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ABSTRACT

Triangle mesh models of images are studied. Through exploration, a computational framework

for mesh generation based on data-dependent triangulations (DDTs) and two specific mesh-generation

methods derived from this framework are proposed.

In earlier work, Yang et al. proposed a highly-effective technique for generating triangle-mesh

models of images, known as the error diffusion (ED) method. Unfortunately, the ED method, which

chooses triangulation connectivity via a Delaunay triangulation, typically yields triangulations in

which many (triangulation) edges crosscut image edges (i.e., discontinuities in the image), leading

to increased approximation error. In this thesis, we propose a computational framework for mesh

generation that modifies the ED method to use DDTs in conjunction with the Lawson local optimiza-

tion procedure (LOP) and has several free parameters. Based on experimentation, we recommend

two particular choices for these parameters, yielding two specific mesh-generation methods, known

as MED1 and MED2, which make different trade offs between approximation quality and computa-

tional cost. Through the use of DDTs and the LOP, triangulation connectivity can be chosen optimally

so as to minimize approximation error. As part of our work, two novel optimality criteria for the LOP
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are proposed, both of which are shown to outperform other well known criteria from the literature.

Through experimental results, our MED1 and MED2 methods areshown to yield image approxima-

tions of substantially higher quality than those obtained with the ED method, at a relatively modest

computational cost. For example, in terms of peak-signal-to-noise ratio, our MED1 and MED2 meth-

ods outperform the ED method, on average, by 3.26 and 3.81 dB, respectively.
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Chapter 1

Introduction

1.1 Triangle Meshes for Image Representation

In real-world applications, images are typically nonstationary. Consequently, uniform sampling of im-

ages (such as with a truncated lattice) is usually far from optimal, with the sampling density inevitably

being too high in some regions while too low in others. This has led to an interest in image repre-

sentations based on nonuniform (i.e., content-adaptive) sampling. By choosing the sample points in a

manner dependent on the image content, the number of samplescan be greatly reduced. This smaller

sample count can often be exploited in applications in orderto reduce computational cost. Moreover,

the sample data can often better capture the geometric structure inherent in images (such as image

edges). In some applications, this can be exploited in orderto obtain better quality results. Some

applications in which nonuniform sampling has proven useful include: feature detection [1], pattern

recognition [2], computer vision [3], restoration [4], tomographic reconstruction [5], filtering [6],

interpolation [7, 8], and image/video coding [9, 10, 11, 12,13, 14, 15].

Many general approaches to nonuniform sampling have been proposed to date. Some of the

more popular approaches include inverse distance weightedmethods [16, 17], radial basis function

methods [16, 17], Voronoi and natural-neighbor interpolation methods [16], and finite-element meth-
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ods [16, 17], including triangle meshes based on Delaunay triangulations [18, 19, 20, 21], constrained

Delaunay triangulations [22], data-dependent triangulations [23, 24, 25, 26, 27, 28, 18, 29, 30], and

geodesic triangulations [31]. Two excellent survey papers[16] and [17] present a good overview of

the numerous general approaches to nonuniform sampling.

Among the numerous methods based on nonuniform sampling, one particularly effective approach

is offered by triangle meshes. In this approach, the (nonuniformly chosen) sample points are trian-

gulated, partitioning the image domain into triangular faces, and then an approximating function is

constructed over each face of the triangulation. Triangle meshes are particularly effective for the

following reasons. First, triangle meshes are well suited to capturing geometric structures in images

(such as image edges). Moreover, triangle meshes have the potential to lead to memory-efficient

nonuniform sampling methods, because a single triangle with only three sample points may cover a

large area (with low variation) of an image, significantly reducing the amount of memory required for

storing the image. Furthermore, triangle meshes greatly simplify the process of image interpolation.

For example, the image approximation associated with a triangle mesh model can be easily obtained

by combining the approximations constructed over each faceof the triangulation. In addition, triangle

meshes offer a way of handling image domains with arbitrary polygonal shapes.

Generally speaking, mesh-generation methods must addresstwo problems: 1) the selection of the

sample points; and 2) the selection of the connectivity of the triangulation of the sample points. Both

of these problems are of interest in this thesis.

1.2 Historical Perspective

Considering the many advantages of triangle meshes as described above, numerous image represen-

tation methods based on triangle meshes have been proposed to date [23, 24, 25, 26, 27, 28, 18, 32,

29, 30, 33, 19, 20, 21, 34, 35, 36, 37, 10, 38, 39, 40]. Based on how the sample points are selected,

the most popular mesh-generation methods can be classified into two categories: mesh-refinement

schemes and mesh-simplification schemes, a few examples of which can be found in [30, 18, 41]
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and [35, 42], respectively. A mesh-refinement scheme works by starting with a very coarse triangula-

tion (typically with the vertices being the extreme convex hull points), and adding one vertex at a time,

with the new vertex chosen in a way so as to minimize some errormeasure, until the desired number of

sample points is reached. In contrast, a mesh-simplification scheme starts with a refined triangulation

(e.g., with the vertices being all the grid points in the image domain), and deletes one vertex at each

step based on some error metric, until the vertices of the triangulation have been reduced to the desired

size. Mesh-simplification schemes such as the adaptive thinning method of Demaret and Iske [35] are

typically able to yield meshes with extremely high quality,but often demand high computational and

memory requirements. On the other hand, mesh-refinement schemes such as the mesh-generation

method of Rippa [41] are typically less expensive in terms of computation and memory cost, but they

may result in lower quality meshes.

Regardless of how the sample points are selected, one key difference between the various triangle-

mesh-based approaches is in how they select the triangulation connectivity (i.e., how the vertices

of the triangulation are connected by edges). Among the manyimage representation methods that

employ triangle meshes, the most common approach is to choose the connectivity by using a Delaunay

triangulation [43]. In the case of Delaunay triangulations, the connectivity is determined solely by the

set of sample points being triangulated. Delaunay triangulations maximize the minimum of all the

interior angles of the triangles in the triangulation, thusavoiding sliver triangles to whatever extent is

possible. This leads to the Delaunay triangulation being favored in approximation applications [44].

Although Delaunay triangulations are only guaranteed to beunique if no four points are cocircular,

a unique Delaunay triangulation can be obtained easily by choosing an appropriate technique for

handling degeneracies, such as preferred directions [45].Examples of mesh-generation methods that

are based on Delaunay triangulations are plentiful in literature, a few examples of which are [18, 19,

20, 21, 34, 35, 36].

Another approach to choosing the triangulation connectivity is offered bydata-dependent tri-

angulations (DDTs). It is this particular approach that is of interest in this thesis. With a DDT,

the triangulation connectivity can be chosen in an arbitrary manner, using information in the dataset
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from which the points to be triangulated were chosen. Since,unlike the Delaunay case, the con-

nectivity of a DDT may be chosen arbitrarily, DDTs offer muchgreater flexibility, and have the

potential to outperform their Delaunay counterparts if well chosen [41]. This said, however, con-

nectivity selection is often a challenging task. Typically, optimization techniques are employed

for this purpose, with the most common such technique, by far, being thelocal optimization pro-

cedure (LOP) of Lawson [46]. Examples of mesh-generation methods based on DDTs include

[23, 24, 25, 26, 27, 28, 18, 32, 29, 30, 33, 38, 39, 40, 47, 48]. These approaches make heavy use

of the LOP or variants thereof, such as thelook-ahead LOP (LLOP) [29].

In [19], Yang et al. proposed a simple technique for generating triangle-mesh models of images,

known as theerror-diffusion (ED) method. The ED method selects the sample points in a way that

they are distributed with a density approximately proportional to the maximum-magnitude second-

order directional derivative of the original image, and triangulates the sample points using a Delaunay

triangulation. Although this method has proven highly effective, it has the weakness that it often

yields triangulations in which a significant number of (triangulation) edges crosscut image edges (i.e.,

discontinuities in the image), leading to a degradation in approximation quality. This weakness can

be attributed to the fact that a Delaunay triangulation is employed by the ED method for choosing

triangulation connectivity. The ED method serves as the motivation and foundation of the work in

this thesis.

1.3 Overview and Contribution of the Thesis

In this thesis, we propose a computational framework for mesh generation that modifies the ED

method to use DDTs in conjunction with the LOP. By using DDTs instead of Delaunay triangula-

tions, we are able to better exploit triangulation connectivity in order to obtain the highest quality

approximation. Using our computational framework, we derive two specific mesh-generation meth-

ods known as MED1 and MED2, which make different trade offs between approximation quality

and computational cost. As we will show later, our MED1 and MED2 methods yield image approx-
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imations of substantially higher quality than those obtained with the ED method in terms of both

peak-signal-to-noise ratio (PSNR)and subjective quality, at a relatively modest computational cost.

As part of our work, we propose two novel optimality criteriafor use with the LOP. Both of these

criteria are shown to outperform numerous other well known criteria from the literature. In passing,

we note that the work described herein has been partially presented in the author’s papers [49, 50].

The remainder of this thesis is organized as follows. Chapter2 provides some necessary back-

ground information to facilitate a better understanding ofthe work described herein. First, some

basic notation and terminology are introduced. Then, some fundamentals in image processing and

computational geometry are presented. After that, the triangle mesh models for image representation

are discussed, followed by an introduction to a grid-point to face mapping scheme. Further, the ED

method, on which our work is built, is presented. Lastly, a key algorithm used for selecting triangula-

tion connectivity in the thesis, namely the LOP, is presented, along with a variant thereof, known as

the LLOP.

Chapter 3 introduces our proposed approach and evaluates itsperformance. To begin, our pro-

posed computational framework is introduced. The framework essentially modifies the ED method to

use DDTs in conjunction with the LOP to better exploit triangulation connectivity in order to obtain

the highest quality approximation. Then, we derive two specific mesh-generation methods using our

framework, namely the MED1 and MED2 methods. This is done by first introducing several free

parameters in our framework and the various choices for those parameters. After that, we study how

different choices of those parameters will affect the mesh quality and advocate two particular choices

of those parameters, leading to our two proposed methods. Furthermore, we evaluate our proposed

MED1 and MED2 methods by comparing them to the ED scheme in terms of mesh quality and com-

putational complexity. It is shown that our proposed MED1 and MED2 methods both yield image

approximations of much higher quality than the ED scheme, ata relatively modest computational

cost. For example, in terms of PSNR, our MED1 and MED2 methods outperform the ED method by

3.26 and 3.81 dB on average, respectively. It is also shown that the MED1 and MED2 methods make

different trade offs between mesh quality and computational cost, as the MED2 method produces ap-
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proximations of better quality, but at a higher computational cost. Lastly, some extra work we have

done during the development of our framework is briefly discussed.

Chapter 4 concludes the thesis with a brief summary of the workpresented herein and some

suggestions for future research.

Appendix A provides a brief description of the software thatis used to implement the computa-

tional framework proposed in the thesis and to collect experimental results. The software was fairly

complex to develop but was designed to be user-friendly. Some instructions on how to use the soft-

ware are also provided in this appendix.
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Chapter 2

Preliminaries

2.1 Overview

In this chapter, we provide some background necessary to theunderstanding of the work presented in

this thesis. To begin, we introduce the notation and terminology used in the remainder of the thesis.

Then, some fundamentals in image processing and computational geometry are presented. After that,

the triangle mesh models for image representation are discussed, followed by an introduction to the

grid-point to face mapping scheme. Further, we present the ED scheme which serves as the foundation

of our work. We conclude this chapter by introducing a key algorithm used in this thesis, namely the

LOP, and a variant thereof, known as the LLOP.

2.2 Notation and Terminology

Before proceeding further, a brief digression is in order to introduce some basic notation and termi-

nology employed throughout the thesis. The sets of integersand real numbers are denotedZ andR,

respectively. The cardinality of setS is denoted|S|. For a vectorv = (v1,v2, ...,vn), the 2-norm ofv is
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denoted‖v‖, and defined as

‖v‖ =
√

v2
1 +v2

2 + ...+v2
n.

2.3 Image Processing

Binomial Filter. Binomial filters [51] are simple and efficient structures thatapproximate Gaussian

filtering based on binomial coefficients. One attractive property of binomial filters is that they do not

require multiplications, which potentially benefits applications in terms of computational complex-

ity. Because of their simplicity and efficiency, binomial filters are often used as lowpass filters for

smoothing in image processing [52].

The transfer function of a one-dimensional (1-D)n-th order binomial filter (with zero phase and

unity DC gain), is denoted asHn(z) and given by

Hn(z) = z
(n−1)

2

(

1
2

+
1
2

z−1
)n−1

,

wheren is odd. For example, the nonzero coefficients of the impulse response of a 1-D third-order

binomial filter are[1
4

1
2

1
4]. A 2-D binomial filter can be computed as the tensor product oftwo 1-D

binomial filters. For example, the nonzero coefficients of the impulse response of a 2-D third-order

binomial filter are











1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16











.

MMSODD. For a function f defined onR
2, the maximum-magnitude second-order directional

derivative (MMSODD) m̃of f is given by [19, Corollary 1 and Equation 12]

m̃(x,y) = max{|α(x,y)+β(x,y)| , |α(x,y)−β(x,y)|}, (2.1)
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where

α(x,y) =
1
2

[

∂2

∂x2 f (x,y)+
∂2

∂y2 f (x,y)

]

and

β(x,y) =

√

1
4

[

∂2

∂x2 f (x,y)− ∂2

∂y2 f (x,y)

]2

+

[

∂2

∂x∂y
f (x,y)

]

.

The partial-derivative operators in the preceding equation are formed from the tensor product of 1-

D derivative operators, where the discrete-time approximations of the 1-D first- and second-order

derivative operators are computed using the filters with transfer functions1
2z− 1

2z−1 andz−2+z−1,

respectively. The MMSODD has a double response to image edges, with the maxima being attained

just to each side of image edges. The MMSODD is of great importance to our work in this thesis, as

we shall see later.

Skewness. For a functionf defined onR2, theskewness̃s of f , evaluated on a 3×3 windowM

centered at point(x,y), is given by [10, Equation 1]

s̃(x,y) =
1
9 ∑

(x′,y′)∈Mx,y

( f (x′,y′)−µ(x,y))3, (2.2)

where

µ(x,y) =
1
9 ∑

(x′,y′)∈Mx,y

f (x′,y′)
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and

M = {(x−1,y−1),(x,y−1),(x+1,y−1),

(x−1,y),(x,y),(x+1,y),

(x−1,y+1),(x,y+1),(x+1,y+1)}.

The skewness is a nonzero value except in uniform areas or in the case thatM is centered exactly on

an edge, and the absolute value of the skewness is higher in regions with rapid changes in an image.

2.4 Computational Geometry

In what follows, we introduce a few fundamental concepts from computational geometry such as the

notions of a triangulation and a Delaunay triangulation. Inorder to define the concept of triangulation,

we need to first introduce the concepts of convex set and convex hull.

Definition 2.1. (Convex set). A set P of points inR2 is convex if for every pair of points a,b ∈ P,

every point on the line segment that joins a and b is also in P.

The definition of convex set is illustrated in Figure 2.1. ThesetP in Figure 2.1(a) is convex since

every line segment that joins two points inP is within P, such as the line segment ab. The setP in

Figure 2.1(b) is not convex since not every line segment thatjoins two points inP is within P, with an

example being the line segment ab as shown in Figure 2.1(b). Having defined the concept of convex

set, we can now introduce the notion of convex hull.

Definition 2.2. (Convex hull). The convex hull of a set P of points inR
2 is the intersection of all

convex sets that contain P.

An example of a convex hull is shown in Figure 2.2. Given a setP of points as shown in Fig-

ure 2.2(a), the convex hull ofP is shown in Figure 2.2(b). The convex hull ofP may be visualized as
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P

a

b

(a)

P

a

b

(b)

Figure 2.1: Examples of (a) convex and (b) nonconvex sets.

(a) (b)

Figure 2.2: Convex hull example. (a) A setP of points, and (b) the convex hull ofP.

the shape formed by a rubber band stretched aroundP. With the definition of convex hull in place, we

can now define the concept of triangulation.

Definition 2.3. (Triangulation). A triangulation of a set P of points inR2 is a set T of (nondegenerate)

triangles such that:

1. the union of the vertices of all triangles in T is P;

2. the interiors of any two triangles in T are disjoint; and

3. the union of the triangles in T is the convex hull of P.
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(a) (b) (c)

Figure 2.3: Triangulation example. (a) A setP of points, (b) a triangulation ofP, and (c) another
triangulation ofP.

Given a setP of points, as shown in Figure 2.3(a), there exist numerous triangulations ofP, two

examples of which are shown in Figures 2.3(b) and (c). We can see that although the triangulations

in Figures 2.3(b) and (c) have the same vertices, they differin how those vertices are connected by

edges.

As mentioned in Section 1.2, two of the most commonly employed approaches to choosing the

triangulation connectivity for triangle mesh models are Delaunay triangulations [43] and DDTs. We

first define the concept of Delaunay triangulation as follows.

Definition 2.4. (Delaunay triangulation). A Delaunay triangulation of a set P of points inR
2 is a

triangulation T such that no point in P is inside the circumcircle of any triangle in T.

Given a setP of points as shown in Figure 2.4(a), the Delaunay triangulation of P is shown in

Figure 2.4(b), with the circumcircle of each triangle shownusing a dashed line. As we can see, no

vertex of the triangulation falls inside any circumcircle.For a setP of points, as long as no four points

in P are cocircular, the Delaunay triangulation ofP is uniquely determined, as in the example given

in Figure 2.4.

In the case of Delaunay triangulations, the connectivity isdetermined solely by the set of points

being triangulated. For this reason, triangulation-connectivity-selection algorithms employing Delau-

nay triangulations are typically computationally efficient. The Delaunay triangulation maximizes the
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(a) (b)

Figure 2.4: Delaunay triangulation example. (a) A setP of points, and (b) the Delaunay triangulation
of P.

minimum interior angle of all triangles in the triangulation, thus avoiding sliver triangles to whatever

extent possible. This leads to the Delaunay triangulation being favored in approximation applica-

tions [44]. DDTs, unlike Delaunay triangulations, allow the triangulation connectivity to be chosen

in an arbitrary manner, using information in the dataset from which the points to be triangulated were

chosen. Therefore, DDTs offer much more flexibility than Delaunay triangulations.

2.5 Mesh Models of Images

In the context of this thesis, an image is an integer-valued function φ defined on the domainI =

[0,W−1]× [0,H−1] and sampled on the truncated two-dimensional integer latticeΛ = {0,1, . . . ,W−
1}×{0,1, . . . ,H −1} (i.e., a rectangular grid of widthW and heightH). A (triangle) mesh model of

φ consists of:

1. a setP = {pi} of sample points, whereP⊂ Λ;

2. a triangulationT of P; and
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3. the function values{zi = φ(pi)} for pi ∈ P.

In order to ensure that the triangulationT covers all points inΛ, P must always be chosen to include

all of the extreme convex hull points ofI (i.e., the four corner points of the image bounding box). As

a matter of terminology, thesizeandsampling densityof the model are defined as|P| and|P|/ |Λ|,
respectively.

The above mesh model is associated with a functionφ̂ that approximatesφ, whereφ̂ is determined

as follows. First, we construct a continuous piecewise linear functionφ̃ that interpolatesφ at each

point pi ∈ P. More specifically, for each facef in the triangulationT, φ̃ is defined to be the unique

linear function that interpolatesφ at the three vertices off . Sinceφ is integer valued, we wish for its

approximationφ̂ to be integer valued as well. Thus, we define the approximation φ̂ in terms ofφ̃ as

φ̂(p) = round(φ̃(p)), where round denotes an operator that rounds to the nearest integer.

We provide an example in Figure 2.5 to illustrate the (triangle) mesh modelling of images. Given

an imageφ as shown in Figure 2.5(a) (which can be represented as a surface in Figure 2.5(b)), a

triangulation is formed by partitioning the image domain ofφ into a set of triangles, as illustrated

in Figure 2.5(c), with the vertices of the triangulation being the sample points. The resulting triangle

mesh model ofφ is shown in Figure 2.5(d). Then, an approximation ofφ, known aŝφ, can be generated

from the mesh model by standard rasterization techniques [53], with the reconstructed imageφ̂ shown

in Figure 2.5(e).

In our work, for a given model size (i.e., number of sample points), we want to find a model to

minimizeε, the difference between̂φ andφ as measured by themean squared error (MSE), where

ε = |Λ|−1 ∑
p∈Λ

(

φ̂(p)−φ(p)
)2

. (2.3)

For convenience, we will express the MSE in terms of the PSNR, which is defined as

PSNR = 20log10[(2
ρ −1)/

√
ε],
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(a) (b)

(c)
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(d)

(e)

Figure 2.5: Mesh model of an image. (a) Image, (b) image modeled as surface, (c) triangulation of
image domain, (d) resulting triangle mesh, and (e) reconstructed image.
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whereρ is the number of bits per sample used by the (integer-valued)imageφ. Finding computation-

ally efficient methods to solve the above problem is extremely challenging, as problems like this are

known to be NP-hard [54].

2.6 Grid-Point to Face Mapping

Suppose that we have an image defined on a rectangular grid anda triangulationT superimposed on

the grid, letΓ(T) denote the set of all integer grid points falling inside or onthe boundary ofT. For

reasons that will become clear later, we need a convenient scheme that can map each pointp∈Γ(T) to

exactly oneface of the triangulationT. In this thesis, we apply a grid-point to face mapping scheme

that is slightly modified from the method proposed in [53]. Inparticular, a grid pointp ∈ Γ(T) is

uniquelymapped to a face of the triangulationT according to the following rules:

1. If p is strictly inside a facef , mapp to f .

2. If p is on an edgeeexcluding the endpoints ofe:

(a) If e is horizontal, mapp to the face beloweunless there is no face below, in which casep

is mapped to the face abovee.

(b) If e is not horizontal, mapp to the face to the left ofe unless there is no such face, in

which casep is mapped to the face to the right ofe.

3. If p is a vertex:

(a) If p is the right endpoint of a horizontal edgee, mapp to the face belowe unless there is

no face below, in which casep is mapped to the face abovee.

(b) If p is not the right endpoint of any horizontal edge, mapp to the face to the left ofp

unless there is no such face, in which casep is mapped to the face to the right ofp.
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We provide an example in Figure 2.6 illustrating the mappingrules described above. Given an

image defined on a rectangular grid with the extreme convex-hull points of the image domain being

{vk}3
k=0, a triangulation of the points{vk}7

k=0 is superimposed on the grid, as shown in Figure 2.6(a).

In order to facilitate a better understanding of the above mapping rules, the grid points in Figure 2.6(b)

are marked with different symbols, with the ones that are mapped to each face sharing the same

symbol.

In what follows, we examine Figure 2.6(b) in detail. To begin, let us consider the grid pointp0.

The grid pointp0 is strictly inside the facef3. Thus, according to rule 1,p0 is mapped to the facef3.

The grid points that fall on an edge or is a vertex are mapped ina more complicated manner. Consider

the grid pointp1, which is on the horizontal edgev1v2 but not the endpoints ofv1v2. According to

rule 2a,p1 is mapped to the facef3 (i.e., the face above the edgev1v2) since there is no face below

v1v2. For the grid pointp2, since it is on the non-horizontal edgev4v5, p2 is mapped to the facef1

(i.e., the face to the left ofv4v5) based on rule 2b. Now consider the grid pointsv3 andv4. The grid

point v3 is a vertex and is the right endpoint of the horizontal edgev7v3. Therefore, according to

rule 3a,v3 is mapped to the facef7 (i.e., the face below the edgev7v3). The grid pointv4 is a vertex

but is not the right endpoint of an edge, sov4 is mapped to the facef0 (i.e., the face to the left ofv4)

according to rule 3b.

2.7 ED Method

As mentioned earlier, one highly effective method for generating mesh models of images is the ED

method [19]. Since our work builds on the ED method, it is helpful to briefly introduce this method

here. Given an imageφ and a desired mesh sizeN, the ED method constructs a mesh model ofφ with

the setP of sample points, as follows:

1. Sample-point selection. SelectP, with |P| = N, using Floyd-Steinberg error diffusion [55].

This is done in such a way as to ensure that the points inP are distributed with a density
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(a)

f0 f2
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v0 v7 v3
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v6v4
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f0
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f7v5

v1

p2

p0
p1

(b)

Figure 2.6: An example of grid-point to face mapping. (a) A triangulation on a rectangular grid, and
(b) the illustration of how the grid points are uniquely mapped to the faces in the triangulation.

approximately proportional to the MMSODD ofφ, as given earlier by (2.1).

2. Triangulation. TriangulateP using a Delaunay triangulation.
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In step 1, the setP is always chosen to include all extreme convex-hull points of the image domain.

This ensures that the triangulation produced in step 2 covers the entire image domain. Since several

variants of the ED scheme are presented in [19], it is worth noting, for the sake of completeness, that

we consider the variant with the following characteristicsherein:

1. a third-order binomial filter is used for smoothing;

2. non-leaky error diffusion is used with a serpentine scan order;

3. the sensitivity parameterγ is chosen as 1; and

4. the error diffusion algorithm is performed iteratively in order to achieve exactly the desired

number of sample points.

Since, in our work herein, we require that the approximatingfunction (i.e.,φ̂) interpolate the original

(i.e., φ), we consider only the variant of the ED method that satisfiesthis interpolating condition.

(That is, the variant that employs a least-squares fit is not considered.)

In order to show the sample-point selection strategy (i.e.,step 1 above) in the ED method, we

provide an illustrative example. Suppose that we have an imageφ as shown in Figure 2.7(a), where

the MMSODD ofφ is shown in Figure 2.7(b). The sample points that are selected in step 1 above

using Floyd-Steinberg error diffusion are shown in Figure 2.7(c), which are distributed with a density

approximately proportional to the MMSODD ofφ. Examining Figure 2.7(c), we can see that the

selected sample points mostly concentrate around image edges, representing the shapes and contours

of the imageφ reasonably well.

2.8 Local Optimization Procedure (LOP)

Before proceeding further, it is necessary to interject someadditional background related to triangu-

lations. An edgee of a triangulation is said to beflippable if e has two incident faces (i.e., is not on
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Figure 2.7: (a) An imageφ, (b) the MMSODD ofφ , and (c) the sample points selected in step 1.
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Figure 2.8: Quadrilateral examples. The edgee is the diagonal of a quadrilateral that is (a) strictly
convex, (b) convex but not strictly convex, and (c) not convex.

the triangulation boundary) and the union of these two facesis a strictly convex quadrilateral. Fig-

ure 2.8 gives examples of flippable and nonflippable edges. Inparticular, the edgee in Figure 2.8(a)

is flippable, while the edgee is not flippable in both Figures 2.8(b) and (c). For a flippableedgee

being the diagonal of a strictly convex quadrilateralq that is the union of the two incident faces ofe,

anedge flipis an operation that replaces the edgee in the triangulation by the other diagonale′ of q,

as shown in Figure 2.9. The fact that every triangulation of aset of points is reachable from every

other triangulation of the same set of points via a finite sequence of edge flips [56] motivated Lawson
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e

(a)

e′

(b)

Figure 2.9: An edge flip. (a) Part of the triangulation containing a flippable edgee. (b) The same part
of the triangulation afterehas been flipped to yield the new edgee′.

to propose the so called LOP [46].

The LOP [46] is an optimization technique, based on edge flips, that is used to select the connec-

tivity of a triangulation so as to be optimal in some sense. Inpractice, the LOP is frequently used to

choose triangulation connectivity in the case of DDTs. As a matter of terminology, a flippable edgee

is said to beoptimal if it satisfies some prescribed edge-optimality criterion.In turn, a triangulationT

is said to beoptimal if every flippable edge inT is optimal. In order to produce an optimal triangula-

tion, the LOP simply applies edge flips to flippable edges thatare not optimal, until the triangulation

is optimal (i.e., all flippable edges are optimal).

Cost-Based Criteria. Most frequently, the edge-optimality criterion is specified indirectly through

some measure of triangulation cost. Let triCost(T) denote the cost of the triangulationT. A flippable

edgee in the triangulationT is then said to beoptimal if

triCost(T) ≤ triCost(T ′), (2.4)

whereT ′ is the new triangulation obtained by applying an edge flip toe (in the triangulationT). That

is, the flippable edgee is deemed optimal if applying an edge flip toe would not result in a strict
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decrease in the triangulation cost. In turn, the triangulation cost triCost is specified by defining a cost

measure for (all) edges in the triangulation. Let edgeCost(T,e) denote the cost of the edgee in the

triangulationT. Then, triCost is defined as

triCost(T) = ∑
e∈E(T)

edgeCost(T,e), (2.5)

whereE(T) denotes the set of edges inT. That is, the cost of a triangulation is simply the sum

of its corresponding edge costs. As a matter of terminology,we refer to a triangulation optimality

criterion employing (2.4) (where triCost is of the form of (2.5)) ascost based. By far, cost-based

criteria are most commonly used in conjunction with the LOP,several examples of which can be found

in [23, 57, 25, 26]. A particularly important criterion of this type issquared error (SE) [25, 26]. With

the SE criterion, the edgee is deemed optimal if applying an edge flip toe would not cause a strict

decrease in the MSE as defined by (2.3).

Heuristic-Based Criteria. More recently, the paper [30] introduced a type of triangulation opti-

mality criterion that is not associated with any underlyingtriangulation cost function (i.e., a function

of the form of (2.5)). With this type of criterion, a cost is assigned to each flippable edge. Let

edgeCost(T,e) denote the cost of the edgee in the triangulationT. The flippable edgee is said to be

optimal if

edgeCost(T,e) ≤ edgeCost(T ′,e′), (2.6)

wheree′ is the new edge produced by applying an edge flip toe andT ′ is the corresponding new

triangulation (withe′). As a matter of terminology, we refer to a triangulation optimality criterion

using (2.6) asheuristic based.

Additional Remarks on the LOP. At this point, it is worthwhile to make a few additional remarks

about the LOP. The first comment to be made is with respect to algorithm termination. If a cost-based

optimality criterion is employed, the LOP must terminate after a finite number of steps (assuming the
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algorithm is implemented in a numerically robust manner). This is an indirect consequence of the fact

that the LOP only flips an edge if doing so would result in a strict decrease in the triangulation cost. In

contrast, if a heuristic-based optimality criterion is used (regardless of whether the implementation is

numerically robust), the LOP can potentially become trapped in a cycle, repeating the same sequence

of edge flips indefinitely. This is due to the fact that, in the absence of a well-defined triangulation

cost function, it is possible to make inconsistent decisions about the optimality of an edge. Such

inconsistent decisions can result in cycles. From a practical standpoint, this potential cycling issue

does not pose any significant problems for two reasons. First, when performing the LOP, it is easy to

avoid being trapped in a cycle by simply tracking how many times each edge is tested for optimality

and if the count for an edge exceeds a particular threshold some special action can be taken, such

as ignoring the edge for the remainder of the LOP or terminating the LOP early. Second, the more

effective heuristic-based criteria only rarely result in cycles. Therefore, breaking cycles when they

do occur has little impact on the result produced by the LOP. In the implementation employed in our

work, in the case of heuristic-based criteria, we limit the number of times an edge may be tested for

optimality to 15. If this count is exceeded, the edge in question is simply ignored for the remainder of

the LOP.

The second remark to make about the LOP concerns the optimal triangulation that it produces.

For any optimality criterion of practical interest (other than the Delaunay criterion [43, 45]), the

optimal solution produced by the LOP is almost never uniquely determined. The nonuniqueness of

the solution is important because it implies that some optimal solutions may be (and, in practice, are)

much better than others. The optimum produced will typically depend (often very heavily) on the

initial triangulation to which the LOP is applied.

2.9 Look-Ahead LOP (LLOP)

Suppose that the LOP is used in conjunction with a cost-basedoptimality criterion. In this case, if

a triangulationT is optimal, then no single edge flip can result in a new triangulation with strictly
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lower cost thanT. If, however, more than one edge flip is allowed, it can no longer be guaranteed

that the triangulation cost will not strictly decrease. In this sense, the LOP only guarantees a locally

(but not necessarily globally) optimal triangulation. Since some local minima will, in practice, have a

much lower cost than others, it would be advantageous to havesome means to reduce the likelihood

of converging to a poor local minimum. This observation motivated Yu et al. to propose the so called

LLOP [29].

The LLOP is similar to the LOP in that the LLOP applies edge-flip-based transformations to a

triangulation until the triangulation is optimal. The LLOP, however, differs from the LOP in two key

respects. The first difference is that, instead of only allowing the triangulation to be transformed by

a single edge flip in each step, the triangulation can be transformed by: 1) a single edge flip; or 2) a

sequence of two edge flips, where the two edges involved sharea common face. The second difference

is that the definition of triangulation optimality is changed to the following: A triangulationT is said

to beoptimal if the application of a single transformation of one of the two above types cannot produce

a new triangulation whose cost is strictly less than that ofT.

For the benefit of the reader, we provide an example illustrating the two types of triangulation

transformation allowed in the LLOP. Consider part of a triangulation as shown in Figures 2.10(a)

and 2.11(a). As described above, this part of the triangulation can be transformed by: 1) a single edge

flip; or 2) a sequence of two edge flips, where the two edges involved share a common face. To begin,

let us consider an example illustrating the first type of triangulation transformation in the LLOP.

Given part of a triangulation as shown in 2.10(a), Figure 2.10(b) shows the resulting triangulation

by applying a single edge flip to the edgee in Figure 2.10(a). Then, let us consider an example of

the second type of triangulation transformation in the LLOP. Given part of a triangulation as shown

in 2.11(a), this part of the triangulation can be transformed into one of the four triangulations shown

in Figures 2.11(c)–(f), via a sequence of two edge flips.

By being allowed to apply sequences of two edge flips (instead of just individual edge flips), the

LLOP is able to reduce the likelihood of converging to a very poor local minimum. In effect, when

trying to minimize the triangulation cost, the LLOP considers the effect of not just single edge flips
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Figure 2.10: An example of the first type of triangulation transformation in the LLOP. (a) Part of the
triangulation containing a flippable edgee. (b) The same part of the triangulation after applying a
single edge flip toe.

(like the LOP) but also sequences of two edge flips. In practice, the LLOP usually produces a better

local optimum (i.e., a triangulation with lower cost) than the LOP. The downside of the LLOP is that

it typically requires more computation time and can be quitedifficult to implement in a numerically

robust manner. Since the LLOP fundamentally relies on the existence of a triangulation cost function,

the LLOP can only be used in conjunction with optimality criteria that are cost based. In other words,

the LLOP cannot be used with heuristic-based optimality criteria.
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Figure 2.11: An example of the second type of triangulation transformation in the LLOP. (a) Part of
the triangulation containing a flippable edgee before transformation. (b)–(e) Four possible resulted
cases of the same part of the triangulation after applying a sequence of two edge flips.
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Chapter 3

Proposed Approach

3.1 Overview

In this chapter, we propose a computational framework modified from the ED method and derive two

proposed methods from our framework. We begin by introducing the computational framework with

several free parameters. Then, we present various choices for each of the free parameters and advocate

two particular choices of those parameters, leading to our two proposed methods. When discussing

our framework, we also propose two optimality criteria for the LOP that perform extremely well.

After that, we evaluate our proposed methods in terms of meshquality and computational complexity.

Lastly, for the completeness of the thesis, we briefly discuss some extra work we have done during

the development of our framework.

3.2 Computational Framework for Mesh Generation

Having introduced the necessary background in Chapter 2, we now turn our attention to introduc-

ing the two mesh-generation methods proposed in this thesis. As explained earlier, the ED method

chooses triangulation connectivity using a Delaunay triangulation. Experimentally, however, we have
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observed that selecting the connectivity in this way results in a mesh in which triangulation edges of-

ten crosscut image edges (i.e., discontinuities in the image), leading to a degradation in approximation

quality. This motivated us to consider choosing triangulation connectivity in a more flexible manner,

using a DDT instead of a Delaunay triangulation.

In what follows, we will first introduce our general computational framework for mesh genera-

tion, which has several free parameters. Then, by advocating two particular choices for these parame-

ters, we will arrive at the two specific mesh-generation methods proposed herein, namely MED1 and

MED2. Since it is helpful for the reader to see how we arrived at these choices, we provide significant

detail in this regard, including some experimental results.

Given an imageφ and a desired mesh sizeN as input, our general computational framework for

mesh generation produces a mesh model ofφ having the setP of sample points, with|P|= N, and the

associated triangulationT. To accomplish this objective, our framework performs the following (in

order):

1. Sample-point selection. SelectP using the same sample-point selection strategy in step 1 of the

ED method (as introduced earlier in Section 2.7 on page 17).

2. Initial mesh construction. For each pointp ∈ P using the order specified by insOrder, where

insOrder is a free parameter of the framework:

(a) Insertp in the triangulationT. This is accomplished by deleting any faces containingpand

retriangulating the resulting hole. This point-insertionprocess is illustrated in Figures 3.1

and 3.2.

(b) Adjust the connectivity ofT by applying the LOP (as described in Section 2.8 on page 19)

with the triangulation optimality criterion chosen as insOptCriterion, where insOptCriterion

is a free parameter of our framework.

3. Final connectivity adjustment. Adjust the connectivityof T by applying either the LOP or

LLOP, as specified by the parameter fcaMethod, with the optimality criterion chosen as SE
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Figure 3.1: Insertion of a point strictly inside a face. (a) Part of the triangulation showing a triangle
viv jvk. (b) The same part of the triangulation with a new vertexp inserted inside the triangleviv jvk.
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Figure 3.2: Insertion of a point on an edge. (a) Part of the triangulation showing two incident faces
viv jvk andvivkvl . (b) The same part of the triangulation with a new vertexp inserted on the edgevivk.

(i.e., squared error). If fcaMethod is LOP, the LOP is employed in this step; otherwise (i.e., if

fcaMethod is LLOP), the LLOP is used.

In step 2b of the above framework, the choice of the triangulation optimality criterion insOptCriterion

is critical, as different choices of insOptCriterion will typically lead to vastly differing meshes. One

of the optimality criteria considered in our work is the SE criterion introduced in Section 2.8. We also

considered numerous other criteria, which we will introduce shortly. Before proceeding further, how-

ever, there is a very important comment that we must make regarding our above framework. Since
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our objective is to produce a mesh that minimizes the MSE (as given by (2.3)), this suggests the

“obvious” solution of choosing the optimality criterion insOptCriterion as SE and simply skipping

final connectivity adjustment (i.e., step 3) altogether (since final connectivity adjustment would not

change anything if insOptCriterion were chosen as SE). In other words, the obvious solution would

be to simply optimize for squared error using the LOP after the insertion of each point in step 2. As it

turns out, this obvious solution performs extremely poorly. This poor performance is due to an inter-

play between point insertion and the SE criterion in step 2b,which leads to triangulations with many

poorly-chosen sliver (i.e., long thin) triangles, severely degrading approximation quality. In effect,

this interplay causes the mesh-generation optimization process to converge to an extremely poor local

optimum. To combat this problem, our framework allows the parameter insOptCriterion to be chosen

differently from SE, and then adds a final connectivity-adjustment step employing the SE criterion in

order to reduce the squared error for the final mesh.

Insertion Order. Recall that step 2 of our framework (i.e., initial mesh construction) utilizes the

parameter insOrder, which specifies the order in which points are to be inserted in the triangulation.

In our work, we considered numerous possible choices for theinsertion order insOrder, including:

1. randomized order: the extreme convex-hull points followed by the remaining points in random-

ized order;

2. xy-lexicographic order: the extreme convex-hull pointsfollowed by the remaining points in

xy-lexicographic order;

3. farthest-point first order: the extreme convex-hull points followed by the remaining points pri-

oritized such that the point most distant from the vertices in the triangulation is inserted first;

and

4. closest-point first order: the extreme convex-hull points followed by the remaining points pri-

oritized such that the point nearest another vertex in the triangulation is inserted first.
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Detailed experiments showed randomized order (i.e., item 1above) to be most effective. In particular,

we found that, relative to randomized order, no one of the other insertion orders considered was able to

consistently produce higher quality meshes at lower or comparable computational cost. Consequently,

we advocate that insOrder always be chosen as randomized order, and we assume that this choice is

always made for the remainder of this thesis.

Optimality Criteria. Recall that step 2b of our framework (i.e., connectivity adjustment after

point insertion) utilizes the parameter insOptCriterion, which determines the particular triangulation

optimality criterion used for connectivity adjustment. Inour work, we considered the following twelve

possibilities for the choice of the optimality criterion insOptCriterion:

1. squared error (SE) [25, Equation 1] and [26, Section 2];

2. (preferred-direction) Delaunay [45, Section 2] and [46,Section 11.2];

3. angle between normals (ABN)[23, Equation 3];

4. jump in normal derivatives (JND) [23, Section 3.1];

5. deviations from linear polynomials (DLP) [23, Section 3.1];

6. distances from planes (DP)[23, Section 3.1];

7. absolute mean curvature (AMC)[57, Section 2.2];

8. Garland-Heckbert hybrid (GHH) [18, Algorithm IV and Section 4.5.1] and [30, Section III.B];

9. shape-quality-weighted SE (SQSE)[30, Section III.B];

10. JND-weighted SE (JNDSE)[30, Section III.B];

11. edge-length-weighted SE (ELSE)[proposed herein]; and

12. minimum-angle-weighted SE (MASE)[proposed herein].
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The first ten of the above criteria are well known criteria taken from the literature, while the remaining

two (namely, ELSE and MASE) are newly proposed in this thesis. In the interest of brevity, we will

only present herein the formal mathematical definitions of the two new criteria. The definitions of the

other optimality criteria can be found in the references provided above. Of the old criteria (i.e., the first

ten) the SE, Delaunay, ABN, JND, DLP, DP, and AMC criteria are all cost based (i.e., employ (2.4)),

the SQSE and JNDSE criteria are heuristic based (i.e., employ (2.6)), and the GHH criterion is a

hybrid of two cost-based criteria.

Before formally defining the ELSE and MASE criteria, we must first introduce some additional

notation. For a triangulationT, let Γ(T) denote the set of all integer lattice points falling inside or

on the boundary ofT. For a given triangulationT, let faceT denote a function that maps each point

p∈ Γ(T) to exactly oneface inT, where this function is defined using the grid-point to face mapping

rules introduced in Section 2.6 (on page 16). The set of all points p∈ Γ(T) satisfying faceT(p) = f is

denoted pointsT( f ). With this notation in place, we can now proceed to present the ELSE and MASE

criteria.

The ELSE and MASE criteria are both heuristic based (i.e., employ (2.6)). Therefore, each of

these criteria is completely specified in terms of an edge-cost function. For a flippable edgee in the

triangulationT, the edge-cost functions for the ELSE and MASE criteria are given, respectively, by

edgeCostELSE(T,e) = ‖e‖ [β(T, fi)+β(T, f j)] and (3.1a)

edgeCostMASE(T,e) =
β(T, fi)+β(T, f j)

min
{

θ( fi),θ( f j)
} , (3.1b)

where

β(T, f ) = ∑
p∈pointsT( f )

(

φ̂(p)−φ(p)
)2

,

fi and f j denote the two faces incident toe, θ( f ) denotes the minimum interior angle of the facef ,

and pointsT is as defined earlier.
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Final Connectivity Adjustment. In step 3 of our framework, the fcaMethod parameter is used

to select whether the LOP or LLOP is used for final connectivity adjustment. Having the ability

to choose between the LOP and LLOP provides us with more flexibility to trade off between mesh

quality and computational cost. In case the reader might be wondering why we did not allow similar

flexibility to choose between the LOP and LLOP for connectivity adjustment after point insertion

(i.e., in step 2b), we explain our rationale for this decision in what follows. The overriding reason for

this decision was that, as we shall see later, all of the most effective triangulation optimality criteria

during point insertion (i.e., in step 2b) are heuristic based, and such criteria cannot be used with

the LLOP. Consequently, allowing the use of the LLOP during point insertion would not facilitate

the development of a better mesh-generation method. To a much lesser extent, our decision was

also influenced by computational cost considerations. In particular, much more time is typically

spent performing connectivity adjustment in step 2b (in total) than in step 3. Thus, the increase in

computational cost resulting from replacing the LOP with the LLOP in step 2b is much higher than

that of replacing the LOP with the LLOP in step 3. Due to these (as well as other) factors, our

framework only accommodates the use of the LOP in step 2b.

3.3 Test Data

Shortly, we will have the need to present some experimental results obtained with various test images.

So, before proceeding further, a brief digression is in order to introduce the test images that we

employed. In our work, we have used 40 images, taken mostly from standard test sets such as [58],

[59], and [60]. For the most part, the results that we presentherein focus on the representative subset

of these images listed in Table 3.1. This particular subset was chosen to contain a variety of image

types (i.e., photographic, medical, and computer-generated imagery).
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Table 3.1: Test images
ImageSize, Bits/SampleDescription
bull 1024×768, 8 cartoon animal
cr 1744×2048, 10 x-ray [58]
lena 512×512, 8 woman [59]

3.4 Selection of Free Parameters

As seen earlier, our computational framework for mesh generation has three free parameters, namely,

1) the insertion order insOrder, 2) the triangulation optimality criterion insOptCriterion, and 3) the

method fcaMethod used for final connectivity adjustment. For the reasons presented earlier, we advo-

cate choosing insOrder as randomized order. In what follows, we study the effects of making various

choices for the two remaining parameters (namely, insOptCriterion and fcaMethod). Based on this

analysis, we ultimately recommend two particular choices for these parameters, leading to our two

proposed mesh-generation methods.

Triangulation Optimality Criterion During Point Insertion. To begin, we study how the choice

of triangulation optimality criterion insOptCriterion in step 2b of our framework (on page 28) affects

mesh quality. Since the best choice of optimality criterionmight possibly be dependent on whether the

final-connectivity-adjustment method fcaMethod is chosenas LOP or LLOP, we treat these two cases

separately. For fcaMethod being chosen as each of LOP and LLOP, we proceeded as follows. For each

of the 40 images in our test set and five sampling densities perimage (for a total of 40·5 = 200 test

cases), we generated a mesh using each of the twelve choices for insOptCriterion under consideration,

and measured the resulting approximation error in terms of PSNR. In each of the test cases, the results

obtained with the twelve methods were ranked from 1 (best) to12 (worst). Then, the average and

standard deviation of these ranks were computed across eachsampling density as well as overall.

These ranking results are given in Tables 3.2(b) and 3.3(b) for the cases of fcaMethod being chosen

as LOP and LLOP, respectively. Individual results for threespecific images (namely, the ones listed

in Table 3.1) are provided in Tables 3.2(a) and 3.3(a) for fcaMethod being chosen as LOP and LLOP,
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respectively. In each of these tables, the best result in each row is shown in bold font.

First, let us examine the results for the case that fcaMethodis chosen as LOP. From the ranking

results in Table 3.2(b), we can make several observations: 1) the ELSE criterion is the clear winner

(with an overall rank of 1.16), followed by the MASE and JNDSEcriteria (with overall ranks of 2.50

and 2.85, respectively); 2) the MASE criterion yields better results than the JNDSE criterion, except

at high sampling densities where the two criteria are comparable; and 3) the worst performers are the

SE and DP criteria (with overall ranks of 10.88 and 11.74, respectively). Observation 3 supports our

earlier claim that the SE criterion leads to extremely poor results (when used during point insertion).

To add to observation 1, it is worth noting that a more detailed examination of the results shows

that the ELSE criterion performs best and second best in 187/200 (94%) and 4/200 (2%) of the test

cases, respectively. This observation is in agreement withthe fact that the standard deviations for

the rankings for the ELSE criterion are quite small (e.g., 0.89 or less). For that matter, most of the

standard deviations in the table are relatively small, indicating that the actual ranking results tend to be

reasonably close to the average rank. The results for the individual test cases, shown in Table 3.2(a),

are consistent with the ranking results. For example, the ELSE criterion is the best, outperforming

the second and third best criteria, MASE and JNDSE, in all 15 test cases by 0.01 to 1.77 dB and 0.04

to 4.15 dB, respectively. Moreover, the MASE criterion outperforms the JNDSE criterion in 12/15 of

the test cases by 0.01 to 2.38 dB. In the preceding results, PSNR was found to correlate reasonably

well with subjective quality. It is worthwhile to note that the two best performing criteria ELSE and

MASE are newly proposed herein. This shows that our ELSE and MASE criteria, especially the

former, make an important contribution beyond well-known criteria from the existing literature.

Now, let us consider the results for the case that fcaMethod is chosen as LLOP. As we will see

momentarily, the trends in this case are, for the most part, similar to those for the case just studied

above. Examining Table 3.3(b), we observe that: 1) the ELSE criteria is the clear winner (with an

overall rank of 1.44) followed by the MASE and JNDSE criteria(with overall ranks of 2.41 and 3.46,

respectively); and 2) the SE and DP criteria are the worst performers (with overall ranks of 11.31

and 11.47, respectively). To add to observation 1, a more detailed analysis of the results shows the
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Table 3.2: Comparison of the mesh quality obtained with the various choices of triangulation optimal-
ity criterion insOptCriterion in the case that fcaMethod is LOP. (a) PSNRs for three specific images.
(b) Rankings averaged across 40 images.

(a)
Samp.

Density PSNR (dB)
Image (%) SE Del. ABN JND DLP DP AMC GHH SQSEJNDSEMASE ELSE
bull 0.5 24.73 31.44 28.44 30.49 29.72 25.96 31.42 30.22 31.59 31.37 33.75 35.52

1.0 26.89 38.85 31.91 38.34 33.42 30.73 39.00 37.82 38.69 38.78 39.43 39.99
2.0 30.53 42.12 34.87 42.26 39.52 25.93 41.94 41.36 42.36 42.36 42.49 42.72
3.0 31.93 43.42 36.24 43.36 39.35 29.91 43.08 43.41 43.61 43.66 43.83 43.97
4.0 31.23 44.34 34.97 44.17 41.40 31.92 44.07 44.23 44.49 44.53 44.62 44.72

cr 0.5 31.19 34.40 30.38 34.45 32.42 30.23 34.22 34.30 34.81 34.84 34.92 35.11
1.0 32.41 36.33 33.01 36.35 34.42 31.16 36.37 36.48 37.13 37.16 37.22 37.31
2.0 33.33 38.68 34.34 38.36 36.33 32.52 38.24 38.75 38.95 39.01 39.00 39.10
3.0 34.12 39.57 34.95 39.32 36.96 33.78 39.17 39.62 39.76 39.82 39.80 39.87
4.0 35.63 40.10 39.29 39.89 37.56 33.54 39.70 40.19 40.31 40.36 40.33 40.42

lena 0.5 17.61 21.17 19.22 20.55 19.61 18.07 20.51 21.20 21.75 21.82 21.83 21.96
1.0 21.50 25.21 20.69 24.91 21.86 19.91 24.58 25.30 25.89 25.92 25.94 26.13
2.0 20.72 29.48 24.36 29.09 26.25 21.04 27.67 29.26 29.91 29.99 30.06 30.14
3.0 23.43 31.26 24.62 30.99 27.22 22.34 30.15 31.21 31.58 31.62 31.71 31.72
4.0 23.67 32.39 26.30 32.17 29.13 24.06 31.45 32.47 32.78 32.84 32.87 32.88

(b)
Samp.

Density Mean Ranka

(%) SE Del. ABN JND DLP DP AMC GHH SQSEJNDSEMASE ELSE
0.5 10.20 5.83 9.78 8.10 8.90 11.40 7.30 5.13 3.85 3.43 2.83 1.28

(1.42) (1.30) (1.47) (1.67) (1.62) (1.22) (1.68) (1.73) (1.22) (1.66) (1.53) (0.89)
1.0 10.95 6.05 10.03 7.60 9.10 11.75 6.95 5.35 3.80 2.98 2.28 1.18

(0.80) (1.18) (0.57) (0.80) (0.49) (0.49) (1.26) (0.79) (0.64) (0.79) (0.63) (0.67)
2.0 10.98 5.80 10.00 7.08 9.10 11.90 7.85 5.30 3.75 2.75 2.43 1.08

(0.47) (0.40) (0.50) (0.52) (0.37) (0.30) (0.42) (0.64) (0.54) (0.66) (0.70) (0.35)
3.0 11.18 5.90 10.00 6.95 9.03 11.80 8.00 5.13 3.88 2.58 2.43 1.15

(0.44) (0.37) (0.22) (0.22) (0.16) (0.40) (0.00) (0.46) (0.40) (0.67) (0.54) (0.69)
4.0 11.10 5.88 10.03 7.03 9.03 11.85 7.98 5.10 3.85 2.53 2.55 1.10

(0.44) (0.33) (0.27) (0.16) (0.16) (0.36) (0.16) (0.37) (0.53) (0.55) (0.59) (0.62)
All 10.88 5.89 9.97 7.35 9.03 11.74 7.62 5.20 3.83 2.85 2.50 1.16

(0.88) (0.84) (0.76) (0.97) (0.79) (0.67) (1.05) (0.94) (0.72) (1.01) (0.90) (0.67)
aThe standard deviation is given in parentheses.
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ELSE criterion to perform best and second best 166/200 (83%)and 12/200 (6%) of the test cases,

respectively. This observation is in agreement with the fact that the standard deviations for the rank-

ings for the ELSE criterion are quite small (e.g., 1.19 in theoverall case). For that matter, most of the

standard deviations in the table are relatively small, indicating that the actual ranking results tend to

be reasonably close to the average rank. Compared to the case when fcaMethod is chosen as LOP, we

observe that the MASE criterion outperforms the JNDSE criterion even more consistently (i.e., the

two criteria differ more in terms of their overall rankings). The results for individual test cases shown

in Table 3.3(a) are consistent with the preceding ranking results. For example, the ELSE criterion

is the best, outperforming the second and third best criteria, MASE and JNDSE, in 13/15 of the test

cases by 0.01 to 2.22 dB and 0.01 to 2.61 dB, respectively, and the MASE criterion outperforms the

JNDSE criterion in 12/15 of the test cases by 0.01 to 0.84 dB. Again, in the preceding results, PSNR

was found to correlate reasonably well with subjective quality.

As the above experimental results demonstrate, regardlessof whether the final-connectivity-ad-

justment method fcaMethod is chosen as LOP or LLOP, the best performance in terms of approxima-

tion quality is obtained by choosing the triangulation optimality criterion insOptCriterion as ELSE.

Therefore, we advocate this particular choice for insOptCriterion in our framework.

In the experimental results above, we saw that, regardless of whether the final-connectivity-adjust-

ment method fcaMethod is chosen as LOP or LLOP, selecting thetriangulation optimality criterion

insOptCriterion as SE leads to meshes of extremely poor quality. Earlier, we indicated that this behav-

ior is due to an interplay between point insertion and the SE criterion, which leads to triangulations

with many poorly-chosen sliver triangles. To illustrate this phenomenon, we present two examples,

one for the parameter fcaMethod being chosen as each of LOP and LLOP. For consistency, the exam-

ples are taken from the results presented earlier in Tables 3.2 and 3.3, and correspond to the lena image

at a sampling density of 2%. For the parameter fcaMethod being chosen as each of LOP and LLOP,

the results obtained are shown in Figures 3.3 and 3.4, respectively. Each figure shows part of the image

approximation and the corresponding image-domain triangulation obtained when insOptCriterion is

chosen as SE. For comparison purposes, the result obtained with the ELSE criterion (which performs
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Table 3.3: Comparison of the mesh quality obtained with the various choices of triangulation optimal-
ity criterion insOptCriterion in the case that fcaMethod is LLOP. (a) PSNRs for three specific images.
(b) Rankings averaged across 40 images.

(a)
Samp.

Density PSNR (dB)
Image (%) SE Del. ABN JND DLP DP AMC GHH SQSEJNDSEMASE ELSE
bull 0.5 26.68 34.31 31.70 35.24 31.83 29.98 34.72 33.10 33.75 33.88 34.72 36.20

1.0 30.67 40.41 36.93 40.12 37.30 35.76 40.30 40.01 40.15 40.17 40.56 42.78
2.0 33.73 43.27 39.05 43.37 41.25 31.54 43.39 42.69 43.23 43.23 43.38 43.51
3.0 34.91 44.43 39.85 44.43 42.30 34.84 44.51 44.32 44.39 44.40 44.52 44.58
4.0 33.76 45.20 40.25 45.15 44.34 36.72 45.22 45.05 45.19 45.21 45.29 45.33

cr 0.5 32.73 35.88 32.68 35.65 34.05 32.50 35.65 35.76 35.95 35.91 35.92 36.04
1.0 34.13 37.71 35.10 37.18 35.92 33.19 37.55 37.72 37.77 37.78 37.78 37.82
2.0 34.83 39.36 36.51 39.19 37.92 34.76 39.19 39.35 39.40 39.41 39.42 39.43
3.0 35.68 40.14 37.16 40.01 38.59 35.99 39.99 40.12 40.17 40.18 40.18 40.19
4.0 37.10 40.65 38.33 40.53 38.96 35.63 40.52 40.63 40.69 40.70 40.70 40.72

lena 0.5 18.80 22.51 20.68 21.76 20.86 22.03 22.03 22.47 22.28 22.43 22.45 22.53
1.0 23.18 26.41 23.22 26.33 23.97 26.17 26.17 26.39 26.48 26.51 26.57 26.63
2.0 22.64 30.55 27.23 30.30 28.77 30.24 30.24 30.08 30.57 30.58 30.60 30.68
3.0 26.44 32.18 27.89 32.13 29.35 31.79 31.79 32.10 32.27 32.26 32.29 32.26
4.0 25.94 33.38 29.82 33.23 31.03 33.09 33.09 33.30 33.39 33.42 33.44 33.42

(b)
Samp.

Density Mean Ranka

(%) SE Del. ABN JND DLP DP AMC GHH SQSEJNDSEMASE ELSE
0.5 10.98 4.40 9.68 7.65 8.95 11.00 6.15 5.60 4.60 4.33 2.98 1.70

(1.33) (1.69) (1.13) (1.75) (1.75) (1.76) (2.34) (2.07) (2.00) (1.89) (1.37) (1.36)
1.0 11.48 4.55 9.88 7.78 9.00 11.43 6.60 5.78 3.90 3.60 2.33 1.70

(0.59) (1.18) (0.60) (0.79) (0.89) (0.54) (1.61) (1.25) (1.04) (1.43) (0.96) (1.65)
2.0 11.33 5.05 9.83 7.25 9.18 11.68 7.28 6.05 3.58 3.18 2.48 1.15

(0.47) (0.77) (0.38) (0.83) (0.38) (0.47) (1.07) (0.77) (1.20) (0.77) (0.77) (0.65)
3.0 11.38 5.05 9.93 7.05 9.08 11.63 7.68 5.98 3.70 3.15 2.10 1.30

(0.48) (0.38) (0.26) (0.67) (0.26) (0.48) (0.85) (0.57) (0.81) (0.91) (0.54) (1.03)
4.0 11.38 5.00 9.98 7.03 9.03 11.63 7.78 5.95 3.68 3.05 2.18 1.35

(0.48) (0.55) (0.16) (0.47) (0.16) (0.48) (0.82) (0.63) (0.88) (0.74) (0.83) (0.91)
All 11.31 4.81 9.86 7.35 9.05 11.47 7.10 5.87 3.89 3.46 2.41 1.44

(0.77) (1.06) (0.62) (1.05) (0.91) (0.94) (1.59) (1.21) (1.31) (1.32) (0.99) (1.19)
aThe standard deviation is given in parentheses.
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very well) is also shown. First, let us consider the example in Figure 3.3. Examining Figure 3.3(b),

we can see that the image-domain triangulation obtained with the SE criterion has a large number of

poorly-chosen sliver triangles, which lead to very high error in the corresponding image approxima-

tion in Figure 3.3(a). In contrast, viewing Figures 3.3(c) and (d), we observe that the ELSE criterion

does not suffer from this problem. Now, moving our attentionto the second example in Figure 3.4, we

can see that a similar pattern of behavior is obtained as in the first example. Again, the SE criterion

yields a triangulation with many poorly-chosen sliver triangles, which severely degrades approxima-

tion quality.

As for why the SE criterion typically yields triangulationswith many poorly-chosen sliver trian-

gles, this can be attributed to the combination of two factors. First, the SE criterion does not explicitly

consider triangle shape and, therefore, does not have any direct mechanism for preventing the creation

of bad sliver triangles or eliminating such triangles once they are present. Second, the SE criterion is

also unable to account for triangle shape in an indirect manner, due to the shortsightedness of the LOP

and LLOP. (The shortsightedness of the LOP and LLOP follows from the fact that a decision made

at any given step in each of these algorithms considers the impact of that decision only in the current

step, not inall subsequentsteps.) In practice, the above two factors conspire to produce a pattern

of behavior with the SE criterion that resembles the following. When a new point is inserted in the

triangulation, a sliver triangle will sometimes result. Insuch a case, since the SE criterion does not

directly consider triangle shape, the SE criterion will often be unable to eliminate the sliver triangle.

Thus, as more points are inserted in the triangulation, the number of sliver triangles tends to grow

significantly. In turn, as the number of sliver triangles grows, the number of unflippable edges also

tends to increase. This leads to sliver triangles tending tohave fewer flippable edges (on average).

This, in turn, makes it more difficult to eliminate sliver triangles, once present. In this manner, a very

large number of sliver triangles is obtained. Because the number of sliver triangles produced is so

abnormally large, it is not surprising that the number of such triangles that are poorly chosen is also

high.

In the experimental results above, we saw that the ELSE and MASE criteria perform best in terms
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(a) (b)

(c) (d)

Figure 3.3: Comparison of the mesh quality obtained for the lena image at a sampling density of 2%
in the case that the final-connectivity-adjustment method fcaMethod is LOP. Part of the image approx-
imation obtained when the optimality criteria insOptCriterion is chosen as each of (a) SE (20.72 dB)
and (c) ELSE (30.14 dB), and (b) and (d) the corresponding triangulations.

of mesh quality. This excellent performance is made possible by the fact that each of these two criteria

has a direct dependence onboth triangle shape and squared error. The dependence on squarederror

is critical for achieving high mesh quality, while the dependence on triangle shape is important for

avoiding large numbers of poorly-chosen sliver triangles.In the case of the ELSE criterion, triangle



41

(a) (b)

(c) (d)

Figure 3.4: Comparison of the mesh quality obtained for the lena image at a sampling density of 2% in
the case that the final-connectivity-adjustment method fcaMethod is LLOP. Part of the image approx-
imation obtained when the optimality criteria insOptCriterion is chosen as each of (a) SE (22.64 dB)
and (c) ELSE (30.68 dB), and (b) and (d) the corresponding triangulations.

shape is implicitly considered by the criterion’s dependence on edge length, which penalizes longer

edges. In the case of the MASE criterion, triangle shape is considered by the criterion’s dependence

on minimum interior angle, which penalizes smaller interior angles. By accounting for triangle shape,

the ELSE and MASE criteria are able to avoid the bad-sliver problem that plagues the SE criterion.
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Method for Final Connectivity Adjustment. Next, we study how the choice of the final-connec-

tivity-adjustment method fcaMethod in step 3 of our framework (which can be either LOP or LLOP)

affects mesh quality. To do this, we fix the insOptCriterion parameter to be ELSE and proceed as

follows. For each of the 40 images in our test set and five sampling densities per image (for a total

of 40·5 = 200 test cases), we generated a mesh using each of the two choices for fcaMethod under

consideration (namely, LOP and LLOP), and measured the resulting approximation error in terms of

PSNR. In all of these 200 test cases, the LLOP outperformed theLOP by a margin of 0.09 to 2.30 dB,

with the average margin being 0.56 dB. Individual results forthree images (namely, the images listed

in Table 3.1) are given in Table 3.4. Examining this table, wesee that the LLOP outperforms the LOP

in all cases by a margin of 0.30 to 0.93 dB. Although we have onlyshown results for one choice of

the fixed parameter insOptCriterion (i.e., ELSE), we found similar results with other choices. Thus,

from above, we conclude that choosing the parameter fcaMethod as LLOP (as opposed to LOP) yields

higher mesh quality. This said, however, we must point out that this choice entails a trade off in terms

of computational cost. As noted earlier (in Section 2.9 on page 23), the LLOP has a higher compu-

tational cost than the LOP. For example, for the test case of the lena image at a sampling density of

2%, we found the LOP and LLOP to have computation times of about 1.40 seconds and 2.30 seconds,

respectively. More generally, we have found the LLOP to typically require a computation time that

is about 1.4 to 1.7 times that of the LOP. Thus, the best choicefor the parameter fcaMethod depends

on the most appropriate trade off between mesh quality and computational cost for the application at

hand.

3.5 Proposed Methods

Above, we have considered how various choices for the free parameters in our computational frame-

work for mesh generation (namely, the insertion order, triangulation optimality criterion, and final-

connectivity-adjustment method) affect mesh quality. This led us to conclude that the triangulation

optimality criterion insOptCriterion and the insertion order insOrder are best chosen as ELSE and
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Table 3.4: Comparison of the mesh quality obtained with each of the two choices for the fcaMethod
parameter

Samp.
Density PSNR (dB)

Image (%) LOP LLOP
bull 0.5 35.52 36.20

1.0 29.99 42.78
2.0 42.72 43.51
3.0 43.97 44.58
4.0 44.72 45.33

cr 0.5 35.11 36.04
1.0 37.31 37.82
2.0 39.10 39.43
3.0 39.87 40.19
4.0 40.42 40.72

lena 0.5 21.96 22.53
1.0 26.13 26.63
2.0 30.14 30.68
3.0 31.72 32.26
4.0 32.88 33.42

randomized order, respectively. Whether the final-connectivity-adjustment method fcaMethod should

be chosen as LOP or LLOP is less clear cut, due to a trade off between mesh quality and computa-

tional cost. As a result, we chose to propose two methods, known as MED1 and MED2, where the

first method has a lower computational cost relative to the second. The MED1 and MED2 methods

both employ the best choices for insOptCriterion and insOrder as identified above (i.e., ELSE and

randomized order, respectively). For the final-connectivity-adjustment method fcaMethod, however,

the MED1 method uses the LOP (which has lower computational cost), while the MED2 method uses

the LLOP (which has higher computational cost).
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3.6 Evaluation of Proposed Methods

Having introduced our MED1 and MED2 mesh-generation methods, we now compare their perfor-

mance to that of the ED scheme in terms of mesh quality. In addition, we make a few comments

regarding the computational cost of our proposed methods. The software implementations of the

methods used in this evaluation were developed by the authorof this thesis and written in C++. For

test data, we employ the same set of 40 images described earlier in Section 3.3.

Mesh Quality. For all 40 images in our test set and five sampling densities per image (for a total

of 40· 5 = 200 test cases), we used each of the various methods under consideration to generate a

mesh, and then measured the resulting approximation error in terms of PSNR. Individual results for

three specific images (namely, the images listed in Table 3.1) are given in Table 3.5.

To begin, we compare the MED1 and MED2 methods to the ED scheme. Examining the results

for the individual test cases in Table 3.5, we see that the MED1 and MED2 methods both outperform

the ED scheme in all 15 test cases, by margins of 1.94 to 8.46 dBand 2.24 to 9.14 dB, respectively.

Next, we consider the full set of results taken across all 200test cases (i.e., 40 images with five

sampling densities per image). In the full set of results, wefound that the MED1 and MED2 methods

both yield higher quality meshes than the ED scheme in all 200test cases. More specifically, the

MED1 method outperformed the ED scheme by a margin of 1.93 to 8.46 dB with an average margin

of 3.26 dB, while the MED2 method outperformed the ED scheme bya margin of 2.23 to 9.14 dB

with an average margin of 3.81 dB. Thus, the MED1 and MED2 methods clearly yield meshes of very

substantially higher quality, relative to the ED method.

Next, we compare the performance of the MED1 and MED2 methods. Examining the results from

the individual test cases in Table 3.5, we can see that the MED2 method beats the MED1 method in

all 15 test cases by a margin of 0.30 to 0.93 dB. In the full set ofresults, we found that the MED2

method yields higher quality meshes than the MED1 method in all 200 test cases, by a margin of

0.09 to 2.30 dB with an average margin of 0.56 dB. Therefore, the MED2 method consistently yields
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Table 3.5: Comparison of the mesh quality obtained with the various methods
Samp.

Density PSNR (dB)
Image (%) MED1 MED2 ED
bull 0.5 35.52 36.20 27.06

1.0 39.99 40.78 34.46
2.0 42.72 43.51 38.59
3.0 43.97 44.58 40.47
4.0 44.72 45.33 41.60

cr 0.5 35.11 36.04 31.96
1.0 37.31 37.82 33.84
2.0 39.10 39.43 35.72
3.0 39.87 40.19 37.63
4.0 40.42 40.72 38.48

lena 0.5 21.96 22.53 17.76
1.0 26.13 26.63 21.50
2.0 30.14 30.68 26.38
3.0 31.72 32.26 28.50
4.0 32.88 33.42 29.83

meshes of higher quality than the MED1 method. This behavioris due to the MED2 method using

the more effective LLOP (instead of the LOP) for final connectivity adjustment.

In the above results, PSNR was found to correlate reasonablywell with subjective image quality.

For the benefit of the reader, however, we include illustrative examples in what follows. To begin,

we consider the case of a photographic image. For one of the test cases in Table 3.5 namely, the lena

image at a sampling density of 2%, part of the image approximation and the corresponding image-

domain triangulation obtained for each of the various methods is shown in Figure 3.5. Examining

this figure, we can see that the image approximations produced by our MED1 and MED2 methods

(in Figures 3.5(a) and (b), respectively) are clearly of much higher quality than the one produced by

the ED scheme (in Figure 3.5(c)), with image details such as image edges/contours being much better

preserved in the MED1 and MED2 cases. In order to more clearlyhighlight some of the more subtle

difference between the results for our MED1 and MED2 methods, we show (for the same test case)

the results for a smaller region of interest under greater magnification in Figure 3.6. By carefully
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comparing the image approximations for our MED1 and MED2 methods in Figures 3.6(a) and (b),

respectively, we can see that there are a few places where image details (such as edges and contours)

are slightly better preserved by our MED2 method than our MED1 scheme, one example being the

(image) edge along the top of the hat. The improved performance in the MED2 case is largely due to

triangulation edges being better aligned with image edges/contours. So, in terms of subjective quality,

our MED1 and MED2 methods are both vastly superior to the ED scheme, with our MED2 method

yielding slightly better quality than our MED1 scheme.

Now, we consider the cases of computer-generated and medical images. In particular, for two test

cases in Table 3.5, namely, the bull image at a sampling density of 1% and the cr image at a sampling

density of 0.5%, part of the image approximations and the corresponding image-domain triangulations

obtained for each of the various methods are shown in Figures3.7 and 3.8, respectively. Observing

the two figures, we can see that the trends in these two figures are similar to those in Figure 3.5. In

particular, the image approximations for our MED1 and MED2 methods (in Figures 3.7(a) and 3.8(a),

and 3.7(b) and 3.8(b), respectively) are clearly superior to those for the ED method (in Figures 3.7(c)

and 3.8(c)), with image details (such as edges and contours)being much better preserved in the MED1

and MED2 cases.

Computational Cost. Next, we briefly consider the computational costs of our MED1and MED2

methods. For the purposes of making timing measurements, weemployed very modest hardware,

namely an eight-year-old notebook computer with a 2.00 GHz Intel Core2 Duo T7250 CPU and 1.0

GB of RAM. On this machine, our MED1 and MED2 methods typicallyrequire only a few seconds

of computation time for images like lena from Table 3.1. In particular, for the lena image and several

sampling densities, the time required for mesh generation for each method under consideration is

shown in Table 3.6.

Examining Table 3.6, we can see that the MED1 and MED2 methodsrequire 0.95 to 2.06 seconds

and 1.38 to 3.30 seconds, respectively. We can also observe that our MED1 and MED2 methods

typically increase the computation time relative to the ED scheme by only 0.3 to 1.1 seconds and

0.7 to 2.4 seconds, respectively. In absolute terms, this incremental cost is very small when one
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Part of the image approximation obtained for thelena image at a sampling density of 2%
with each of the (a) MED1 (30.14 dB), (b) MED2 (30.68 dB), and (c)ED (26.38 dB) methods, and
(d), (e), and (f) the corresponding triangulations.

considers the very substantial improvement in mesh qualityobtained with our methods. Furthermore,

when viewed in the broader context of the many mesh-generation techniques proposed to date in the

literature, our MED1 and MED2 methods are quite low in terms of computational cost. For example,

some other methods, which are based on techniques such as simulated annealing or simplification of

very large meshes, can easily require computation times on the order of minutes or more.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Part of the image approximation (under magnification) obtained for the lena image at a
sampling density of 2% with each of the (a) MED1 (30.14 dB), (b)MED2 (30.68 dB), and (c) ED
(26.38 dB) methods, and (d), (e), and (f) the corresponding triangulations.

Typically, the computation time for our MED2 method was found to be about 1.4 to 1.7 times that

of our MED1 scheme (which is supported by the timing results in Table 3.6). So, our MED2 method

is more computationally expensive, with this higher cost coming from the use of the LLOP (instead

of the LOP) during final connectivity adjustment. As we saw earlier, our MED2 method yields higher

quality meshes than our MED1 scheme. So, whether our MED1 or MED2 method is more attractive
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Part of the image approximation obtained for thebull image at a sampling density of 1%
with the (a) MED1 (39.99 dB), (b) MED2 (40.78 dB), and (c) ED (34.46 dB) methods and (d), (e),
and (f) the corresponding triangulations.

for a particular application, depends on computational constraints. Our MED1 method would be more

appropriate for more computationally-constrained environments, whereas our MED2 method would

be preferred otherwise.

Lastly, we must make one additional comment regarding the timing results in Table 3.6. As the

astute reader might have noticed, the execution time required for the ED method in Table 3.6 does not
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Part of the image approximation obtained for thecr image at a sampling density of 0.5%
with the (a) MED1 (35.11 dB), (b) MED2 (36.04 dB), and (c) ED (31.96 dB) methods and (d), (e),
and (f) the corresponding triangulations.

increase monotonically with the sampling density, namely,the time required for the sampling density

of 1% is lower than that for 0.5%. We explain the reasons for this phenomenon as follows. Recall that

in Section 2.7, we mentioned that the Floyd-Steinberg errordiffusion is performed iteratively in our

work in order to achieve exactly the desired number of samplepoints. Since the required number of

iterations does not increase monotonically with the sampling density, it would not be unreasonable if
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Table 3.6: Comparison of computational complexity for the various methods
Samp.

Density Time (s)
Image (%) MED1 MED2 ED
lena 0.5 0.95 1.38 0.60

1.0 1.03 1.68 0.51
2.0 1.40 2.30 0.66
3.0 1.76 2.81 0.82
4.0 2.06 3.30 0.99

the time required for the sample-point selection decreasesas the sampling density increases by a small

percentage. Therefore, if the sample-point selection takes up a relatively large proportion of the total

time required for a mesh-generation method (e.g, the ED method), it would not be unreasonable if the

time required for mesh generation decreases as the samplingdensity increases by a small percentage.

This is why for the ED method in Table 3.6, the time required for the sampling density of 1% is lower

than that for 0.5%. This being said, however, the general trend is still that the time required for mesh

generation increases with the sampling density (as supported by the timing results in Table 3.6).

3.7 Other Work

At this point, we have proposed two novel mesh-generation methods and evaluated their performance

by comparing to the ED method in terms of mesh quality and computational complexity. During the

development of our framework, we explored additional variations on our approach beyond what we

have shown earlier. These other variations were found not tolead to better results, however. For this

reason, we decided not to include discussions of those variations in the material presented earlier.

For the sake of completeness, we briefly discuss those variations and show some extra experimental

results in what follows.
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3.7.1 Selection of Free Parameters for ED Method

Recall that in the ED method (as introduced in Section 2.7 on page 17), the sample points are selected

in a way that they are distributed approximately proportional to the MMSODD of the image. In

other words, we chose to use the MMSODD as the sample-point density function for Floyd-Steinberg

error diffusion in the ED method. Also in Section 2.7, we onlyconsidered the variant of the ED

method for which the serpentine scan order is used and the sensitivity parameterγ is chosen as 1.

During the development of our work, we studied more choices of the above three parameters for the

ED method, namely, the sample-point density function for Floyd-Steinberg error diffusion, the scan

order for Floyd-Steinberg error diffusion, and the sensitivity parameterγ. Those additional choices

are described as follows:

1. Both the MMSODD (as given by (2.1) on page 8) and skewness (asgiven by (2.2) on page 9)

were explored as the choice of the sample-point density function for Floyd-Steinberg error

diffusion.

2. Both the raster and serpentine scan orders from [19] were explored for Floyd-Steinberg error

diffusion.

3. Three values were studied for the sensitivity parameterγ, namely 0.5, 1, and 2.

It is worth noting that, during our experimentation, the other characteristics of the ED method are

fixed as follows:

1. a third-order binomial filter is used for smoothing;

2. non-leaky error diffusion is used; and

3. the error diffusion algorithm is performed iteratively in order to achieve exactly the desired

number of sample points.
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Table 3.7: Comparison of different sample-point density functions for the ED method
Samp.

Density PSNR (dB)
Image (%) SkewnessMMSODD
bull 0.50 16.77 27.06

1.00 16.94 34.46
2.00 18.34 38.59
3.00 18.79 40.47
4.00 19.28 41.60

cr 0.50 15.35 31.96
1.00 20.88 33.84
2.00 21.42 35.72
3.00 22.97 37.63
4.00 23.24 38.48

lena 0.50 15.13 17.76
1.00 16.26 21.50
2.00 17.73 26.38
3.00 19.07 28.50
4.00 19.55 29.83

In what follows, we proceed to show how we arrived at a particular choice for each of the three

parameters (i.e., the sample-point density function, the scan order, and the sensitivity parameterγ) for

the ED method with some experimental results.

Sample-Point Density Function. To begin, we studied how different choices of the sample-point

density function used for Floyd-Steinberg error diffusionin the ED method affect mesh quality. We

fixed the scan order to be serpentine scan order and the sensitivity parameterγ to be 1, and proceeded

as follows. For numerous images and sampling densities, we generated a mesh employing the ED

method with the sample-point density function chosen as each of the MMSODD and skewness, and

measured the resulting mesh quality in terms of PSNR. A representative subset of the results is shown

in Table 3.7. From this table, we can observe that the MMSODD yields meshes of substantially higher

quality than those yielded with the skewness. In particular, the MMSODD beats the skewness in all

15 test cases, by a margin of 2.63 to 22.32 dB.



54

(a) (b) (c)

Figure 3.9: (a) An imageφ, (b) the MMSODD ofφ , and (c) the skewness ofφ.

To help the reader understand why there is such a substantialdifference between the meshes

yielded with the use of the MMSODD and skewness, we provide anillustrative example. For the lena

image (listed in Table 3.1), the MMSODD and skewness of the image are shown in Figures 3.9(b) and

(c), respectively. Observing the MMSODD of the lena image asshown in Figure 3.9(b), we can see

that many high-MMSODD pixels in the image tend to cluster around image edges and contours. For

the skewness of the lena image as shown in Figure 3.9(c), however, we observe much less clustering

of high-skewness pixels around image edges and contours. Since the skewness is clearly inferior to

the MMSODD in terms of detecting image features (edges/contours) as shown above, we did not

consider the use of the skewness in the material presented before Section 3.7.

Scan Order. Next, we studied how different choices of the scan order usedfor Floyd-Steinberg

error diffusion in the ED method affect mesh quality. To clarify, the scan order refers to the order

in which the grid points are visited during Floyd-Steinbergerror diffusion. We fixed the sample-

point density function to be the MMSODD and the sensitivity parameterγ to be 1, and proceeded

as follows. For numerous images and sampling densities, we generated a mesh employing the ED

method with the scan order chosen as each of the raster and serpentine scan orders, and measured the

resulting mesh quality in terms of PSNR. A representative subset of the results is shown in Table 3.8.

Examining Table 3.8, we can see that the serpentine scan order consistently outperforms the raster
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Table 3.8: Comparison of different scan orders for the ED method
Samp.

Density PSNR (dB)
Image (%) RasterSerpentine
bull 0.50 25.63 27.06

1.00 32.93 34.46
2.00 38.04 38.59
3.00 40.14 40.47
4.00 41.46 41.60

cr 0.50 30.83 31.96
1.00 32.74 33.84
2.00 35.19 35.72
3.00 37.00 37.63
4.00 38.04 38.48

lena 0.50 17.07 17.76
1.00 20.00 21.50
2.00 24.62 26.38
3.00 27.32 28.50
4.00 28.98 29.83

scan order. In particular, the serpentine scan order beats the raster scan order in all 15 test cases, by

a margin of 0.14 to 1.76 dB. Consequently, we did not consider the raster scan order in the material

presented before Section 3.7.

Sensitivity Parameter γ. Lastly, we studied how different choices of the sensitivityparameter

γ used for the ED method affect mesh quality. We fixed the sample-point density function to be

the MMSODD and the scan order to be the serpentine scan order,and proceeded as follows. For

numerous images and sampling densities, we generated a meshemploying the ED method with the

scan order sensitivity parameterγ chosen as each of 0.5, 1, and 2, and measured the resulting mesh

quality in terms of PSNR. A representative subset of results is shown in Table 3.9. From this table,

we can see that the mesh produced in the case ofγ = 1 consistently outperforms the meshes generated

in the other two cases. In particular, the mesh produced in the case ofγ = 1 beats the mesh generated

in the case ofγ = 0.5 in 13/15 of the test cases by a margin of 0.90 to 7.33 dB, and beats the mesh

generated in the case ofγ = 2 in all 15 test cases by a margin of 5.62 to 20.34 dB. Therefore,we only
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Table 3.9: Comparison of differentγ parameter choices for the ED method
Samp.

Density PSNR (dB)
Image (%) γ = 0.5 γ = 1 γ = 2
bull 0.50 24.73 27.06 16.53

1.00 33.30 34.46 17.26
2.00 37.53 38.59 19.80
3.00 39.07 40.47 20.73
4.00 40.01 41.60 21.26

cr 0.50 24.63 31.96 24.07
1.00 29.55 33.84 27.56
2.00 34.50 35.72 30.10
3.00 35.73 37.63 31.58
4.00 36.26 38.48 32.82

lena 0.50 19.23 17.76 15.21
1.00 22.38 21.50 16.41
2.00 25.39 26.38 17.94
3.00 27.33 28.50 18.91
4.00 28.93 29.83 19.74

consideredγ = 1 in the material presented before Section 3.7.

3.7.2 Other Extra Experiments

Above, we discussed the extra exploration of several free parameters for the ED method. In addition to

the extra results shown in previous section, we studied someother parameters and even a few variants

of the framework during the development of our framework. Inwhat follows, we briefly discuss them

for the reader’s interest.

Attempt to Improve Performance of SE Criterion. In Section 3.4, we showed experimental

results (in Figures 3.3 and 3.4) to illustrate that choosingthe optimality criterion insOptCriterion

in our framework as SE would lead to extremely poor image approximations, with many poorly-

chosen sliver triangles being produced in the triangulation. During the development of our work,

in order to improve the performance of the SE criterion, we tried a variant of our framework that
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employs the LLOP (instead of the LOP) for selecting triangulation connectivity after each point is

inserted in the triangulation. Since the LLOP is often able to find a better local optimum than the LOP

(as mentioned in Section 2.9 on page 23), we expected to obtain better results for the SE criterion

with the use of the LLOP during point insertion. To evaluate the performance of the above variant

of the our framework, we fixed the optimality criterion insOptCriterion to be SE and skipped the

final-connectivity-adjustment step, and proceeded as follows. For numerous images and sampling

densities, we generated a mesh with each of the LOP and LLOP being employed for triangulation

connectivity adjustment during point insertion, and measured the resulting mesh quality in terms

of PSNR. A representative subset of results is shown in Table 3.10. For comparison purposes, we

have also included the results of our proposed MED1 and MED2 methods for the same test cases in

Table 3.10. From this table, we can see that the LLOP yields meshes of much better higher quality than

the LOP. In particular, the LLOP beats the LOP in all 15 test cases by a margin of 2.43 to 12.26 dB.

Therefore, if the LLOP is used for triangulation connectivity adjustment during point insertion, the

SE criterion is able to perform much better compared to the case that the LOP is employed. This

being said, however, we must note that the quality of meshes yielded with the above variant (i.e.,

employing the LLOP during point insertion) is still not competitive with our proposed MED1 and

MED2 methods, as shown in Table 3.10. For this reason, we did not consider the use of the LLOP

during point insertion in the material presented before Section 3.7.

In the above evaluations, PSNR was found to correlate reasonably well with the subjective quality.

We provide an example herein illustrating visual quality. For one of the test cases from Table 3.10

(namely, the lena image at a sampling density of 2%), Figure 3.10 shows part of the approximation

and corresponding image-domain triangulation with each ofthe LOP and LLOP being employed for

triangulation connectivity adjustment during point insertion. Examining Figure 3.10, we can see that

the image approximation yielded in the case of the LLOP (in Figure 3.10(c)) is clearly of higher visual

quality than the one yielded in the case of the LOP (in Figure 3.10(a)). Examining the image-domain

triangulations for the cases of the LOP and LLOP (in Figures 3.10(b) and (d), respectively), we can

easily determine the reason for the better approximation yielded in the case of the LLOP. That is,
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Table 3.10: Comparison of the various mesh-generation methods
Samp.

Density PSNR (dB)
Image (%) LOPa LLOPb MED1 MED2
bull 0.5 24.73 34.11 35.52 36.20

1.0 26.89 36.42 39.99 40.78
2.0 30.53 39.19 42.72 43.51
3.0 31.93 43.09 43.97 44.58
4.0 31.23 43.49 44.72 45.33

cr 0.5 31.19 33.62 35.11 36.04
1.0 32.41 36.59 37.31 37.82
2.0 33.33 38.28 39.10 39.43
3.0 34.12 39.18 39.87 40.19
4.0 35.63 39.48 40.42 40.72

lena 0.5 17.61 20.49 21.96 22.53
1.0 21.50 24.69 26.13 26.63
2.0 20.72 28.94 30.14 30.68
3.0 23.43 30.26 31.72 32.26
4.0 23.67 31.89 32.88 33.42

aThe LOP is used during point insertion.
bThe LLOP is used during point insertion.

using the LLOP for triangulation connectivity adjustment during point insertion has helped eliminate

many poorly-chosen sliver triangles caused by the SE criterion (which the LOP was not able to do),

leading to better image approximations.

Extra Optimality Criteria. Recall that in Section 3.2, we considered twelve possibilities for the

choice of the optimality criterion insOptCriterion in our framework, two of which (i.e., ELSE and

MASE) are newly proposed in this thesis. During the development of our work, we tried even more

optimality criteria for the choice of insOptCriterion. Those new criteria we tried were mostly heuristic

based, for which we explored the combination of the SE criterion (which considers approximation

error) with another criterion that measures some geometricproperty of a mesh model such as the angle

between normals (ABN). Unfortunately, none of the new heuristic-based criteria that we studied were

competitive with the ELSE and MASE criteria, so they were notincluded in the material presented
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(a) (b)

(c) (d)

Figure 3.10: Part of the triangulations obtained for the lena image at a sampling density of 2% with the
SE criterion being used for the (a) LOP (20.72 dB) and (c) LLOP (28.94 dB) during point insertion,
and (b) and (d) their corresponding triangulations.

before Section 3.7.

Two-Level Final Connectivity Adjustment. Recall that in step 3 of our framework (as introduced

in Section 3.2 on page 27), we chose between the LOP and LLOP for the use of final connectivity

adjustment. During the development of our work, we also explored a variant of the framework that

employs two levels of final connectivity adjustment. That is, all the steps are the same with our
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proposed framework, except that after all the sample pointsare inserted in the triangulation, the LOP

or LLOP is invoked two times, with different optimality criteria being employed, to adjust the final

connectivity of the mesh. The results of the above variant were found to be highly data dependent.

No specific optimality criterion could be advocated for eachof the two LOPs or LLOPs used for

final connectivity adjustment, as no particular choice of these criteria could lead to a method that was

consistently better than others. For this reason, we did notconsider the two-level final connectivity

adjustment in the material presented before Section 3.7.
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Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we have studied DDT-based triangle mesh models for image representation. In particu-

lar, we have proposed a computational framework for mesh generation that modifies the ED method

to use DDTs in conjunction with the LOP, and derived two mesh-generation methods from this frame-

work. By using DDTs in conjunction with the LOP (instead of Delaunay triangulations), triangulation

connectivity can be chosen optimally so as to minimize approximation error. As the proposed frame-

work has several free parameters, we studied how various choices for each of the free parameters

affect the mesh quality and advocated two particular choices for those parameters, leading to two

specific mesh-generation methods known as MED1 and MED2. Through experimental results, our

MED1 and MED2 methods were shown to produce image approximations of much higher quality

than the ED method, both in terms of PSNR and subjective quality, at a relatively modest computa-

tional cost. In particular, the MED1 and MED2 methods were shown to outperform the ED method

by margins of approximately 3.26 to 3.81 dB on average. Our two methods allow a different trade

off to be made between computational cost and approximationquality, allowing our approach to be

useful in a wider range of applications. As part of our work, we proposed two novel optimality crite-
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ria to be used in conjunction with the LOP, namely the ELSE andMASE criteria. These two criteria

were shown to outperform other well known criteria from the literature. Of our two newly proposed

criteria, the ELSE criterion was found to perform best and was used as a key component of our MED1

and MED2 methods. Since the LOP is used in many different applications and the MSE (as in (2.3))

is a frequently employed error metric, our proposed ELSE andMASE criteria have the potential to

be useful in a much broader range of contexts than the particular mesh-generation methods proposed

herein. The MED1 and MED2 methods are of great utility to applications that employ mesh models

of images. Furthermore, our new optimality criteria, ELSE and MASE, can be exploited by future

mesh-generation schemes that employ the LOP in order to achieve improved results.

4.2 Future Research

Although the work presented in this thesis has covered a fairly wide range of topics related to DDT-

based mesh-generation methods, there are still some potential areas that are worth exploring for future

research. In what follows, we discuss these potential future research areas.

When presenting the LLOP in Section 2.9, we mentioned that onekey way in which the LLOP

differs from the LOP is that the LLOP allows two types of triangulation transformation. Instead of

only allowing the triangulation to be transformed by a single edge flip in each step (as in the case

of the LOP), the LLOP allows the triangulation to be transformed by: 1) a single edge flip; or 2) a

sequence of two edge flips. Consequently, the LLOP is usually able to find a better local optimum than

the LOP. This has been supported in the comparison of our two proposed methods, namely MED1 and

MED2. It was shown in Section 3.6 that our MED2 method yields meshes of higher quality than our

MED1 scheme, with the higher quality coming from the use of the more effective LLOP (instead of

the LOP) for final connectivity adjustment. The above fact motivates us to think about the following

possibility. If we introduce a third type of triangulation transformation in addition to the above two,

by allowing a sequence of three edge flips, it is highly likelythat we would be able to obtain even

better results than the LLOP. One potential weakness of introducing a third type of transformation
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would be the extra computation being added relative to the LOP/LLOP. If an application has a less

computationally-constrained environment and the boost inmesh quality is a high priority, however,

this idea is still worth consideration.

One area that we have dedicated significant time exploring during the development of our work is

the triangulation optimality criterion used for the LOP. Although we have proposed two novel opti-

mality criteria (i.e., ELSE and MASE) that were shown to outperform other well known criteria from

the literature, the future development of new high-performance optimality criteria can still be of great

interest. We suggest two potential areas that can be studiedduring the development of new optimality

criteria in the future. The first potential area is the development of new optimality criteria that are

heuristic based. We have shown in Section 3.4 that heuristic-based criteria can lead to higher quality

image approximations than cost-based criteria due to the fact that heuristic-based criteria take into

account both triangle shape and squared error. Given the fact that our proposed ELSE and MASE

criteria are both heuristic based and both perform extremely well, heuristic-based criteria are worth

studying further. The second potential area is the development of better optimality criteria that em-

ploy the SE criterion. It was shown in Section 3.4 that the SE criterion performs extremely poorly

when used during point insertion, mainly due to the existence of many poorly-chosen sliver triangles

in the triangulation. Although we provided explanations onwhy the SE criterion typically yields tri-

angulations with many poorly-chosen sliver triangles, more extensive investigation could be done in

this regard for future work, with the goal of finding more specific reasons that caused the SE criterion

to become trapped in such a poor local optimum. If more insightful reasons can be identified, they

could potentially lead to better optimality criteria that employ the SE criterion and at the same time

are capable of combating poorly-chosen sliver triangles effectively.
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Appendix A

Software User Manual

A.1 Introduction

The software that implements the mesh-generation framework and methods proposed in the thesis

was independently developed by the author, with a great dealof help from his supervisor, Dr. Michael

Adams. The software was written in C++ to run under Linux, and consists of around 9000 lines of

code. It makes heavy use of the Computational Geometry Algorithm Library (CGAL) [61] and the

Signal Processing Library (SPL) [62], and also utilizes theBoost Library [63] and the SPL Extensions

Library (SPLEL).

The software package contains two executable programs,generate_mesh and

reconstruct_image , for mesh generation and image reconstruction, respectively. The

generate_mesh program reads an image from a specified file and generates a mesh model of

the image based on the desired sampling density and mesh-generation method specified by the user.

The reconstruct_image program reads a mesh in a special format (to be introduced shortly) and

produces a rasterized image.

The remainder of this appendix provides details on how to build and use the software. A few

examples are also provided for illustrating how to use the software.
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A.2 Building the Software

We chose to use theMake utility to build our software. Make is a utility that automatically builds

executable programs and libraries from source code by reading files called makefiles which specify

how to generate the target programs. Since some functionalities of C++11 are utilized in the code,

the compiler one uses to compile the code has to be compatiblewith C++11. The compiler we have

been using in our development is GCC 4.7.3. As mentioned earlier, our software package also utilizes

libraries such as CGAL, Boost, SPL, and SPLEL. Thus, these libraries must be correctly installed

before one can build our software. The versions of the libraries that have been verified to work with

our software are:

• CGAL 3.8.2,

• Boost 1.46.0,

• SPL 1.1.11, and

• SPLEL 1.1.18.

To build the software, one needs to first go to the directory which contains the makefile. Then,

to delete all the object files and executable files generated from previous building processes, run the

command:

make clean

To generate the executable programs, invoke the command:

make
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A.3 File Formats

The input of thegenerate_mesh program and the output of thereconstruct_image program are

bothportable gray map (PGM) [64] images. The mesh generated by thegenerate_mesh program

is output inobject file format (OFF) [65]. The input file of thereconstruct_image has a special

format consisting of the following fields (in order), with each field separated by a white space or

newline:

1. the width of the image,

2. the height of the image,

3. the maximum value of the image, and

4. the mesh of the image in OFF format.

We assign an extension “.mesh” to files with the above format.

For the benefit of the reader, we provide an example illustrating the above format. Suppose that

we have an image with the width, height, and maximum value being 10, 10, and 255, respectively.

The mesh model of the image is associated with a triangulation consisting of two triangles, namely

ABD and BCD, as shown in Figure A.1, where vertices A, B, C, and D havexy-coordinates(0,0),

(10,0), (10,10), and(0,10), respectively. The z values of A, B, C and D are 100, 200, 150, and 50,

respectively. The “.mesh” file of the above mesh model would be as follows:

10 10 255

OFF

4 2 0

0 0 100

10 0 200

10 10 150
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A B

CD

Figure A.1: A simple triangulation consisting of two faces.

0 10 50

3 0 1 3

3 1 2 3

A.4 Detailed Program Descriptions

As introduced earlier, our software contains two executable programs, namelygenerate_mesh and

reconstruct_image . In what follows, we provide details in how to use these two programs.

A.4.1 Thegenerate_mesh Program

SYNOPSIS

generate_mesh [OPTIONS]

DESCRIPTION

This program reads an image in PGM format from a specified file,and generates a mesh model of

the image based on the desired sampling density and mesh-generation method specified by the user.

The image file and desired sampling density are specified by the options-f and-D , respectively, and

these two options are required by the program. With command-line options, the user can choose
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different sample-point-selection methods, different initial-mesh-construction methods, and different

final-connectivity-adjustment methods. The width, height, and maximum value of the image, along

with the generated mesh in OFF format are printed to standardoutput (by default). In the context

of this appendix, we use the termmaximum visit countto denote the maximum number of times

that each edge is allowed to be tested for optimality in the LOP, and the termmesh size tolerance

to represent the maximum difference allowed between the target size and actual size of the mesh

model in the sample-point-selection process. The program returns 0 for a normal exit a nonzero value

otherwise.

OPTIONS

-f $inputImage Specifies the image for processing to be$inputImage . This

option is required.

-D $sampDensity Specifies the sampling density to be$sampDensity (in dec-

imals). This option is required.

-O $filtOrder Specifies the order of binomial filter applied to the image to

be$filtOrder . The default value of$filtOrder is 1 (no

filtering).

-g $gamma Specifies the gamma parameter in the ED method to be

$gamma. The default value of$gammais 1.

-S $subMethod Chooses the method for sample point selection to be

$subsetMethod , which can be chosen from Table A.2. The

default value of$subsetMethod is ”ywb”.
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-z $szErrThresh Specifies the mesh size tolerance to be$szErrThresh . The

default value of$szErrThresh is 0.

-I $insertCri Chooses the optimality criterion for the LOP during point

insertion to be$insertCri , which can be chosen from Ta-

ble A.3. The default value of$insertCri is “delaunay”.

-s $subsetFile Specifies the file to which print the coordinates of the se-

lected sample points. If not specified, the program will not

output this information.

-l $lookAhead A flag to indicate whether the LLOP is enabled, “1” for

enabled and “0” for disabled. By default the flag is “0”.

Note that only the SE criterion is available for the LLOP.

-c $maxVisits Sets the maximum visit count to be$maxVisits . When

an edge has been visited more than$maxVisits times, it

is deemed that a cycle has occurred. The default value of

$maxVisits is 10000.

-v $exitOnCycle A flag to indicate the special action to be taken when the

maximum visit count has been exceeded for an edge. If

$exitOnCycle is “0” (which is the default case), the pro-

gram will skip this edge in the remainder of the currently

running LOP; if $exitOnCycle is “1”, the program will

terminate the currently running LOP immediately.
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Table A.2: Various methods for sample point selection
Method Description
ywb MMSODD as density function and raster scan order in error diffusion
ywbs MMSODD as density function and serpentine scan order in error diffusion
sked skewness as density function and raster scan order in error diffusion
skeds skewness as density function and serpentine scan order in error diffusion

-m $mainProc A flag to indicate whether the final-connectivity-adjustment

step is enabled, with “1” for enabled and “0” for disabled.

The default value of$mainProc is “1”.

-E $mainCri Chooses the optimality criterion for the final connectivity

adjustment to be$mainCri , which can be chosen from Ta-

ble A.3. The default value of$mainCri is “se”.

-i $iviewerFile Specifies a file to which print the generated triangulation in

iviewer-readable format. If not specified, the program will

not output this information.

-o $offFile Specifies a file to which write the final mesh in OFF format.

If not specified, the program will write the mesh to standard

output in OFF format.

-t $tcFile Specifies a file to which print the timing information. If not

specified, the program will not output this information.

A.4.2 Thereconstruct_image Program

SYNOPSIS
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Table A.3: Optimality criteria
Optimality
Criterion

Description Reference

delaunay (preferred-directions) Delaunay [Section 3.2]
se squared error (SE) [Section 3.2]
abn angle between normals (ABN) [Section 3.2]
jnd jump in normal derivatives (JND) [Section 3.2]
el Edge length (EL). Cost-based optimality cri-

terion. For an edgee in the triangulationT,
edgeCost(T,e) is defined as the length ofe.

-

elabn absolute mean curvature (AMC) [Section 3.2]
eljnd EL-weighted JND (ELJND) [30, Section III.B]
dlp deviations from linear polynomials (DLP) [Section 3.2]
dp distances from planes (DP) [Section 3.2]
yms Yu-Morse-Sederberg (YMS) [29] and [30, Section III.B]
jndse JND-weighted SE (JNDSE) [Section 3.2]
elwse EL-weighted SE (ELSE) [Section 3.2]
sqse shape-quality-weighted SE (SQSE) [Section 3.2]
mase minimum-angle-weighted SE (MASE) [Section 3.2]
ghh Garland-Heckbert hybrid (GHH) [Section 3.2]

reconstruct_image [OPTIONS]

DESCRIPTION

This program reads a mesh in “.mesh” format from standard input (by default), and reconstructs an

image from the mesh. The reconstructed image is saved in PGM format to a file specified by the

option -w , and this option is required by the program. The program returns 0 for a normal exit and a

nonzero value otherwise.

OPTIONS
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-w $recImage Specifies the file to which write the reconstructed image in

PGM format. This option is required.

-o $offFile Specifies the file that contains the OFF part of the “.mesh”

file. If specified, the program will first read the non-OFF

part of the “.mesh” file from standard input and then the

OFF part from the specified file; otherwise, the program

will read all parts of the “.mesh” file from standard input.

A.5 Examples of Software Usage

A few examples are provided in what follows to illustrate theusage of our software.

Example 1A. Suppose that we want to generate a mesh for the lena image and save the mesh

along with other information that are printed to standard output to the filelena+0.02.mesh , with the

following requirements:

• set the sampling density to be 2%;

• set the binomial filter order to be 3;

• set the sample-point-selection method to use the MMSODD as density function and the serpen-

tine scan order in error diffusion for the ED method;

• set the mesh size tolerance to be 0;

• set the maximum visit count to be 15;

• set the program to skip the edge in the remainder of the currently running LOP if the maximum

visit count has been exceeded for an edge;

• choose the optimality criterion used for the LOP during point insertion as ELSE; and
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• use the LOP for final connectivity adjustment, with the SE criterion being applied.

The above task can be accomplished by invoking the commandgenerate_mesh as follows:

generate_mesh - f lena .pnm -D0 .02 -O3 -Sywbs -z0 - Ielwse -c1 5 \

-v0 -m1 -Ese > lena +0.02. mesh

Example 1B. Suppose that we want to reconstruct an approximation of the lena image from the

mesh generated in Example 1A and write the reconstructed image to lena+rec.pgm , this can be

accomplished by running the commandreconstruct_image as follows:

reconstruct_image -wlena +rec .pgm < lena +0.02. mesh

Example 2. Suppose that we want to generate a mesh for the bull image and save the mesh to an

file bull+mesh.off in OFF format, with the following requirements:

• set the sampling density to be 1%;

• disable the binomial filter (i.e., set the filter order to be 1);

• set the sample-point-selection method to use the skewness as density function and the raster

scan order in error diffusion for the ED method;

• set the mesh size tolerance to be 10;

• set the maximum visit count to be 20;

• set the program to terminate the currently running LOP if themaximum visit count for an edge

has been exceeded;

• choose the optimality criterion used for the LOP during point insertion as MASE; and

• use the LLOP for final connectivity adjustment, with the SE criterion being applied.

The above task can be accomplished by invoking the commandgenerate_mesh as follows:
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generate_mesh - fbul l . pnm -D0 .01 -O1 -Ssked -z10 - Imase - l1 -c20 \

-v1 -m1 -Ese -obull +mesh .off

Example 3. Suppose that we want to generate a mesh for the cr image and print the mesh to

standard output in OFF format, with the following requirements:

• set the sampling density to be 0.5%;

• set the order of the binomial filter to be 5;

• set the sample-point-selection method to use the MMSODD as density function and the raster

scan order in error diffusion for the ED method;

• set the mesh size tolerance to be 0;

• set the maximum visit count to be 10;

• set the program to skip the edge in the remainder of the currently running LOP if the maximum

visit count for an edge has been exceeded;

• choose the optimality criterion used for the LOP during point insertion as Delaunay;

• disable the final-connectivity-adjustment step;

• print the xyz-coordinates of the selected sample points tocr+subset.dat ; and

• print the final triangulation to the iviewer-readable filecr+tri.tri ;

The above task can be accomplished by invoking the commandgenerate_mesh as follows:

generate_mesh - fcr .pnm -D0 .005 -O5 -Sywb -z0 - Idelaunay -c 10 \

-v0 -m0 -scr+ subset .dat - icr+ tri . tri
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