendered at a much higher resolution than the final resolution desired.

Extra samples are then taken inside a pixel (usually following some fixed pattern), and the

average value of the samples inside the pixel is calculated.The image is downsampled to

the desired size at the end, and the value of each pixel in the downsampled image is the

average value of the samples inside the pixel of the originalhigher resolution image.

Many types of super-sampling have been proposed to date. Onecommonly used type

is known as the grid algorithm. The grid algorithm is simple and easy to implement. In the

grid algorithm, the pixel is split in several sub-pixels, and a sample is taken from the center

of each. An example of 4×4 grid algorithm is shown in Figure 2.19. In the figure, the

pixel is divided into a 4×4 array of sub-pixels, and 16 samples are selected from the center

of the sub-pixels. The value of the pixel is computed as the average value of the sub-pixel
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(a) (b)

Figure 2.18: Example of anti-aliasing. (a) the image with jagged edges, and (b) the image
after anti-aliasing.

samples.

2.4.6 Triangle Scan Conversion

With a given triangle mesh model of an image functionφ defined onZ2, in order to obtain

an approximation̂φ of φ, we need to interpolate the value of all the points inφ̂. An efficient

way of producing an image approximationφ̂ from a triangle mesh of the imageφ is known

astriangle scan conversion. Generally speaking, triangle scan conversion is a technique

for converting geometric object defined on continuous domain to discrete lattice-sampled

representation.

Figure 2.19: Example of super-sampling using 4×4 grid algorithm,
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In triangle scan conversion, each triangle of the mesh is scanned sequentially, and the

value of the points of̂φ in each triangle is then uniquely determined by a planar interpolant

that passes through the three vertices of the triangle. The process of scanning a triangle

is shown in Figure 2.20. For each triangle in the triangulation, the interpolation is done

on each point in the triangle sequentially, starting from top to bottom, left to right. As

shown in Figure 2.20, for each triangle, a horizontal scan-line, which start fromymax, is

used to do the interpolation. At eachy∈ [ymin,ymax]∩Z, the horizontal scan-line intersects

the triangle edges at two points,Pl (xl ,y) andPr(xr ,y), respectively. The interpolation is

then carried out on the pointsp(xp,y) ∈ Z
2 located between the pair of intersections,Pl

andPr , from left to right. The process of triangle scan conversionstops when the scan-

line reachesymin, which means all the points inside the triangle (including the points on

triangle edges) have been interpolated. Due to the properties of the triangle, the points on

the edges are interpolated twice, which increases the computational complexity of triangle

scan conversion. One of the methods for solving this problem, which is presented in [56],

is uniquely assign each point to a triangle. Once the processof triangle scan conversion is

completed, the approximation̂φ of the image functionφ is generated.

Pl Pr

ymax

ymin

Scanline

Figure 2.20: Triangle scan conversion.
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2.5 Mesh Modelling

An image can be modeled as a 2-D function defined on a continuous domain (a subset of

R
2), where the value of the function corresponds to the brightness of the image. For exam-

ple, the image in Figure 2.21(a) can be modeled as a surface asillustrated in Figure 2.21(b)

by using the brightness of the image as the height of the surface above the plane. In im-

age processing and computational geometry, mesh modellingis an approach for modelling

objects by representing them using mesh elements (i.e., polygons). Particularly, mesh mod-

elling of an image is an approach for approximating the imagefunctionφ, which involves

partitioning the image domain into a collection of non-overlapping mesh elements (e.g.,

triangles). In other words, a mesh model of an image can be considered as a geometric

representation of the image using non-uniform samples, of which the image samples are

adaptively placed according to the local content of the image. Among the numerous possi-

bilities of polygon meshes, triangle meshes have received considerable attention. To form

a triangle mesh model of an image, we first need to select a set of sample points from the

image, and then construct a triangulation of the sample points.

(a) (b)

Figure 2.21: Image modeled as a function defined on continuous domain. (a) The original
image, and (b) image modeled as surface.

A mesh approximation of the image in Figure 2.21(a) with a sampling density (which

will be defined later) of 0.5% is shown in Figure 2.22. The mesh model used here is the

most commonly used mesh model, which we refer to as thebasic modelherein. The basic

model is quite simple and employs Delaunay triangulations.With the basic model, the

sample pointsP are chosen as a subset ofΛ, andP is triangulated using the Delaunay

triangulation. Over each (triangle) face in the triangulation, φ̂ is defined as the unique
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Figure 2.22: Mesh approximation of Image (sampling density0.5%). (a) The triangulation
of the original image, (b) resulting triangle mesh, and (c) the reconstructed image.

linear function that interpolatesφ at the three vertices of the face. Thus, the approximating

function φ̂ is continuous and interpolatesφ at each point inP. Furthermore, this model is

completely characterized by the sample pointsP andφ(p) for p∈ P. Figure 2.22(a) shows

the triangulation of the original image domain and the resulting triangle mesh is illustrated

in Figure 2.22(b).

With a mesh model of an image, an approximation of the image can be reconstructed.

Among the numerous image construction methods, triangle scan conversion, which is in-

troduced earlier in Section 2.4.6, is an efficient and extensively used scheme. In triangle

scan conversion, the value of the pointp ∈ Z
2 inside each triangle is determined by a

unique planar interpolant that passes through the sampled function values at three vertices
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of the triangle. With triangle scan conversion, the image approximation shown in Fig-

ure 2.22(c) is reconstructed from the mesh model illustrated in Figure 2.22(b). From the

Figure 2.22(c), we can see that, although the sampling density is quite low (0.5%), the

image approximation obtained is still of good quality.
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Chapter 3

Proposed Mesh-Generation Methods

3.1 Overview

In this chapter, we begin with an introduction of two previously proposed mesh-generation

methods that are employed in our work, namely the ED and GPI schemes. Then, we pro-

pose a mesh model that explicitly represents image discontinuities along with two mesh-

generation approaches that select the model parameters fora given input image. After that,

we discuss the selection of the parameters and variations ofthe proposed approaches that af-

fect the quality of the results. Experimental results show that our proposed mesh-generation

methods can produce image approximations of higher qualitythan those generated by the

highly effective ED and GPI schemes in terms of both PSNR and subjective quality. Some

of our results presented in this chapter have also been published in [35].

3.2 Previously Proposed Mesh Generation Methods

Before presenting our approaches, we first introduce two other extensively used mesh-

generation methods, namely theerror diffusion (ED) scheme and thegreedy point inser-

tion (GPI) scheme. The mesh model used in these two mesh-generation methods is the

basic model described in Chapter 2, which is based on DT and canbe uniquely character-

ized by a set of sample points along with the corresponding sample values. In what follows,

the ED scheme and the GPI scheme are presented in detail.
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3.2.1 ED Scheme

The ED scheme was proposed by Yang, Wernick, and Brankov [13] in 2003. It is fast

and easy to implement. It uses Floyd-Steinberg error diffusion [24] to generate the set

of desired sample points, hence the name. For a given imageφ defined on the domain

Λ = [0,W− 1]× [0,H − 1]
T

Z
2, to select a desired numberK of sample points, the ED

scheme first calculates a sample-point density functionσ from themaximum magnitude

second-order directional-derivative (MMSODD) of φ at each point(x,y) ∈ Λ, and then

employs Floyd-Steinberg error-diffusion to select a setSof K sample points according to

the density functionσ. One desired property of the ED scheme is that, the local spatial

density of the sample points is proportional to the MMSODD ofφ.

In more detail, the ED method consists of the following steps(in order):

1. We first computed, which is the MMSODD ofφ, at each pointp = (x,y) ∈ Λ as

d(x,y) = max{|λ1 +λ2| , |λ1−λ2|}, (3.1)

whereλ1 andλ2 are computed by

λ1 =
1
2

(

∂2

∂x2φ(x,y)+
∂2

∂y2φ(x,y)

)

, and (3.2)

λ2 =

√

1
4

(

∂2

∂x2φ(x,y)− ∂2

∂y2φ(x,y)

)2

+

(

∂2

∂x∂y
φ(x,y)

)2

. (3.3)

The density functionσ is then computed as

σ(x,y) =

[

d(x,y)
dmax

]γ
, (3.4)

wheredmax= max(x,y)∈Λ d(x,y), andγ is a positive real constant adjusting the sen-

sitivity of the location of sample points to edges in the image, which we refer to as

contrast sensitivity parameter herein.

2. In order to select approximately|S| = K sample points, the thresholdρ of Floyd-

Steinberg error diffusion can be chosen as,

ρ =
1

2K

[

M

∑
i=1

N

∑
j=1

σ(i, j)

]

. (3.5)
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A binary imageb defined onΛ is generated fromσ using Floyd-Steinberg error

diffusion with ρ in serpentine scanning order [13]. Each point(x,y) ∈ Λ satisfying

b(x,y) 6= 0 is then placed in a setS′ of sample points.

3. If |S′| is close enough to|S| (i.e.,K), setSto S′; otherwise, the thresholdρ need to be

adjusted, and then go to step 2.

4. At last, a DT is constructed on the setSof sample points to produce a mesh model.

Since the ED method has a number of degrees of freedom, we notethat, in our work,

we consider the variant of this method that employs a third-order binomial filter for noise

removal during MMSODD estimation, a contrast sensitivity parameterγ of 1, and the ser-

pentine scan order for error diffusion. Also, the first- and second-order derivative operators

used in the calculation of the MMSODD were approximated by filters with transfer func-

tions 1
2z− 1

2z−1 andz−2+ z−1, respectively. Lastly, we note that, during filtering, signal

boundaries are handled by zero extension (i.e., padding with zeros).

3.2.2 Greedy Point Insertion Scheme

Garland and Heckbert proposed a mesh-generation scheme in 1995 [10] which is referred

to as Garland-Heckbert(GH) method. The GH scheme refines an initial model successively

until either a certain approximation error is reached or a certain number of sample points

is obtained. The refinement of the GH scheme is done by inserting one point into a trian-

gulation in each iteration based on the maximum absolute error. A modified version of the

GH scheme was proposed by Adams [29], which employs the squared error of the faces

instead of the maximum absolute error, and achieves a great improvement in the quality of

the resulting image approximations. In the remainder of thepaper, the modified version of

the GH scheme proposed by Adams is called greedy point insertion (GPI) scheme.

Before presenting the GPI scheme in detail, we first introducesome concepts and no-

tations used in the method. For a given imageφ defined onΛ, in each iteration, the GPI

scheme derives an approximationφ̂ from φ. The absolute errorεp(x,y) of a pointp(x,y) is

computed as

εp =
∣

∣φ(x,y)− φ̂(x,y)
∣

∣ , (3.6)

and the sum of squared errorεsum of a face f is the sum of the squared errorsε of all the

points in f ,

εsum= ∑
p∈ f

ε2
p. (3.7)



33

In the triangulation of a setP of points, letF denote the set of all the faces in the triangula-

tion, and each pointp∈ Λ is assigned to exactly one facef in F , denoted byf ace(p) = f .

Thecandidate pointof a triangle is defined as the point with the maximum absoluteerror

ε within the triangle, denoted bycand( f ).

The GPI scheme is involved in the following four steps.

1. Construct a DT with the setP of four corner points on the convex hull ofφ.

2. Derive a mesh approximation from the DT using triangle scan conversion, and then

calculate the absolute errorε of each point. For each facef of the DT, find its

candidate pointcand( f ).

3. For each face in the DT, calculate the sum of squared errorεsum. Then find the face

fm with maximumεsum.

4. Insert the candidate point of facefm into the DT. If the total number of vertices of

the triangulation reaches the desired numberK, the algorithm stops. Otherwise, go

to step 2.

To implement the algorithm efficiently, a heap based priority queue is used to maintain

the information of the faces and the candidate points. All the faces are stored in the priority

queue keyed on their sum of squared errorsεsum. During each iteration, we simply extract

the candidate point of the facefm with maximumεsum, cand( fm), from the top of the pri-

ority queue and insert it in to the DT. One problem, which is computationally expensive, is

the recalculation of the approximation errors after a candidate point is inserted in each iter-

ation. Once a candidate point is inserted, the structure of the triangulation will be changed,

consequently the approximation errors need to be recalculated. In fact, only a small number

of triangles in the triangulation are affected by the insertion of a candidate point. Therefore,

to solve this problem, we first find the set of triangles which are affected by the insertion of

the candidate point, and then only recalculate the errors inthose triangles.

3.3 A Mesh Model with Explicit Discontinuities

The basic mesh model used by the ED and GPI schemes (introduced earlier) is always as-

sociated with an approximating function that is continuous. Images, however, often contain

a significant number of discontinuities (i.e., image edges). This observation motivated us

to propose a new mesh model that explicitly represents discontinuities in images, known as
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theERD model (where ERD stands for “explicit representation of discontinuities”). Our

ERD model makes use of constrained Delaunay triangulations [42]. Consider an imageφ
defined at the pointsΛ = {0,1, . . . ,W−1}×{0,1, . . . ,H −1} (i.e., an image sampled on a

rectangular grid of widthW and heightH). Let Γ = [0,W−1]× [0,H −1]. A mesh model

for φ is completely characterized by:

1. a setP = {pi} of sample points, wherepi = (xi,yi) ∈ 1
2Z

2∩Γ;

2. a setE of constrained edges (i.e., a set of pairs of sample points from P); and

3. for each sample pointpi, one or more wedge values (where the termẅedge value”

will be defined precisely later).

The quantitiesP andE along with the associated wedge values are used to determinea

function φ̂ defined onΓ, whereφ̂ is an approximation ofφ. Note that, with our model, the

sample points inP are chosen on twice as fine a grid as the original image being represented

(i.e., Γ∩ 1
2Z

2 as opposed toΓ∩Z
2). This is done in order to allow for more accurate

representation of image edges. As we will see,φ̂ is chosen to interpolateφ at each point

in Z
2∩P. As a matter of terminology, we refer to the quantity|P|/ |Λ| as thesampling

density. In what follows, we explain hoŵφ is defined in terms ofP, E, and the wedge

values.

First, we construct a constrained DT ofP with the constrained edgesE, which serves

to partition the image domainΓ into triangle faces. The constrained edges are chosen

to correspond to image edges. For each vertexv ∈ P, the set of faces incident onv is

partitioned into what are called wedges. In particular, awedgeis a set of consecutive faces

in a loop around a vertexv that are not separated by any constrained edge. This definition is

illustrated in Figure 3.1. If the number of constrained edges incident on the vertexv is zero

or one, all faces incident onv form a single wedge, as shown in Figure 3.1(a). Otherwise, if

n constrained edges are incident onv (wheren≥ 2), the faces incident onv form n wedges,

as shown in Figure 3.1(b). Wedges are used to facilitate the modelling of discontinuities

(i.e., image edges). Since constrained edges are chosen to correspond to image edges, a

vertex v ∈ P that has more than one wedge must be located along a discontinuity (i.e.,

image edge). Each wedge of a vertex has associated with it what is called a wedge value.

The wedge valuez of the wedgew belonging to vertexv specifies the limit of̂φ(p) as p

approachesv from points inside the wedgew.

Now, we specify precisely how the functionφ̂ is defined at each pointp∈ Γ. There are

two cases to consider: 1)p is not on a constrained edge; 2)p is on a constrained edge.
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v

unconstrained edge
constrained edge
wedge

(a)

v

unconstrained edge
constrained edge
wedge

(b)

Figure 3.1: The relationship between vertices, constrained edges, and wedges. The
(a) single-wedge, and (b) multiple-wedge cases.

Case 1.First, let us consider the case thatp is not on a constrained edge. Letf denote

a face of the triangulation with verticespi = (xi ,yi), p j = (x j ,y j), and pk = (xk,yk) that

contains the pointp. Let zi, zj , andzk denote the wedge values for the facef correspond-

ing to the verticespi, p j , and pk, respectively. Then,̂φ(p) = g(p), where the functiong

is the unique planar interpolant that passes through the points (xi,yi,zi), (x j ,y j ,zj), and

(xk,yk,zk). The three possible situations whenp is not on a constrained edge are shown in

Figure 3.2.

p

a2

a1

a3

(a)

p

a2

a1

a3

a4

(b)

p

a2

a1

a3

a4

(c)

Figure 3.2: Three cases when the pointp is not on a constrained edge. (a)p is inside a
triangle, (b)p is on a edge that is not a constrained edge, and (c)p is a vertex of a triangle,
but not incident to a constrained edge.

Case 2.Next, let us consider the case thatp is on a constrained edge. Ifp is not an

endpoint of a constrained edge,φ̂(p) is the average of the values on the two sides of the

image discontinuity (computed as in case 1). On the other hand, if p is an endpoint of

a constrained edge (i.e., a vertex in the triangulation),φ̂(p) is the average of all wedge
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values for (the vertex)p. The two possible situations whenp is on a constrained edge are

illustrated in Figure 3.3.

p

a2

a1

a3

a4

(a)

p

a2

a1

a3

a4

(b)

Figure 3.3: Two cases when the pointp is on a constrained edge. (a)p is not an end point
of a constrained edge, and (b)p is an end point of a constrained edge.

From the mesh model̂φ, a lattice-sampled image can be reconstructed by straightfor-

ward rasterization algorithms. Due to the fact that our ERD model explicitly represents

discontinuities, image edges could produce undesirable aliasing effects if the samples of

the (discrete) image reconstruction were generated by simply evaluatingφ̂ at points inΛ.

Consequently, in the case of our ERD model, rasterization is performed using the well-

known 4×4 supersampling technique [55], as this approach avoids such aliasing effects.

3.4 Proposed Mesh-Generation Methods

Having introduced our ERD mesh model, we now propose two mesh-generation methods,

called ERDED and ERDGPI, to be used in conjunction with this model. For a given im-

ageφ sampled at the points of the rectangular gridΛ, each of these methods selects the

parameters of the model (i.e.,P, E, and wedge values) so as to obtain the best possible

approximation ofφ for a specified target numberN of sample points (i.e.,|P| = N). Since

the ERDED and ERDGPI methods fit into the same general algorithmic framework, we

first introduce this framework. Then, we give the specifics ofeach of these methods. The

algorithmic framework employed by both methods consists ofthe following steps:
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1. I NITIAL TRIANGULATION . Select initial values forP and E. This determines

the initial triangulation (i.e., the constrained Delaunaytriangulation ofP with edge

constraintsE). Let N0 = |P| (i.e.,N0 is the initial mesh size).

2. I NITIAL WEDGE VALUES . For each vertexv ∈ P, calculate the wedge value for

each wedge ofv.

3. POINT SELECTION . Select a new sample pointp∗ to add to the mesh.

4. POINT INSERTION . Insert the pointp∗ in the (constrained Delaunay) triangula-

tion. If p∗ is on a constrained edge, split the edge atp∗ into two constrained edges,

and compute the wedge value for each wedge of the vertexp∗. If p∗ is not on a

constrained edge, the wedges remain the same and no wedge values need to be re-

computed.

5. STOPPING CRITERION . If |P| < N, go to step 3 (i.e., add another sample point to

the mesh).

In the framework above, steps 1 and 2 choose an initial coarsemesh of sizeN0, and

steps 3 to 5 iteratively refine the mesh by addingN−N0 sample points to the mesh. The

initial coarse mesh selection (i.e., steps 1 and 2) is performed in an identical manner for

both the ERDED and ERDGPI methods. The two methods differ only in the approach used

to refine the mesh (i.e., steps 3 to 5). First, we describe in more detail steps 1 and 2, which

are identical for both the ERDED and ERDGPI methods.

3.4.1 Initial Coarse Mesh Selection

Recall that, with our ERD model, the sample pointsP are chosen as a subset ofΓ∩ 1
2Z

2.

That is, the grid on which the sample points lie is a grid with its spacing in the horizontal

and vertical directions each reduced by half relative to thegrid Λ on whichφ is originally

sampled. Since the original imageφ is sampled on aW by H grid, this implies that the

sample points (inP) are chosen to fall on a(2W−1) by (2H −1) grid. The relationship

between these two grids is illustrated in Figure 3.4 for the case of a 4× 4 image (i.e.,

W = H = 4). In what follows, let̄φ denote the function defined onΓ formed by the bilinear

interpolation [46] ofφ. By definition,φ̄ satisfies̄φ(p) = φ(p) for all p∈ Λ.

STEP 1. In step 1 of our framework, the selection of the initial triangulation consists

of four substeps, which are numbered 1.1 to 1.4 below. These substeps are described in
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Figure 3.4: Relationship between grids for a 4×4 image.

detail in the paragraphs that follow and are also illustrated by way of the example shown in

Figure 3.5.

1.1) LOCATE EDGES. First, we employ the (modified) Canny edge detector in [54] to

locate edges in the imageφ with half-pixel resolution. To accomplish this, we apply the

edge detector tōφ sampled on the rectangular gridΓ∩ 1
2Z

2 to produce a binary edge map

of dimensions(2W− 1)× (2H − 1). (An entry in the edge map is one if it corresponds

to an edge pixel, and zero otherwise.) Note that the grid on which φ̄ is sampled here is

twice as fine (in each dimension) as the gridΛ on which the original imageφ is sampled.

By applying the edge detector to this higher resolution version of the original image, we

can locate edges with half-pixel accuracy. The Canny edge detector works by computing

the gradient magnitude and direction and then using this information in conjunction with

hysteresis thresholding to select edge pixels. Two parameters must be specified as input to

the edge detector, namely, the low and high thresholds for hysteresis thresholding, denoted

herein asτlow andτhigh, respectively. In our method, these edge-detector thresholds are

controlled by the parametersβ andr. The quantityτhigh is chosen such that the fraction of

pixels (from φ̄) whose corresponding gradient magnitude is greater than orequal toτhigh

is β (i.e., the edge detector will nominally produce at leastβ
∣

∣Γ∩ 1
2Z

2
∣

∣ edge pixels). Then,

τlow is selected asτlow = rτhigh. To reduce the effects of noise, a smoothing operation

(i.e., lowpass filter) is included in the convolution kernelused for gradient calculation.

That is, the filter used to estimate each partial derivative is the composition of a first-order

derivative operator and smoothing operator, where the first-order derivative operator is a

filter with transfer function1
2z− 1

2z−1 and the smoothing operator is a fifth-order binomial

filter [44]. Since edges in the edge map can be more than one pixel wide, we apply the line

thinning algorithm from [53] to reduce the thickness of edges. The edge detection process

is illustrated in Figure 3.5. In particular, given the inputimage in Figure 3.5(a), edge
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detection would produce a binary image resembling that shown in Figure 3.5(b), where

edge pixels are shown in black.

1.2) CONSTRUCT POLYLINES FOR EDGES . Having generated the edge map, we next

construct a polyline representation of each edge in the edgemap. To accomplish this, 8-

connected edge pixels in the edge map are joined (by line segments) to form polylines. In

cases where a polyline has one or more self-intersections (excluding loops), the polyline

is split at each intersection point. In this way, the final setof polylines is guaranteed not

to have any self-intersections (excluding loops). This process is illustrated in Figure 3.5.

Given the edge map shown in Figure 3.5(b), we would produce a set of polylines like that

shown in Figure 3.5(c).

1.3) SIMPLIFY POLYLINES . After polylines have been constructed to represent image

edges, we need to simplify these polylines. In other words, for each polyline we find a

new polyline with fewer vertices (i.e., control points) that well approximates the original

polyline. To perform polyline simplification, we employ thewell knownDouglas-Peucker

(DP) [43] algorithm. For a given polyline, the DP scheme repeatedly (using a greedy

approach) adds points to a trivial two-point approximationof the polyline until the resulting

approximation error is less than a prespecified tolerance. In our method, each polyline is

simplified using the DP algorithm with toleranceε. Then, we discard any polylines with

fewer thanℓ vertices, whereℓ is a parameter of our method. Polylines with only a few

points are eliminated, as such polylines tend to be associated with false edges introduced

by noise and degrade mesh quality. This process is illustrated in Figure 3.5. Given the set

of polylines shown in Figure 3.5(c), we would produce a set ofsimplified polylines like

that shown in Figure 3.5(d).

1.4) SELECT P AND E FROM POLYLINES . Having obtained the set of simplified

polylines, we now use those polylines in order to selectP andE. Since the extreme convex-

hull points ofΛ (i.e., the four corner points of image bounding box) must be included in

P, these four points are always forced to be included inP. We chooseP as the union of all

of the polyline vertices and selectE as the set of line-segments from all of the polylines.

Then, we form the constrained Delaunay triangulation ofP with edge constraintsE. This

process is illustrated in Figure 3.5. Given the simplified polylines shown in Figure 3.5(d),

we would produce the triangulation shown in Figure 3.5(e), where constrained edges are

denoted by thick lines.

STEP 2. Having selected the initial triangulation, we now need to choose the wedge

values. In particular, for each wedgew of each vertexv ∈ P, we must select the corre-

sponding wedge valuez. The selection ofz is performed in one of two ways, depending
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Figure 3.5: Selection of the initial triangulation. (a) Original image. (b) Binary edge map.
(c) Unsimplified polylines representing image edges. (d) Simplified polylines representing
image edges. (e) Initial triangulation (with constrained edges denoted by thick lines).
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Table 3.1: Choice ofβ for the ERDED
method

Samp. Density
(%) β

[0.00,0.20) 0.0095
[0.20,0.35) 0.0095
[0.35,0.75) 0.0118
[0.75,1.20) 0.0280
[1.20,2.50) 0.0550
[2.50,3.50) 0.0830
[3.50,5.00) 0.0950

Table 3.2: Choice ofβ for the ERDGPI
method

Samp. Density
(%) β

[0.00,0.20) 0.0110
[0.20,0.35) 0.0115
[0.35,0.75) 0.0118
[0.75,1.20) 0.0280
[1.20,2.50) 0.0550
[2.50,3.50) 0.0830
[3.50,5.00) 0.0950

on the numbern of wedges associated with the vertexv. If n = 1, we simply choosez as

z= φ̄(v). Otherwise (i.e., ifn≥ 2), we proceed as follows. Letf denote the MMSODD of

φ (which is calculated according to equation (6) in [13]) and letd denote a unit vector in the

direction of the ray originating fromv and bisecting the wedgew. We selectzasz= φ̄(v′),

wherev′ = v+α∗d andα∗ = argmaxα∈[1,1.5] f (v+αd). In other words,v′ is chosen as the

result of a local line search that maximizes the MMSODD alongthe ray bisectingw. The

line search is restricted toα ∈ [1,1.5] in order to preventv′ from falling far outside of the

(triangle) face with whichw is associated. As a practical matter,f (as defined above) is

calculated with a fifth-order binomial filter for smoothing.

SELECTION OF β, r , ℓ, AND ε. As seen above, the selection of the initial triangula-

tion (in step 1 of our framework) requires the specification of the parametersβ, r, ℓ, and

ε. Rather than requiring these parameters be chosen manually,we propose an automated

scheme for their selection, which was developed based on extensive experimentation. In

our framework, we always chooser = 0.4. The remaining parametersβ, ℓ, andε are chosen

as described below. In what follows, letN andD denote the number of sample points (i.e.,

N = |P|) and the sampling density of the mesh model, respectively.

As a matter of terminology, we refer to an image assimple if it contains an abnormally

low amount of edges. How we selectβ, ℓ, andε depends on whether the image is simple.

First, we make a determination of whether the image is simple. To do this, we perform

step 1 of our framework with the fixed choices ofβ = 0.055, ℓ = 5, andε = 1. If this

results in an initial triangulation where the number of vertices that are endpoints of con-

strained edges is less than 0.001
∣

∣Γ∩ 1
2Z

2
∣

∣, the image is deemed to be simple; otherwise, it

is deemed not to be simple.

Next, we make an initial choice forβ, ℓ, andε. If the image is not simple, we proceed
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as follows. Setℓ = 5. If D > 0.01, setε = 1; otherwise, setε = 2. Finally, make the initial

choice ofβ based on the sampling density as given by Tables 3.1 and 3.2 for the ERDED

and ERDGPI methods, respectively. If the image is simple, we make the initial choice of

β, ℓ, andε asβ = 0.03,ℓ = 1, andε = 1.

Next, we iteratively updateβ, ℓ, andε. This is accomplished by the following steps:

1) Perform edge detection (i.e., step 1.1 which usesβ and r). 2) Perform polyline sim-

plification (i.e., steps 1.2 and 1.3 which usesε andℓ). If the number of sample points on

constrained edges is less than 0.35N, (i.e., too few sample points are obtained), setε = 1

and redo polyline simplification. 3) If the actual number of constrained sample points is

greater than 0.7N, setβ := 0.75β, setℓ := 2ℓ, and go to step 1 (i.e., the start of the loop).

4) Output the current values ofβ, r, ℓ, andε as the final selected values.

3.4.2 Mesh Refinement for the ERDED Method

As mentioned above, mesh refinement is performed differently in our ERDED and ERDGPI

methods. In particular, in step 3 of our framework, the strategy used to select the new point

p∗ to add to the mesh is different in these two cases. In what follows, we describe how

step 3 is performed in the ERDED case.

Let S denote the set of sample points to be added to the mesh. Since the initial mesh

has sizeN0, we require that|S| = N−N0. With the ERDED method,S is selected all at

once. So, if step 3 is being encountered for the first time,S is chosen (in its entirety) before

any other processing is performed. Then (withS having been initialized), we arbitrarily

assign a point fromS to p∗ and then letS:= S\{p∗}. As for howS is initially chosen, we

will describe this shortly. Theoretically, it is possible for one or more of the points inS to

fall on a constrained edge. To avoid unnecessarily complicating our ERDED method, we

discard any such points. Since it is extremely rare for this situation to arise, the impact on

the target sampling density is negligible.

The setS is chosen using the error-diffusion technique from the ED method [13] as

described earlier. In order to permit the error-diffusion technique to work more effectively

with our ERDED method, we made several modifications to this technique. First, the edge

sensitivity parameterγ was chosen asγ = 0.5 and the smoothing operator employed (for

MMSODD calculation) was selected as a fifth-order binomial filter. Second, the density

functiond used for error diffusion was modified. Instead of simply choosingd as the MM-

SODD,d was chosen such that it equals the MMSODD at points where the corresponding

edge map entry (obtained from edge location in step 1.1 of ourframework) is zero, and
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(a)

(b)

Figure 3.6: Mirroring the image. (a) original image and (b) image obtained after mirroring.

zero otherwise.

The third modification to the error diffusion scheme serves to eliminate an undesirable

startup effect. In particular, when the number of sample points to be chosen is sufficiently

low (i.e., at low sampling densities), error diffusion willoften result in an abnormally low

number of sample points being selected in the region of the image processed first (namely,

the top of the image). This abnormally low number of sample points leads to very high

distortion in this region, degrading overall performance.To eliminate this startup effect,

we extend the image to be processed by mirroring it about its first row so as to obtain an

image of twice the original height. That is, for the originalimage shown in Figure 3.6(a),

we extend it by mirroring and obtain the resulting image shown in Figure 3.6(b). Then, we
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Figure 3.7: Startup effect in error diffusion. Triangulation obtained (a) without mirroring
and (b) with mirroring.

apply error diffusion to extended image, discarding any sample points that are chosen in

the mirrored region. To demonstrate the benefit of this mirroring process, we provide an

example in Figure 3.7. In particular, Figures 3.7(a) and (b)show the triangulation obtained

without and with the use of mirroring. Observe that in the no-mirroring case, an abnormally

low number of sample points is selected in the first few rows (i.e., top) of the image, which

ultimately leads to higher approximation error. In contrast, the mirroring case does not

suffer from this problem.

3.4.3 Mesh Refinement for the ERDGPI Method

Now, we describe how step 3 of our proposed framework is performed in the ERDGPI

case. In the ERDGPI case, a new pointp∗ to add to the mesh is selected using the process

described in what follows. During mesh refinement (i.e., steps 3 to 5 of our framework), we

maintain the image approximation̂φ generated from the current mesh model. This image

approximation̂φ is generated from the mesh model parameters as specified in Section 3.3.

Each time a new point is added to the mesh, the image approximation φ̂ is updated to reflect

the change in the mesh. For a facef in the triangulation, let points( f ) denote all points in

Λ belonging tof . Using the current image approximationφ̂, we choosep∗ in two steps.
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Table 3.3: Test images
Image Size, Bits/Sample Description
bull 1024×768, 8 computer-generated bull [60]
ct 512×512, 12 CT scan of head [57]
glasses2 1024×768, 8 raytraced glasses [60]
lena 512×512, 8 woman [59]
mri 256×256, 11 MRI scan of head [57]
peppers 512×512, 8 collection of peppers [59]

First, we select the facef ∗ with the greatest squared error. That is,

f ∗ = argmax
f∈F

∑
p∈points( f )

(φ̂(p)−φ(p))2,

whereF is the set of all faces in the triangulation. Then, we select the pointp∗ in f ∗ with

the greatest absolute error. That is,

p∗ = argmax
p∈points( f ∗)

∣

∣φ̂(p)−φ(p)
∣

∣ .

3.5 Evaluation of Proposed Methods

Before proceeding further, a brief digression is in order concerning the test data used herein.

In our work, we employed 41 (grayscale) images that were taken mostly from standard test

sets, such as the JPEG-2000 test set [57], Kodak test set [58], and USC image database [59].

Herein, we focus our attention on the representative subsetof six images listed in Table 3.3,

which were deliberately chosen to include computer-generated, medical, and photographic

imagery.

ERROR DIFFUSION STARTUP IN ERDED METHOD . Earlier, in the context of our

ERDED method, we mentioned that error diffusion can often exhibit an undesirable startup

behavior and to combat this problem we introduced a mirroring scheme. Now, we present

some results to demonstrate the effectiveness of this mirroring scheme. For several test

images and sampling densities, we generated a mesh using ERDED with and without mir-

roring and measured the resulting approximation error in terms of peak signal-to-noise

ratio (PSNR). The results obtained are shown in Table 3.4, with the best result in each

case being highlighted inbold. Clearly, the mirroring scheme employed in our ERDED

method is highly effective, outperforming the approach without mirroring in 22/24 of the

test cases by a margin of up to 4.31 dB. It was due to this excellent performance of mirror-
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Table 3.4: Effectiveness of the strategy for mitigating thestartup effect in error diffusion
Samp.
Density PSNR (dB)

Image (%) No Mirroring Mirroring
bull 0.125 21.97 24.68

0.250 28.28 28.86
0.500 34.69 35.15
1.000 39.22 39.02

ct 0.125 15.83 15.63
0.250 24.09 25.97
0.500 25.75 30.06
1.000 35.55 36.51

glasses2 0.500 18.19 20.54
1.000 23.21 24.80
2.000 26.80 28.71
3.000 30.06 30.85

lena 0.500 20.19 20.56
1.000 24.65 25.82
2.000 28.09 29.28
3.000 30.64 31.31

mri 0.250 11.56 12.55
0.500 22.46 24.79
1.000 28.69 30.33
2.000 32.13 33.14

peppers 0.500 21.37 22.14
1.000 24.75 25.97
2.000 28.56 29.00
3.000 29.91 30.18

ing that we chose to include it in our ERDED method (as introduced earlier).

COMPARISON WITH ED AND GPI METHODS . Having introduced our proposed

ERDED and ERDGPI methods, we now compare their performance to that of two com-

peting methods, namely the ED and GPI schemes (described earlier). In terms of com-

putational complexity, the ERDED method is most comparable to the ED scheme, and

the ERDGPI method is most comparable to the GPI scheme. Therefore, we compare the

ERDED method to the ED scheme and the ERDGPI method to the GPI scheme. For the

images in our test set and several sampling densities, we used each of the ERDED, ED,

ERDGPI, and GPI methods to generate a mesh and then measured the resulting approx-

imation error in terms of PSNR. A representative subset of theresults obtained is shown

in Table 3.5 for the ERDED and ED methods and in Table 3.6 for theERDGPI and GPI
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Table 3.5: Comparison of the mesh quality
obtained with the ERDED and ED methods

Samp.
Density PSNR (dB)

Image (%) ERDED ED
bull 0.125 24.68 14.66

0.250 28.86 17.36
0.500 35.15 27.79
1.000 39.02 34.16

ct 0.125 15.63 12.99
0.250 25.97 13.23
0.500 30.06 17.47
1.000 36.51 20.82

glasses2 0.500 20.54 16.55
1.000 24.80 21.78
2.000 28.71 26.02
3.000 30.85 27.98

lena 0.500 20.56 17.60
1.000 25.82 22.45
2.000 29.28 26.90
3.000 31.31 28.54

mri 0.250 12.55 10.87
0.500 24.79 16.10
1.000 30.33 15.55
2.000 33.14 19.94

peppers 0.500 22.14 17.53
1.000 25.97 22.42
2.000 29.00 27.10
3.000 30.18 29.06

Table 3.6: Comparison of the mesh quality
obtained with the ERDGPI and GPI methods

Samp.
Density PSNR (dB)

Image (%) ERDGPI GPI
bull 0.125 35.47 30.56

0.250 38.33 35.30
0.500 40.16 38.72
1.000 41.39 40.95

ct 0.125 27.19 24.69
0.250 32.11 29.93
0.500 36.31 35.12
1.000 39.49 39.82

glasses2 0.500 24.94 23.65
1.000 28.56 27.01
2.000 32.11 31.00
3.000 33.86 33.53

lena 0.500 25.58 24.22
1.000 28.35 26.96
2.000 30.79 29.74
3.000 32.30 31.36

mri 0.250 27.14 26.34
0.500 29.55 29.07
1.000 33.01 32.14
2.000 35.21 35.08

peppers 0.500 25.99 24.66
1.000 28.40 27.49
2.000 30.42 29.99
3.000 31.50 31.19

methods. In these tables, the best result in each test case ishighlighted inbold.

ERDED versus ED.First, we compare the ERDED and ED methods. From the results

of Table 3.5, we can see that the ERDED method outperforms the ED scheme in 24/24

of the test cases, by a margin of 1.12 to 15.69 dB (with a medianof 3.77 dB). Subjective

image quality was found to correlate reasonably well with PSNR. As examples to illus-

trate subjective quality, the image approximations for twoof the test cases from Table 3.5

are shown in Figure 3.8 and Figure 3.9, respectively. The corresponding image-domain

triangulations are also shown, with constrained edges (in the ERDED case) denoted by

thick lines. Clearly, our ERDED method produces vastly superior image approximations

(relative to the ED scheme), preserving image edges much more faithfully.
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ERDGPI versus GPI.Now, we compare the ERDGPI and GPI methods. From the re-

sults of Table 3.6, we can see that the ERDGPI method outperforms the GPI scheme in

23/24 of the test cases, by margin of up to 4.91 dB (with a median of 1.08 dB). Again, sub-

jective quality was found to correlate well with PSNR. As examples to illustrate subjective

quality, the image approximations for two of the test cases from Table 3.6 are shown in

Figure 3.10 and Figure 3.11, respectively. The corresponding image-domain triangulations

are also shown, with constrained edges (in the ERDGPI case) denoted by thick lines. A

close inspection of the two image approximations shows thatthe ERDGPI method more

faithfully reproduces image edges and generally has less significant distortion, relative to

the GPI scheme. With the ERDGPI method, the constrained edgesin the triangulation align

well with image edges, allowing for better image-edge reproduction.

Computational complexity.For the images in our test set and sampling densities in

the range 0.5% to 3%, we used each of the ERDED, ED, ERDGPI, and GPI methods to

generate a mesh and then measured the computational complexity of each method in terms

of execution time. A representative subset of the results obtained is shown in Table 3.7.

These execution times were obtained on relatively modest hardware (namely, a three-year

old notebook computer with a 2.0 GHz Intel Core2 Duo CPU and 1 GB of RAM) with an

implementation of our methods that was not optimized for execution time. We note that

our ERDED and ERDGPI schemes are both quite modest in terms of their computational

requirements compared to the ED and GPI methods. From Table 3.7, we can see that for

the images in our test set and sampling densities in the range0.5% to 3%, the ERDED, ED,

ERDGPI, and GPI methods have average execution times of approximately 3.1234 seconds,

0.1293 seconds, 5.0134 seconds, and 1.2468 seconds, respectively. From the results, we

notice that, although our proposed ERDED and ERDGPI methods are slower than the ED

and the GPI schemes, they are still fairly fast. The differences (in absolute terms) between

the execution times of all the four methods are not large. Since our proposed ERDED

can produce much better results than the ED method, and the ERDGPI methods can also

generate much better image approximations than the GPI method, such small differences

in execution times can be neglected due to the large improvement in the quality of the

resulting image approximations. Further more, since the implementations of our proposed

ERDED and ERDGPI methods are not optimized, we can optimize theimplementations of

our ERDED and ERDGPI methods to reduce the execution times.

COMPARISON WITH GVS METHOD . As an additional point of reference, we com-

pare our ERDED and ERDGPI methods to theGarcia-Vintimilla-Sappa (GVS) scheme
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(a) (b)

(c) (d)

Figure 3.8: Comparison of the ERDED and ED methods. Part of the image approxima-
tion obtained for thebull image at a sampling density of 0.125% with the (a) ERDED
(24.68 dB) and (b) ED (14.66 dB) methods, and (c) and (d) their corresponding triangula-
tions.
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(a) (b)

(c) (d)

Figure 3.9: Comparison of the ERDED and ED methods. Part of the image approxima-
tion obtained for thepeppers image at a sampling density of 0.125% with the (a) ERDED
(25.97 dB) and (b) ED (22.42 dB) methods, and (c) and (d) their corresponding triangula-
tions.
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(a) (b)

(c) (d)

Figure 3.10: Comparison of the ERDGPI and GPI methods. Part of the image approxima-
tion obtained for thebull image at a sampling density of 0.125% with the (a) ERDGPI
(35.47 dB) (b) GPI (30.56 dB) methods, and (c) and (d) their corresponding image-domain
triangulations.
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(a) (b)

(c) (d)

Figure 3.11: Comparison of the ERDGPI and GPI methods. Part of the image approxi-
mation obtained for thepeppers image at a sampling density of 1% with the (a) ERDGPI
(28.40 dB) (b) GPI (27.49 dB) methods, and (c) and (d) their corresponding image-domain
triangulations.
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Table 3.7: Comparison of the computational complexity of theERDED, ED, ERDGPI, and
GPI methods

Samp.
Density Time (s)

Image (%) ERDED ED ERDGPI GPI
lena 0.5 1.9777 0.0587 2.7205 0.5528

1.0 2.0850 0.0665 2.7773 0.6498
2.0 2.0639 0.0694 3.0731 0.8632
3.0 2.2055 0.0773 3.2111 0.9745

peppers 0.5 2.0551 0.0587 2.5124 0.4578
1.0 2.1145 0.0653 2.8348 0.5612
2.0 2.1054 0.0700 3.1626 0.7954
3.0 2.1858 0.0809 3.2087 0.8787

glasses 0.5 6.1296 0.1758 8.4193 1.9404
1.0 6.4190 0.1845 9.0583 2.2983
2.0 6.6875 0.2346 10.444 2.8436
3.0 6.6337 0.3000 10.714 3.5033

mri 0.5 0.4666 0.0143 0.5664 0.0996
1.0 0.4912 0.0185 0.6816 0.1233
2.0 0.5024 0.0168 0.7521 0.1681
3.0 0.5141 0.0182 0.8227 0.1920

ct 0.5 1.9978 0.0621 2.4622 0.4809
1.0 1.9759 0.0640 2.7363 0.5699
2.0 2.0957 0.0719 3.2155 0.7663
3.0 2.1037 0.0779 3.5545 0.8995

bull 0.5 5.9541 0.1787 10.379 1.8231
1.0 6.0737 0.1979 10.889 2.2144
2.0 6.2095 0.5043 10.529 2.7384
3.0 6.0999 0.5805 11.597 3.5295
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Table 3.8: Comparison of the mesh quality obtained with the ERDED, ERDGPI, and GVS
methods

PSNR (dB)
Image Mesh Size ERDED ERDGPI GVS
house 1649 29.52 31.52 27.62
lena 7492 29.69 31.76 28.30
peppers 7224 28.82 31.12 26.48

from [12], which is based on constrained Delaunay triangulations. In [12], some mesh-

generation results are provided for three standard test images (from the USC image database),

namely, thehouse, lena, andpeppers images. Using our ERDED and ERDGPI methods,

we generated meshes to match the sizes of the meshes producedin [12] and then mea-

sured the resulting approximation error in terms of PSNR. Ourresults along with the ones

from [12] are given in Table 3.8 for comparison. Examining the results of this table, we

can see that our ERDED and ERDGPI methods each outperform the GVS scheme in every

case by a margin of 1.39 to 2.34 dB and 3.46 to 4.64 dB, respectively. Clearly, our ERDED

and ERDGPI methods are both superior to the GVS scheme.

COMPARISON WITH THE RESULTS OBTAINED WITH CHOOSING PARAMETE RS

MANUALLY . As we mentioned earlier, the parametersβ, r, ℓ, andε in the ERDED and

ERDGPI methods are chosen by the automated scheme proposed inSection 3.4.1. Al-

though the automated scheme chooses the parameters intelligently, the results obtained can

still be improved by manually choosing a better set of parameters. To demonstrate this, for

the images in our test set and several sampling densities, weused each of the ERDED and

ERDGPI methods with the set of parameters carefully chosen manually to generate meshes,

measured the quality of the results in terms of PSNR, and then compared with the results

obtained by choosing the parameters automatically. A representative subset of the results

obtained is shown in Table 3.9 for ERDED method and Table 3.10 for ERDGPI method. We

can see that, with the parameters chosen manually, both the ERDED and ERDGPI meth-

ods outperforms the proposed methods with an automated parameter-choosing scheme in

all 24/24 of the test cases by margin of up to 2.64 dB (with an average of 0.55 dB) and

0.41 dB (with an average of 0.22 dB), respectively.

Although we can obtain better results by manually choosing the set of parameters, the

process of parameters selection is fairly tedious and time-consuming. We need to try many

times before we can obtain a better set of parameters than that is chosen automatically.

Also, for those people who are not familiar with the parameters, it is not easy to choose

the parameters. Therefore, although the proposed automated parameter selection scheme
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Table 3.9: Comparison of the mesh quality
obtained with the ERDED method

Samp.
Density PSNR (dB)

Image (%) Auto Manual
bull 0.125 24.68 25.65

0.250 28.86 30.61
0.500 35.15 35.52
1.000 39.02 39.16

ct 0.125 15.63 17.29
0.250 25.97 26.02
0.500 30.06 30.53
1.000 36.51 36.85

glasses2 0.500 20.54 20.96
1.000 24.80 25.17
2.000 28.71 28.97
3.000 30.85 30.89

lena 0.500 20.56 23.20
1.000 25.82 26.56
2.000 29.28 29.48
3.000 31.31 31.35

mri 0.250 12.55 13.06
0.500 24.79 25.17
1.000 30.33 30.75
2.000 33.14 33.51

peppers 0.500 22.14 22.58
1.000 25.97 26.43
2.000 29.00 29.10
3.000 30.18 30.25

Table 3.10: Comparison of the mesh quality
obtained with the ERDGPI method

Samp.
Density PSNR (dB)

Image (%) Auto Manual
bull 0.125 35.47 35.85

0.250 38.33 38.41
0.500 40.16 40.23
1.000 41.39 41.43

ct 0.125 27.19 27.25
0.250 32.11 32.51
0.500 36.31 36.62
1.000 39.49 39.61

glasses2 0.500 24.94 25.34
1.000 28.56 28.97
2.000 32.11 32.21
3.000 33.86 33.94

lena 0.500 25.58 25.96
1.000 28.35 28.73
2.000 30.79 30.98
3.000 32.30 32.39

mri 0.250 27.14 27.34
0.500 29.55 29.95
1.000 33.01 33.24
2.000 35.21 35.60

peppers 0.500 25.99 26.12
1.000 28.40 28.55
2.000 30.42 30.55
3.000 31.50 31.55

usually yields somewhat poorer results than manual selection, it is vastly superior to manual

selection in a practical sense (i.e., in terms of usability).
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Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we studied geometric image representationsbased on triangle meshes. In

particular, we proposed a new mesh model that explicitly represents image discontinuities

along with two mesh-generation methods that select the model parameters for a given input

image. The main contributions of the thesis are summarized in what follows.

As mentioned earlier, the discontinuity (i.e., image edge)is an important feature of

an image that is easily captured by human eyes. Many of the previously-proposed mesh

models do not explicitly take image discontinuities into consideration. In our work, we pro-

posed a new mesh model that explicitly represents image discontinuities. This mesh model

is based on constrained DTs, where the constrained edges correspond to image edges.

Having introduced this mesh model, we then proposed two approaches that select the

model parameters for a given input image. One of the proposedmethods is named ERDED,

which employs the ED scheme to select sample points that are not on the constrained edges.

The other method is called ERDGPI, where the GPI method is employed to select a subset

of the sample points.

The proposed methods have several parameters that affect the quality of the image

approximation obtained. The selection of these parameterswas analyzed, including the

selection of contrast parameterγ of ED scheme,β and r in hysteresis thresholding, and

the toleranceε in the Douglas-Peucker polyline simplification algorithm.Furthermore, we

proposed an automated parameters selection scheme that chooses these parameters intelli-

gently.

Through experimental results, we evaluated the performance of our proposed ERDED
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and ERDGPI methods in terms of both PSNR and subjective image quality. By comparison,

we found that the image approximations produced by our proposed ERDED method are

often about 3.77 dB higher in PSNR than those produced by the ED scheme, and our

proposed ERDGPI method can generate reconstructed images ofabout 1.08 dB higher

PSNR than those produced by the GPI scheme.

4.2 Future Research

In this thesis, we first presented a mesh model that explicitly represents image discontinu-

ities, and then proposed two mesh-generation methods that select the model parameters for

a given input image. Although our proposed mesh-generationmethods work fairly well,

additional work to further refine these methods could be beneficial and may lead to higher

quality meshes.

As discussed earlier, edge detection is a key step in our method to find the constrained

edges for a constrained DT, and the accuracy and consistencyof the edges obtained are

extremely important. In our methods, the modified Canny edge detector is employed for

the sake of the consistency of the edges, and the edges are detected in half-pixel resolution

to improve the accuracy. As future work one might try to find a way to further improve the

accuracy and the consistency of the edges. For example, since many edge detection meth-

ods have been proposed to date, a better edge detector which focuses on the consistency of

the edges might be beneficial. Furthermore, we can also applythe edge detector to an even

higher resolution version of the input image to enhance the accuracy of the detected edges.

In the hysteresis thresholding employed by the edge detector in our work, two parame-

ters need to be specified, namelyβ andr. These parameters greatly affect the quality of the

image approximations that are obtained. It is not easy, however, to choose good values for

these parameters, since the best values are dependent on thesampling density. Although

in our work, we propose an automated parameters selection scheme, based on numerous of

experiments, this scheme could probably be improved. Finding better means for selecting

these hysteresis thresholding parameters would be anotherarea for future work.

In the mesh model presented in our work, the wedge is an important feature, which

facilitates the modelling of image discontinuities. Therefore, the way in which the wedge

value is chosen for wedges is very important. In our work, we presented a wedge value

selection method that is based on the MMSODD of the image. Onedefect, however, of

proposed wedge selection method is that the second-order derivatives are very sensitive

to noise. Although a binomial filter is employed to smooth theimage before calculating
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the MMSODD, this blurs the image, which degrades the resulting image approximations

obtained with the method. Therefore, the development of wedge value selection scheme

that does not have this weakness might be beneficial.
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Appendix A

Software

A.1 Overview

During the course of his research, the author of this thesis developed software implemen-

tations of several methods described herein. This softwarewas written in C++, involves

some fairly complicated algorithms and data structures, and consists of more than 14,000

lines of code. The software implements four mesh-generation methods, the ED scheme,

the GPI scheme, the proposed ERDED method, and the proposed ERDGPI method. With

a given input image and several appropriate parameters, thesoftware can produce a mesh

model of the original image with a prespecified mesh-generation method, reconstruct an

image approximation from the mesh model, and calculate the approximation error in terms

of PSNR. The software utilizes the classes provided by the CGALlibrary for 2-D triangu-

lations, and 2-D constrained Delaunay triangulations. Theinput image is restricted to be in

the plain PNM format, which can be easily converted from other image formats.

A.2 Extracting the Software

The software is distributed in the form of a Zip file. Therefore, in order to extract the

contents of this file, a program capable of handling Zip archives is required. Such software

is readily available for many different computing platforms, and can be obtained from:

• Info-Zip Web Site (i.e.,http://www.info-zip.org). Unzip software for many

different computing platforms (e.g., UNIX, DOS, MacOS, etc.).

• WinZip Web Site (i.e.,http://www.winzip.com). Zip/Unzip software for Mi-

http://www.info-zip.org
http://www.winzip.com
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crosoft Windows.

A.3 Building the Software

Building software refers to the process of converting sourcecode files into into an exe-

cutable program. The software is intended to be built using the standard UNIX make utility,

a utility that automatically builds executable programs and libraries from source code by

reading files called makefiles which specify how to derive thetarget program. The Make

utility needs to compile and link the various files, in the correct order. If the source code in

a particular file has not changed then it may not need to be recompiled. A C++ compiler

is also needed to build the software. If you need a C++ compiler, you can obtain the GNU

Compiler Collection (GCC) from the GNU Project web site (i.e., http://www.gnu.org). If

you need an implementation of the make utility, you can also obtain GNU Make from the

GNU Project web site. All GNU software is free software.

A.3.1 Building Process

In what follows,$TOPDIR denotes the top level directory of the software distribution. To

build the software, the following steps are required (in order):

1. Extract the contents of the archive file containing the software distribution to$TOPDIR.

2. Set the current working directory to the top level directory of the software distribu-

tion.

To set the current working directory as required, type:

cd $TOPDIR

(where$TOPDIR is defined as described above).

3. Compile and link the software.

This is accomplished via themake command. To run the make program, type:

make

4. Install the software.
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This step may require special (e.g., superuser/administrator) privileges depending on

the target directory for installation. (The default installation directories are normally

under$TOPDIR/bin.) To install the executables, type:

make install

Presuming that the build was successful, the executables for the software programs can be

found in the directory$TOPDIR/bin.

A.3.2 Dependencies on Other Software

In order to have access to the full functionality of the software, you may need to install

some additional libraries on your system. Since the software utilizes many data structures

and algorithms provided by CGAL library, to build the software, CGAL must be installed.

You can download and install the free CGAL library which is available from the CGAL

web site (i.e.,http://www.cgal.org).

A.4 Image Models Used in the Software

Two image models are utilized in the software. The first imagemodel is the basic model

described in Chapter 2, which is based on the DT, and can be uniquely characterized by a set

of sample points together with the associated sample values. The basic model is generated

by the ED and GPI methods. The second image model is the ERD model introduced in

Section 3.3, which can be generated by our proposed ERDED and ERDGPI methods. In

our software, the simple model is represented by a file of extension.model, and the ERD

model is represented by a file of extension.erd. The.model(i.e., the basic model) and

.erd(i.e., the ERD model) formats used in our software are described in detail in what

follows.

A.4.1 The format of the basic model.

For the basic model, the file format typically uses the ”.model” file name extension. The

format consists of a maximum intensity value(i.e., a number), followed by vertex and face

data.

The vertex data consists of the following information (in order): 1) The number of

vertices in the mesh, 2) the information of each vertex in themesh, followed by a newline

http://www.cgal.org
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A(0,0),127

C(0,99),64 D(99,99),0

B(99,0),64

(a)

A(0,0),127

D(99,99),0C(0,99)

B(99,0)

73

54

54

73

(b)

Figure A.1: Example of (a) the basic model and (b) the ERD model.

character. In particular, for each vertex in the mesh, the following information is given: the

x, y coordinates of the vertex and the value of the approximatingfunction at the point(x,y)

(in that order) separated by whitespace and followed by a newline character.

The above vertex data is then followed by face data. The face data consists of the

following information (in order): 1) the number of faces in the mesh, 2) the information of

each face in the mesh, followed by a newline character. In particular, for each face in the

mesh, the following information is provided separated by whitespace: a) for each vertex in

the face (in CCW order), the index of the vertex, b) a newline character. Note that vertices

are indexed starting from zero.

An example of a file for a mesh model with two faces and, four vertices(i.e.,A(0,0),

B(0,99), C(99,0), andD(99,99) along with the corresponding intensity values) named

simple.model is shown below. The image-domain mesh ofsimple.model is illustrated

in Figure A.1(a).

simple.model

255

4

0 0 127

0 99 64

99 0 64

99 99 0
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2

0 1 2

1 2 3

A.4.2 The format of the ERD model.

For the ERD model, the file format typically uses the ”.erd” file name extension. The

.erd format is similar to the.model format. The.erd format consists of a maximum

intensity value, followed by vertex, face and wedge data.

The vertex data consists of the following information (in order): 1) The number of

vertices in the mesh. 2) the information of each vertex in themesh, followed by a newline

character. In particular, for each vertex in the mesh, the following information is given: the

x, y coordinates of the vertex and the value of the approximatingfunction at the point(x,y)

(in that order) separated by whitespace and followed by a newline character. For any vertex

that has more than one wedge, the vertex’s function value is ignored since the value should

be the average values of all the wedges around the vertex.

The above vertex data is then followed by face data. The face data consists of the

following information (in order): 1) the number of faces in the mesh, 2) the information of

each face in the mesh, followed by a newline character. In particular, for each face in the

mesh, the following information is provided separated by whitespace: a) for each vertex in

the face (in CCW order), the index of the vertex, b) a newline character. Note that vertices

are indexed starting from zero.

The above face data is finally followed by wedge data (only thevertices have more

than one wedges are presented). In particular, for each wedge in the mesh, the following

information is provided separated by whitespace: 1) The index of the vertex of the wedge,

2) The index of a face that belongs to the wedge, 3) The wedge value, 4) a newline character.

Note that faces are indexed starting from zero.

An example of a file for a mesh model with two faces, four vertices(i.e.,A(0,0),

B(0,99), C(99,0), andD(99,99) along with the corresponding intensity values) and four

wedge values namedsimple.erd is shown below. The image-domain mesh ofsimple.erd

is illustrated in Figure A.1(b), where a constrained edge isrepresented by a thick line. Note

that the vertices in the ERD model fall on a grid with half-pixel resolution. That is, a vertex

vl = (xl ,yl ) must be such thatvl ∈ 1
2Z

2 T

[0,W−1]× [0,H −1]. In the data file, however,

vertex coordinates are scaled so that the coordinate valuesspecified in the file are always
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integer value. In particular, for a vertex with coordinates(xl ,yl ), the values stored in the

data file correspond to the point with the coordinates(2xl ,2yl ), which will always be a

point with integer coordinates.

simple.erd

255

4

0 0 127

0 99 64

99 0 64

99 99 0

2

0 1 2

1 2 3

4

1 0 73

1 1 54

2 0 73

2 1 54

A.5 Application Programs

The software can accomplish three tasks, that are producinga mesh model for a given input

image, reconstructing an image approximation from the meshmodel, and evaluating the

reconstructed image approximation in terms of PSNR. Therefore, the software is divided

into three parts, and each part accomplishes a certain functionality described above. The

detail of each part is described as below.

A.5.1 Producing the Mesh Model

Besides our proposed ERDED and ERDGPI methods, two other schemes, namely the ED

scheme and GPI scheme, are also implemented for the purpose of comparison. This soft-
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ware contains four commands,ywb, gpi, erd_ed, anderd_gpi, respectively. These com-

mands can produce the mesh models described earlier, with a given input image and some

appropriate parameters. The details of the four commands are described as follows.

The ywb Command

Synopsis

ywb [options]

Description

The ywb command is an implementation of the ED scheme introduced in Section 3.2.1.

With an input image, and a desired numberK of sample points or a desired sampling

densityd, theywb command uses the ED scheme to generate a basic model (.model file)

of the given input image.

Options

The ywb command accepts the following options:

-i $inputFile

Read the input image from the file named$inputFile in the format of plain pnm.

-d $sampleDensity

Set the sampling density to$sampleDensity(%). The default value is 3(%).

-n $num

Set the number of sampling points to$num. The default value is 7864. If$sampleDensity

is set,$num is ignored.

-o $outputFile

Output the image model to the file named$outputFile in the format of.model.

-t $triangulationFile

Output the triangulation data to the file named$triangulationFile in the triangu-

lation format used by iviewer software.
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-p $polylineFile

Output the polyline data to the file named$polylineFile in the polyline set format

used by iviewer software.

-i $exitMode

1) If $exitMode= 0, then the program will print an error message to standard er-

ror and then exit with an exit status of 3 (by calling “exit(3)”) if the sampling den-

sity cannot be satisfied exactly; the error message should beof the form (all on one

line) “ERROR: target sampling density not achieved exactly (requested XXX but got

YYY)”.

2) If $exitMode = 1, then the program will still complete normally if the sampling

density cannot be satisfied exactly, but the program should print a warning message

of the form “WARNING: target sampling density not achieved exactly (requested

XXX but got YYY)” to standard error.

3) If $exitMode= 2, then the program will still complete normally if the sampling

density cannot be satisfied exactly and no warning message isissued.

The default value of$exitMode is 0.

Examples

For example, a basic modellena.model of thelena.pnm image at a sampling density of

3% is produced by running the following command:

ywb -i lena.pnm -d 3 -o lena.model

The gpi Command

Synopsis

gpi [options]

Description

The gpi command is an implementation of the GPI scheme introduced inSection 3.2.2.

With an input image, and a desired numberK of sampling points or a desired sampling

densityd, thegpi command uses the GPI scheme to generate a basic model of the given

input image.
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Options

Thegpi command accepts the following options:

-i $inputFile

Read the input image from the file named$inputFile in the format of plain pnm.

-d $sampleDensity

Set the sampling density to$sampleDensity(%). The default value is 3(%).

-n $num

Set the number of sampling points to$num. The default value is 7864

-o $outputFile

Output the image model to the file named$outputFile in the format of.model.

-t $triangulationFile

Output the triangulation data to the file named$triangulationFile in the triangu-

lation format used by iviewer software.

-p $polylineFile

Output the polyline data to the file named$polylineFile in the polyline set format

used by iviewer software.

-x $exitMode

1) if $exitMode = 0, then the program will print an error message to standard er-

ror and then exit with an exit status of 3 (by calling “exit(3)”) if the sampling den-

sity cannot be satisfied exactly; the error message should beof the form (all on one

line) “ERROR: target sampling density not achieved exactly (requested XXX but got

YYY)”.

2) if $exitMode = 1, then the program will still complete normally if the sampling

density cannot be satisfied exactly, but the program should print a warning message

of the form “WARNING: target sampling density not achieved exactly (requested

XXX but got YYY)” to standard error.

3) if $exitMode = 2, then the program will still complete normally if the sampling

density cannot be satisfied exactly and no warning message isissued.

The default value of$exitMode is 0.



74

Examples

After running the example shown below, a basic modellena.model of thelena.pnm im-

age at a sampling density of 1% is produced.

gpi -i peppers.pnm -d 1 -o peppers.model

The erd_ed command

Synopsis

erd_ed [options]

Description

The erd_ed command is an implementation of our proposed ERDED method. With an

input image, a desired numberK of sampling points or a desired sampling densityd, and

some appropriate parameters, theerd_ed command uses the ERDED method to generate

an ERD model of the given input image.

Options

Theerd_ed program accepts the following options:

-i $inputFile

Read the input image from the file named$inputFile in the format of plain pnm.

-d $sampleDensity

Set the sampling density to$sampleDensity(%). The default value is 3(%).

-n $num

Set the number of sampling points to$num. The default value is 7864. If the param-

eter$sampleDensity is set,$num is ignored.

-o $outputFile

Output the image model to the file named$outputFile in the format of.erd.

-t $triangulationFile

Output the triangulation data to the file named$triangulationFile in the triangu-

lation format used by iviewer software.
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-p $polylineFile

Output the polyline data to the file named$polylineFile in the polyline set format

used by iviewer software.

-l $minLength

Set the minimum length of the polylines to be kept to$minLength. Any polyline

generated with fewer points than$minLength is discarded. The default value of

$minLength is 5.

-b $beta

Set the proportion parameterβ used in hysteresis thresholding of edge detection to

$beta. The default value of$beta is 0.095.

-r $ratio

Set the ratio parameterr used in hysteresis thresholding of edge detection to$ratio.

The default value of$ratio is 0.4.

-e $tolerance

Set the toleranceε applied in DP polyline simplification algorithm to$tolerance.

The default value of$tolerance is 1.

-f $controlFlag

Set the flag used in choosing the point selection method to$controlFlag. If the

value of$controlFlag is 1, the program uses ED scheme to select sample points;

otherwise, random selection method is applied. The defaultvalue of$controlFlag

is 1.

-w $dFlag

Set the flag used in choosing the wedge value selection schemeto $dFlag. If the

value of$dFlag is 1, the program uses MMSODD method to select wedge value;

otherwise, fixed distance method is applied. The default value of$dFlag is 1.

-s $ksize

Set the size of the binomial filter used in MMSODD method of wedge value selection

to $ksize. The default value of$ksize is 5.
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-x $exitMode

1) if $exitMode= 0, then the program will print an error message to standard er-

ror and then exit with an exit status of 3 (by calling “exit(3)”) if the sampling den-

sity cannot be satisfied exactly; the error message should beof the form (all on one

line) “ERROR: target sampling density not achieved exactly (requested XXX but got

YYY)”.

2) if $exitMode= 1, then the program will still complete normally if the sampling

density cannot be satisfied exactly, but the program should print a warning message

of the form “WARNING: target sampling density not achieved exactly (requested

XXX but got YYY)” to the standard error.

3) if $exitMode= 2, then the program will still complete normally if the sampling

density cannot be satisfied exactly and no warning message isissued.

The default value for$exitMode is 0.

-B $startUp

1) if $startUp= 0, then the mirroring method will be applied to solve the start-up

effect;

2) if $startUp= 1, then the forcing method will be applied to solve the start-up

effect;

3) if $startUp= 2, then nothing will be done about the start-up effect.

The default value for$startUp is 0, that is, using the mirroring method to solve the

start-up problem.

-S $isSimple

If $isSimple= 0, set the type of the input image to simple; otherwise, set the type

of the input image to nonsimple. The default value for$isSimple is determined by

the software automatically based on the content of the inputimage.

Examples

Suppose we want to generate an ERD model of thelena image at a sampling density of 4%

with a particular manually chosen set of parameters using our proposed ERDED method,

we can run theerd_ed command as follows:

erd_ed -i lena.pnm -d 4 -l 3 -b 0.17 -r 0.4 -o lena.erd
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The erd_gpi command

Synopsis

erd_gpi [options]

Description

Theerd_gpi command is an implementation of our proposed ERDGPI method. Given an

input image, and a desired numberK of sampling points or a desired sampling densityd,

theerd_gpi command uses the ERDGPI method to generate an ERD model of the input

image.

Options

Theerd_gpi program accepts the following options:

-i $inputFile

Read the input image from the file named$inputFile in the format of plain pnm.

-d $sampleDensity

Set the sampling density to$sampleDensity(%). The default value is 3(%).

-n $num

Set the number of sampling points to$num. The default value is 7864. If the

parameter$sampleDensity is set,$num will be ignored.

-o $outputFile

Output the image model to the file named$outputFile in the format of.erd.

-t $triangulationFile

Output the triangulation data to the file named$triangulationFile in the triangu-

lation format used by iviewer software.

-p $polylineFile

Output the polyline data to the file named$polylineFile in the polyline set format

used by iviewer software.
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-l $minLength

Set the minimum length of the polylines to be kept to$minLength. Any polyline

generated with fewer points than$minLength is discarded. The default value of

$minLength is 5.

-b $beta

Set the proportion parameterβ used in hysteresis thresholding of edge detection to

$beta. The default value of$beta is 0.095.

-r $ratio

Set the ratio parameterr used in hysteresis thresholding of edge detection to$ratio.

The default value of$ratio is 0.4

-e $tolerance

Set the toleranceε applied in DP polyline simplification algorithm to$tolerance.

The default value of$tolerance is 1.

-w $dFlag

Set the flag used in choosing the wedge value selection schemeto$dFlag. If $dFlag=

1, the program uses the MMSODD method to select the wedge values; otherwise, the

fixed distance method is applied. The default value of$dFlag is 1.

-s $ksize

Set the size of the binomial filter used in MMSODD method in wedge value selection

to $ksize. The default value of$ksize is 5.

-x $exitMode

1) If $exitMode= 0, then the program will print an error message to standard er-

ror and then exit with an exit status of 3 (by calling “exit(3)”) if the sampling den-

sity cannot be satisfied exactly; the error message should beof the form (all on one

line) “ERROR: target sampling density not achieved exactly (requested XXX but got

YYY)”.

2) If $exitMode= 1, then the program will still complete normally if the sampling

density cannot be satisfied exactly, but the program should print a warning message

of the form “WARNING: target sampling density not achieved exactly (requested

XXX but got YYY)” to standard error.
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3) If $exitMode= 2, then the program will still complete normally if the sampling

density cannot be satisfied exactly and no warning message isissued.

The default value of$exitMode is 0.

-S $isSimple

If $isSimple= 0, set the type of input image to simple; otherwise, set the type of

input image to non-simple. The default value of$isSimple is determined by the

software automatically based on the content of the input image.

Examples

Suppose we want to generate an ERD model of thelena image at a sampling density of 3%

with a manually chosen set of parameters using our proposed ERDGPI method, we could

run theerd_ed command as follows:

erd_gpi -i lena.pnm -d 3 -l 5 -e 1 -b 0.4 -o lena.erd

A.5.2 Image reconstruction

In order to reconstruct an image approximation from the meshmodel, triangle scan con-

version is applied to scan convert each triangle in the meshes, interpolating the value of the

points inside the triangles. Since there are two kinds of mesh models in our software, two

commands, namely theimgsyn andimgsyn_aa, are used to reconstruct images from these

two mesh models.

The imgsyn command

Synopsis

imgsyn

Description

Theimgsyn command reads the basic model of an image (.model format) from the stan-

dard input and writes the reconstruct image in the format of plain pnm to the standard

output.
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Example

An image approximation is reconstructed from the simple model lena.model by running

the following command:

imgsyn < lena.model > lena_reconstructed_model.pnm

The imgsyn_aa command

Synopsis

imgsyn_aa

Description

Theimgsyn_aa utilizes 4×4 super-sampling to reconstruct an image approximation from

the ERD model(.erd format). The command reads ERD model from the standard input in

.erd format and writes the reconstructed image approximation inplain pnm format to the

standard output.

Example

To reconstruct an anti-aliased image approximation from the ERD modellena.erd, we

run the commands as follows:

imgsyn_aa < lena.erd > lena_reconstructed_erd.pnm

A.5.3 Quality evaluation

To evaluate the quality of the reconstructed images, the PSNR is calculated usingCal_PSNR

command.

The Cal_PSNR command

Synopsis

Cal_PSNR $original_image $reconstructed_image
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Description

TheCal_PSNR takes two images of plain pnm format as input, the original image$orignal_image

and the reconstructed image$reconstructed_image, and writes the PSNR of the recon-

structed image to standard output.

Example

The PSNR of the reconstructed imagelena_reconstructed.pnm can be obtained by run-

ning the command:

Cal_PSNR lena.pnm lena_reconstructed.pnm

A.6 A Bug in CGAL

With regard to CGAL(version 3.5.1), a bug was found and fixed inthe function:

template <class OutputItFaces, class OutputItBoudaryEdges>

std::pair<OutputItFaces, OutputItBoundaryEdges>

cdt.get_conflicts_and_boundary(Point p, OutputItFaces fit

OutputItBoundaryEdges eit, Face_handle start)

const,

The preceding function is a member function of the class

Constrained_Delaunay_triangulation_2<Traits, Tds, Itag>

The function is intended to query the setF of faces and the setE of boundary edges in

conflict with a pointp. In the constrained Delaunay triangulation, the constrained edges

are considered as obstacles blocking the view from a point tothe interior of a face. A point

p is said to be in conflict with a facef if and only if p is visible from the interior off and

included in the circumcircle off .

When the pointp is inserted, only the faces inF are affected. For efficiency, in each

iteration afterp is inserted, we only want to recalculate the absolute errorεp of the points

of the faces inF . Therefore, this functionget_conflict_and_boundary is extensively

used and extremely important.

When the pointp inserted lies on a constrained edge, however, the setF of faces and

the setE of boundary edges that are in conflict withp are incorrectly calculated by the
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function and only contain part of the desired sets. The function starts to search the face

that hasp in its interior, then propagates to the faces incident to it in three directions until a

constrained edge is met or the faces searched are no longer inconflict with p. The problem

is that, when the pointp lies on a constrained edge, it searches the faces only on one side

of the constrained edge, the faces and boundary edges on the other side of the constrained

edge are missing. We found and fixed this bug, makingF andE calculated by the function

contain all the faces and boundary edges that are in conflict with the pointp.

A.7 Listing and Description of Source Files

The source code consists of a large number of files of various functionalities. To have a

better understanding of our software, in what follows, all the source files of the software

along with the corresponding functionalities are described.

ywb.cpp

The file contains the main function of the ED scheme.

gpi.cpp

The file contains the main function of the GPI scheme.

erd_ed.cpp

The file contains the main function of our proposed ERDED method.

erd_gpi.cpp

The file contains the main function of our proposed ERDGPI method.

imgsyn.cpp

The file contains the main function of reconstructing imagesfrom the basic model.

imgsyn_aa.cpp

The file contains the main function of reconstructing imagesfrom the ERD model,

using 4×4 super-sampling.

Cal_PSNR.cpp

The file contains the main function of calculating PSNR to evaluate the quality of an

image approximation.
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config.h

A configuration file which defines the parameters used throughout the programs.

typedef_ip.h

The file contains header file declaration and type definition of GPI scheme.

typedef_myED.h

The file contains header file declaration and type definition of our proposed ERDED

method.

typedef.h

The file contains header file declaration and type definition of our proposed ERDGPI

method.

Array2.hpp

The file contains the definition of a 2-D matrix class,Array2, which is used to rep-

resent images in our software.

PriQue.hpp

The file contains the definition of a class of a heap-based priority queue, which is

used to extract the face with the maximum squared error alongwith its candidate

point during greedy point insertion.

WedgeTri.hpp

The file contains the definition of a triangulation with wedges, which is derived from

the constrained Delaunay triangulation in CGAL.

PolylineG.hpp

The file contains the definition of a class used for polyline generation.

PolylineClass.hpp

The file contains the definition of a class for polyline simplification using the Douglas-

Peucker algorithm.

incremental_ip.h

The file contains the definition of a method which inserts points into the triangulation

based on the error measurement obtained.
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scanface_ip.h

The file contains the definition of a method which recalculates the absolute errors of

the points in the faces that are affected by inserting a point.

funcDeclaration.h

The file contains the declaration of all the functions used inour software.

imageProcessing.h

The file contains the implementations of image processing algorithms, such as con-

volution, modified Canny edge detector, bilinear interpolation and so on.

binomialFilter.h

The file contains the method of generating a 2-D binomial filter with a given size.

creatConstraint.h

The file contains the definition of a method which generates constrained edges used

in the constrained DT.

geoModel.h

The file contains the definition of a method which constructs aconstrained DT on a

set of points with a set of constrained edges, and produces the ERD model.

Mgeneration_Yang.hpp

The file contains the definition of a method which uses the ED scheme to select

nonedge points with the mirroring method to solve the start-up effect.

Mgeneration_Yang1.hpp

The file contains the definition of a method which uses the ED scheme to select

nonedge points with the forcing method to solve the start-upeffect.

Mgeneration_Yang2.hpp

The file contains the definition of a method which uses the ED scheme to select

nonedge points without anything to solve the start-up effect.

random_selection.hpp

The file contains the definition of a method which randomly selects nonedge points.
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scanFace.h

The file contains the definition of a method which calculates the absolute error of

each point in the face and the squared error of the face.

scanTriangle.h

The file contains the definition of a method which interpolates each point in the

triangle during the greedy insertion process.

secondOrderDerivative.h

The file contains the definition of a method which calculates the maximum magnitude

second-order directional-derivative of a given image.

incremental.h

The file contains the definition of a method which inserts a point into the triangulation

in each iteration based on the error measurement until a certain number of points is

reached.
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