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ABSTRACT

A novel progressive lossy-to-lossless coding method is proposed for mesh models of
images whose underlying triangulations have arbitrary connectivity. For a triangulation T

of a set P of points, our proposed method represents the connectivity of T as a sequence of
edge flips that maps a uniquely-determined Delaunay triangulation (i.e., preferred-directions
Delaunay triangulation) of P to T . The coding efficiency of our method is highest when
the underlying triangulation connectivity is close to Delaunay, and slowly degrades as con-
nectivity moves away from being Delaunay. Through experimental results, we show that
our proposed coding method is able to significantly outperform a simple baseline coding
scheme. Furthermore, our proposed method can outperform traditional connectivity coding
methods for meshes that do not deviate too far from Delaunay connectivity. This result is
of practical significance since, in many applications, mesh connectivity is often not so far
from being Delaunay, due to the good approximation properties of Delaunay triangulations.
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Chapter 1

Introduction

1.1 Mesh Modelling and Mesh Coding of Images

In recent years, there has been a growing interest in image representations that exploit the
geometric structure inherent in images. Traditionally, a commonly used approach for image
representation is based on uniform sampling. Due to the fact that images are nonstationary
in the real world, this approach is far from optimal. The sampling density would inevitably
be too low in the rapidly changing regions or too high in those regions of slow variation.
To that end, image representations based on nonuniform sampling have drawn increasing
attention from researchers.

By using nonuniform sampling, the position of sample points can be made adaptive
to image content, allowing more accurate image representations to be obtained with fewer
sample points. Furthermore, the geometric structure inherent in images (i.e., image edges)
can be better captured by image representations based on nonuniform sampling. In practice,
nonuniform sampling has proven to be beneficial in various applications including: feature
detection [10], pattern recognition [32], computer vision [36], restoration [9], interpolation
[39], and image/video coding [2, 33, 26, 1, 42, 11, 22, 5].

To date, many approaches to nonuniform sampling have been proposed, such as: in-
verse distance weighted methods [7, 20], radial basis function methods [7, 20], Voronoi and
natural neighbor methods [7], and finite-element methods which includes triangle meshes
[7, 20]. Among these classes of approaches, triangle meshes for nonuniform sampling have
become quite popular. Such representations are known as mesh models. With a triangle
mesh model of an image, the image domain is partitioned into triangles using a triangu-
lation of sample points, and then over each face of the triangulation, an approximating
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function is constructed. Numerous approaches based on mesh models have been proposed,
including triangle meshes based on Delaunay triangulations [3, 45, 4], constrained Delau-
nay triangulations [40], and data-dependent triangulations [15, 17, 16, 6, 28].

In order to be able to efficiently store and communicate (triangle) mesh models of
images, we need effective coding methods for such data. To code a mesh, two types of
information must be conveyed: 1) mesh geometry (i.e., vertices of mesh), and 2) mesh
connectivity (i.e., how vertices in the underlying triangulation of a mesh are connected by
edges).

1.2 Historical Perspective

As mentioned earlier, coding mesh models of images requires the compression of geometry
and connectivity data. Over the years, a number of methods [13, 1] have been developed
to code arbitrarily-sampled image data. Demaret and Iske proposed a scattered data coding
scheme in [13], which codes data using an octree. The arbitrary sampled image data is
viewed as a collection I of points in a 3-D volume. Each point (xi,yi,zi) ∈ I represents a
sample point (xi,yi) and its corresponding sample value zi. By using an octree data structure
to represent I, this scheme provides a means to efficiently code the information in I. In [1],
Adams proposed the so called image-tree (IT) method, which is based on a recursive
quadtree partitioning of the image domain along with an iterative averaging process for
sample data. The image dataset is represented by a tree-based data structure called an
image tree. By efficiently coding the information in an image tree using the top-down
traversal of the tree, this method is able to provide the progressive-coding functionality. In
comparison with the scattered data coding scheme, the IT method achieves the functionality
of progressive coding as well as more efficient lossless coding.

Over the last 20 years, numerous methods have been proposed to efficiently encode
connectivity data [34, 23]. In the absence of any assumptions about mesh connectivity, the
theoretical lower bound for connectivity coding established by Tutte [41] is log2(256/27)≈
3.245 bits/vertex given a triangulation with a sufficiently large number of vertices. Based
on the work in [34, 23], current connectivity coding methods can typically encode meshes
using around 3.67 bits/vertex. In [34], Rossignac proposed the well-known edgebreaker
algorithm to compress the connectivity of simple triangle meshes with a bound of 4 bit-
s/vertex. The edgebreaker algorithm performs a series of steps to traverse the faces of the
mesh in a depth-first order, nominally moving from a face to a neighboring one in each step.
At each step, a label from the set {C,S,R,L,E} is coded to depict the topological connec-
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tion between the current triangle face in the mesh and the boundary of the remaining part
of the mesh. In particular, each C operation is coded with a single bit and each one of the
S,R,L and E operations is coded with three bits (e.g., {C→ 0, S→ 100, R→ 101, L→
110, E → 111}). By modifying the edgebreaker algorithm in [23], King and Rossignac
improved the coding performance of the method to a guaranteed 3.67 bits/vertex. More
specifically, three new substitute codes are proposed for encoding the labels in the string
of operations that captures the connectivity of the mesh. By choosing the code with the
minimum connectivity coding cost of the three substitute codes, this improved edgebreaker
algorithm is able to guarantee a cost no worse than 3.67 bits/vertex.

In data compression [1, 5, 21, 38], entropy coding schemes are employed to exploit
statistical redundancy and represent information more compactly. One of the most com-
monly used entropy coding methods is arithmetic coding [43]. In practice, a very popular
kind of arithmetic coding is binary arithmetic coding [44] that takes only binary source
alphabets. Other than arithmetic coding, many other entropy coding schemes have been
developed over the years, such as universal coding [27], including Fibonacci coding [19]
and Elias gamma coding [18]. Several of these entropy coding methods are of interest for
the mesh-coding work presented in this thesis.

1.3 Overview and Contributions of This Thesis

In this thesis, we explore the coding of mesh models of images with arbitrary connectivity.
In particular, our work has focused on the development of effective techniques for coding
mesh connectivity.

One contribution of this thesis is the proposal of a new framework for coding mesh mod-
els of images with arbitrary connectivity, which extends the highly efficient IT method [1]
by adding to it a means for coding mesh connectivity. As our proposed framework has
several free parameters, we studied how different choices of those free parameters affect
coding efficiency, leading us to recommend a particular set of choices. The other contribu-
tion of this thesis is that it proposes a new progressive mesh-coding method derived from
our framework by employing the recommended set of choices. As we shall see, the pro-
posed method is shown to outperform more traditional connectivity coding approaches for
meshes whose connectivity is sufficiently close to Delaunay.

The remainder of this thesis is organized into three chapters as well as one appendix.
The three chapters provide the core content of the thesis while the appendix provides sup-
plemental information about software developed in our work.
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In Chapter 2, some essential background information is introduced to facilitate the un-
derstanding of the work in this thesis. First, some of the basic notation and terminology
used herein are presented. This is then followed by an introduction to various concepts
from computational geometry, such as triangulations and preferred-directions Delaunay tri-
angulations [14]. Thereafter, a well known triangulation connectivity optimization method,
called the local optimization procedure (LOP) [25], is introduced. Following this, concepts
related to mesh models of images are presented. Finally, several entropy coding methods
are introduced that are relevant to the work in this thesis.

Chapter 3 presents a new framework for coding triangle meshes models of images with
arbitrary connectivity. Our framework has several free parameters. Then, we study how
different choices of these free parameters affect coding performance. This leads to a rec-
ommended set of choices for use in our framework. Following this, a new progressive
mesh-coding method is proposed using this recommended set of choices. The perfor-
mance of the proposed method is evaluated by comparison with a simple baseline coding
scheme. Through experimental results, our proposed method is shown to outperform the
baseline approach by a margin of up to 11.56 bits/vertex (for connectivity coding). More-
over, for meshes whose connectivity is sufficiently close to Delaunay, our proposed method
is demonstrated to be likely to be able to outperform more traditional connectivity coding
approaches. Furthermore, unlike many coding schemes, our proposed method has progres-
sive coding functionality, which can be beneficial in many applications.

Finally, Chapter 4 summarizes the key results of the thesis and provides recommenda-
tions for future work.

As supplemental information, a description of the software developed in our research
is provided in Appendix A. Some examples of how to use this software are included in this
appendix.



5

Chapter 2

Preliminaries

2.1 Overview

In this chapter, some fundamental background information is introduced to promote a bet-
ter understanding of the work presented in this thesis. To begin, we introduce some of
the basic notation and terminology used herein. Then, some fundamental concepts from
computational geometry are provided. Following this, we present a description of the well-
known connectivity optimization method for triangulations known as the Lawson local
optimization procedure (LOP) [25]. Next, we discuss mesh modeling of images based on
triangulations. Lastly, some basic background on entropy coding is presented.

2.2 Notation and Terminology

Before proceeding further, some basic notation and terminology are introduced. In this
thesis, we denote the sets of integers and real numbers as Z and R, respectively. For
a,b ∈ R, the expressions (a,b), [a,b], [a,b), and (a,b] denote the sets {x ∈ R : a < x < b},
{x ∈R : a≤ x≤ b}, {x ∈R : a≤ x < b}, and {x ∈R : a < x≤ b}, respectively. For x ∈R,
bxc and dxe denote the largest integer no greater than x, and the smallest integer no less
than x, respectively. For a set S, the cardinality of S is denoted |S|. Similarly, the length of
a (finite-length) sequence S is denoted |S|.

For two line segments a0a1 and b0b1, we say that a0a1 < b0b1 in lexicographic order
if and only if either 1) a′0 < b′0, or 2) a′0 = b′0 and a′1 < b′1, where a′0 = min(a0,a1), a′1 =
max(a0,a1), b′0 = min(b0,b1), and b′1 = max(b0,b1), and min(a,b) and max(a,b) denote
the least and greatest of the points a and b in xy-lexicographic order, respectively.
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Figure 2.1: Examples of a (a) convex set and (b) nonconvex set.

2.3 Computational Geometry

In what follows, we introduce some concepts from computational geometry. This includes
concepts such as triangulations, Delaunay triangulations, preferred-directions Delaunay
triangulations [14], and edge flips.

To begin, we present the definitions of a convex set and convex hull, which are needed
in order to define the concept of a triangulation.

Definition 2.1 (Convex set). A set P of points in R2 is said to be convex if and only if for

every pair of points x,y ∈ P, every point on the line segment xy is contained in P.

The definition of a convex set is illustrated in Figure 2.1. In particular, the set P of points
denoted by the shaded area in Figure 2.1(a) is convex since every point on the line segment
formed by any pair of points x and y in P is also contained in P. On the contrary, in Figure
2.1(b), the set P of points denoted by the shaded region is not convex due to the fact that
part of the line segment xy is not within the shaded region.

Definition 2.2 (Convex hull). The convex hull of a set P of points in R2 is the intersection

of all convex sets containing P (i.e., it is the smallest convex set that contains P).

To illustrate the above definition, we consider an example in Figure 2.2. For the set P of
points shown in Figure 2.2(a), the convex hull of P is the shaded area presented in Figure
2.2(b).

With the definition of the convex hull introduced, now we are ready to present the
definition of a triangulation [30, 8], which serves as an essential concept in this thesis.
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(a) (b)

Figure 2.2: Convex hull examples. (a) A set P of points, and (b) the convex hull of P.

Definition 2.3 (Triangulation). A triangulation T of the set P of points in R2 is a set T of

non-degenerate open triangles that satisfies the following conditions:

1. the union of all triangles in T is the convex hull of P;

2. the set of the vertices in all triangles of T is P; and

3. the interiors of any two triangle faces in T do not intersect.

In other words, a triangulation T of a set P of points can be viewed as a subdivision of the
convex hull of P into a set of triangles such that any two triangles do not overlap with each
other. As a matter of notation, the sets of all vertices and edges in a triangulation T are
denoted as vertices(T ) and edges(T ), respectively.

Examples of valid triangulations are shown in Figure 2.3. In particular, two different
triangulations of a set P of points are illustrated in Figures 2.3(a) and (b). As we can
observe from these figures, although the same set of points have been used to construct the
triangulations, the connectivities of these triangulations (i.e., how vertices are connected
by edges) are quite different.

Over the years, various types of triangulations have been proposed. One commonly
used type of triangulation is the Delaunay triangulation, which was introduced by Delaunay
in 1934 [12]. Before presenting the definition of a Delaunay triangulation, we must first
introduce the definition of a circumcircle, which is given below.

Definition 2.4 (Circumcircle of a triangle). The circumcircle of a triangle is defined as the

unique circle passing through all three vertices of the triangle.
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(a) (b)

Figure 2.3: Examples of triangulations of a set P of points. (a) A triangulation of P, and
(b) the other triangulation of P.

With the definition of the circumcircle of a triangle in mind, we can now define the Delau-
nay triangulation as follows:

Definition 2.5 (Delaunay triangulation (DT)). A triangulation T of the set P of points is

said to be Delaunay if no point in P is strictly in the interior of the circumcircle of any

triangle face of T .

An example of a Delaunay triangulation is shown in Figure 2.4 with the circumcircles of
the faces in the triangulation displayed using dashed lines. As we can observe from the
figure, it is clear that no vertices are strictly inside any circumcircles of the faces of the
triangulation. Therefore, the triangulation is Delaunay.

The Delaunay triangulation of a set P of points is not necessarily unique. In particu-
lar, the Delaunay triangulation is only guaranteed to be unique if no four points in P are
cocircular. In Figure 2.5, we present two Delaunay triangulations of the set P of points.
As one can see, four cocircular points are presented in P and the Delaunay triangulation
of P is not unique. In the case that a set of points is a subset of the integer lattice, many
cocircular points could be present resulting in multiple Delaunay triangulations for the set
of points. In fact, some methods have been proposed for uniquely choosing one of all pos-
sible Delaunay triangulations of a point set. One such method is the preferred-directions
scheme [14]. The unique (Delaunay) triangulation produced by this scheme is known as
the preferred-directions Delaunay triangulation (PDDT).

As a matter of terminology, an edge e in a triangulation is said to be flippable if e has
two incident faces (i.e., is not on the triangulation boundary) and the union of its two inci-
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Figure 2.4: An example of a Delaunay triangulations where the circumcircle of each trian-
gle in the Delaunay triangulation is specified.

dent faces is a strictly convex quadrilateral Q. To illustrate the definition of a flippable edge,
we present two examples in Figures 2.6(a) and (b). In each figure, part of a triangulation
associated with the quadrilateral viv jvkv` is shown. In Figure 2.6(a), we can clearly observe
that the edge vkv` is flippable as vkv` is the diagonal of a strictly convex quadrilateral. On
the other hand in Figure 2.6(b), the edge vkv` is not flippable as a non-convex quadrilateral
is formed by two faces incident on vkv`.

Next, we introduce the definition of an edge flip which is a fundamentally important
operation for transforming triangulations. For any flippable edge e, an edge flip opera-
tion deletes e from the triangulation, and replaces it with the other diagonal of the convex
quadrilateral formed by the two faces incident on e. An example of an edge flip is shown
in Figure 2.7. Through applying the edge flip, one triangulation with flippable edge viv j

in Figure 2.7(a) is transformed into another triangulation with edge vkvl in Figure 2.7(b).
As it turns out, every triangulation of a set of points can be transformed into every other
triangulation (of the same set of points) by a finite sequence of edge flips [24, 31]. Conse-
quently, the edge flip operation is quite important and forms the basis for many algorithms
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Figure 2.5: Examples of two different Delaunay triangulations of a set P of points. (a) A
Delaunay triangulation of P, and (b) the other Delaunay triangulation of P.

involving triangulations.

2.4 Lawson Local Optimization Procedure (LOP)

Motivated by the fact that any two triangulations of the same set of points are reachable via
a finite sequence of edge flips, Lawson proposed a scheme for optimizing the connectivity
of triangulations based on edge flips, known as the Lawson local optimization procedure
(LOP) [25]. With the LOP, one must define an optimality criterion for edges. An edge e

being optimal means that the flipped counterpart of e is not preferred over e (i.e., the tri-
angulation obtained by flipping e is not more desirable than the original triangulation with
e). The LOP deems a triangulation optimal if every flippable edge in the triangulation is
optimal. Essentially, the LOP is an algorithm that simply keeps applying edge flips to flip-
pable edges that are not optimal until all flippable edges are optimal (i.e., the triangulation
is optimal).

In more detail, the LOP works as follows. A priority queue, called the suspect-edge
queue, is used to record all edges whose optimality is suspect (i.e., uncertain). Initially,
all flippable edges in the triangulation are placed in the suspect-edge queue. Then, the
following steps are performed until the suspect-edge queue is empty:

1. remove the edge e from the front of the suspect-edge queue;

2. test e for optimality;
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Figure 2.6: Examples of flippable and nonflippable edges in triangulations. A (a) flippable
edge vkv` and (b) unflippable edge vkv` in the part of the triangulations associated with
quadrilateral viv jvkv`.
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Figure 2.7: An edge flip. The part of the triangulation associated with quadrilateral viv jvkv`

(a) before and (b) after applying an edge flip to e (which replaces e by e′).

3. if e is not optimal, apply an edge flip to e and place any newly suspect edges (result-
ing from the edge flip) on the suspect-edge queue.

When the iteration terminates, the resulting triangulation is optimal. The LOP can be
used to compute the PDDT of a point set by providing any valid triangulation as input to
the LOP and specifying the PDDT criterion [14] (to be discussed in detail shortly) as the
edge optimality criterion for the LOP. In this case, the LOP will yield the PDDT as output.
Although the PDDT produced is unique, the particular sequence of edge flips performed by
the LOP is not, and will depend on the specific priority function used for the suspect-edge
queue.
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Figure 2.8: Examples of nonoptimal and optimal edges in triangulations according to the
Delaunay edge optimality criterion. A (a) nonoptimal edge viv j, and (b) as well as (c)
optimal edge viv j in the part of the triangulation associated with quadrilateral viv jvmvn.

2.4.1 Delaunay and PDDT Edge Optimality Criteria

In what follows, we introduce two edge optimality criteria, each of which can be used as an
optimality criterion for the LOP. First, we consider the Delaunay edge optimality criterion.

Delaunay edge optimality criterion. The Delaunay edge optimality criterion is used
in the LOP in order to obtain a triangulation that is Delaunay. With this criterion, the
optimality of an edge viv j in the part of the triangulation associated with quadrilateral
viv jvmvn is defined as follows:

1. If the point vn is strictly in the interior of the circumcircle of4viv jvm, as Figure 2.8(a)
shows, viv j is not optimal (i.e., the diagonal vmvn is preferred over viv j).

2. If the point vn lies strictly outside the circumcircle of 4viv jvm, as Figure 2.8(b)
illustrates, viv j is optimal (i.e., viv j is preferred over vmvn).

3. If the point vn falls on the circumcircle of 4viv jvm, as illustrated in Figure 2.8(c),
viv j and vmvn are both deemed optimal (i.e., neither choice is preferred).

When the Delaunay edge optimality criterion is used with the LOP, the LOP is guaranteed
to produce a triangulation that is Delaunay. In passing, we note that the Delaunay triangu-
lation of a set P of points (as computed by the LOP) is not necessarily unique due to case 3
above.

PDDT edge optimality criterion. Sometimes a unique Delaunay triangulation may be
desired. One method to obtain such triangulations is to use the PDDT edge optimality
criterion [14] in the LOP. In general, this criterion augments the Delaunay edge optimality
criterion by modifying case 3 (i.e., the case where the point vn falls on the circumcircle of
4viv jvm). In particular, the PDDT edge optimality criterion modifies this case by utilizing
two non-zero direction vectors d1 and d2, which are neither parallel nor orthogonal to each
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Figure 2.9: Examples of nonoptimal and optimal edges in triangulations according to the
PDDT edge optimality criterion. An (a) optimal edge viv j and (b) nonoptimal edge viv j in
the part of the triangulation associated with quadrilateral viv jvmvn.

other, to determine a uniquely preferred edge direction. More specifically, case 3 is changed
to the following where θ(e,d) denotes the angle that the edge e makes with the vector d:

If the point vn falls on the circumcircle of4viv jvm:

(a) if θ(viv j,d1) < θ(vmvn,d1), as shown in Figure 2.9(a), viv j is optimal (i.e., viv j is
preferred over viv j);

(b) if θ(viv j,d1) > θ(vmvn,d1), as shown in Figure 2.9(b), viv j is not optimal (i.e., vmvn

is preferred over viv j);
(c) if θ(viv j,d1) = θ(vmvn,d1), viv j is optimal if θ(viv j,d2) < θ(vmvn,d2) and not

optimal if θ(viv j,d2) > θ(vmvn,d2).

(Note that we cannot have both θ(viv j,d1) = θ(vmvn,d1) and θ(viv j,d2) = θ(vmvn,d2)
since d1 and d2 are neither parallel nor orthogonal.) In our work, we choose the direction
vectors as d1 = (1,0) and d2 = (1,1).

2.5 Mesh Model of Images

As mentioned earlier, image representations based on triangle meshes are of great practi-
cal interest. Now, we introduce some background information related to (triangle) mesh
models of images.

Consider an image function φ defined on Γ = [0,W − 1]× [0,H − 1] and sampled at
points in Λ = {0,1, ...,W − 1}×{0,1, ...,H− 1} (i.e., a rectangular grid of width W and
height H). In the context of our work, a mesh model of φ is characterized by:
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1. a set P = {pi} of sample points (where P ∈ Λ);

2. a triangulation of P; and

3. a set Z = {zi} of function values for φ at each point in P (i.e., zi = φ(pi)).

In passing, we note that the set P must include all of the extreme points on the convex-hull
of Γ (i.e., the four corners of the image bounding box) so that the triangulation of P covers
all of Γ.

The above mesh model is associated with a continuous piecewise-linear function φ̂ that
approximates φ , where φ̂ is determined as follows. Over each face f in the triangulation
T of a set P of sample points in the mesh model, φ̂ is defined as the unique linear function
that interpolates φ at the three vertices of f . Therefore, the approximating function φ̂ is
continuous and interpolates φ at each point in P.

Typically, subject to a constraint on maximum model size, the mesh model is chosen
to minimize the mean-squared error (MSE) ε between the original image φ and the ap-
proximated image φ̂ as given by

ε = |Λ|−1
∑
p∈Λ

(
φ̂(p)−φ(p)

)2
. (2.1)

For convenience, MSE is normally expressed in terms of peak-signal-to-noise ratio (PSNR),
which is defined as

PSNR = 20log10
[
(2ρ −1)/

√
ε
]
, (2.2)

where ρ is the sample precision in bits/sample. Essentially, the PSNR represents the MSE
relative to the dynamic range of the data using a logarithmic scale, with a higher PSNR
corresponding to a lower MSE.

Figure 2.10 illustrates the mesh modelling process for images. The image in Fig-
ure 2.10(a) can be viewed as a surface with the brightness of the image corresponding
to the height of the surface above the plane as Figure 2.10(b) illustrates. In Figure 2.10(c),
the image domain is partitioned by a triangulation T of a set of sample points. The corre-
sponding (triangle) mesh model of the image is shown in Figure 2.10(d). Furthermore, a
reconstructed (raster) image can be generated from the triangle mesh in Figure 2.10(d) to
yield the result shown in Figure 2.10(e).
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Figure 2.10: Mesh modelling of an image. (a) The original image, (b) the image modelled
as surface (c) triangulation of the image domain, (d) resulting triangle mesh and (e) the
reconstructed image
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2.6 Entropy Coding

In addition to all the background discussed previously, we need to introduce several entropy
coding schemes which are of great importance for our work in this thesis. In information
theory, an entropy encoding scheme is a kind of lossless data compression that exploits
the statistical redundancy of the source of the data so that the encoded data can be rep-
resented using fewer bits. Before presenting several specific entropy coding schemes, we
first introduce the definition of the entropy which is important to such schemes.

Entropy is a measure of uncertainty. In particular, the entropy H of a discrete random
variable X , with possible values {x1,x2, . . . ,xn} and probability function p(xi), is defined
in [37] as

H(X) =−
n

∑
i=1

p(xi) log2 p(xi). (2.3)

For the given variable X with n possible values, the entropy H attains a maximum of
log2 (n) when each value is equiprobable. Furthermore, Shannon’s source coding theo-
rem [37, 29] states that a lower bound on the code rate (i.e., average number of bits per
symbol) of the source message is given by the entropy of the source. Hence, lossless data
compression schemes generally aim to achieve a rate as close as possible to the entropy
of the source. In the sections that follow, we will present several entropy coding schemes
relevant to our work in this thesis.

2.6.1 Arithmetic Coding

Among various entropy coding schemes proposed over the years, one of the most com-
monly utilized schemes is arithmetic coding [44]. Generally speaking, arithmetic coding
represents the source message as an interval in [0,1). As the source message becomes
longer, a shorter interval is needed for the representation, leading to a growth in the num-
ber of bits needed to specify the interval. Each successive symbol coded reduces the size
of the interval in accordance with the symbol’s probability. Furthermore, when more likely
symbols are coded, the interval range is reduced less significantly than when coding less
likely symbols, leading to fewer bits being added to specify the range. Initially, the range
for the source message is the entire interval [0,1). When each symbol in the message is
coded, the range is updated to a subinterval in its previous range.

To better illustrate the arithmetic coding process, we consider coding symbols from
some alphabet and assume that both the arithmetic encoder and decoder know the prob-
ability distribution of the symbols to be coded as shown in Table 2.1. Suppose that the
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Table 2.1: A probability distribution for the symbols {a,e, i,o,u, !} associated with each
symbol’s interval in the initial source message range

Symbol Probability Interval

a 0.2 [0, 0.2)
e 0.3 [0.2, 0.5)
i 0.1 [0.5, 0.6)
o 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
! 0.1 [0.9, 1)

source message to be encoded is “eaii!”. We explain how arithmetic encoding works in
what follows.

Before any symbols are encoded, the initial source message range is [0,1). When
encoding a symbol, the arithmetic encoder divides the range into several subintervals as
Figure 2.11 shows, where each subinterval represents a fraction of the range that is propor-
tional to the probability of the symbol (in Table 2.1). In each step, the new interval for the
source message is updated to the interval of the symbol being encoded. For example, after
seeing the first symbol e, the encoder updates the range to [0.2,0.5), which is the symbol
e’s interval in the initial range [0,1). Then, a second symbol a further narrows the range
to the first one-fifth of it. This produces [0.2,0.26), as the length of the previous range is
0.3 units, and the interval of a is the first one-fifth of the previous range. Proceeding in this
way, we encode the message “eaii!” obtaining the final range [0.23354,0.2336) as shown
in Figure 2.11. Since a value can be easily determined to be within a certain range, it is not
necessary to encode both endpoints of the interval. Therefore, it is sufficient to encode a
single number within the final interval, for instance, 0.23354.

Now we consider the case of decoding for the above example. The decoding process
works as shown in Figure 2.12. To begin, we suppose the decoder is given the value,
0.23354 (in the final range determined by the encoder). Given 0.23354, the decoder can
immediately deduce the first character of the message as e, as this value is within the
interval of e in the initial range [0,1). Then the range is updated to [0.2,0.5), and the second
character decoded is a as its interval, [0.2, 0.26) entirely encloses 0.23354. Proceeding
further, the decoder can identify the entire message “eaii!”. In this coding example, the
special symbol “!” is used to indicate the end of the message. When the decoder decodes
this “!” symbol, the decoding process will stop.

In what follows, we introduce some additional terminology related to arithmetic coding.
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Figure 2.11: An example of arithmetic encoding showing the interval updated process.

First, an arithmetic coder is said to be binary if it only codes alphabets comprised of two
symbols [35].If the need to code nonbinary symbol arises, a binarization scheme (such as
the UI scheme in [1]) must be employed to convert each non-binary symbol to a sequence
of binary symbols. When coding a symbol, a set of symbol probabilities must be specified.
An arithmetic coder is said to be context-based if the set of probabilities selected is based
on contextual information (available to both the encoder and decoder), rather than always
using the same set of probabilities. Lastly, an arithmetic coder is said to be adaptive if it
updates the probabilities of the symbols to be coded during the coding process.

2.6.2 Universal Coding

In data compression, a universal code for integers is a prefix code that maps the set of
positive integers onto a set of binary codewords with the assumption that the probability
distribution of the integers is monotonically decreasing for increasing integer values. Given
any arbitrary source with nonzero entropy, the universal code can achieve an average code-
word length that is within a constant factor of the theoretical lower bound (as determined
by Shannon’s source coding theorem [19]). As a matter of terminology, the process of
using such codes for data compression is called universal coding. In the sections that fol-
low, we introduce two kinds of universal coding schemes of relevance to our work, namely,
Fibonacci coding [19] and Elias gamma coding [18].
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Figure 2.12: An example of arithmetic decoding showing the interval updated process.

2.6.2.1 Fibonacci Coding

Fibonacci codes, as described by Fraenkel and Klein [19], represent the set of positive
integers based on Fibonacci numbers of order m≥ 2. In general, the jth Fibonnaci number
of order m≥ 2 is given by

F(m)
j =


F(m)

j−1 +F(m)
j−2 + · · ·+F(m)

j−m for j > 1,

1 for j = 1,

0 for j ≤ 0.

Particularly, the Fibonacci numbers of order m = 2 (Fj ≡ F(2)
j ) are the standard Fibonacci

numbers {1,1,2,3,5,8,13,21,34,55, . . .}. In what follows, we will describe the Fibonacci
codes based on the standard Fibonacci numbers, as this is most relevant to the work in this
thesis.

Any positive integer i can be represented as a binary string of the form

I = I1I2...Ir, where I j ∈ {0,1}, i =
r

∑
j=1

I jFj+1, and

the sequence {I j}r
j=1 is chosen such that no two consecutive elements are both one and the

rightmost element’s index r satisfies Fr+1 ≤ i. We further append an extra one bit after the
rightmost bit of I, and define the resulting binary string as the Fibonacci code of i, which
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ends with “11” and contains no other instance of “11”.
Next, we illustrate how Fibonacci coding works. Before coding begins, we suppose

that both encoder and decoder know the probability for all possible symbols to be coded in
the source message and an integer is uniquely associated with each symbol from most to
least frequent, starting from one.

In order to encode a positive integer i, the following steps are performed by the encoder:
1) Find the largest Fibonacci number such that Fr+1 ≤ i. Set Ir = 1. Let I j−1 = 0 for

j ∈ {2, ...,r} in a binary string I = I1I2...Ir. Set a remainder r = (i−Fr+1).
2) If r is zero, go to step 4; otherwise, find the largest Fibonacci number such that

Fj+1 ≤ r. Update I j = 1 in I. Let r := r−Fj+1.
3) If r 6= 0, go to step 2.
4) Output each bit of I from left to right, and then output a one bit.

As a numeric example, the positive integer 6 is encoded as follows. We start with finding
F5 as the largest Fibonacci number less than or equal to 6 and set the remainder r = 6−F5.
Next, we obtain F2 as the largest Fibonacci number less than or equal to r and update
r = r−F2 = 0. As r is zero now, we stop finding Fibonacci numbers. Following this, we
output the binary string I = 1001 since 6 = 1×F2 + 0×F3 + 0×F4 + 1×F5. Finally, we
output a one bit which yields the Fibonacci codeword 10011.

To decode the Fibonacci code of an integer i, the following steps are performed by the
decoder:

1) Read bits from the bit-stream until two consecutive ones are encountered.
2) Save those bits read in the previous step, except the last one, into a binary string

I = I1I2...Ir, where I j with a smaller index j stores an earlier read bit (i.e., I1 stores
the first bit read in the previous step).

3) Obtain the decoded integer i = ∑
r
j=1 I jFj+1.

As an example, the Fibonacci codeword 10011 is decoded as follows. We first read bits
until two consecutive one bits are reached. Following this, the binary string I = 1001 is
formed by the earlier read four bits. Finally, the decoded integer is obtained as 1×F2 +0×
F3 +0×F4 +1×F5 = 6.

In Table 2.2, Fibonacci codes for a few small integers are given as additional examples
to illustrate the mapping between positive integers and Fibonacci codewords. For instance,
the number 32 = 3 + 8 + 21 is represented by the Fibonacci code 00101011, since the
codeword is obtained by appending an extra bit one after a binary string I = I1I2...Ir, where

∑
r
j=1 I jFj+1 = 0×F2 +0×F3 +1×F4 +0×F5 +1×F6 +0×F7 +1×F8 = 32.
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Table 2.2: Examples of Fibonacci codes
Integer i Sum of Fibonacci Numbers Fibonacci Codeword

1 F2 11
2 F3 011
3 F4 0011
4 F2 +F4 1011
5 F5 00011
6 F2 +F5 10011
7 F3 +F5 01011
8 F6 000011
9 F2 +F6 100011
16 F4 +F7 0010011
17 F2 +F4 +F7 1010011
32 F4 +F6 +F8 00101011

2.6.2.2 Elias Gamma Coding

In 1975, Elias [18] proposed several universal coding schemes for representing a set of
positive integers by a set of binary codewords. As one of the first universal codes proposed,
the Elias gamma code was simple but not optimal. Generally speaking, the gamma code
represents a positive integer i as blog2 ic zero bits followed by a binary representation of i.
In particular, the binary value of i is represented by as few bits as possible and therefore
this representation always begins with a one bit.

In what follows, we illustrate how gamma coding works. Before any information is
coded, we suppose that both encoder and decoder know the probability for all possible
symbols to be coded in the source message and an integer is uniquely associated with each
symbol from most to least frequent, starting from one.

In order to encode a positive integer i, the following steps are performed by the encoder:
1) Output a string of blog2 ic zeros.
2) Output n as a (blog2 ic+1)-bit integer.

As a numeric example, we encode a positive integer six as 00110. This is due to the fact
that blog2 6c= 2 and the binary representation of 6 with three bits is 110.

To decode the gamma code of an integer i, the following steps are performed by the
decoder:

1) Read and count zeros from the bit-stream until the first bit one is encountered, then
denote this count of zeros b.

2) Consider the bit of one received in the previous step as the first digit of the binary
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Table 2.3: Examples of Gamma codes
Integer i Binary Representation Gamma Codeword
1 (20 +0) 1 1
2 (21 +0) 10 010
3 (21 +1) 11 011
4 (21 +2) 100 00100
5 (22 +1) 101 00101
6 (22 +2) 110 00110
7 (22 +3) 111 00111
8 (23 +0) 1000 0001000
9 (23 +1) 1001 0001001

16 (24 +0) 10000 000010000
17 (24 +1) 10001 000010001
32 (25 +0) 100000 00000100000

representation of i, read the following b digits as an integer r, and i = 2b + r.
For example, the gamma codeword 00110 is decoded as follows. To begin, we reach the
first one bit after reading two zero bits from the bit-stream. Therefore, the integer to be
decoded has three bits. Then, the following two bits are received and converted into an
integer r = 1×21 +0×20. Finally, we obtain the decoded integer i = 1×22 + r, which is
6.

In addition, examples of Elias gamma codewords for several small integers are given in
Table 2.3 to better illustrate the mapping between positive integers and gamma codes. For
instance, the integer 7 = 22 + 3 is represented by the codeword 00111, since blog2 7c = 2
and the binary representation of 7 using three bits is 111.
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Chapter 3

Proposed Mesh-Coding Framework and
Method

3.1 Overview

One highly effective approach for encoding mesh models of images is the IT method, pro-
posed in [1]. The IT method, however, assumes the connectivity of the mesh to be Delau-
nay. In this chapter, a flexible mesh-coding framework, which adds connectivity coding to
the IT method, and a new method derived from this framework for coding image mesh mod-
els with arbitrary connectivity are proposed. To begin, we present our new mesh-coding
framework with several free parameters that must be chosen to yield a fully specified mesh-
coding method. Next, we study how different choices of the free parameters affect coding
efficiency, leading to the recommendation of a particular set of choices. Following this, we
propose a specific mesh-coding method which employs the recommended choices in our
framework. Lastly, the performance of the proposed method is evaluated by comparison
with a simple coding scheme as well as more traditional coding approaches.

3.2 Proposed Mesh-Coding Framework

With the necessary background in place, we can now introduce our general framework for
mesh coding. As mentioned earlier, our approach is based on the IT scheme [1]. The IT
method, although highly effective for coding mesh geometry, has no means for coding mesh
connectivity. Our proposed coding framework extends the IT coding scheme by adding to
it a mechanism for coding connectivity. By providing the ability to code connectivity, our
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framework can be used to encode mesh models with arbitrary connectivity, unlike the IT
scheme.

Our approach to connectivity coding is based on the idea of expressing the connectivity
of a triangulation relative to the connectivity of a uniquely determined reference triangu-
lation via a sequence of edge flips. More specifically, for a triangulation T of a set P of
points, our approach represents the connectivity of T as a sequence S of edge flips that
transforms the PDDT of P to T . Since the PDDT of P is unique, P and S completely char-
acterize the connectivity of T . Given P and S, we can always recover T by first computing
the PDDT of P and then applying the sequence S of edge flips to this PDDT. If T is close to
having PDDT connectivity, the sequence S will be very short and the connectivity coding
cost (in bits) will be very small. As T deviates further from having PDDT connectivity,
the sequence S will grow in length and the connectivity coding cost will increase. In the
sections that follow, we describe the encoding and decoding processes in more detail.

3.2.1 Encoding

First, we consider the encoding process. As input, this process takes a mesh model, consist-
ing of a set P of sample points, a triangulation T (of P), and the set Z of function values (at
the sample points). Given such a model, the encoding process outputs a coded bit stream,
using an algorithm comprised of the following steps:

1. Geometry coding. Encode the mesh geometry (i.e., P and Z) using the IT scheme as
described in [1].

2. Sequence generation. Generate a sequence S of edge flips that transforms the PDDT
of P to the triangulation T .

3. Sequence optimization. Optionally, optimize the edge-flip sequence S to facilitate
more efficient coding.

4. Sequence encoding. Initialize the triangulation τ to the PDDT of P. Encode the
edge-flip sequence S, updating the triangulation τ in the process.

In the sections that follow, we explain each of steps 2, 3 and 4 (from above) in more detail.

3.2.1.1 Sequence Generation (Step 2 of Encoding)

In step 2 of our encoding framework, an edge-flip sequence is generated. We now explain
in more detail how this is accomplished. To begin, we assign a unique integer label to
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each edge in the triangulation T by numbering edges starting from zero using the lexico-
graphic order for line segments (as defined in Section 2.2). Next, we apply the LOP to the
triangulation with the edge-optimality criterion chosen as the PDDT criterion, which will
yield the PDDT of P. As the LOP is performed, each edge flip is recorded in the sequence
S′ = {s′i}

|S′|−1
i=0 , where s′i is the label of the ith edge flipped. (Note that flipping an edge does

not change its label.) After the LOP terminates (yielding the PDDT of P), each edge in
the triangulation is assigned a new unique label using a similar process as above (i.e., by
numbering edges starting from zero using the lexicographic order for line segments). Let
ρ denote the function that maps the original edge labels to the new ones. The edge-flip
sequence S = {si}|S|−1

i=0 that maps the PDDT of P to T is then given by s′i = ρ(s|S|−1−i). In
other words, S is obtained by reversing the sequence S′ and relabelling the elements of the
sequence so that they are labelled with respect to the PDDT of P. The particular sequence
S obtained from the above process will depend on the specific priority scheme employed by
the suspect-edge queue. In our work, the following three priority schemes were considered:

1. first-in first-out (FIFO),

2. last-in first-out (LIFO), and

3. lexicographic (i.e., edges are removed from the queue in lexicographic order).

As for which choice of priority scheme might be best, we shall consider this later in Sec-
tion 3.4.

3.2.1.2 Sequence Encoding (Step 4 of Encoding)

The sequence encoding process in step 4 of our encoding framework employs a scheme
that numbers a subset of edges in a triangulation relative to a particular edge. By utilizing
this relative indexing approach, we can exploit the locality in the edge-flip sequence (i.e.,
the tendency of neighbouring elements in the sequence to be associated with edges that
are close to one another in the triangulation). Therefore, before discussing the sequence
encoding process further, we must first present this relative indexing scheme for edges.
To begin, we first introduce some necessary terminology and notation. For an edge e in a
triangulation, dirEdge(e) denotes the directed edge oriented from the smaller vertex to the
larger vertex of e in xy-lexicographic order. For a directed (triangulation) edge h:

1) opp(h) denotes the directed edge with the opposite orientation (and same vertices) as
h;
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opp(h)prev(h)

next(h)

h

edge(h)
prev(opp(h))

next(opp(h))

Figure 3.1: Illustration of various definitions related to directed edges. An edge e in a
triangulation with two incident faces and the associated directed edges h and opp(h).

1

2 3

4

0

e1

e0

Figure 3.2: An example of numbering edges using the relative indexing scheme

2) next(h) and prev(h) denote the directed edges with the same left face as h that, re-
spectively, follow and precede h in counterclockwise order around their common left
face; and

3) edge(h) denotes the (undirected) edge associated with h.
The preceding definitions are illustrated in Figure 3.1. With the above notation in place,
we can now specify our relative indexing scheme for edges. Given a triangulation τ and a
subset Θ of its edges and two distinct edges e1,e0 ∈ Θ, the index of the edge e1 relative to
the edge e0, denoted relIndex(e1,e0,τ,Θ), is determined as specified in Algorithm 1. (Note
that relIndex(e1,e0,τ,Θ) is not necessarily equal to relIndex(e0,e1,τ,Θ).)

To further demonstrate how our relative indexing approach works, we present a simple
example in Figure 3.2 that aims to find the index of edge e1 relative to edge e0 in the set
Θ = edges(τ) (i.e., the set of all edges in the triangulation τ). From this figure, we can see
that each edge in Θ has been assigned a unique index, starting from zero. In particular, the
edge e0 and edges in the left face of dirEdge(e0) are first numbered in a counterclockwise
order as 0, 1 and 2. Then the edges in the left face of opp(dirEdge(e0)) are numbered in a
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Algorithm 1 Calculating relIndex(e1,e0,τ,Θ) (i.e., the index of the edge e1 relative to the
edge e0 in the set Θ of edges in the triangulation τ .)

1: {q is FIFO queue of directed edges}
2: {h is directed edge and c is integer counter}
3: h := dirEdge(e0)
4: mark all edges in τ as not visited
5: clear q
6: insert opp(h) and then h in q
7: c := 0
8: while q not empty do
9: remove element from front of q and set h to removed element

10: if edge(h) ∈Θ then
11: if edge(h) not visited then
12: mark edge(h) as visited
13: if edge(h) = e1 then
14: return c as index of edge e1 relative to edge e0; and stop
15: endif
16: c := c+1
17: endif
18: endif
19: if opp(e) has left face then
20: if edge(next(opp(h))) not visited then
21: insert next(opp(h)) in q
22: endif
23: if edge(prev(opp(h))) not visited then
24: insert prev(opp(h)) in q
25: endif
26: endif
27: endwhile
28: abort with error indicating e1 6∈Θ
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counterclockwise order as 3 and 4. Since e1 is the edge with an index of 4, we deem the
index of e1 relative to e0 in Θ as 4 (i.e., relIndex(e1,e0,τ,Θ) = 4).

Having explained the relative indexing scheme for edges, we can now describe the edge-
flip sequence encoding process in more detail. In our work, we proposed five variants of
the encoding process, each of which is based on the idea of coding each edge in the edge-
flip sequence S (excluding the first) relative to the preceding edge in the sequence. For
the purpose of presentation, we have partitioned these variants into two groups: the non-
finalization (NF) group and finalization group. In what follows, we present the variants of
our sequence encoding process, starting with the non-finalization group.

Non-finalization group. The first of the two groups of encoding approaches is the non-
finalization group. This group contains three variants: 1) arithmetic-coding-non-finalization
(ACNF), 2) Fibonacci, and 3) gamma. These variants share a common algorithmic frame-
work, only differing in the particular entropy coding scheme used. For entropy coding, the
ACNF, Fibonacci, and gamma variants employ context-based adaptive binary arithmetic
coding [44], Fibonacci coding [19], and gamma coding [18], respectively.

Given a triangulation T with the set P of vertices, the edge-flip sequence S = {si}|S|−1
i=0

that transforms the PDDT of P to T , and the variant v of the sequence encoding scheme to
be used, the encoding process proceeds as follows:

1. Initialize the triangulation τ to the PDDT of P.

2. Encode |S| as a 30-bit integer.

3. If |S| is zero, stop.

4. Flip the edge s0 in τ .

5. (a) If v is ACNF, encode s0 as an m-bit integer, where m = dlog2(|edges(τ)|)e (i.e.,
m is the number of bits needed for an integer representing edge labels).

(b) If v is gamma, encode (1+ s0) using gamma coding.
(c) If v is Fibonacci, encode (1+ s0) using Fibonacci coding.

6. If |S|< 2, stop.

7. For i ∈ {1,2, . . . , |S|−1}:

(a) Let ri = relIndex(si,si−1,τ,flippableEdges(τ))− 1, where flippableEdges(τ)
denotes the set of all flippable edges in τ .

(b) Flip the edge si in τ .
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8. If v is ACNF, encode n =
⌈
log2

(
1+max{r1,r2, . . . ,r|S|−1}

)⌉
as a 30-bit integer (i.e.,

n is the number of bits needed for an integer representing relative indexes).

9. If v is ACNF, initialize the arithmetic coding engine and start a new arithmetic code-
word.

10. For i ∈ {1,2, . . . , |S|−1}:

(a) If v is ACNF, encode ri using the UI(n,4) binarization scheme as described
in [1] (where n and ri are as calculated above).

(b) If v is gamma, encode (1+ ri) using gamma coding.
(c) If v is Fibonacci, encode (1+ ri) using Fibonacci coding.

11. If v is ACNF, terminate the arithmetic codeword.

Finalization group. Before presenting the variants in the finalization group, we first
introduce the notion of a finalized edge. An edge is said to be finalized if it will not
be flipped again at any later point in the coding of the edge-flip sequence S = {si}|S|−1

i=0

(which transforms the PDDT of the set P of points to the triangulation T of P). To be
more specific, we take an edge corresponding to the edge-flip sequence element si as an
example. Before we code any elements in S, the edge corresponding to si is not finalized
since this edge will be flipped later during the coding process. Once the ith element si is
processed in the coding of S, however, the corresponding edge is deemed finalized if si 6= s j

for j ∈ {i+1, i+2, ..., |S|−1}.
With the preceding notion in mind, we can now introduce the second of the two groups

of encoding approaches, that is, the finalization group. This group contains two vari-
ants: 1) arithmetic-coding-finalization-1 (ACF1), and 2) arithmetic-coding-finalization-2
(ACF2). In general, the ACF1 and ACF2 variants are based on the idea of coding whether
each edge flip results in the flipped edge becoming finalized. In order to let the decoder
know if the edge corresponding to si is finalized, once si is coded, both variants code a bit
indicating if the edge corresponding to si is finalized (i.e., is not flipped again). Besides
that, the ACF2 variant codes extra bits to let the decoder know which edges are finalized
before any elements of the edge-flip sequence are coded (i.e., which edges are never flipped
in the edge-flip sequence).

Given a triangulation T with the set P of vertices, the edge-flip sequence S = {si}|S|−1
i=0

that transforms the PDDT of P to T , and the variant v of the sequence encoding scheme to
be used, the encoding process proceeds as follows:



30

1. Initialize the triangulation τ to the PDDT of P.

2. Mark all edges in τ as not finalized. Then mark all border edges as finalized.

3. Encode |S| (i.e., number of edge flips) as a 30-bit integer.

4. If |S| is zero, stop.

5. Initialize the arithmetic coding engine and start a new arithmetic codeword.

6. If v is ACF2:

(a) Mark all nonborder edges that are not in S as finalized.

(b) For each nonborder edge in lexicographic order, encode a bit indicating if the
edge is finalized, conditioned on the flippablility of the edge (i.e., one context
for flippable edges and one context for unflippable edges).

7. Encode s0 as an m-bit integer, where m = dlog2(|edges(τ)|)e, using arithmetic coding
with the probability of a 1 symbol being fixed at 0.5.

8. Flip the edge s0 in τ . If the edge corresponding to s0 will not be flipped again (i.e.,
s0 /∈ {s1,s2, ...,s|S|−1}), mark the corresponding edge as finalized.

9. Encode a bit indicating if the edge corresponding to s0 is finalized, conditioned on f ,
where

f =


0 if α = 0

1 if α ∈ {1,2}

2 if α ∈ {3,4}

and α is the number of edges already marked as finalized in the convex quadrilateral
formed by two faces incident on the edge corresponding to s0.

10. For i ∈ {1,2, . . . , |S|−1}:

(a) Encode ri = relIndex(si,si−1,τ,E)− 1 using the UI(n,4) binarization scheme
described in [1], where E denotes the set of all edges in τ that are flippable and
not marked as finalized, and n = dlog2(|E|)e.

(b) Flip the edge si in τ . If the edge corresponding to si will not be flipped again
(i.e., si /∈ {si+1,si+2, ...,s|S|−1}), mark the corresponding edge as finalized.
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(c) Encode a bit indicating if the edge corresponding to si is finalized, conditioned
on f , where

f =


0 if α = 0

1 if α ∈ {1,2}

2 if α ∈ {3,4}

and α is the number of edges already marked as finalized in the convex quadri-
lateral formed by two faces incident on the edge corresponding to si.

11. Terminate the arithmetic codeword.

Additional comments. For all variants of the sequence encoding process, each edge flip
in the edge-flip sequence S (excluding the first) is coded relative to the preceding edge flip
in the sequence. Such an approach is effective since the edge-flip sequence tends to exhibit
locality (i.e., neighbouring elements in the sequence tend to be associated with edges that
are close to one another in the triangulation). As for which choice of sequence encoding
scheme might be best, we shall consider this later in Section 3.4.

3.2.1.3 Sequence Optimization (Step 3 of Encoding)

As mentioned earlier, our coding scheme relies on the fact that the edge-flip sequence tends
to exhibit some degree of locality. The purpose of the (optional) sequence-optimization step
(i.e., step 3) in our encoding process is to attempt to improve the locality properties of the
edge-flip sequence through optimization (prior to encoding). In what follows, we describe
this optimization process in more detail.

Before proceeding further, we must first introduce some notation and terminology re-
lated to the optimization process. Let triT,S(i) denote the triangulation obtained by applying
the first i edge flips in the sequence S to the triangulation T and let triT,S denote the trian-
gulation obtained by applying all of the edge flips in the sequence S to the triangulation T .
To illustrate the preceding notation, we present an example in Figure 3.3. In this figure,
the initial triangulation T is triT,S(0) and the edge-flip sequence is S = {s0,s1,s2}. The
triangulation triT,S(1) is obtained by applying the first edge flip s0 to triT,S(0). Then, we
transform from triT,S(1) to triT,S(2) by applying the edge flip s1 to triT,S(1). Finally, we
obtain triT,S(3) by flipping the edge s2 in triT,S(2).

Two edge-flip sequences S and S′ are said to be equivalent if triT,S = triT,S′ (i.e., the
application of each edge-flip sequence to the triangulation T produces the same final trian-
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s0 s1 s2

triT,S(1) triT,S(2)triT,S(0) = T triT,S(3) = triT,S

Figure 3.3: An example that transforms triangulations named by the notation introduced in
Section 3.2.1.3 by applying an edge flip in the edge-flip sequence S to a triangulation.

gulation). Let swap(S, i, j) denote the new sequence formed by swapping the ith and jth
elements in the sequence S. Let erase(S, i, j) denote the new sequence formed by removing
elements si,si+1, . . . ,s j from the sequence S (where elements in S with index greater than
j are shifted downwards by j− i + 1 positions to form the new sequence). Two adjacent
elements of an edge-flip sequence S with indices i and i + 1 are said to be swappable if
they correspond to edges that are not incident on the same face of the triangulation triT,S(i).

For a given edge-flip sequence, it is possible to find many (distinct) sequences that
are equivalent (in the sense of “equivalent” as defined above). Some of these equivalent
sequences, however, have better locality properties than others, and therefore lend them-
selves to more efficient coding. The optimization process attempts to produce an edge-flip
sequence with better locality by applying a series of transformations to the sequence that
yields an equivalent sequence. Two types of transformations are of interest. First, if the
ith and (i + 1)th elements in the sequence S are swappable (as defined above), swapping
these elements will yield an equivalent sequence (i.e., triT,S = triT,swap(S,i,i+1)). Second, if
the ith and (i + 1)th elements in S are equal, the deletion of these two elements will yield
an equivalent sequence (i.e., triT,S = triT,erase(S,i,i+1)).

With the above in mind, the optimization process works as follows. The optimization
algorithm makes repeated passes over the elements of the sequence S, until a full pass
completes without any change being made to S. Each pass performs the following for
i ∈ {0,1, . . . , |S|−2}:

1. If si = si+1, S := erase(S, i, i+1) (i.e., delete ith and (i+1)th elements from S).

2. Otherwise, if si and si+1 are swappable and the binary decision function dS(i) 6= 0,
S := swap(S, i, i + 1) (i.e., swap the ith and (i + 1)th elements in S) and i := i + 1.
The binary decision function dS(i), which is used to determine if the ith and (i+1)th
elements in S should be swapped, is a free parameter of our method and will be
described in more detail shortly.

In our work, we considered three choices for the decision function dS in step 2 above. To
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si si+1si−1

triT,S(i−1) triT,S(i) triT,S(i+1) triT,S(i+2) triT,S(i+3)

si+2

c(i) c(i+1) c(i+2)

Figure 3.4: An example that shows the relationship between triangulations, edge flips and
approximate coding cost.

assist in specifying these choices, we introduce some additional notation in what follows.
For x,y ∈ R, we define the binary-valued functions

lt(x,y) =

1 x < y

0 otherwise

and

lte(x,y) =

1 x≤ y

0 otherwise

(i.e., lt and lte are boolean-valued functions for testing the less-than and less-than-or-equal
conditions). Let cS(i) denote the approximate cost of coding the ith edge flip in the se-
quence S, where

cS(i) =

relIndex(si,si−1, triT,S(i),flippableEdges(triT,S(i))) i ∈ {1,2, . . . , |S|−1}

0 i ∈ {0, |S|}

and flippableEdges(T ) is the set of all flippable edges in the triangulation T . For conve-
nience, let c(i) and c′(i) denote cS(i) and cswap(S,i,i+1)(i), respectively (i.e., c(i) and c′(i)
represent the cost without and with the ith and (i+1)th edges swapped, respectively). The
relationship between triangulations, edge flips and approximate coding cost is illustrated in
Figure 3.4. In this figure, triangulations are transformed by flipping edges si−1,si,si+1 and
si+2. For k ∈ {i, i + 1, i + 2}, the approximate coding cost c(k) is the index of sk relative
to sk−1 in flippableEdges(triT,S(k)). Thus, if si and si+1 were swapped, c(i),c(i + 1), and
c(i+2) would be affected.

With the above notation in place, we can now introduce the three choices for the deci-
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sion function dS considered in our work. These three choices for dS are as follows:

rule 1: dS(i) = lt

(
i+2

∑
k=i

c′(k),
i+2

∑
k=i

c(k)

)

(i.e., elements are swapped if this would strictly reduce the overall sum of the relative
indexes to be coded);

rule 2: dS(i) =

[
∏
k∈I

lte
(
c′(k),c(k)

)][
max
k∈I

lt(c′(k),c(k))
]
,

where I = {max{1, i}, . . . ,min{|S|−2, i+2}} (i.e., elements are swapped if this would not
increase the cost of any of the three relative indexes to be coded that are affected by the
swap and at least one cost would be strictly reduced); and

rule 3: dS(i) =

lt(c′(i),c(i)) i≥ 1

0 i = 0

(i.e., elements are swapped if this would strictly reduce the ith relative index to be coded).
As for which choice of dS might be best, we will explore this later in Section 3.4.

3.2.2 Decoding

Having introduced the encoding process, we now consider the decoding process. Given a
coded bit stream as input, this process outputs the corresponding mesh model, character-
ized by a set P of sample points and their corresponding set Z of function values, and a
triangulation T of P. The decoding process consists of the following steps:

1. Geometry decoding. Decode the mesh geometry using the IT scheme (as described
in [1]), yielding P (and Z).

2. Sequence decoding. Initialize the triangulation τ to the PDDT of P. Label the edges
in the triangulation in an identical manner as in the encoder (i.e., lexicographic order
starting from zero). Decode the edge-flip sequence, updating τ in the process. After
each edge flip is decoded, the edge flip is applied to the (current) triangulation τ . The
final value of τ corresponds to the decoded triangulation T .

In step 2 of the decoding process above, the steps involved in the decoding of an edge-
flip sequence simply mirror the corresponding steps in encoding (described earlier in Sec-
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tion 3.2.1.2).

3.3 Test Data

Before proceeding further, a brief digression is necessary in order to introduce the test
data used in our work. Herein, we employed a set of 50 mesh models of images that
were produced by the state-of-the-art mesh-generation scheme proposed in [28]. Since the
efficiency of our proposed coding approach depends on the extent to which mesh connec-
tivity deviates from being Delaunay, we have grouped our meshes into two categories, A
and B, based on the extent of this deviation. In order to quantify the extent to which the
connectivity of a mesh deviates from being Delaunay, we used the length of the edge-flip
sequence required to transform the mesh connectivity to PDDT connectivity, measured as
a percentage of the total number of edges in the mesh. The 25 meshes in category A have
connectivity relatively close to being Delaunay (i.e., the relative length of the edge-flip se-
quence is less than or equal to 15%), while the 25 meshes in category B have connectivity
that deviates relatively more from being Delaunay (i.e., the relative length of the edge-flip
sequence is greater than 15%). Herein, we present statistical results taken across all of our
meshes as well as results for individual meshes. For consistency, when presenting results
for individual meshes, we focus on the ten representative meshes listed in Table 3.1, where
the meshes A1, A2, A3, A4 and A5 are from category A and the meshes B1, B2, B3, B4
and B5 are from category B.

3.4 Proposed Mesh-Coding Method and Its Development

Earlier in Section 3.2, we introduced our proposed framework for mesh coding. This frame-
work has three free parameters, namely, the choice of priority scheme (used by the LOP),
the choice of sequence coding method (used by sequence coding), and the choice of op-
timization strategy (used by sequence optimization). In the sections that follow, we study
how different choices for these parameters affect coding efficiency. Since the difference
amongst these choices is in the connectivity coding alone, we will focus our attention on
evaluating the coded sizes for connectivity information. After an analysis of our experi-
mental results, we recommend a particular set of choices to be used for the parameters in
our framework, leading to the specific coding method proposed herein.
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Table 3.1: Several of the mesh models used in our work
Relative

Vertex Edge Sequence Sequence
Name Category Count Count Length† Length (%)†

A1 A 15728 47080 1070 2.3
A2 A 6881 20632 1421 6.9
A3 A 5242 15374 2298 14.9
A4 A 7864 23536 410 1.7
A5 A 7864 23585 1163 4.9
B1 B 7864 23536 7326 31.1
B2 B 7864 23514 6720 28.6
B3 B 2621 7797 3235 41.5
B4 B 2621 7797 2517 32.3
B5 B 2621 7801 2968 38.0

†Sequence generated with lexicographic priority scheme.

3.4.1 Choice of Sequence Coding Method

To begin, we consider how different choices of sequence coding method (in step 4 of the
encoding process) affect coding efficiency. For each of the 50 meshes in our test set, we
coded the mesh using each of the priority schemes described earlier in Section 3.2.1.1
(i.e., lexicographic, FIFO, and LIFO) and each of the sequence coding schemes described
earlier in Section 3.2.1.2 (i.e., ACNF, Fibonacci, gamma, ACF1, and ACF2). In each case,
the resulting bit rate was measured. The results obtained for each of lexicographic, FIFO
and LIFO priority schemes are shown in Tables 3.2, 3.3 and 3.4, respectively. In each case
in the tables, the best result is highlighted in bold font.

Lexicographic priority scheme. First, we consider the connectivity coding perfor-
mance results obtained with the lexicographic priority scheme as given by Table 3.2. From
the results for the individual meshes in Table 3.2(a), it is clear that the ACNF scheme con-
sistently leads to the lowest bit rate in 9/10 of the test cases by a margin of up to 2.19
bits/vertex. As to the overall statistical results in Table 3.2(b), the ACNF scheme consis-
tently beats the other four methods. In fact, a more detailed examination of the results
shows that our ACNF scheme performs best in 43/50 (86%) of the test cases by a margin
of up to 2.19 bits/vertex and second best in 7/50 (14%) of the test cases.

FIFO priority scheme. Next, we consider the connectivity coding performance results
obtained with the FIFO priority scheme as given by Table 3.3. Examining the results for
the individual meshes in Table 3.3(a), we can clearly see that the ACNF scheme beats the
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Table 3.2: Comparison of the connectivity coding performance obtained with the lexi-
cographic priority scheme and various sequence coding methods. (a) Individual results.
(b) Overall results.

(a)
Coded Size (bits/vertex)

Dataset Gamma ACNF Fibonacci ACF1 ACF2
A1 1.24 0.86 0.98 0.87 0.90
A2 2.58 1.98 2.11 2.03 2.13
A3 4.45 2.74 3.78 2.69 3.35
A4 0.84 0.61 0.67 0.62 0.66
A5 2.73 1.83 2.14 1.86 1.93
B1 9.76 7.70 8.14 7.94 8.58
B2 9.17 7.24 7.62 7.52 7.96
B3 10.98 9.03 9.36 9.34 10.12
B4 9.56 7.64 8.01 7.98 8.39
B5 0.93 8.74 9.21 8.98 9.64

(b)
Mean Coded Size (bits/vertex)

Category Gamma ACNF Fibonacci ACF1 ACF2
A 1.65 1.16 1.33 1.17 1.25
B 9.78 8.02 8.32 8.30 8.94
Overall 5.71 4.59 4.83 4.73 5.09
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Table 3.3: Comparison of the connectivity coding performance obtained with the FIFO
priority scheme and various sequence coding schemes. (a) Individual results. (b) Overall
results.

(a)
Coded Size (bits/vertex)

Dataset Gamma ACNF Fibonacci ACF1 ACF2
A1 1.67 1.02 1.29 1.03 1.03
A2 3.89 2.53 3.05 2.58 2.60
A3 5.58 3.95 4.54 3.85 4.10
A4 1.19 0.73 0.92 0.74 0.76
A5 2.89 1.87 2.26 1.90 1.95
B1 11.39 8.42 9.32 8.58 9.04
B2 10.79 7.87 8.78 8.09 8.35
B3 12.93 9.93 10.76 10.12 10.66
B4 10.65 8.10 8.80 8.39 8.62
B5 12.43 9.45 10.28 9.64 10.08

(b)
Mean Coded Size (bits/vertex)

Category Gamma ACNF Fibonacci ACF1 ACF2
A 2.17 1.41 1.70 1.41 1.45
B 11.40 8.80 9.48 9.02 9.46
Overall 6.78 5.10 5.59 5.22 5.45

other four methods in 9/10 of the test cases by a margin of up to 3 bits/vertex. With respect
to the overall statistical results in Table 3.3(b), the ACNF scheme consistently leads to the
lowest bit rate. In fact, a more detailed examination of the results shows that the ACNF
scheme outperforms the other four methods in 45/50 (90%) of the test cases by a margin
of up to 3.64 bits/vertex, and never losing by a margin of more than 0.1 bits/vertex in the
remaining test cases.

LIFO priority scheme. Lastly, we consider the connectivity coding performance results
obtained with the LIFO priority scheme as given by Table 3.4. From the results for the
individual meshes in Table 3.4(a), it is clear that the ACNF scheme consistently leads to
the lowest bit rate in 9/10 of the test cases by a margin of up to 2.97 bits/vertex. As to the
overall statistical results in Table 3.4(b), the ACNF scheme consistently beats the other four
methods. In fact, a more detailed examination of the results shows that our ACNF scheme
performs best in 45/50 (90%) of the test cases by a margin of up to 3.40 bits/vertex and
second best in 5/50 (10%) of the test cases.
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Table 3.4: Comparison of the connectivity coding performance obtained with the LIFO
priority scheme and various sequence coding schemes. (a) Individual results. (b) Overall
results.

(a)
Coded Size (bits/vertex)

Dataset Gamma ACNF Fibonacci ACF1 ACF2
A1 1.67 1.02 1.29 1.03 1.04
A2 3.89 2.54 3.05 2.60 2.62
A3 5.57 4.01 4.54 3.93 4.25
A4 1.19 0.74 0.92 0.74 0.76
A5 2.89 1.89 2.27 1.92 1.96
B1 11.33 8.36 9.25 8.53 8.99
B2 10.38 7.63 8.49 7.93 8.15
B3 12.74 9.81 10.63 10.05 10.55
B4 10.35 7.89 8.56 8.14 8.42
B5 12.21 9.29 10.13 9.45 9.89

(b)
Mean Coded Size (bits/vertex)

Category Gamma ACNF Fibonacci ACF1 ACF2
A 2.16 1.41 1.70 1.42 1.46
B 11.08 8.60 9.24 8.82 9.24
Overall 6.62 5.00 5.47 5.12 5.35

Overall results. Finally, we consider all of the priority schemes together. Based on the
above results, we deem the best choice for the sequence coding scheme in the proposed
framework to be the ACNF scheme. In passing, we note that, although the ACF1 and
ACF2 schemes often produced smaller relative indexes (compared to the ACNF scheme),
the extra cost required for coding bits indicating if edges are finalized rendered the coding
efficiency of the ACF1 and ACF2 schemes worse than that of the ACNF scheme.

3.4.2 Choice of Priority Scheme

Next, we consider how different choices of priority scheme used by the LOP (in step 2
of the encoding process) affect coding efficiency. For each of the 50 meshes in our test
set, we coded the mesh using the ACNF sequence coding scheme (previously found to
perform best) in conjunction with each of the three priority schemes (namely, LIFO, FIFO,
and lexicographic) and measured the resulting bit rate. The results obtained are shown in
Table 3.5. In each case, the best result is highlighted in bold font.
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Table 3.5: Comparison of the connectivity coding performance obtained with the various
priority schemes and the best sequence encoding method: ACNF scheme described in the
non-finalization category of Section 3.2.1.2. (a) Individual results. (b) Overall results.

(a)
Coded Size (bits/vertex)

Dataset LIFO FIFO Lex.†

A1 1.02 1.02 0.86
A2 2.54 2.53 1.98
A3 4.01 3.95 2.74
A4 0.74 0.73 0.61
A5 1.89 1.87 1.83
B1 8.36 8.42 7.70
B2 7.63 7.87 7.24
B3 9.81 9.93 9.03
B4 7.89 8.10 7.64
B5 9.29 9.45 8.74

†lexicographic

(b)
Mean Coded Size

(bits/vertex)
Category LIFO FIFO Lex.†

A 1.41 1.41 1.16
B 8.60 8.80 8.02
Overall 5.00 5.10 4.59

†lexicographic

Examining the results for individual meshes in Table 3.5(a) and the overall statistical
results in Table 3.5(b), we can clearly see that the lexicographic priority scheme is most
effective, consistently leading to the lowest bit rate in the individual cases as well as overall.
In fact, a more detailed examination of the results shows that the lexicographic scheme
performs best in all 50/50 of the test cases. A careful analysis shows that the superior
performance of the lexicographic priority scheme is due to its ability to produce edge-flip
sequences with better locality properties.

Based on the above results, we deem the best choice for priority scheme (used by
the LOP) in the proposed framework to be lexicographic. Therefore, we recommend this
choice to be used in our framework.

3.4.3 Choice of Optimization Strategy

Finally, we consider how different choices of optimization strategy in the edge-flip se-
quence optimization step (i.e., step 3) of the encoding process affect coding efficiency. For
each of the 50 meshes in our test set, we coded the mesh with optimization using each of the
three decision rules (namely, rules 1, 2, and 3, as introduced earlier) as well as without op-
timization, and measured the resulting bit rate in each case. The results obtained are given
in Table 3.6, with results for ten individual meshes in Table 3.6(a) and overall statistical
results for all meshes in Table 3.6(b). In these tables, the best result in each case is high-
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Table 3.6: Comparison of the connectivity coding performance obtained with the various
decision functions as well as the unoptimized approach selected. (a) Individual results.
(b) Overall results.

(a)
Coded Size (bits/vertex)

Optimized
Dataset Rule 1 Rule 2 Rule 3 Unoptimized
A1 0.82 0.84 0.76 0.86
A2 1.92 1.93 1.78 1.98
A3 2.70 2.64 2.54 2.74
A4 0.59 0.59 0.55 0.61
A5 1.73 1.79 1.64 1.83
B1 7.86 7.66 7.44 7.70
B2 7.43 7.20 6.98 7.24
B3 9.21 8.98 8.67 9.03
B4 7.71 7.58 7.30 7.64
B5 8.94 8.70 8.35 8.74

(b)
Mean Coded Size

(bits/vertex)
Optimized

Category Rule 1 Rule 2 Rule 3 Unoptimized
A 1.12 1.13 1.06 1.16
B 8.11 7.95 7.64 8.02
Overall 4.62 4.54 4.35 4.59

lighted in bold font. We note that the above results were obtained with the lexicographic
priority scheme and the ACNF sequence coding variant. Similar results were obtained with
other priority schemes and sequence coding variants, however.

Examining the results of Tables 3.6(a) and (b), we can clearly observe that rule 3 con-
sistently performs best, leading to the lowest bit rate in all of the individual cases as well
as overall. As it turns out, rule 3 outperforms the other two rules as well as the approach
without optimization in all 50/50 of the test cases. A more careful analysis of the results
shows that rule 3 tends to perform more swap operations, allowing locality to be improved
more than with rules 1 and 2.

Based on the above results, we deem the best choice for our sequence optimization
strategy in the proposed framework to be rule 3. In passing, we note that a closer ex-
amination of the above results also shows the approach without optimization sometimes
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Figure 3.5: Statistical evaluation of relative indexes produced by coding B4 mesh. (a) His-
togram of relative indexes generated by the approach without optimization where the inte-
ger range of each bin i is [2i−1,2i), and each bin measures the number of relative indexes
in the range of the bin. (b) Histogram that shows the increase in the number of relative
indexes in each bin produced by decision rule 1 relative to the approach without optimiza-
tion. (c) Histogram that shows the increase in the number of relative indexes in each bin
produced by decision rule 2 relative to the approach without optimization. (d) Histogram
that shows the increase in the number of relative indexes in each bin produced by decision
rule 3 relative to the approach without optimization.
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performs better than optimization with rule 1. This is due to the fact that although rule 1
generally reduces the number of very large relative indexes, the number of very small rela-
tive indexes also tends to decrease (compared to the approach without optimization). As a
consequence, rule 1 can sometimes result in worse coding performance than the approach
without optimization.

Lastly, we provide some additional insight into why the various optimization decision
rules have the coding performance that they do. In order to do this, we show some ad-
ditional results for the test case of coding the mesh B4 from earlier in Table 3.6(a). The
additional results obtained are shown in Figure 3.5. In particular, Figure 3.5(a) shows the
histogram of relative indexes obtained by the approach without optimization, where the in-
teger range of each bin i is [2i−1,2i) and each bin measures the number of relative indexes
in the range of the bin. In each of Figures 3.5(b), (c) and (d), we provide a histogram that
shows the increase in the number of relative indexes in each bin produced by the decision
rule relative to the approach without optimization. As we can see in Figure 3.5(b), although
rule 1 reduced the number of very large relative indexes (i.e., a behavior that can lead to
better coding performance), the number of very small relative indexes are also reduced
(compared to the approach without optimization) which can make the coding performance
worse. As a result, rule 1 performs worse than the approach without optimization. On the
other hand in Figures 3.5(c) and (d), rules 2 and 3 produce more very small as well as less
very large relative indexes (compared to the approach without optimization), which can
lead to better coding performance than the approach without optimization. Moreover, by
comparing the histograms of relative indexes in Figures 3.5(c) and (d), it is clear that rule 3
produces much more very small relative indexes and much less very large relative indexes
compared to rule 2. As a consequence, rule 3 performs best among all optimization strate-
gies. Furthermore, we observed that the behaviors we saw in this example (i.e., coding
the mesh B4) are typical for other datasets as well. This explains why: rule 1 can some-
times perform worse than the approach without optimization; rules 2 and 3 outperform the
approach without optimization; and rule 3 performs best overall.

3.4.4 Proposed Method

As demonstrated by the above experimental results, our proposed mesh-coding framework
is most effective when the priority scheme, the sequence coding scheme, and the optimiza-
tion strategy are chosen as lexicographic, ACNF, and rule 3, respectively. Therefore, we
recommend these particular choices for the free parameters in our coding framework. In
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the remainder of this thesis, we will refer to our framework with the preceding choices for
the free parameters as our proposed method for mesh coding.

3.5 Evaluation of Proposed Mesh-Coding Method

Having introduced our proposed connectivity-coding scheme, we now evaluate its coding
performance by comparing it to a straightforward baseline connectivity coding scheme. In
particular, the baseline scheme directly encodes edge labels of the edge-flip sequence as
n-bit integers where n is fixed and chosen as small as possible (i.e., data is packed).

Proposed vs. baseline. To begin our evaluation, we first compare the coding perfor-
mance of the proposed method and the method with connectivity coding replaced by the
baseline scheme. For each of the 50 mesh models in our test set, we encoded the model
using each of the two methods and measured the number of bits required to code the con-
nectivity information as well as the complete mesh. The results obtained are shown in
Table 3.7, with results for ten specific meshes in Table 3.7(a) and overall statistical results
for all 50 meshes in Table 3.7(b). Since the difference between the two methods is in
the connectivity coding alone, we will focus our attention on comparing the connectivity
coding numbers from these tables in what follows.

Examining the individual results in Table 3.7(a), we can see that our proposed method
outperforms the baseline method in all 10/10 of the test cases by a margin of at least 0.24
bits/vertex (for connectivity coding). The overall results in Table 3.7(b) are consistent with
the individual results, with our proposed method significantly outperforming the baseline
scheme for meshes from both categories A and B. In fact, a more detailed analysis of the
results shows that the proposed method beats the baseline scheme in all 50/50 of the test
cases, by a margin of up to 11.56 bits/vertex (for connectivity coding).

Proposed vs. traditional methods. Furthermore, we note that in the case of all 25
meshes in category A, our proposed method consistently requires less than the 3.67 bit-
s/vertex for connectivity coding often cited for more traditional connectivity coding meth-
ods [34, 23]. Also, it is easy to see that our proposed method can outperform more tra-
ditional methods (such as the edgebreaker algorithm) for meshes with underlying triangu-
lations having PDDT connectivity. For such meshes, our connectivity-coding method has
zero cost, while traditional connectivity-coding methods have some nontrivial cost. As the
mesh connectivity moves further away from PDDT connectivity, the coding cost of our
method increases. Nevertheless, our proposed method will continue to outperform tradi-
tional methods as long as the mesh connectivity is not too far from PDDT (or Delaunay)
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Table 3.7: Coding performance comparison of the proposed method and the method with
connnectivity coding replaced by the baseline scheme. (a) Individual results. (b) Overall
results.

(a)
Connectivity Size Total Size

(bits/vertex) (bits/vertex)
Dataset Proposed Baseline Proposed Baseline
A1 0.76 1.09 15.07 15.40
A2 1.78 3.11 14.86 16.19
A3 2.54 6.15 11.38 14.99
A4 0.55 0.79 14.95 15.19
A5 1.64 2.23 15.62 16.21
B1 7.44 13.98 21.84 28.38
B2 6.98 12.83 22.59 28.44
B3 8.67 16.08 24.28 31.69
B4 7.30 12.51 22.94 28.15
B5 8.35 14.75 24.33 30.73

(b)
Mean Connectivity Size Mean Total Size

(bits/vertex) (bits/vertex)
Category Proposed Baseline Proposed Baseline
A 1.06 1.72 14.87 15.54
B 7.64 13.92 24.83 31.11
Overall 4.35 7.82 19.85 23.32

connectivity. This situation is of significant practical interest since, in many applications,
meshes are often close to having Delaunay or PDDT connectivity. Admittedly, when the
mesh connectivity is far from being Delaunay, the traditional methods are likely to be bet-
ter. Determining the crossover point, at which traditional methods will start to outperform
our proposed method, would require a detailed experimental comparison. Due to time con-
straints, however, it is not feasible in this research to implement one of traditional methods
(like edgebreaker) for comparison purposes. For the reasons discussed above, it is clear
that our proposed method is superior to traditional methods in many practical situations
where near-Delaunay meshes are involved. Moreover, unlike many traditional connectivity
coding methods [34, 23], our proposed method is progressive, which can be beneficial in
many applications.

Computational complexity. Next, we examine the computational complexity of the
proposed method as measured by execution time. For the ten mesh models listed in Ta-



46

Table 3.8: Computational complexity of the proposed method for meshes in Table 3.1.
Encoding Time (s) Decoding

Spent On Time
Dataset step 1, 2, 4 of encoding Optimization (s)
A1 5.38 77.91 3.39
A2 2.10 28.93 1.31
A3 2.65 83.87 1.74
A4 1.67 12.83 1.02
A5 5.22 74.41 3.49
B1 11.10 165.19 8.03
B2 8.91 150.08 6.61
B3 1.34 15.48 1.05
B4 1.41 14.29 1.01
B5 1.65 19.11 1.19

ble 3.1, we measured the time required for encoding and decoding of each model. The
results are presented in Table 3.8. Since the time required for the optimization step dur-
ing encoding is very significant, the optimization time is accounted for separately in the
table. In passing, we note that the above timing results were collected on relatively modest
hardware, namely, a computer with a 2.13 GHz Intel Core2 CPU and 4 GB of RAM.

Examining the results in Table 3.8, we can clearly observe that decoding requires less
than 9 seconds in all cases and the time spent on encoding excluding the optimization step
is comparable to the decoding time. From these results, however, we can also see that
the total time for the encoding process (including optimization) is very much greater than
the time required by decoding, due to the large amount of time needed for optimization.
Fortunately, the optimization step in our framework is optional. So, in applications where
computational resources are more constrained, the optimization can be disabled to save
computation at a small cost to coding efficiency (as demonstrated by the earlier results in
Table 3.6).

Progressive performance. Lastly, as indicated earlier, our proposed coding method
is progressive. To illustrate the progressive capability of our coding scheme, we provide
a brief example. For four of the meshes from Table 3.1 (namely, A1, B3, A4 and B5),
we measured the image reconstruction quality obtained from the decoded mesh model (in
terms of PSNR) as a function of bit rate. The results obtained are shown in Figures 3.6(a),
(b), (c) and (d), with the right side of each graph corresponding to lossless decoding of
the original mesh model. As we can see from the figures, an incrementally better quality
image reconstruction (i.e., with higher PSNR) is decoded as the bit rate increases. Such
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Figure 3.6: Progressive coding results for the (a) A1, (b) B3, (c) A4 and (d) B5 meshes.

functionality is beneficial in many applications.
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Chapter 4

Conclusions and Further Research

4.1 Conclusions

In this thesis, a novel progressive mesh-coding framework was proposed that extends the
highly efficient IT method by adding to it a means for coding mesh connectivity. As
the proposed framework has several free parameters, we studied how different choices of
those free parameters affect coding efficiency, leading us to recommend a particular set of
choices. Following this, we proposed a new progressive mesh-coding method derived from
our framework by employing the recommended set of choices for the free parameters (i.e.,
lexicographic priority scheme, ACNF sequence coding variant, and optimization using rule
3). Our method is such that its coding efficiency is highest for meshes that have connec-
tivity close to being Delaunay, with performance degrading slowly as connectivity moves
further away from Delaunay connectivity.

Through experimental results, our method was shown to be significantly better than
a simple baseline coding scheme. Furthermore, we showed that it is likely that our pro-
posed method can outperform traditional connectivity coding methods for meshes that do
not deviate too far from Delaunay connectivity (i.e., the relative length of the edge-flip se-
quence that transforms the mesh connectivity to the PDDT connectivity is less than about
15%). Since Delaunay meshes have many desirable properties for approximation, it is quite
common to encounter meshes that are close to being Delaunay in practice. Therefore, the
excellent performance of our method for such meshes is of great practical value. In ad-
dition, our coding method yields very substantially more compact representations than a
simple naive coding scheme like the baseline approach described earlier. Also, our cod-
ing method is progressive, which can be beneficial in many applications. For the above
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reasons, our proposed coding method can benefit applications that must efficiently store or
transmit mesh models of images.

4.2 Future Research

Although this thesis made some significant contributions to the coding of mesh models
of images, additional work in this area would still be beneficial. In what follows, some
potential areas for future research are discussed.

As mentioned before, in the sequence optimization step of our framework (as described
in Section 3.2.1.3), our optimization algorithm aims to optimize the locality of the edge-flip
sequence generated by the LOP algorithm to whatever extent is possible. As a result of this
optimization, the computational cost of encoding in our framework is quite high. Although
we can easily disable optimization in order to code meshes with less computational cost,
the coding efficiency will suffer somewhat. Hence, further investigations into finding new
optimization algorithms that have lower computational cost would be worthwhile. Also, in
the optimization step, only three decision functions were considered. It would be worth-
while to consider other decision functions so that the locality of the edge-flip sequence can
be increased. Thus the coding performance would have the potential to be enhanced.

As has been noted, we improved the locality of the edge-flip sequence in the opti-
mization step. It might also be worth of trying to improve the locality of the sequence
initially produced by the LOP in the sequence generation step. Our work only considered
three priority schemes (namely, FIFO, LIFO and lexicographic) to be used by the LOP.
It would be worthwhile to evaluate other priority schemes such that either the length of
edge-flip sequence can be reduced or the edge-flip sequence itself can have better locality
(i.e., more neighbouring elements in the sequence are associated with edges that are close
to one another in the triangulation). In this way, the coding performance can potentially be
improved.
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Appendix A

Software User Manual

A.1 Introduction

As part of the work described in this thesis, the author developed software that implements
the proposed mesh-coding framework with its many options. This implementation was
written in C++ and consists of more than 8000 lines of code, which includes some fairly
complex data structures and algorithms. The software utilizes several libraries, such as
the Boost library, the Computational Geometry Algorithms Library (CGAL), the Signal
Processing Library (SPL), and the Signal Processing Library Extensions Library (SPLEL).

Generally speaking, our software consists of two programs, namely, compression
and decompression, each of which provides functionalities in our proposed mesh-coding
framework. The compression program performs mesh encoding. Given a mesh model,
priority scheme, sequence coding variant and optimization strategy as the basic inputs, this
program produces encoded mesh connectivity as well as uncompressed mesh geometry in-
formation. The decompression program performs mesh decoding. Given the coded con-
nectivity and uncoded geometry of an mesh as basic inputs, this program yields a decoded
mesh.

To better illustrate how our software fits in the proposed mesh-coding framework, we
present the overall structure of our mesh-coding framework in Figure A.1. From this figure,
we can clearly see that compression and decompression programs provide the function-
ality of coding mesh connectivity. Note that the geometry coders in the framework are
provided by the software implementing the IT method (as described in [1]). Thus, our
framework is able to code mesh models of images with arbitrary connectivity.

In the sections that follow, we will introduce our software in more detail, including
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Figure A.1: The overall structure of the mesh-coding framework

information such as: how to build the software, a detailed functional description of the
software, examples of using the software, and a description of the source code.

A.2 Building the Software

In order to use our software, it must first be built. The build process is based on the well
known software build utility called make, which is available on most operating systems.
The make command builds the executable programs and libraries automatically from source
code with the help of makefiles, which specify how the target programs are derived from
the source code. As mentioned in Appendix A.1, our software requires some libraries be
installed prior to building. To be able to build our software, the user must already have
installed:
• CGAL (version 4.2 or later),
• Boost (version 1.49 or later),
• SPL (version 1.1.13 or later), and
• SPLEL (version 1.1.24 or later).
Assuming the necessary libraries are installed, the build process proceeds as follows.

To build the software, the current working directory needs to be set as the top level of the
software file distribution. To ensure any superfluous files are removed before compiling,
execute the command:

make clean

Then, to compile and link the programs, execute the following command:

make
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This should produce all the executable programs associated with the software.

A.3 Detailed Functional Description of Software

In this section, we present the functional description of our software (compression and
decompression), starting with an introduction to the compression program.

A.3.1 The compression Program

Synopsis

./compression -i $input_mesh -e $encode_method_name \

-c $out_connect -v $out_points [options]

Description

The compression program compresses the connectivity for a given mesh depending on
the priority scheme, sequence coding variant, and optimization strategy. In general, the
program is able to read a mesh from an input file in OFF format, encode the mesh con-
nectivity, and write the compressed connectivity data as well as uncompressed geometry
information into files.

Options

The compression program accepts the options listed below.

-i $input mesh

Specifies the file from which to read the input mesh in OFF format.

-e $encode method name

Sets the sequence coding variant used for compressing connectivity. The available
choices are as listed in Table A.1.

-c $output connectivity

Specifies the file in which to store the encoded connectivity information of the input
mesh.
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-v $output vertices

Specifies the file in which to store the uncompressed geometry information of the
input mesh.

-p $priority method name

Sets the priority scheme used by LOP (described in Section 3.2.1.1). The available
choices are listed in Table A.2.

-t $output step

Specifies the file in which to store the first edge label in the edge-flip sequence and
the relative indexes calculated at the sequence encoding process (described in Sec-
tion 3.2.1.2).

-s $output stats

Specifies the file in which to store the statistical evaluation relating to mesh connec-
tivity coding.

-f $output flip edge points

Specifies the file in which to store each edges’ end points in the edge-flip sequence
generated by LOP.

-n $output encoding time

Specifies the file in which to store the time consumption of the program.

-d $debug level

Sets debug level for compression with choice of 0, 1, 2, 3. The default value is 0
indicating no debugging.

-g $stop encoding counter

Specifies a number to indicate only coding the first $stop encoding counter edges
in the edge-flip sequence. If the value is zero, the entire edge-flip sequence is coded.
The default value $stop encoding counter is 0.

-o $out encoder mesh

Specifies the file in which to store a mesh model in OFF format after coding the
edge-flip sequence with a $stop encoding counter specified.

-a $swapping method

Sets the optimization strategy to re-arrange the order of edge flips in the edge-flip
sequence produced by LOP. The available choices are listed in Table A.3.
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Table A.1: Options for the sequence coding method
Choice Description

simple Baseline coding scheme (default)
introduced in Section 3.5

gamma Gamma sequence coding variant in-
troduced in Section 3.2.1.2

fibonacci Fibonacci sequence coding variant
introduced in Section 3.2.1.2

basic_arithmetic Arithmetic-coding-non-finalization
sequence coding variant introduced
in Section 3.2.1.2

with_initial_complex_arithmetic Arithmetic-coding-finalization-2
sequence coding variant introduced
in Section 3.2.1.2

without_initial_complex_arithmetic Arithmetic-coding-finalization-1
sequence coding variant introduced
in Section 3.2.1.2

Table A.2: Options for the priority scheme
Choice Description

lex Lexicographic priority scheme (default) introduced in Section 3.2.1.1

fifo First-in-first-out priority scheme introduced in Section 3.2.1.1

lifo Last-in-first-out priority scheme introduced in Section 3.2.1.1

A.3.2 The decompression Program

Synopsis

./decompression -c $encoded_connectivity -v $input_vertices \

-o $out_mesh [options]

Description

The decompression program decompresses the mesh model from its coded connectiv-
ity and uncoded geometry information. In general, the program is able to read the encoded
connectivity and uncompressed geometry information of a mesh from input files, decode
the mesh connectivity, and write the decoded mesh model into a file. Moreover, given
an original image as the additional input, this program can produce a reconstructed image
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Table A.3: Options for the optimization strategy
Choice Description

null Approach without optimization on
the edge-flips sequence generated
by LOP (default)

prev_next_adjacent_sum Decision function rule 1 introduced
in Section 3.2.1.3

prev_next_adjacent_less Decision function rule 2 introduced
in Section 3.2.1.3

prev_none_adjacent Decision function rule 3 introduced
in Section 3.2.1.3

based on the decoded mesh and generate a file storing the PSNR values for reconstructed
images obtained from each intermediate triangulation during decoding the edge-flip se-
quence.

Options

The decompression program accepts the options listed below.

-c $encoded connectivity

Specifies the file from which to read the encoded connectivity of a mesh.

-v $input vertices

Specifies the file from which to read the uncompressed geometry information of a
mesh.

-o $output mesh

Specifies the file in which to store the decoded mesh model in OFF format.

-n $output decoding time

Specifies the file in which to store the time consumption of the program.

-d $debug level

Sets debug level for decompression with choice of 0, 1, 2, 3. The default value is 0
indicating no debugging.

-w $input original image file

Specifies the file from which to read a PNM image being considered as the original
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image when calculating PSNR.

-z $out psnr file

Specifies the file in which to store the PSNR of reconstructed images obtained for
each intermediate triangulation during the decoding of the edge-flip sequence.

-x $out delaunay image file

Specifies the file in which to store the reconstructed PNM image obtained for the
triangulation before the decoding of the edge-flip sequence.

-y $out ddt image file

Specifies the file in which to store the reconstructed PNM image obtained for the
triangulation after the decoding of the edge-flip sequence.

-g $stop decoding counter

Specifies a number to indicate only coding the first $stop decoding counter edges
in the edge-flip sequence. If the value is zero, the entire edge-flip sequence is coded.
The default value $stop decoding counter is 0.

A.4 Examples of Using the Software

In this section, examples are given showing how to use the software.

Example A
Suppose that we want to encode a mesh model stored in the file B3.off with the following
requirements:
• the priority scheme is chosen as FIFO;
• the sequence coding variant is selected as Fibonacci;
• the optimization strategy used is no optimization; and
• the encoded connectivity and uncompressed geometry information are saved in the

flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i B3.off -p fifo -e fibonacci -a null \

-c encodeConn.dat -v outPoints.dat

To decode the mesh, the following command can be used:
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./decompression -c encodeConn.dat -v outPoints.dat \

-o decodedB3.off

This results in the decoded mesh stored in the file decodedB3.off.
Example B
Suppose that we want to encode the mesh stored in the file B3.off again with the following
requirements:
• the priority scheme is chosen as lexicographic;
• the sequence coding variant is selected as arithmetic-coding-non-finalization;
• the optimization strategy used is no optimization; and
• the encoded connectivity and uncompressed geometry information are saved in the

flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i B3.off -p lex -e basic_arithmetic \

-a null -c encodeConn.dat -v outPoints.dat

To decode the mesh, the following command can be used:

./decompression -c encodeConn.dat -v outPoints.dat \

-o decodedB3.off

This results in the decoded mesh stored in the file decodedB3.off.
Example C
Suppose that we want to encode a mesh model stored in the file A1.off with the following
requirements:
• the priority scheme is chosen as lexicographic;
• the sequence coding variant is selected as arithmetic-coding-non-finalization;
• the optimization strategy used is rule 3; and
• the encoded connectivity and uncompressed geometry information are saved in the

flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i A1.off -p lex -e basic_arithmetic \

-a prev_none_adjacent -c encodeConn.dat -v outPoints.dat

To decode the mesh and output a reconstructed image based the decoded mesh, the follow-
ing command can be used:

./decompression -c encodeConn.dat -v outPoints.dat \

-o decodedA1.off -y recImage.pnm -w oriImage.pnm
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This results in the decoded mesh and reconstructed image stored in the files decodedA1.off
and recImage.pnm, respectively.
Example D
Suppose that we want to know the time consumption for coding the connectivity of the
mesh model stored in the file A1.off with the following requirements:
• the priority scheme is chosen as lexicographic;
• the sequence coding variant is selected as arithmetic-coding-non-finalization;
• the optimization strategy used is rule 3; and
• the encoded connectivity and uncompressed geometry information are saved in the

flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i A1.off -p lex -e basic_arithmetic \

-a prev_none_adjacent \

-c encodeConn.dat -v outPoints.dat -n encodeTime.dat

To decode the mesh and output the decoding time spent on mesh connectivity, the following
command can be used:

./decompression -c encodeConn.dat -v outPoints.dat \

-o decodedA1.off -n decodeTime.dat

This results in the decoded mesh and decoding time being stored in the files decodedA1.off
and decodeTime.dat, respectively.
Example E
Suppose that we want to code a mesh stored in the file B4.off at an intermediate rate with
the following requirements:
• the priority scheme is chosen as lexicographic;
• the sequence coding variant is selected as arithmetic-coding-non-finalization;
• the optimization strategy used is rule 3;
• the number stop counter indicating only encoding the first stop counter edges

in the edge-flip sequence is set to 100; and
• the intermediate encoded connectivity and entire geometry information are saved in

the flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i B4.off -p lex -e basic_arithmetic \

-a prev_none_adjacent \

-c encodeConn.dat -v outPoints.dat -g 100
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To decode the mesh with the option of only decoding the first 50 edges in the edge-flip
sequence, the following command can be used:

./decompression -c encodeConn.dat -v outPoints.dat \

-o decodedB4.off -g 50

This results in the intermediate decoded mesh being stored in the file decodedB4.off.
Example F
Suppose that we want to obtain the histogram of relative indexes generated by the proposed
mesh-coding method for the mesh stored in the file B4.off with the following require-
ments:
• the priority scheme is chosen as lexicographic;
• the sequence coding variant is selected as arithmetic-coding-non-finalization;
• the optimization strategy used is rule 3; and
• the encoded connectivity and uncompressed geometry information are saved in the

flies encodeConn.dat and outPoints.dat, respectively.
This can be accomplished by running the compression program as follows:

./compression -i B4.off -p lex -e basic_arithmetic \

-a prev_none_adjacent \

-c encodeConn.dat -v outPoints.dat -t sequence.dat

Given sequence.dat, we use an algorithm show histogram (source code is briefly in-
troduced in Section A.5) to collect the frequency of numbers at various number ranges.
Finally, those frequencies would become inputs of the Matlab bar function to produce the
histogram of relative indexes.

A.5 Description of the Source Code

The source code for the software consists of a number of files that provides numerous
functionalities. In the list below, each file is introduced briefly.

coder.hpp

• contains definitions of classes that includes connectivity coding methods, priority
schemes, and several decision function rules

config.hpp

• contains some macro definitions
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compression.cpp

• contains the main function for encoding

decoder.cpp

• contains definitions of functions in a Decoder class that is used by the main function
for decoding

decoder.hpp

• contains declarations of functions and data variables in the Decoder class

decompression.cpp

• contains the main function for decoding

encoder.cpp

• contains definitions of functions in an Encoder class that are used by the main func-
tion for encoding

encoder.hpp

• contains declarations of functions and variables in the Encoder class

entropy_coding.cpp

• contains functions that encode and decode numbers using various entropy coding

entropy_coding.hpp

• contains declarations of functions for entropy coding.cpp

histogram.hpp

• contains declarations of a Histogram class

RationalNumber.cpp

• contains definitions of functions in the RationalNumber class that represent a num-
ber by its numerator and denominator, compute addition, reduction, multiplication,
and division for numerator and denominator separately to avoid round-off errors

RationalNumber.hpp

• contains declarations of functions and data variables in RationalNumber.cpp

read_write_pnm_image.cpp
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• contains definitions of functions that generate the PNM image from a mesh model
of an image, read an image from file to a two-dimensional array class defined in the
SPL library, and calculate the peak signal-to-noise ratio (PSNR) value

read_write_pnm_image.hpp

• contains declarations of functions in read write pnm image.cpp

show_histogram.cpp

• contains definitions of functions in histogram class declared in histogram.hpp

triangulation_utility.cpp

• contains definitions of classes and functions, such as FIFO, LIFO and lexicographic
priority schemes, edge labeling, and Lawson local optimization procedure

triangulation_utility.hpp

• contains declarations of classes and functions used in the Encoder and Decoder

classes, and definitions of template functions, such as: Lawson optimization, trian-
gulation construction, sort edges, label edges in one triangulation
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