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ABSTRACT

Triangle mesh models of images are studied. Through expmlarea computational framework
for mesh generation based on data-dependent triangusddnT s) and two specific mesh-generation
methods derived from this framework are proposed.

In earlier work, Yang et al. proposed a highly-effectivehieicue for generating triangle-mesh
models of images, known as the error diffusion (ED) methodfottunately, the ED method, which
chooses triangulation connectivity via a Delaunay tridagion, typically yields triangulations in
which many (triangulation) edges crosscut image edges ¢@iscontinuities in the image), leading
to increased approximation error. In this thesis, we preppsomputational framework for mesh
generation that modifies the ED method to use DDTs in conjometith the Lawson local optimiza-
tion procedure (LOP) and has several free parameters. Basegp@rimentation, we recommend
two particular choices for these parameters, yielding tpecgic mesh-generation methods, known
as MED1 and MEDZ2, which make different trade offs betweerr@gmation quality and computa-
tional cost. Through the use of DDTs and the LOP, triangottetionnectivity can be chosen optimally

S0 as to minimize approximation error. As part of our worlkg tvovel optimality criteria for the LOP



iv

are proposed, both of which are shown to outperform othel kmelwn criteria from the literature.

Through experimental results, our MED1 and MED2 methodshosvn to yield image approxima-
tions of substantially higher quality than those obtainetththe ED method, at a relatively modest
computational cost. For example, in terms of peak-sigoaddise ratio, our MED1 and MED2 meth-

ods outperform the ED method, on average, by 3.26 and 3.81edBectively.
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Chapter 1

Introduction

1.1 Triangle Meshes for Image Representation

In real-world applications, images are typically nonstasiry. Consequently, uniform sampling of im-
ages (such as with a truncated lattice) is usually far frotimagd, with the sampling density inevitably
being too high in some regions while too low in others. This kel to an interest in image repre-
sentations based on nonuniform (i.e., content-adaptar@ping. By choosing the sample points in a
manner dependent on the image content, the number of saogpldxe greatly reduced. This smaller
sample count can often be exploited in applications in olaleeduce computational cost. Moreover,
the sample data can often better capture the geometridwgteuaherent in images (such as image
edges). In some applications, this can be exploited in adebtain better quality results. Some
applications in which nonuniform sampling has proven useftlude: feature detection [1], pattern
recognition [[2], computer vision [3], restoration [4], tographic reconstruction [5], filtering [6],
interpolation [7, 8], and image/video coding[9, 10, 11,12, 14, 15].

Many general approaches to nonuniform sampling have bespoped to date. Some of the
more popular approaches include inverse distance weighetbods [16, 17], radial basis function

methods [16, 17], Voronoi and natural-neighbor interpotatmethods [16], and finite-element meth-



ods [16, 17], including triangle meshes based on Delaumaygulations [18, 19, 20, 21], constrained
Delaunay triangulations [22], data-dependent trianguiiat[23, 24, 25, 26, 27, 28, 18, 29, 30], and
geodesic triangulations [31]. Two excellent survey papké$ and [17] present a good overview of
the numerous general approaches to nonuniform sampling.

Among the numerous methods based on nonuniform sampliegyanicularly effective approach
is offered by triangle meshes. In this approach, the (ndatmly chosen) sample points are trian-
gulated, partitioning the image domain into triangulareigcand then an approximating function is
constructed over each face of the triangulation. Triangéstmes are particularly effective for the
following reasons. First, triangle meshes are well suitedapturing geometric structures in images
(such as image edges). Moreover, triangle meshes have tastipbto lead to memory-efficient
nonuniform sampling methods, because a single triangle avity three sample points may cover a
large area (with low variation) of an image, significantlgueing the amount of memory required for
storing the image. Furthermore, triangle meshes greatipldly the process of image interpolation.
For example, the image approximation associated with aglteamesh model can be easily obtained
by combining the approximations constructed over eachdattee triangulation. In addition, triangle
meshes offer a way of handling image domains with arbitratygonal shapes.

Generally speaking, mesh-generation methods must adsiregsoblems: 1) the selection of the
sample points; and 2) the selection of the connectivity efttlangulation of the sample points. Both

of these problems are of interest in this thesis.

1.2 Historical Perspective

Considering the many advantages of triangle meshes aslgegaibove, numerous image represen-
tation methods based on triangle meshes have been promodatet[23, 24, 25, 26, 27, 28,118, 32,
29, 30, 33, 19, 20, 21, 34, 35, 36, 37, 10,38, 39, 40]. Based artihe sample points are selected,
the most popular mesh-generation methods can be classitedwo categories: mesh-refinement

schemes and mesh-simplification schemes, a few examplesiohwan be found in [30, 18, 41]



and [35, 42], respectively. A mesh-refinement scheme woylstdrting with a very coarse triangula-
tion (typically with the vertices being the extreme conved points), and adding one vertex at a time,
with the new vertex chosen in a way so as to minimize some sreaisure, until the desired number of
sample points is reached. In contrast, a mesh-simplificstheme starts with a refined triangulation
(e.g., with the vertices being all the grid points in the imalpmain), and deletes one vertex at each
step based on some error metric, until the vertices of taadrilation have been reduced to the desired
size. Mesh-simplification schemes such as the adaptiveitiyimethod of Demaret and Iske [35] are
typically able to yield meshes with extremely high qualiiyt often demand high computational and
memory requirements. On the other hand, mesh-refinemeetr@$hsuch as the mesh-generation
method of Rippa [41] are typically less expensive in termsopfiputation and memory cost, but they
may result in lower quality meshes.

Regardless of how the sample points are selected, one keyatitfe between the various triangle-
mesh-based approaches is in how they select the triangulatinnectivity (i.e., how the vertices
of the triangulation are connected by edges). Among the nraage representation methods that
employ triangle meshes, the most common approach is to eltbesonnectivity by using a Delaunay
triangulation [43]. In the case of Delaunay triangulatidhe connectivity is determined solely by the
set of sample points being triangulated. Delaunay triaatgais maximize the minimum of all the
interior angles of the triangles in the triangulation, thwsiding sliver triangles to whatever extent is
possible. This leads to the Delaunay triangulation beingried in approximation applications [44].
Although Delaunay triangulations are only guaranteed tardigue if no four points are cocircular,
a unique Delaunay triangulation can be obtained easily lmpsing an appropriate technique for
handling degeneracies, such as preferred directions E&mples of mesh-generation methods that
are based on Delaunay triangulations are plentiful indiiere, a few examples of which are [18, 19,
20, 21, 34, 35, 36].

Another approach to choosing the triangulation connegtigi offered bydata-dependent tri-
angulations (DDTs) It is this particular approach that is of interest in thiedis. With a DDT,

the triangulation connectivity can be chosen in an arbjtraanner, using information in the dataset



from which the points to be triangulated were chosen. Siooéke the Delaunay case, the con-
nectivity of a DDT may be chosen arbitrarily, DDTs offer mugheater flexibility, and have the
potential to outperform their Delaunay counterparts iflveblosen [41]. This said, however, con-
nectivity selection is often a challenging task. Typicalpptimization techniques are employed
for this purpose, with the most common such technique, hybking thelocal optimization pro-
cedure (LOP) of Lawson [46]. Examples of mesh-generation methods baseB@Ts include
[23, 24, 25, 26, 27, 28, 18, 32, 29, 30, 33, 38,39, 40, 47, 48les€ approaches make heavy use
of the LOP or variants thereof, such as tbek-ahead LOP (LLOP) [29].

In [19], Yang et al. proposed a simple technique for genegatiiangle-mesh models of images,
known as theerror-diffusion (ED) method. The ED method selects the sample points in a way that
they are distributed with a density approximately promordl to the maximum-magnitude second-
order directional derivative of the original image, andnigulates the sample points using a Delaunay
triangulation. Although this method has proven highly efffiee, it has the weakness that it often
yields triangulations in which a significant number of (tigaulation) edges crosscut image edges (i.e.,
discontinuities in the image), leading to a degradationppraximation quality. This weakness can
be attributed to the fact that a Delaunay triangulation ipleged by the ED method for choosing
triangulation connectivity. The ED method serves as thevatwdbn and foundation of the work in

this thesis.

1.3 Overview and Contribution of the Thesis

In this thesis, we propose a computational framework forhrgsneration that modifies the ED
method to use DDTSs in conjunction with the LOP. By using DDTstéiad of Delaunay triangula-
tions, we are able to better exploit triangulation conmngtiin order to obtain the highest quality
approximation. Using our computational framework, we @etivo specific mesh-generation meth-
ods known as MED1 and MED2, which make different trade offsveen approximation quality

and computational cost. As we will show later, our MED1 andD2Emethods yield image approx-



imations of substantially higher quality than those ol#dinvith the ED method in terms of both
peak-signal-to-noise ratio (PSNRRnd subjective quality, at a relatively modest computatiaost.
As part of our work, we propose two novel optimality critefta use with the LOP. Both of these
criteria are shown to outperform numerous other well knoviteiga from the literature. In passing,
we note that the work described herein has been partialepted in the author’s papers [49, 50].

The remainder of this thesis is organized as follows. Chaovides some necessary back-
ground information to facilitate a better understandinghed work described herein. First, some
basic notation and terminology are introduced. Then, samddmentals in image processing and
computational geometry are presented. After that, thagleamesh models for image representation
are discussed, followed by an introduction to a grid-paantaice mapping scheme. Further, the ED
method, on which our work is built, is presented. Lastly, y &gorithm used for selecting triangula-
tion connectivity in the thesis, namely the LOP, is presgn#édong with a variant thereof, known as
the LLOP.

Chapter 3 introduces our proposed approach and evaluatesri@mance. To begin, our pro-
posed computational framework is introduced. The fram&wssentially modifies the ED method to
use DDTs in conjunction with the LOP to better exploit triategion connectivity in order to obtain
the highest quality approximation. Then, we derive two #pemesh-generation methods using our
framework, namely the MED1 and MED2 methods. This is done tf fintroducing several free
parameters in our framework and the various choices foretpasameters. After that, we study how
different choices of those parameters will affect the masdlity and advocate two particular choices
of those parameters, leading to our two proposed methodshdfmore, we evaluate our proposed
MED1 and MED2 methods by comparing them to the ED scheme img@f mesh quality and com-
putational complexity. It is shown that our proposed MEDH &ED2 methods both yield image
approximations of much higher quality than the ED scheme, @dlatively modest computational
cost. For example, in terms of PSNR, our MED1 and MED2 methodisssform the ED method by
3.26 and 3.81 dB on average, respectively. It is also shoatrthie MED1 and MED2 methods make

different trade offs between mesh quality and computatioost, as the MED2 method produces ap-



proximations of better quality, but at a higher computadiacost. Lastly, some extra work we have
done during the development of our framework is briefly désad.

Chapter 4 concludes the thesis with a brief summary of the woesented herein and some
suggestions for future research.

Appendix A provides a brief description of the software tisaised to implement the computa-
tional framework proposed in the thesis and to collect expemtal results. The software was fairly
complex to develop but was designed to be user-friendly. eSimstructions on how to use the soft-

ware are also provided in this appendix.



Chapter 2

Preliminaries

2.1 Overview

In this chapter, we provide some background necessary tnitherstanding of the work presented in
this thesis. To begin, we introduce the notation and tertagyused in the remainder of the thesis.
Then, some fundamentals in image processing and compuahtjeometry are presented. After that,
the triangle mesh models for image representation are skeci followed by an introduction to the
grid-point to face mapping scheme. Further, we presenthedieme which serves as the foundation
of our work. We conclude this chapter by introducing a keyathm used in this thesis, namely the

LOP, and a variant thereof, known as the LLOP.

2.2 Notation and Terminology

Before proceeding further, a brief digression is in ordemtooduce some basic notation and termi-
nology employed throughout the thesis. The sets of integedseal numbers are denotdcandR,

respectively. The cardinality of s8tis denotedS. For a vectow = (v1,Vs, ..., Vn), the 2-norm ofvis



denoted|v||, and defined as

_ 22
V|| = \/vl+v2+...+v%.

2.3 Image Processing

Binomial Filter. Binomial filters [51] are simple and efficient structures thpproximate Gaussian
filtering based on binomial coefficients. One attractivepenty of binomial filters is that they do not
require multiplications, which potentially benefits agglions in terms of computational complex-
ity. Because of their simplicity and efficiency, binomialdiis are often used as lowpass filters for
smoothing in image processing [52].

The transfer function of a one-dimensional (14B)h order binomial filter (with zero phase and

unity DC gain), is denoted d4,(z) and given by

my /1 1 \"*t
Hhz) =z 72 | -+ =Z
n(2) <2+2 ) ,

wheren is odd. For example, the nonzero coefficients of the impuwdspanse of a 1-D third-order
binomial filter are[% 3 ]. A 2-D binomial filter can be computed as the tensor productvof1-D

binomial filters. For example, the nonzero coefficients @fithpulse response of a 2-D third-order

binomial filter are

'5"_‘ ool ';|H

= =
Sk ok Sl
Wl NE ol

MMSODD. For a functionf defined onR?, the maximum-magnitude second-order directional

derivative (MMSODD) mof f is given by [19, Corollary 1 and Equation 12]

m(x,y) = max{|a(xy) +B(xy)|,|a(xy) =By}, (2.1)



where
1[92 02
a(x3) = | 5 09+ 521 0xY)

and

2 2 2 2
Blxy) = \/%1 a0 = 5ot + | o)

The partial-derivative operators in the preceding equagice formed from the tensor product of 1-
D derivative operators, where the discrete-time approttona of the 1-D first- and second-order
derivative operators are computed using the filters withstier function%z— %z*l andz—2+z1,

respectively. The MMSODD has a double response to imageseugih the maxima being attained
just to each side of image edges. The MMSODD is of great inapae to our work in this thesis, as

we shall see later.

Skewness. For a functionf defined onR?, the skewness of f, evaluated on a 8 3 window M

centered at poinfx,y), is given by [10, Equation 1]

xy)=3 3 (1Y) -y 22)
(X.y)eMyy

where
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and

M = {(X_ 1vy_ 1)’ (X’y_ 1)7(X+17y_ 1)3
(X_ 1,y),(X,y),(X+1,y),
(X_ 1ay+ 1)7(X7y—|—1)7(X—|—1,y—|— 1)}

The skewness is a nonzero value except in uniform areas beicase thad/ is centered exactly on

an edge, and the absolute value of the skewness is highagiansewith rapid changes in an image.

2.4 Computational Geometry

In what follows, we introduce a few fundamental conceptanf@mputational geometry such as the
notions of a triangulation and a Delaunay triangulatiororter to define the concept of triangulation,

we need to first introduce the concepts of convex set and gdnué

Definition 2.1. (Convex set). A set P of points R? is convex if for every pair of points, b e P,

every point on the line segment that joins a and b is also in P.

The definition of convex set is illustrated in Figure 2.1. Be¢P in Figure 2.1(a) is convex since
every line segment that joins two pointsiniis within P, such as the line segment ab. The Reén
Figure 2.1(b) is not convex since not every line segmentjtas two points inP is within P, with an
example being the line segment ab as shown in Figure 2.1@)ink defined the concept of convex

set, we can now introduce the notion of convex hull.

Definition 2.2. (Convex hull). The convex hull of a set P of pointdRiis the intersection of all

convex sets that contain P.

An example of a convex hull is shown in Figure 2.2. Given aRsef points as shown in Fig-
ure 2.2(a), the convex hull ¢ is shown in Figure 2/2(b). The convex hullBimay be visualized as
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(a) (b)

Figure 2.1: Examples of (a) convex and (b) nonconvex sets.

(a) (b)
Figure 2.2: Convex hull example. (a) A g2bf points, and (b) the convex hull &%

the shape formed by a rubber band stretched aruidith the definition of convex hull in place, we
can now define the concept of triangulation.

Definition 2.3. (Triangulation). A triangulation of a set P of pointsR? is a set T of (nondegenerate)
triangles such that:

1. the union of the vertices of all triangles in T is P;
2. the interiors of any two triangles in T are disjoint; and

3. the union of the triangles in T is the convex hull of P.
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(@) (b) (c)

Figure 2.3: Triangulation example. (a) A getof points, (b) a triangulation dP, and (c) another
triangulation ofP.

Given a seP of points, as shown in Figure 2.3(a), there exist numeraasdulations ofP, two
examples of which are shown in Figures 2.3(b) and (c). We earthsat although the triangulations
in Figures 2.3(b) and (c) have the same vertices, they diffelow those vertices are connected by
edges.

As mentioned in Section 1.2, two of the most commonly empdogeproaches to choosing the
triangulation connectivity for triangle mesh models arddDeay triangulations [43] and DDTs. We

first define the concept of Delaunay triangulation as follows

Definition 2.4. (Delaunay triangulation). A Delaunay triangulation of at$e of points inR? is a

triangulation T such that no point in P is inside the circurot of any triangle in T.

Given a sefP of points as shown in Figure 2.4(a), the Delaunay triangariadf P is shown in
Figurel 2.4(b), with the circumcircle of each triangle shawaing a dashed line. As we can see, no
vertex of the triangulation falls inside any circumcirckar a seP of points, as long as no four points
in P are cocircular, the Delaunay triangulationfs uniquely determined, as in the example given
in Figure 2.4.

In the case of Delaunay triangulations, the connectivityatermined solely by the set of points
being triangulated. For this reason, triangulation-catimigy-selection algorithms employing Delau-

nay triangulations are typically computationally efficiemhe Delaunay triangulation maximizes the
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(@) )
Figure 2.4: Delaunay triangulation example. (a) ARBeff points, and (b) the Delaunay triangulation
of P.
minimum interior angle of all triangles in the triangulatidhus avoiding sliver triangles to whatever
extent possible. This leads to the Delaunay triangulateind favored in approximation applica-
tions [44]. DDTs, unlike Delaunay triangulations, allovettriangulation connectivity to be chosen
in an arbitrary manner, using information in the datasetfwhich the points to be triangulated were

chosen. Therefore, DDTs offer much more flexibility thand&elay triangulations.

2.5 Mesh Models of Images

In the context of this thesis, an image is an integer-valuggattion ¢ defined on the domaih =
[0,W —1] x [0,H — 1] and sampled on the truncated two-dimensional integecéditi= {0, 1,... W —
1} x{0,1,...,H —1} (i.e., a rectangular grid of widttW and heighH). A (triangle) mesh model of

@ consists of:

1. aset = {p;} of sample pointswhereP C A;

2. atriangulationT of P; and



14

3. the function value$z = @(p;)} for p; € P.

In order to ensure that the triangulatidrncovers all points im\, P must always be chosen to include
all of the extreme convex hull points bfi.e., the four corner points of the image bounding box). As
a matter of terminology, theizeandsampling densityof the model are defined &B| and|P| / |A|,
respectively.

The above mesh model is associated with a funafitivat approximates, wheregis determined
as follows. First, we construct a continuous piecewisealifanction® that interpolatesp at each
point p; € P. More specifically, for each facgin the triangulatioriT, @ is defined to be the unique
linear function that interpolategat the three vertices df. Since@is integer valued, we wish for its
approximationg to be integer valued as well. Thus, we define the approximatim terms ofg as
@(p) = round ®(p)), where round denotes an operator that rounds to the neateger.

We provide an example in Figure 2.5 to illustrate the (trlepgresh modelling of images. Given
an image@ as shown in Figure 2.5(a) (which can be represented as acsurfaFigure 2.5(b)), a
triangulation is formed by partitioning the image domaingohto a set of triangles, as illustrated
in Figure 2.5(c), with the vertices of the triangulationrigeithe sample points. The resulting triangle
mesh model ofis shown in Figure 2]5(d). Then, an approximatiopdfnown asp, can be generated
from the mesh model by standard rasterization technigugjsyifith the reconstructed imageshown
in Figure 2.5(e).

In our work, for a given model size (i.e., number of sampleng); we want to find a model to

minimizee, the difference betweepandgas measured by theean squared error (MSE), where

e= NS (®p)-9(p)”. (2.3)
pEN

For convenience, we will express the MSE in terms of the PSNi;iwis defined as

PSNR = 201logy,[(2° — 1)/v/e],
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Figure 2.5: Mesh model of an image. (a) Image, (b) image neada$ surface, (c) triangulation of
image domain, (d) resulting triangle mesh, and (e) recoottd image.



16

wherep is the number of bits per sample used by the (integer-valuneajeg. Finding computation-
ally efficient methods to solve the above problem is extrgrokhllenging, as problems like this are
known to be NP-hard [54].

2.6 Grid-Point to Face Mapping

Suppose that we have an image defined on a rectangular gri @iachgulationT superimposed on
the grid, letl (T) denote the set of all integer grid points falling inside ortbe boundary off. For
reasons that will become clear later, we need a convenibatse that can map each pop¢ I'(T) to
exactly ondace of the triangulatioff. In this thesis, we apply a grid-point to face mapping scheme
that is slightly modified from the method proposed in [53]. particular, a grid poinp € I'(T) is

uniquelymapped to a face of the triangulatidraccording to the following rules:
1. If pis strictly inside a facd, mappto f.
2. If pis on an edge excluding the endpoints &

(a) If eis horizontal, mapp to the face belove unless there is no face below, in which case
is mapped to the face aboee
(b) If eis not horizontal, mapp to the face to the left o€ unless there is no such face, in
which casep is mapped to the face to the right@f
3. If pis a vertex:
(a) If pis the right endpoint of a horizontal edgemapp to the face belove unless there is
no face below, in which cageis mapped to the face aboee

(b) If pis not the right endpoint of any horizontal edge, nfafo the face to the left op

unless there is no such face, in which case mapped to the face to the right pf



17

We provide an example in Figure 2.6 illustrating the mappings described above. Given an
image defined on a rectangular grid with the extreme conudixploints of the image domain being
{w}3_,, atriangulation of the pointév}/_, is superimposed on the grid, as shown in Figure 2.6(a).
In order to facilitate a better understanding of the abovppimy rules, the grid points in Figure 2.6(b)
are marked with different symbols, with the ones that are prdpto each face sharing the same
symbol.

In what follows, we examine Figure 2.6(b) in detail. To bedet us consider the grid poinp.
The grid pointpy is strictly inside the facds. Thus, according to rule Tyg is mapped to the facg.
The grid points that fall on an edge or is a vertex are mappadniore complicated manner. Consider
the grid pointp;, which is on the horizontal edgavs but not the endpoints ofyv>. According to
rule[2a,p; is mapped to the facé; (i.e., the face above the edgger) since there is no face below
viVo. For the grid pointpy, since it is on the non-horizontal edggvs, p2 is mapped to the facé
(i.e., the face to the left of4vs) based on rule 2b. Now consider the grid poivgandv,. The grid
point v3 is a vertex and is the right endpoint of the horizontal edge. Therefore, according to
rule/3a,v3 is mapped to the fack (i.e., the face below the edgevs). The grid pointvs is a vertex
but is not the right endpoint of an edge,\sas mapped to the fack (i.e., the face to the left ofs)
according to rule 3b.

2.7 ED Method

As mentioned earlier, one highly effective method for gatiag mesh models of images is the ED
method [19]. Since our work builds on the ED method, it is hélfo briefly introduce this method
here. Given an imaggand a desired mesh sikg the ED method constructs a mesh modepafith

the setP of sample points, as follows:

1. Sample-point selection. SeleRt with |P| = N, using Floyd-Steinberg error diffusion [55].

This is done in such a way as to ensure that the poin8 are distributed with a density
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(b)

Figure 2.6: An example of grid-point to face mapping. (a) ilrigulation on a rectangular grid, and
(b) the illustration of how the grid points are uniquely magyo the faces in the triangulation.

approximately proportional to the MMSODD @f as given earlier by (2.1).

2. Triangulation. TriangulatP using a Delaunay triangulation.
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In step 1, the se® is always chosen to include all extreme convex-hull poirfithe image domain.
This ensures that the triangulation produced in step 2 saberentire image domain. Since several
variants of the ED scheme are presented in [19], it is wortingpfor the sake of completeness, that

we consider the variant with the following characteristiesein:
1. athird-order binomial filter is used for smoothing;
2. non-leaky error diffusion is used with a serpentine scaem
3. the sensitivity parametgris chosen as 1; and

4. the error diffusion algorithm is performed iteratively order to achieve exactly the desired

number of sample points.

Since, in our work herein, we require that the approximatimgtion (i.e.,¢) interpolate the original
(i.e., @, we consider only the variant of the ED method that satighés interpolating condition.
(That is, the variant that employs a least-squares fit is owgidered.)

In order to show the sample-point selection strategy (s&p 1 above) in the ED method, we
provide an illustrative example. Suppose that we have ageémas shown in Figure 2.7(a), where
the MMSODD of @ is shown in Figure 2!7(b). The sample points that are seleotstep 1 above
using Floyd-Steinberg error diffusion are shown in Figur& &), which are distributed with a density
approximately proportional to the MMSODD qf Examining Figure 2.7(c), we can see that the
selected sample points mostly concentrate around imagsedepresenting the shapes and contours

of the imagep reasonably well.

2.8 Local Optimization Procedure (LOP)

Before proceeding further, it is necessary to interject sadditional background related to triangu-

lations. An edgee of a triangulation is said to b#ippableif e has two incident faces (i.e., is not on
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(b) N C
Figure 2.7: (a) An image, (b) the MMSODD ofp, and (c) the sample points selected in step 1.

(@) (b) ()

Figure 2.8: Quadrilateral examples. The e@gs the diagonal of a quadrilateral that is (a) strictly
convex, (b) convex but not strictly convex, and (c) not conve

the triangulation boundary) and the union of these two fae@sstrictly convex quadrilateral. Fig-
ure| 2.8 gives examples of flippable and nonflippable edgepatticular, the edge in Figure 2.8(a)
is flippable, while the edge is not flippable in both Figures 2.8(b) and (c). For a flippatdgee
being the diagonal of a strictly convex quadrilateyahat is the union of the two incident facesef
anedge flipis an operation that replaces the edge the triangulation by the other diagor&lof g,

as shown in Figure 2.9. The fact that every triangulation sé®of points is reachable from every

other triangulation of the same set of points via a finite sege of edge flips [56] motivated Lawson
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(@) (b)

Figure 2.9: An edge flip. (a) Part of the triangulation comitag a flippable edge. (b) The same part
of the triangulation aftee has been flipped to yield the new edge

to propose the so called LOP [46].

The LOP [46] is an optimization technique, based on edge fiifad is used to select the connec-
tivity of a triangulation so as to be optimal in some sensepractice, the LOP is frequently used to
choose triangulation connectivity in the case of DDTs. Asadter of terminology, a flippable edge
is said to beoptimalif it satisfies some prescribed edge-optimality criteribmturn, a triangulatiom
is said to beoptimal if every flippable edge i is optimal. In order to produce an optimal triangula-
tion, the LOP simply applies edge flips to flippable edges @in@atnot optimal, until the triangulation
is optimal (i.e., all flippable edges are optimal).

Cost-Based Criteria. Most frequently, the edge-optimality criterion is spedfiedirectly through
some measure of triangulation cost. Let triGdgtdenote the cost of the triangulatidn A flippable

edgeein the triangulatior is then said to beptimal if

triCost(T) < triCost(T’), (2.4)

whereT’ is the new triangulation obtained by applying an edge flip tim the triangulationT). That
is, the flippable edge is deemed optimal if applying an edge flip éavould not result in a strict
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decrease in the triangulation cost. In turn, the triangamatost triCost is specified by defining a cost
measure for (all) edges in the triangulation. Let edgedos} denote the cost of the edgen the

triangulationT. Then, triCost is defined as

triCost(T) = Z edgeCodfT, e), (2.5)
ecE(T)

where E(T) denotes the set of edgesTh That is, the cost of a triangulation is simply the sum
of its corresponding edge costs. As a matter of terminolagyrefer to a triangulation optimality
criterion employing/(2.4) (where triCost is of the form of §p. ascost based By far, cost-based
criteria are most commonly used in conjunction with the L&#&veral examples of which can be found
in [23,57, 25, 26]. A particularly important criterion ofightype issquared error (SE)[25, 26]. With
the SE criterion, the edgeis deemed optimal if applying an edge flipeavould not cause a strict
decrease in the MSE as defined by (2.3).

Heuristic-Based Criteria. More recently, the paper [30] introduced a type of triangataopti-
mality criterion that is not associated with any underlyirigngulation cost function (i.e., a function
of the form of (2.5)). With this type of criterion, a cost issaged to each flippable edge. Let
edgeCosgfT, e) denote the cost of the edgen the triangulationT. The flippable edge is said to be

optimal if
edgeCos(T, e) < edgeCosfT’,€), (2.6)

where€ is the new edge produced by applying an edge flig amd T’ is the corresponding new
triangulation (withe’). As a matter of terminology, we refer to a triangulationioyatlity criterion
using (2.6) aheuristic based

Additional Remarks on the LOP. At this point, it is worthwhile to make a few additional rerkar
about the LOP. The first comment to be made is with respecgtwrighm termination. If a cost-based

optimality criterion is employed, the LOP must terminateeaé finite number of steps (assuming the
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algorithm is implemented in a numerically robust mannehisTs an indirect consequence of the fact
that the LOP only flips an edge if doing so would result in acstiecrease in the triangulation cost. In
contrast, if a heuristic-based optimality criterion isdigeegardless of whether the implementation is
numerically robust), the LOP can potentially become trajgpea cycle, repeating the same sequence
of edge flips indefinitely. This is due to the fact that, in thesence of a well-defined triangulation
cost function, it is possible to make inconsistent decisiabhout the optimality of an edge. Such
inconsistent decisions can result in cycles. From a pralcsiandpoint, this potential cycling issue
does not pose any significant problems for two reasons., kitsn performing the LOP, it is easy to
avoid being trapped in a cycle by simply tracking how manyesneach edge is tested for optimality
and if the count for an edge exceeds a particular threshatee ®pecial action can be taken, such
as ignoring the edge for the remainder of the LOP or ternrmigaine LOP early. Second, the more
effective heuristic-based criteria only rarely result ytles. Therefore, breaking cycles when they
do occur has little impact on the result produced by the LOR¢ implementation employed in our
work, in the case of heuristic-based criteria, we limit thiener of times an edge may be tested for
optimality to 15. If this count is exceeded, the edge in goags simply ignored for the remainder of
the LOP.

The second remark to make about the LOP concerns the optigadjlation that it produces.
For any optimality criterion of practical interest (othérah the Delaunay criterion [43, 45]), the
optimal solution produced by the LOP is almost never unigaettermined. The nonuniqueness of
the solution is important because it implies that some agitsolutions may be (and, in practice, are)
much better than others. The optimum produced will typycdpend (often very heavily) on the

initial triangulation to which the LOP is applied.

2.9 Look-Ahead LOP (LLOP)

Suppose that the LOP is used in conjunction with a cost-bap@dhality criterion. In this case, if

a triangulationT is optimal, then no single edge flip can result in a new tridamon with strictly
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lower cost thanT. If, however, more than one edge flip is allowed, it can no é&nge guaranteed
that the triangulation cost will not strictly decrease. histsense, the LOP only guarantees a locally
(but not necessarily globally) optimal triangulation. &rsome local minima will, in practice, have a
much lower cost than others, it would be advantageous to $@ve means to reduce the likelihood
of converging to a poor local minimum. This observation wetid Yu et al. to propose the so called
LLOP [29].

The LLOP is similar to the LOP in that the LLOP applies edgp-flased transformations to a
triangulation until the triangulation is optimal. The LLCH#wever, differs from the LOP in two key
respects. The first difference is that, instead of only ahgvthe triangulation to be transformed by
a single edge flip in each step, the triangulation can befoangd by: 1) a single edge flip; or 2) a
sequence of two edge flips, where the two edges involved slt@amon face. The second difference
is that the definition of triangulation optimality is chamig® the following: A triangulatiorT is said
to beoptimalif the application of a single transformation of one of thetbove types cannot produce
a new triangulation whose cost is strictly less than that.of

For the benefit of the reader, we provide an example illusgahe two types of triangulation
transformation allowed in the LLOP. Consider part of a trislaion as shown in Figures 2/10(a)
and 2.11(a). As described above, this part of the trianguiatan be transformed by: 1) a single edge
flip; or 2) a sequence of two edge flips, where the two edgedvedshare a common face. To begin,
let us consider an example illustrating the first type ofnigialation transformation in the LLOP.
Given part of a triangulation as shown'in 2.10(a), FigureDg}) shows the resulting triangulation
by applying a single edge flip to the edgén Figure 2.10(a). Then, let us consider an example of
the second type of triangulation transformation in the LLGRen part of a triangulation as shown
in2.11(a), this part of the triangulation can be transfatrimeo one of the four triangulations shown
in Figures 2.11(c)—(f), via a sequence of two edge flips.

By being allowed to apply sequences of two edge flips (instéaasoindividual edge flips), the
LLOP is able to reduce the likelihood of converging to a veopiplocal minimum. In effect, when

trying to minimize the triangulation cost, the LLOP consglthe effect of not just single edge flips



25

Va Yo v Va Yo v
e
\1 V3 Vi V3
Vs \Z Ve Vs V2 Ve
(a) (b)

Figure 2.10: An example of the first type of triangulatiomsfrmation in the LLOP. (a) Part of the
triangulation containing a flippable edge (b) The same part of the triangulation after applying a
single edge flip te.

(like the LOP) but also sequences of two edge flips. In practiee LLOP usually produces a better
local optimum (i.e., a triangulation with lower cost) thdre i OP. The downside of the LLOP is that
it typically requires more computation time and can be gdificult to implement in a numerically
robust manner. Since the LLOP fundamentally relies on tistexce of a triangulation cost function,
the LLOP can only be used in conjunction with optimality eri& that are cost based. In other words,

the LLOP cannot be used with heuristic-based optimaliteda.
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Figure 2.11: An example of the second type of triangulatrangformation in the LLOP. (a) Part of
the triangulation containing a flippable edgéefore transformation. (b)—(e) Four possible resulted
cases of the same part of the triangulation after applyirepgaence of two edge flips.
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Chapter 3

Proposed Approach

3.1 Overview

In this chapter, we propose a computational framework mediiiom the ED method and derive two
proposed methods from our framework. We begin by introdyt@ computational framework with
several free parameters. Then, we present various chaoiceadh of the free parameters and advocate
two particular choices of those parameters, leading towargroposed methods. When discussing
our framework, we also propose two optimality criteria foetLOP that perform extremely well.
After that, we evaluate our proposed methods in terms of rgeality and computational complexity.
Lastly, for the completeness of the thesis, we briefly disamne extra work we have done during

the development of our framework.

3.2 Computational Framework for Mesh Generation

Having introduced the necessary background in Chapter 2,ometarn our attention to introduc-
ing the two mesh-generation methods proposed in this thésiexplained earlier, the ED method

chooses triangulation connectivity using a Delaunay gidation. Experimentally, however, we have
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observed that selecting the connectivity in this way resalia mesh in which triangulation edges of-
ten crosscut image edges (i.e., discontinuities in the @npdgading to a degradation in approximation
quality. This motivated us to consider choosing triangafatonnectivity in a more flexible manner,

using a DDT instead of a Delaunay triangulation.

In what follows, we will first introduce our general compubatal framework for mesh genera-
tion, which has several free parameters. Then, by advagratio particular choices for these parame-
ters, we will arrive at the two specific mesh-generation roesproposed herein, namely MED1 and
MED?2. Since itis helpful for the reader to see how we arrivetithese choices, we provide significant
detail in this regard, including some experimental results

Given an imagep and a desired mesh sikeéas input, our general computational framework for
mesh generation produces a mesh modelitdving the seP of sample points, withP| = N, and the
associated triangulation. To accomplish this objective, our framework performs tbkofving (in

order):

1. Sample-point selection. Seldttising the same sample-point selection strategy in stepHeof t
ED method (as introduced earlier in Section 2.7 on page 17).

2. Initial mesh construction. For each pomE P using the order specified by insOrder, where

insOrder is a free parameter of the framework:

(&) Insertpinthe triangulatior. This is accomplished by deleting any faces contaiuagd
retriangulating the resulting hole. This point-insertfmocess is illustrated in Figures 3.1

and 3.2.

(b) Adjust the connectivity of by applying the LOP (as described in Section 2.8 on page 19)
with the triangulation optimality criterion chosen as iqgOriterion, where insOptCriterion

Is a free parameter of our framework.

3. Final connectivity adjustment. Adjust the connectivay T by applying either the LOP or
LLOP, as specified by the parameter fcaMethod, with the agifyncriterion chosen as SE



29

Vj Vi Vj Vi
(a) (b)
Figure 3.1: Insertion of a point strictly inside a face. (aythf the triangulation showing a triangle
ViVjW. (b) The same part of the triangulation with a new verparserted inside the triangigv;v.

Vi Vi

Vj vi Vj vi
Vk k
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Figure 3.2: Insertion of a point on an edge. (a) Part of ttegulation showing two incident faces
ViVjVi andvivyi. (b) The same part of the triangulation with a new verperserted on the edgev.

(i.e., squared error). If fcaMethod is LOP, the LOP is emphbyn this step; otherwise (i.e., if
fcaMethod is LLOP), the LLOP is used.

In step 2b of the above framework, the choice of the triartgariaptimality criterion insOptCriterion
is critical, as different choices of insOptCriterion willgizally lead to vastly differing meshes. One
of the optimality criteria considered in our work is the SEarion introduced in Section 2.8. We also
considered numerous other criteria, which we will introglsbortly. Before proceeding further, how-

ever, there is a very important comment that we must makedegpour above framework. Since
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our objective is to produce a mesh that minimizes the MSE {&ngduy (2.3)), this suggests the
“obvious” solution of choosing the optimality criterionsg®ptCriterion as SE and simply skipping
final connectivity adjustment (i.e., step 3) altogethendsifinal connectivity adjustment would not
change anything if insOptCriterion were chosen as SE). Ieratlords, the obvious solution would
be to simply optimize for squared error using the LOP afteritisertion of each pointin step 2. As it
turns out, this obvious solution performs extremely paoflljis poor performance is due to an inter-
play between point insertion and the SE criterion in stepathich leads to triangulations with many
poorly-chosen sliver (i.e., long thin) triangles, sevgrmégrading approximation quality. In effect,
this interplay causes the mesh-generation optimizationgss to converge to an extremely poor local
optimum. To combat this problem, our framework allows theapgeter insOptCriterion to be chosen
differently from SE, and then adds a final connectivity-athouent step employing the SE criterion in
order to reduce the squared error for the final mesh.
Insertion Order. Recall that step|2 of our framework (i.e., initial mesh camstion) utilizes the

parameter insOrder, which specifies the order in which pang to be inserted in the triangulation.

In our work, we considered numerous possible choices foingertion order insOrder, including:

1. randomized order: the extreme convex-hull points foldwy the remaining points in random-

ized order;

2. xy-lexicographic order: the extreme convex-hull poifttbowed by the remaining points in

xy-lexicographic order;

3. farthest-point first order: the extreme convex-hull p®iollowed by the remaining points pri-
oritized such that the point most distant from the verticethe triangulation is inserted first;

and

4. closest-point first order: the extreme convex-hull pofotlowed by the remaining points pri-

oritized such that the point nearest another vertex in thadulation is inserted first.
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Detailed experiments showed randomized order (i.e., itetmal/e) to be most effective. In particular,

we found that, relative to randomized order, no one of therdtisertion orders considered was able to

consistently produce higher quality meshes at lower or @aige computational cost. Consequently,

we advocate that insOrder always be chosen as randomized ardl we assume that this choice is

always made for the remainder of this thesis.

Optimality Criteria. Recall that step 2b of our framework (i.e., connectivity atfjuent after

point insertion) utilizes the parameter insOptCriteriomjet determines the particular triangulation

optimality criterion used for connectivity adjustment.dur work, we considered the following twelve

possibilities for the choice of the optimality criteriorsi@ptCriterion:

1.

2.

10.

11.

12.

squared error (SE)[25, Equation 1] and [26, Section 2];

(preferred-direction) Delaunay [45, Section 2] and @éction 11.2];

. angle between normals (ABN)23, Equation 3];

. jump in normal derivatives (JND) [23, Section 3.1];

. deviations from linear polynomials (DLP) [23, Section 3.1];

. distances from planes (DP]23, Section 3.1];

. absolute mean curvature (AMC)[57, Section 2.2];

. Garland-Heckbert hybrid (GHH) [18, Algorithm IV and Section 4.5.1] and [30, Section I11.B];

. shape-quality-weighted SE (SQSE]30, Section Il1.B];

JND-weighted SE (JNDSE)30, Section III.B];
edge-length-weighted SE (ELSEJ]proposed herein]; and

minimum-angle-weighted SE (MASE)[proposed herein].
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The first ten of the above criteria are well known criterisgtakrom the literature, while the remaining
two (namely, ELSE and MASE) are newly proposed in this thdsishe interest of brevity, we will
only present herein the formal mathematical definitiondeftivo new criteria. The definitions of the
other optimality criteria can be found in the referencewvjolied above. Of the old criteria (i.e., the first
ten) the SE, Delaunay, ABN, JND, DLP, DP, and AMC criteria dreast based (i.e., employ (2.4)),
the SQSE and JNDSE criteria are heuristic based (i.e., gn{@l6)), and the GHH criterion is a
hybrid of two cost-based criteria.

Before formally defining the ELSE and MASE criteria, we musitfintroduce some additional
notation. For a triangulatiof, let ' (T) denote the set of all integer lattice points falling inside o
on the boundary of . For a given triangulatioii, let facer denote a function that maps each point
p € ['(T) to exactly ondace inT, where this function is defined using the grid-point to faagping
rules introduced in Section 2.6 (on page 16). The set of afitpp < ' (T) satisfying face (p) = f is
denoted pointg( f). With this notation in place, we can now proceed to presenEIhSE and MASE
criteria.

The ELSE and MASE criteria are both heuristic based (i.epley(2.6)). Therefore, each of
these criteria is completely specified in terms of an edgg-ftmction. For a flippable edgein the

triangulationT, the edge-cost functions for the ELSE and MASE criteria arerg respectively, by

edgeCost se(T,e) = [|ef| [B(T, fi) +B(T, f;)] and (3.1a)
B(T, fi) + B(T, fj)

edgeCoshase(T-€) = inre(f). (1))}

(3.1b)

where

BT.H= Y (@p-ap)°,

pepointsy ()

fi and f; denote the two faces incident &6(f) denotes the minimum interior angle of the faice

and points is as defined earlier.
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Final Connectivity Adjustment. In step 3 of our framework, the fcaMethod parameter is used
to select whether the LOP or LLOP is used for final connegtialjustment. Having the ability
to choose between the LOP and LLOP provides us with more flgxito trade off between mesh
quality and computational cost. In case the reader mightdredering why we did not allow similar
flexibility to choose between the LOP and LLOP for connettivdadjustment after point insertion
(i.e., in step 2b), we explain our rationale for this deaisio what follows. The overriding reason for
this decision was that, as we shall see later, all of the nftestteve triangulation optimality criteria
during point insertion (i.e., in step 2b) are heuristic lshsend such criteria cannot be used with
the LLOP. Consequently, allowing the use of the LLOP duringnpmsertion would not facilitate
the development of a better mesh-generation method. To 4 messer extent, our decision was
also influenced by computational cost considerations. htigodar, much more time is typically
spent performing connectivity adjustment in 2b (imhathan in step 3. Thus, the increase in
computational cost resulting from replacing the LOP wita tH.OP in step 2b is much higher than
that of replacing the LOP with the LLOP in step 3. Due to these Well as other) factors, our

framework only accommodates the use of the LOP in[step 2b.

3.3 Test Data

Shortly, we will have the need to present some experimeesallts obtained with various testimages.
So, before proceeding further, a brief digression is in otdeintroduce the test images that we
employed. In our work, we have used 40 images, taken mostiy tandard test sets such as [58],
[59], and [60]. For the most part, the results that we prekergin focus on the representative subset
of these images listed in Tahle 3.1. This particular subset ghosen to contain a variety of image

types (i.e., photographic, medical, and computer-geadratagery).
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Table 3.1: Test images
Image Size, Bits/Sampleescription
bull |1024x 768,8 |cartoon anima
cr 1744x 2048, 10 |x-ray [58]
lena |512x 512, 8 woman [59]

3.4 Selection of Free Parameters

As seen earlier, our computational framework for mesh geiwer has three free parameters, namely,
1) the insertion order insOrder, 2) the triangulation optlity criterion insOptCriterion, and 3) the
method fcaMethod used for final connectivity adjustment.tRe reasons presented earlier, we advo-
cate choosing insOrder as randomized order. In what follevesstudy the effects of making various
choices for the two remaining parameters (namely, insOf@on and fcaMethod). Based on this
analysis, we ultimately recommend two particular choicestifiese parameters, leading to our two
proposed mesh-generation methods.

Triangulation Optimality Criterion During Point Insertion. To begin, we study how the choice
of triangulation optimality criterion insOptCriterion inep 2b of our framework (on page 28) affects
mesh quality. Since the best choice of optimality critenaght possibly be dependent on whether the
final-connectivity-adjustment method fcaMethod is chcaeh OP or LLOP, we treat these two cases
separately. For fcaMethod being chosen as each of LOP an@®\W®proceeded as follows. For each
of the 40 images in our test set and five sampling densitiegnege (for a total of 405 = 200 test
cases), we generated a mesh using each of the twelve choieces@ptCriterion under consideration,
and measured the resulting approximation error in termSHfR. In each of the test cases, the results
obtained with the twelve methods were ranked from 1 (besi2t¢worst). Then, the average and
standard deviation of these ranks were computed acrossseagpling density as well as overall.
These ranking results are given in Tables 3.2(b)land 3.8fkthe cases of fcaMethod being chosen
as LOP and LLOP, respectively. Individual results for thspecific images (namely, the ones listed
in Tablg 3.1) are provided in Tables 3.2(a) and 3.3(a) fokiednod being chosen as LOP and LLOP,
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respectively. In each of these tables, the best result im e&eis shown in bold font.

First, let us examine the results for the case that fcaMeihotlosen as LOP. From the ranking
results in Table 3/2(b), we can make several observation$elELSE criterion is the clear winner
(with an overall rank of 1.16), followed by the MASE and JND&teria (with overall ranks of 2.50
and 2.85, respectively); 2) the MASE criterion yields betesults than the INDSE criterion, except
at high sampling densities where the two criteria are coatgar and 3) the worst performers are the
SE and DP criteria (with overall ranks of 10.88 and 11.74peesvely). Observation 3 supports our
earlier claim that the SE criterion leads to extremely pesutts (when used during point insertion).
To add to observation 1, it is worth noting that a more dedadgamination of the results shows
that the ELSE criterion performs best and second best in208794%) and 4/200 (2%) of the test
cases, respectively. This observation is in agreement tvéhfact that the standard deviations for
the rankings for the ELSE criterion are quite small (e.g890or less). For that matter, most of the
standard deviations in the table are relatively small,datihg that the actual ranking results tend to be
reasonably close to the average rank. The results for thddodl test cases, shown in Table 3.2(a),
are consistent with the ranking results. For example, th8Etriterion is the best, outperforming
the second and third best criteria, MASE and JNDSE, in ale$bd¢ases by 0.01 to 1.77 dB and 0.04
to 4.15 dB, respectively. Moreover, the MASE criterion outpens the INDSE criterion in 12/15 of
the test cases by 0.01 to 2.38 dB. In the preceding resultsRR&$ found to correlate reasonably
well with subjective quality. It is worthwhile to note thdte two best performing criteria ELSE and
MASE are newly proposed herein. This shows that our ELSE aA®&Hcriteria, especially the
former, make an important contribution beyond well-knowitecia from the existing literature.

Now, let us consider the results for the case that fcaMethadhosen as LLOP. As we will see
momentarily, the trends in this case are, for the most pemijas to those for the case just studied
above. Examining Table 3.3(b), we observe that: 1) the ELSEri@ is the clear winner (with an
overall rank of 1.44) followed by the MASE and JNDSE critgmath overall ranks of 2.41 and 3.46,
respectively); and 2) the SE and DP criteria are the wordbpeers (with overall ranks of 11.31

and 11.47, respectively). To add to observation 1, a moralddtanalysis of the results shows the
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Table 3.2: Comparison of the mesh quality obtained with thieua choices of triangulation optimal-
ity criterion insOptCriterion in the case that fcaMethod BR. (a) PSNRs for three specific images.
(b) Rankings averaged across 40 images.

(a)

Samp.

Density PSNR (dB)

Image (%) SE | Del. |[ABN | JND |DLP | DP |AMC|GHH|SQSEJNDSEMASE|ELSE
bull 0.5 [|24.7331.4428.4430.4929.7225.9631.4230.22 31.59| 31.37 | 33.75|35.52
1.0 ||26.8938.8531.91/38.3433.4230.7339.0037.82 38.69| 38.78 | 39.43|39.99
2.0 [|30.5342.1234.87/42.2639.5225.9341.9441.36 42.36| 42.36 | 42.49|42.72
3.0 [|31.9343.4236.2443.3639.3529.91/143.0843.41 43.61| 43.66 | 43.83|43.97
4.0 |/31.2344.3434.9744.1741.4031.9244.0744.23 44.49 44.53 | 44.62|44.72
cr 0.5 [|31.1934.4030.3834.4532.4230.2334.2234.30 34.81| 34.84 | 34.92|35.11
1.0 ||32.4136.3333.0136.3534.4231.1636.37/36.48 37.13| 37.16 | 37.22|37.31
2.0 [|33.3338.6834.3438.3636.3332.5238.24/38.75 38.95| 39.01 | 39.00|39.10
3.0 [|34.1239.5734.9539.3236.9633.7839.17/39.62 39.76| 39.82 | 39.80|39.87
4.0 ||35.6340.1039.2939.8937.5633.5439.7040.19 40.31| 40.36 | 40.33/40.42
lena 0.5 [|17.6121.1719.2220.5519.61/18.07/20.51/21.20 21.75| 21.82 | 21.83|21.96
1.0 ||21.5025.21/20.6924.91/21.8619.91/24.58 25.30 25.89| 25.92 | 25.94|26.13
2.0 [/20.7229.4824.3629.0926.2521.0427.6729.26 29.91| 29.99 | 30.06|30.14
3.0 [|23.4331.2624.6230.9927.2222.3430.1531.2131.58| 31.62 | 31.71|31.72
4.0 |/23.6732.3926.3032.17/29.1324.0631.4532.47 32.78| 32.84 | 32.87|32.88

(b)

Samp.
Density Mean Rank

(%) SE | Del. |ABN | JND | DLP | DP |AMC | GHH |SQSEJNDSEMASE|ELSE

0.5 [/10.20/ 5.83| 9.78| 8.10| 8.90|11.40, 7.30| 5.13| 3.85| 3.43 | 2.83 | 1.28
(1.42)[(1.30)/(1.47)(1.67)(1.62)[(1.22)/(1.68) (1.73) (1.22)| (1.66)| (1.53)(0.89)
1.0 [10.95 6.05|10.03 7.60| 9.10|11.75 6.95| 5.35| 3.80| 2.98 | 2.28 | 1.18
(0.80),(1.18)(0.57)((0.80),(0.49)(0.49)((1.26)(0.79),(0.64), (0.79)| (0.63)|(0.67)
2.0 |/10.98/ 5.80|10.00, 7.08 | 9.10(11.90| 7.85| 5.30| 3.75| 2.75 | 2.43 | 1.08
(0.47)(0.40) (0.50)((0.52)(0.37),(0.30)[(0.42) (0.64),(0.54), (0.66) | (0.70)|(0.35)
3.0 [/11.18/ 5.90/10.00] 6.95| 9.03/11.80, 8.00| 5.13| 3.88| 2.58 | 2.43 | 1.15
(0.44)(0.37)/(0.22),(0.22)/(0.16)((0.40)(0.00),(0.46) (0.40)| (0.67)| (0.54)|(0.69)
4.0 |/11.10} 5.88|10.03 7.03| 9.03|11.85 7.98| 5.10| 3.85| 2.53 | 255 | 1.10
(0.44)(0.33)/(0.27)((0.16)/(0.16)|(0.36)[(0.16)(0.37),(0.53), (0.55)| (0.59)|(0.62)
All |/10.88 5.89| 9.97| 7.35| 9.03|11.74) 7.62| 5.20| 3.83| 2.85 | 2,50 | 1.16
(0.88)[(0.84)(0.76),(0.97)(0.79)[(0.67)(1.05),(0.94) (0.72)| (1.01)| (0.90)|(0.67)

aThe standard deviation is given in parentheses.
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ELSE criterion to perform best and second best 166/200 (&8%)12/200 (6%) of the test cases,
respectively. This observation is in agreement with th¢ tlaat the standard deviations for the rank-
ings for the ELSE criterion are quite small (e.g., 1.19 indkerall case). For that matter, most of the
standard deviations in the table are relatively small,dating that the actual ranking results tend to
be reasonably close to the average rank. Compared to the basgeaMethod is chosen as LOP, we
observe that the MASE criterion outperforms the JNDSE Goiteeven more consistently (i.e., the
two criteria differ more in terms of their overall ranking3he results for individual test cases shown
in Table 3.3(a) are consistent with the preceding rankisglts. For example, the ELSE criterion
is the best, outperforming the second and third best aitMASE and JNDSE, in 13/15 of the test
cases by 0.01 to 2.22 dB and 0.01 to 2.61 dB, respectively,rentMASE criterion outperforms the
JNDSE criterion in 12/15 of the test cases by 0.01 to 0.84 dRiWgn the preceding results, PSNR
was found to correlate reasonably well with subjective ifyal

As the above experimental results demonstrate, regardfeshether the final-connectivity-ad-
justment method fcaMethod is chosen as LOP or LLOP, the leg&inmance in terms of approxima-
tion quality is obtained by choosing the triangulation oyatlity criterion insOptCriterion as ELSE.
Therefore, we advocate this particular choice for insOpé&tian in our framework.

In the experimental results above, we saw that, regardfegsether the final-connectivity-adjust-
ment method fcaMethod is chosen as LOP or LLOP, selectingridmegulation optimality criterion
insOptCriterion as SE leads to meshes of extremely poortgugkrlier, we indicated that this behav-
ior is due to an interplay between point insertion and the &Er@n, which leads to triangulations
with many poorly-chosen sliver triangles. To illustratesthbhenomenon, we present two examples,
one for the parameter fcaMethod being chosen as each of LOPLADP. For consistency, the exam-
ples are taken from the results presented earlier in Tak?ea@i 3.3, and correspond to the lena image
at a sampling density of 2%. For the parameter fcaMethodgbaiwsen as each of LOP and LLOP,
the results obtained are shown in Figures 3.3 and 3.4, rigplgcEach figure shows part of the image
approximation and the corresponding image-domain trikatigun obtained when insOptCriterion is

chosen as SE. For comparison purposes, the result obtaittethesELSE criterion (which performs
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Table 3.3: Comparison of the mesh quality obtained with thieua choices of triangulation optimal-
ity criterion insOptCriterion in the case that fcaMethod ISQP. (a) PSNRs for three specific images.
(b) Rankings averaged across 40 images.

(a)

Samp.

Density PSNR (dB)

Image (%) SE | Del. |[ABN | JND |DLP | DP |AMC|GHH|SQSEJNDSEMASE|ELSE
bull 0.5 [/26.6834.3131.7035.2431.8329.9834.7233.10 33.75| 33.88 | 34.72|36.20
1.0 ||30.67/40.41/36.9340.1237.3035.7640.3040.01 40.15| 40.17 | 40.56|42.78
2.0 |[|33.7343.2739.0543.3741.2531.5443.3942.69 43.23| 43.23 | 43.38|43.51
3.0 (|34.9144.4339.8544.4342.3034.8444.51]44.32 44.39| 44.40 | 44.52|44.58
4.0 ||133.7645.2040.2545.1544.3436.7245.2245.05 45.19| 45.21 | 45.29|45.33
cr 0.5 [|32.7335.8832.6835.6534.0532.5035.6535.76 35.95| 35.91 | 35.92|36.04
1.0 ||34.1337.7135.1037.1835.9233.1937.5537.72 37.77| 37.78 | 37.78|37.82
2.0 (|34.8339.3636.51/39.1937.9234.7639.1939.35 39.40| 39.41 | 39.42|39.43
3.0 [|35.6840.1437.1640.01/38.5935.9939.9940.12 40.17| 40.18 | 40.18|40.19
4.0 ||37.1040.6538.3340.5338.9635.6340.5240.63 40.69| 40.70| 40.70/40.72
lena 0.5 (/18.8022.51/20.6821.7620.8622.0322.0322.4722.28| 22.43 | 22.45|22.53
1.0 ||23.1826.41/23.22/26.3323.97/26.17/26.17/26.39 26.48| 26.51 | 26.57|26.63
2.0 [|22.6430.5527.2330.3028.7730.2430.2430.08 30.57| 30.58 | 30.60|30.68
3.0 [|26.4432.1827.8932.1329.3531.7931.7932.10 32.27| 32.26 | 32.29|32.26
4.0 [/25.9433.3829.8233.2331.0333.0933.0933.30 33.39| 33.42| 33.44/33.42

(b)

Samp.
Density Mean Rank

(%) SE | Del. |ABN | JND | DLP | DP |AMC | GHH |SQSEJNDSEMASE|ELSE

0.5 (/10.98| 4.40| 9.68| 7.65| 8.95|11.00 6.15| 5.60| 4.60| 4.33 | 2.98 | 1.70
(2.33)[(1.69)(1.13),(1.75)(1.75)[(1.76)(2.34) (2.07) (2.00)| (1.89)| (1.37)|(1.36)
1.0 ||11.48 4.55|9.88| 7.78| 9.00|11.43 6.60| 5.78| 3.90| 3.60 | 2.33 | 1.70
(0.59)((1.18)(0.60),(0.79)/(0.89)[(0.54)(1.61) (1.25) (1.04) (1.43)| (0.96)|(1.65)
2.0 |/11.33/5.05|9.83| 7.25|9.18|11.68 7.28| 6.05| 3.58| 3.18 | 2.48 | 1.15
(0.47)/(0.77)(0.38),(0.83)/(0.38)[(0.47)/(1.07),(0.77) (1.20)| (0.77)| (0.77)|(0.65)
3.0 [|11.38/ 5.05|9.93| 7.05|9.08|11.63 7.68| 5.98| 3.70| 3.15 | 2.10 | 1.30
(0.48)(0.38)(0.26)((0.67),(0.26),(0.48)(0.85)(0.57),(0.81), (0.91)| (0.54)|(2.03)
4.0 |/11.38 5.00|9.98| 7.03| 9.03|11.63 7.78| 5.95| 3.68| 3.05 | 2.18 | 1.35
(0.48)/(0.55)(0.16)((0.47)(0.16)(0.48)(0.82)(0.63),(0.88), (0.74)|(0.83)|(0.91)
All 11.31 4.81| 9.86| 7.35| 9.05|11.47] 7.10| 5.87| 3.89| 3.46 | 241 | 1.44
(0.77)/(1.06)[(0.62)[(1.05) (0.91) (0.94)|(1.59) (1.21) (1.31)| (1.32) | (0.99)|(1.19)

aThe standard deviation is given in parentheses.
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very well) is also shown. First, let us consider the examplEigure 3.3. Examining Figure 3.3(b),
we can see that the image-domain triangulation obtaineutwé SE criterion has a large number of
poorly-chosen sliver triangles, which lead to very higloern the corresponding image approxima-
tion in Figure 3.3(a). In contrast, viewing Figures 3.3(ajldd), we observe that the ELSE criterion
does not suffer from this problem. Now, moving our attentmthe second example in Figure 3.4, we
can see that a similar pattern of behavior is obtained aiffitst example. Again, the SE criterion
yields a triangulation with many poorly-chosen slivertigées, which severely degrades approxima-
tion quality.

As for why the SE criterion typically yields triangulatiomsth many poorly-chosen sliver trian-
gles, this can be attributed to the combination of two fectbirst, the SE criterion does not explicitly
consider triangle shape and, therefore, does not have st diechanism for preventing the creation
of bad sliver triangles or eliminating such triangles orfeeytare present. Second, the SE criterion is
also unable to account for triangle shape in an indirect ramue to the shortsightedness of the LOP
and LLOP. (The shortsightedness of the LOP and LLOP follawmfthe fact that a decision made
at any given step in each of these algorithms considers thadatof that decision only in the current
step, not inall subsequensteps.) In practice, the above two factors conspire to predupattern
of behavior with the SE criterion that resembles the follogvi When a new point is inserted in the
triangulation, a sliver triangle will sometimes result. dach a case, since the SE criterion does not
directly consider triangle shape, the SE criterion wilkoftbe unable to eliminate the sliver triangle.
Thus, as more points are inserted in the triangulation, tiheber of sliver triangles tends to grow
significantly. In turn, as the number of sliver triangleswso the number of unflippable edges also
tends to increase. This leads to sliver triangles tendingaie fewer flippable edges (on average).
This, in turn, makes it more difficult to eliminate sliverarigles, once present. In this manner, a very
large number of sliver triangles is obtained. Because thebeurof sliver triangles produced is so
abnormally large, it is not surprising that the number ofrstrangles that are poorly chosen is also
high.

In the experimental results above, we saw that the ELSE an8B/éxiteria perform best in terms
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Figure 3.3: Comparison of the mesh quality obtained for tha ienage at a sampling density of 2%
in the case that the final-connectivity-adjustment metlvadfethod is LOP. Part of the image approx-
imation obtained when the optimality criteria insOptCiiberis chosen as each of (a) SE (20.72 dB)
and (c) ELSE (30.14 dB), and (b) and (d) the correspondingdtitations.

of mesh quality. This excellent performance is made pos&iplthe fact that each of these two criteria
has a direct dependence bathtriangle shape and squared error. The dependence on seresed
is critical for achieving high mesh quality, while the degdence on triangle shape is important for

avoiding large numbers of poorly-chosen sliver trianglesthe case of the ELSE criterion, triangle
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Figure 3.4: Comparison of the mesh quality obtained for tha Image at a sampling density of 2% in

the case that the final-connectivity-adjustment metholM&thod is LLOP. Part of the image approx-

imation obtained when the optimality criteria insOptCiiberis chosen as each of (a) SE (22.64 dB)
and (c) ELSE (30.68 dB), and (b) and (d) the correspondingdtitations.

shape is implicitly considered by the criterion’s depera#ean edge length, which penalizes longer
edges. In the case of the MASE criterion, triangle shapensidered by the criterion’s dependence
on minimum interior angle, which penalizes smaller inteangles. By accounting for triangle shape,

the ELSE and MASE criteria are able to avoid the bad-slivebj@m that plagues the SE criterion.
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Method for Final Connectivity Adjustment. Next, we study how the choice of the final-connec-
tivity-adjustment method fcaMethod in step 3 of our framdwavhich can be either LOP or LLOP)
affects mesh quality. To do this, we fix the insOptCriteriomgoaeter to be ELSE and proceed as
follows. For each of the 40 images in our test set and five sagplensities per image (for a total
of 40-5 = 200 test cases), we generated a mesh using each of the tvaestor fcaMethod under
consideration (namely, LOP and LLOP), and measured thédtiresapproximation error in terms of
PSNR. In all of these 200 test cases, the LLOP outperformeld@feby a margin of 0.09 to 2.30 dB,
with the average margin being 0.56 dB. Individual resultdfioee images (namely, the images listed
in Table 3.1) are given in Table 3.4. Examining this table see that the LLOP outperforms the LOP
in all cases by a margin of 0.30 to 0.93 dB. Although we have shlywn results for one choice of
the fixed parameter insOptCriterion (i.e., ELSE), we foumdilsir results with other choices. Thus,
from above, we conclude that choosing the parameter fcaddeth LLOP (as opposed to LOP) yields
higher mesh quality. This said, however, we must point cait tthis choice entails a trade off in terms
of computational cost. As noted earlier (in Section 2.9 ogep23), the LLOP has a higher compu-
tational cost than the LOP. For example, for the test caskeolena image at a sampling density of
2%, we found the LOP and LLOP to have computation times of abdd seconds and 2.30 seconds,
respectively. More generally, we have found the LLOP todgfly require a computation time that
is about 1.4 to 1.7 times that of the LOP. Thus, the best cHorcthe parameter fcaMethod depends
on the most appropriate trade off between mesh quality amgpatational cost for the application at
hand.

3.5 Proposed Methods

Above, we have considered how various choices for the freenpeters in our computational frame-
work for mesh generation (namely, the insertion orderngidation optimality criterion, and final-
connectivity-adjustment method) affect mesh quality. sTleid us to conclude that the triangulation

optimality criterion insOptCriterion and the insertion erdnsOrder are best chosen as ELSE and
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Table 3.4: Comparison of the mesh quality obtained with ed¢heotwo choices for the fcaMethod
parameter

Samp.
Density| PSNR (dB)
Image (%) || LOP |LLOP
bull 0.5 ||35.52 36.20
1.0 ||29.9942.78
2.0 ||42.7243.51
3.0 ||43.9744.58
4.0 ||44.72 45.33
cr 0.5 ||35.1136.04
1.0 ||37.3137.82
2.0 (|39.1039.43
3.0 [/39.87/40.19
4.0 |/40.42 40.72
lena 0.5 ||21.96 22.53
1.0 |[26.1326.63
2.0 |/30.14 30.68
3.0 ||31.7232.26
4.0 |/32.88 33.42

randomized order, respectively. Whether the final-conwiggiadjustment method fcaMethod should
be chosen as LOP or LLOP is less clear cut, due to a trade offeleet mesh quality and computa-
tional cost. As a result, we chose to propose two methodsykras MED1 and MED2, where the

first method has a lower computational cost relative to tliersé. The MED1 and MED2 methods

both employ the best choices for insOptCriterion and insOeadeidentified above (i.e., ELSE and
randomized order, respectively). For the final-connegtisdjustment method fcaMethod, however,
the MED1 method uses the LOP (which has lower computatiarst) cwhile the MED2 method uses

the LLOP (which has higher computational cost).
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3.6 Evaluation of Proposed Methods

Having introduced our MED1 and MED2 mesh-generation methaed now compare their perfor-
mance to that of the ED scheme in terms of mesh quality. Intiaddiwe make a few comments
regarding the computational cost of our proposed methodwe sSbftware implementations of the
methods used in this evaluation were developed by the aofttbis thesis and written in C++. For
test data, we employ the same set of 40 images describedréarBection 3.3.

Mesh Quality. For all 40 images in our test set and five sampling densitiesnpege (for a total
of 40-5 = 200 test cases), we used each of the various methods undadetion to generate a
mesh, and then measured the resulting approximation erterms of PSNR. Individual results for
three specific images (namely, the images listed in TablesBelgiven in Table 3.5.

To begin, we compare the MED1 and MED2 methods to the ED sché&xamining the results
for the individual test cases in Table 3.5, we see that the M&fRd MED2 methods both outperform
the ED scheme in all 15 test cases, by margins of 1.94 to 8.4&ndB2.24 to 9.14 dB, respectively.
Next, we consider the full set of results taken across all @30 cases (i.e., 40 images with five
sampling densities per image). In the full set of resultsfoumd that the MED1 and MED2 methods
both yield higher quality meshes than the ED scheme in allt2@0cases. More specifically, the
MED1 method outperformed the ED scheme by a margin of 1.9346 &B with an average margin
of 3.26 dB, while the MED2 method outperformed the ED schema hyargin of 2.23 to 9.14 dB
with an average margin of 3.81 dB. Thus, the MED1 and MED2 nuslotearly yield meshes of very
substantially higher quality, relative to the ED method.

Next, we compare the performance of the MED1 and MED2 methBexismining the results from
the individual test cases in Table 3.5, we can see that the MEEthod beats the MED1 method in
all 15 test cases by a margin of 0.30 to 0.93 dB. In the full setsilts, we found that the MED2
method yields higher quality meshes than the MED1 methodl iB0® test cases, by a margin of
0.09 to 2.30 dB with an average margin of 0.56 dB. TherefoeeMED2 method consistently yields
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Table 3.5: Comparison of the mesh quality obtained with thhieoua methods
Samp.
Density PSNR (dB)
Image (%) ||[MED1 MED2 ED
bull 0.5 || 35.52| 36.20|27.06
1.0 | 39.99|40.78|34.46
2.0 | 42.72| 43.51|38.59
3.0 || 43.97|44.58|40.47
4.0 || 44.72|45.33|41.60
cr 0.5 | 35.11| 36.04|31.96
1.0 | 37.31|37.82|33.84
2.0 | 39.10] 39.43|35.72
3.0 | 39.87|40.19/37.63
4.0 || 40.42|40.72|38.48
lena 0.5 || 21.96| 22.53|17.76
1.0 | 26.13| 26.63|21.50
2.0 | 30.14| 30.68/26.38
3.0 || 31.72] 32.26|28.50
4.0 || 32.88|33.42|29.83

meshes of higher quality than the MED1 method. This behasidue to the MED2 method using
the more effective LLOP (instead of the LOP) for final connefst adjustment.

In the above results, PSNR was found to correlate reasomablyvith subjective image quality.
For the benefit of the reader, however, we include illusteaéixamples in what follows. To begin,
we consider the case of a photographic image. For one of shedses in Table 3.5 namely, the lena
image at a sampling density of 2%, part of the image appraximand the corresponding image-
domain triangulation obtained for each of the various méshis shown in Figure 3.5. Examining
this figure, we can see that the image approximations pradogeur MED1 and MED2 methods
(in Figures 3.5(a) and (b), respectively) are clearly of mhigher quality than the one produced by
the ED scheme (in Figure 3.5(c)), with image details sucimagje edges/contours being much better
preserved in the MED1 and MED2 cases. In order to more clégglylight some of the more subtle
difference between the results for our MED1 and MED2 methaasshow (for the same test case)

the results for a smaller region of interest under greategnifization in Figure 3.6. By carefully
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comparing the image approximations for our MED1 and MED2hwoés$ in Figures 3.6(a) and (b),
respectively, we can see that there are a few places whegeid&ails (such as edges and contours)
are slightly better preserved by our MED2 method than our MIEEBheme, one example being the
(image) edge along the top of the hat. The improved perfoceanthe MED2 case is largely due to
triangulation edges being better aligned with image edgesdurs. So, in terms of subjective quality,
our MED1 and MED2 methods are both vastly superior to the Bi2ise, with our MED2 method
yielding slightly better quality than our MED1 scheme.

Now, we consider the cases of computer-generated and rhedages. In particular, for two test
cases in Table 3.5, namely, the bull image at a sampling tyesfsl % and the cr image at a sampling
density of 0.5%, part of the image approximations and theespoonding image-domain triangulations
obtained for each of the various methods are shown in Figliieand 3.8, respectively. Observing
the two figures, we can see that the trends in these two figueesirailar to those in Figure 3.5. In
particular, the image approximations for our MED1 and MED&mads (in Figures 3.7(a) and 3.8(a),
and 3.7(b) and 3.8(b), respectively) are clearly supeddhose for the ED method (in Figures 3.7(c)
and 3.8(c)), with image details (such as edges and contoeirsy much better preserved in the MED1
and MED?2 cases.

Computational Cost. Next, we briefly consider the computational costs of our MEDE MED?2
methods. For the purposes of making timing measurementgmydoyed very modest hardware,
namely an eight-year-old notebook computer with a 2.00 Gtizl ICore2 Duo T7250 CPU and 1.0
GB of RAM. On this machine, our MED1 and MED2 methods typica#équire only a few seconds
of computation time for images like lena from Table|3.1. Intigalar, for the lena image and several
sampling densities, the time required for mesh generatoredch method under consideration is
shown in Table 3.6.

Examining Table 3.6, we can see that the MED1 and MED2 metteafisre 0.95 to 2.06 seconds
and 1.38 to 3.30 seconds, respectively. We can also obdeav@tr MED1 and MED2 methods
typically increase the computation time relative to the Ebesne by only 0.3 to 1.1 seconds and

0.7 to 2.4 seconds, respectively. In absolute terms, thlieimental cost is very small when one
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Figure 3.5: Part of the image approximation obtained fol¢ha image at a sampling density of 2%

with each of the (a) MED1 (30.14 dB), (b) MED2 (30.68 dB), andE®) (26.38 dB) methods, and
(d), (e), and (f) the corresponding triangulations.

considers the very substantial improvement in mesh quatitgined with our methods. Furthermore
when viewed in the broader context of the many mesh-gewoarsgchniques proposed to date in the
literature, our MED1 and MED2 methods are quite low in termeamputational cost. For example
some other methods, which are based on techniques suchwatsidhannealing or simplification of

very large meshes, can easily require computation timekeorder of minutes or more.
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Figure 3.6: Part of the image approximation (under magriéoy obtained for the lena image at a
sampling density of 2% with each of the (a) MED1 (30.14 dB),N&D2 (30.68 dB), and (c) ED
(26.38 dB) methods, and (d), (e), and (f) the correspondiagdulations.

Typically, the computation time for our MED2 method was fdua be about 1.4 to 1.7 times that
of our MED1 scheme (which is supported by the timing result§able 3.6). So, our MED2 method
is more computationally expensive, with this higher coshicg from the use of the LLOP (instead
of the LOP) during final connectivity adjustment. As we sawieg our MED2 method yields higher

quality meshes than our MED1 scheme. So, whether our MED1EDR®Imethod is more attractive
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Figure 3.7: Part of the image approximation obtained forahiéimage at a sampling density of 1%
with the (a) MED1 (39.99 dB), (b) MEDZ2 (40.78 dB), and (c) ED @ldB) methods and (d), (e),
and (f) the corresponding triangulations.

for a particular application, depends on computationastramts. Our MED1 method would be more
appropriate for more computationally-constrained emuiments, whereas our MED2 method would
be preferred otherwise.

Lastly, we must make one additional comment regarding thangj results in Table 3.6. As the

astute reader might have noticed, the execution time redfiar the ED method in Table 3.6 does not
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Figure 3.8: Part of the image approximation obtained forcthienage at a sampling density of 0.5%
with the (a) MED1 (35.11 dB), (b) MED2 (36.04 dB), and (c) ED @4.dB) methods and (d), (e),
and (f) the corresponding triangulations.

increase monotonically with the sampling density, nantekytime required for the sampling density
of 1% is lower than that for 0.5%. We explain the reasons fierghenomenon as follows. Recall that
in Section 2.7, we mentioned that the Floyd-Steinberg efiffusion is performed iteratively in our

work in order to achieve exactly the desired number of sampgiets. Since the required number of

iterations does not increase monotonically with the samgpdiensity, it would not be unreasonable if
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Table 3.6: Comparison of computational complexity for theouss methods
Samp.
Density, Time (s)

Image (%) |MED1/MED2| ED
lena 0.5 0.95 | 1.38 |0.60
1.0 1.03 | 1.68 |0.51
2.0 1.40 | 2.30 |0.66
3.0 1.76 | 2.81 |0.82
4.0 2.06 | 3.30 |0.99

the time required for the sample-point selection decreas#se sampling density increases by a small
percentage. Therefore, if the sample-point selectiorstakea relatively large proportion of the total
time required for a mesh-generation method (e.g, the EDodgtt would not be unreasonable if the
time required for mesh generation decreases as the sandglinsity increases by a small percentage.
This is why for the ED method in Table 3.6, the time requirediie@ sampling density of 1% is lower
than that for 0.5%. This being said, however, the generaditre still that the time required for mesh

generation increases with the sampling density (as sugghbst the timing results in Table 3.6).

3.7 Other Work

At this point, we have proposed two novel mesh-generatiahous and evaluated their performance
by comparing to the ED method in terms of mesh quality and eadatnal complexity. During the

development of our framework, we explored additional \taotes on our approach beyond what we
have shown earlier. These other variations were found nleiid to better results, however. For this
reason, we decided not to include discussions of thosetivargain the material presented earlier.
For the sake of completeness, we briefly discuss those iersaind show some extra experimental

results in what follows.
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3.7.1 Selection of Free Parameters for ED Method

Recall that in the ED method (as introduced in Section 2.7 gedd), the sample points are selected
in a way that they are distributed approximately propodiaio the MMSODD of the image. In
other words, we chose to use the MMSODD as the sample-pansitgdunction for Floyd-Steinberg
error diffusion in the ED method. Also in Section 2.7, we oobnsidered the variant of the ED
method for which the serpentine scan order is used and tlstigéy parametely is chosen as 1.
During the development of our work, we studied more choidedb@above three parameters for the
ED method, namely, the sample-point density function fayBtSteinberg error diffusion, the scan
order for Floyd-Steinberg error diffusion, and the sewgjtiparametery. Those additional choices

are described as follows:

1. Both the MMSODD (as given by (2.1) on page 8) and skewnesgiyas by (2.2) on page 9)

were explored as the choice of the sample-point densitytiomdor Floyd-Steinberg error

diffusion.

2. Both the raster and serpentine scan orders from [19] weglered for Floyd-Steinberg error

diffusion.
3. Three values were studied for the sensitivity paramgteamely 0.5, 1, and 2.

It is worth noting that, during our experimentation, theetlkcharacteristics of the ED method are

fixed as follows:
1. athird-order binomial filter is used for smoothing;
2. non-leaky error diffusion is used; and

3. the error diffusion algorithm is performed iteratively earder to achieve exactly the desired

number of sample points.
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Table 3.7: Comparison of different sample-point densityctioms for the ED method
Samp.
Density PSNR (dB)
Image (%) | SkewnessMMSODD
bull 0.50 16.77 27.06
1.00 16.94 34.46
2.00 18.34 38.59
3.00 18.79 40.47
4.00 19.28 41.60
cr 0.50 15.35 31.96
1.00 20.88 33.84
2.00 21.42 35.72
3.00 22.97 37.63
4.00 23.24 38.48
lena | 0.50 15.13 17.76
1.00 16.26 21.50
2.00 17.73 26.38
3.00 19.07 28.50
4.00 19.55 29.83

In what follows, we proceed to show how we arrived at a pakicahoice for each of the three
parameters (i.e., the sample-point density function, ta@ ®rder, and the sensitivity paramegefor
the ED method with some experimental results.

Sample-Point Density Function. To begin, we studied how different choices of the sample{poi
density function used for Floyd-Steinberg error diffusinrthe ED method affect mesh quality. We
fixed the scan order to be serpentine scan order and theiggnpidrametery to be 1, and proceeded
as follows. For numerous images and sampling densities,energted a mesh employing the ED
method with the sample-point density function chosen ak edthe MMSODD and skewness, and
measured the resulting mesh quality in terms of PSNR. A reptative subset of the results is shown
in Table 3.7. From this table, we can observe that the MMSOIRIy meshes of substantially higher
quality than those yielded with the skewness. In particilee MMSODD beats the skewness in all
15 test cases, by a margin of 2.63 to 22.32 dB.
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(b) (©)
Figure 3.9: (a) An image, (b) the MMSODD ofg, and (c) the skewness of

To help the reader understand why there is such a substdiffedence between the meshes
yielded with the use of the MMSODD and skewness, we providéusirative example. For the lena
image (listed in Table 3.1), the MMSODD and skewness of tregierare shown in Figures 3.9(b) and
(c), respectively. Observing the MMSODD of the lena imagstasvn in Figure 3.9(b), we can see
that many high-MMSODD pixels in the image tend to clusteuabimage edges and contours. For
the skewness of the lena image as shown in Figure 3.9(c),Jemywge observe much less clustering
of high-skewness pixels around image edges and contounse $ie skewness is clearly inferior to
the MMSODD in terms of detecting image features (edgestzon) as shown above, we did not
consider the use of the skewness in the material presentekisection 3.7.

Scan Order. Next, we studied how different choices of the scan order @ige#loyd-Steinberg
error diffusion in the ED method affect mesh quality. To iflarthe scan order refers to the order
in which the grid points are visited during Floyd-Steinbergor diffusion. We fixed the sample-
point density function to be the MMSODD and the sensitivigrametelty to be 1, and proceeded
as follows. For numerous images and sampling densities,emergted a mesh employing the ED
method with the scan order chosen as each of the raster grehiee scan orders, and measured the
resulting mesh quality in terms of PSNR. A representativesstbf the results is shown in Table 3.8.

Examining Table 3/8, we can see that the serpentine scan codsistently outperforms the raster
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Table 3.8: Comparison of different scan orders for the ED oukth
Samp.
Density| PSNR (dB)
Image (%) |RasterSerpenting
bull 0.50 || 25.63] 27.06
1.00 || 32.93 34.46
2.00 || 38.04| 38.59
3.00 || 40.14| 40.47
4.00 || 41.46| 41.60
cr 0.50 || 30.83] 31.96
1.00 ||32.74| 33.84
2.00 [|35.19, 35.72
3.00 ||37.00] 37.63
4.00 | 38.04| 38.48
lena | 0.50 ||17.07| 17.76
1.00 || 20.00, 21.50
2.00 || 24.62| 26.38
3.00 || 27.32] 28.50
4.00 |/ 28.98 29.83

D

scan order. In particular, the serpentine scan order bleatsaster scan order in all 15 test cases, by
a margin of 0.14 to 1.76 dB. Consequently, we did not considerdlter scan order in the material
presented before Section 3.7.

Sensitivity Parameter y. Lastly, we studied how different choices of the sensitipgrameter
y used for the ED method affect mesh quality. We fixed the saippiet density function to be
the MMSODD and the scan order to be the serpentine scan @aeérproceeded as follows. For
numerous images and sampling densities, we generated aemgdbying the ED method with the
scan order sensitivity parametgechosen as each of 0.5, 1, and 2, and measured the resultitg mes
quality in terms of PSNR. A representative subset of resalshown in Table 3/9. From this table,
we can see that the mesh produced in the cage-df consistently outperforms the meshes generated
in the other two cases. In particular, the mesh producedeicéise off = 1 beats the mesh generated
in the case off = 0.5 in 13/15 of the test cases by a margin of 0.90 to 7.33 dB, ant$ lea mesh
generated in the case pf 2 in all 15 test cases by a margin of 5.62 to 20.34 dB. Thereweanly



56

Table 3.9: Comparison of differegfparameter choices for the ED method
Samp.
Density PSNR (dB)

Image (%) ||[y=05y=1y=2
bull 0.50 || 24.73|27.0616.53
1.00 || 33.30|34.4617.26
2.00 || 37.53|38.5919.80
3.00 || 39.07(40.4720.73
4.00 || 40.01|41.6021.26
cr 0.50 || 24.63(31.9624.07
1.00 || 29.55|33.8427.56
2.00 || 34.50|35.7230.10
3.00 || 35.73|37.6331.58
4.00 || 36.26|38.4832.82
lena | 0.50 || 19.23|17.7615.21
1.00 || 22.38|21.5016.41
2.00 || 25.39|26.3817.94
3.00 || 27.33|28.5018.91
4.00 || 28.93|29.8319.74

consideredy = 1 in the material presented before Section 3.7.

3.7.2 Other Extra Experiments

Above, we discussed the extra exploration of several fresnpaters for the ED method. In addition to
the extra results shown in previous section, we studied sdhes parameters and even a few variants
of the framework during the development of our frameworkwhrat follows, we briefly discuss them
for the reader’s interest.

Attempt to Improve Performance of SE Criterion. In Section 3.4, we showed experimental
results (in Figures 3.3 and 3.4) to illustrate that chooshwy optimality criterion insOptCriterion
in our framework as SE would lead to extremely poor image @pprations, with many poorly-
chosen sliver triangles being produced in the triangutatiDuring the development of our work,

in order to improve the performance of the SE criterion, viedtra variant of our framework that
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employs the LLOP (instead of the LOP) for selecting triaagjoh connectivity after each point is
inserted in the triangulation. Since the LLOP is often abl#rtd a better local optimum than the LOP
(as mentioned in Section 2.9 on page 23), we expected tonobédier results for the SE criterion
with the use of the LLOP during point insertion. To evaludte performance of the above variant
of the our framework, we fixed the optimality criterion indQpterion to be SE and skipped the
final-connectivity-adjustment step, and proceeded asvi@ll For numerous images and sampling
densities, we generated a mesh with each of the LOP and LL@ig benployed for triangulation
connectivity adjustment during point insertion, and meaduthe resulting mesh quality in terms
of PSNR. A representative subset of results is shown in Taldle. 3For comparison purposes, we
have also included the results of our proposed MED1 and MEBthaus for the same test cases in
Table 3.10. From this table, we can see that the LLOP yieldgw®of much better higher quality than
the LOP. In particular, the LLOP beats the LOP in all 15 tesesaby a margin of 2.43 to 12.26 dB.
Therefore, if the LLOP is used for triangulation conned¢giadjustment during point insertion, the
SE criterion is able to perform much better compared to tise ¢hat the LOP is employed. This
being said, however, we must note that the quality of mesheded with the above variant (i.e.,
employing the LLOP during point insertion) is still not coetjive with our proposed MED1 and
MED2 methods, as shown in Table 3.10. For this reason, we ali¢ansider the use of the LLOP
during point insertion in the material presented beforeiSed.7.

In the above evaluations, PSNR was found to correlate reddpwell with the subjective quality.
We provide an example herein illustrating visual qualitar Bne of the test cases from Table 3.10
(namely, the lena image at a sampling density of 2%), Figut8 8hows part of the approximation
and corresponding image-domain triangulation with eadheLOP and LLOP being employed for
triangulation connectivity adjustment during point irtg@r. Examining Figure 3.10, we can see that
the image approximation yielded in the case of the LLOP (guFé 3.10(c)) is clearly of higher visual
quality than the one yielded in the case of the LOP (in Figui®@)). Examining the image-domain
triangulations for the cases of the LOP and LLOP (in Figurd®@®) and (d), respectively), we can

easily determine the reason for the better approximatietdgd in the case of the LLOP. That is,
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Table 3.10: Comparison of the various mesh-generation rdstho
Samp.
Density PSNR (dB)

Image (%) |LOP?|LLOPP|MED1|MED2
bull 0.5 ||24.73 34.11| 35.52| 36.20
1.0 ||26.89 36.42| 39.99| 40.78
2.0 |[|30.53 39.19|42.72| 43.51
3.0 ||31.93 43.09| 43.97| 44.58
4.0 |/31.23 43.49| 44.72| 45.33
cr 0.5 ||31.19 33.62| 35.11| 36.04
1.0 ||32.41 36.59| 37.31| 37.82
2.0 |[|33.33 38.28| 39.10| 39.43
3.0 ||34.12 39.18| 39.87| 40.19
4.0 |/35.63 39.48| 40.42| 40.72
lena 0.5 ||17.61 20.49| 21.96| 22.53
1.0 ||21.50 24.69| 26.13| 26.63
2.0 |(|20.72 28.94| 30.14| 30.68
3.0 ||23.43 30.26| 31.72| 32.26
4.0 |23.67 31.89| 32.88| 33.42
aThe LOP is used during point insertion.
bThe LLOP is used during point insertion.

using the LLOP for triangulation connectivity adjustmentidg point insertion has helped eliminate
many poorly-chosen sliver triangles caused by the SE wmitgwhich the LOP was not able to do),
leading to better image approximations.

Extra Optimality Criteria. Recall that in Section 3.2, we considered twelve possibdifor the
choice of the optimality criterion insOptCriterion in ouafnework, two of which (i.e., ELSE and
MASE) are newly proposed in this thesis. During the develepnof our work, we tried even more
optimality criteria for the choice of insOptCriterion. Theosew criteria we tried were mostly heuristic
based, for which we explored the combination of the SE goitefwhich considers approximation
error) with another criterion that measures some geom@atojgerty of a mesh model such as the angle
between normals (ABN). Unfortunately, none of the new héigrisased criteria that we studied were

competitive with the ELSE and MASE criteria, so they were ingtuded in the material presented
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Figure 3.10: Part of the triangulations obtained for thalemage at a sampling density of 2% with the
SE criterion being used for the (a) LOP (20.72 dB) and (c) LL@®.94 dB) during point insertion,
and (b) and (d) their corresponding triangulations.

before Section 37.

Two-Level Final Connectivity Adjustment. Recall that in step!3 of our framework (as introduced
in Section 3.2 on page 27), we chose between the LOP and LLO#Rdaise of final connectivity
adjustment. During the development of our work, we also@eaal a variant of the framework that

employs two levels of final connectivity adjustment. Thata$l the steps are the same with our
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proposed framework, except that after all the sample parg&snserted in the triangulation, the LOP
or LLOP is invoked two times, with different optimality ceitia being employed, to adjust the final
connectivity of the mesh. The results of the above varianevieund to be highly data dependent.
No specific optimality criterion could be advocated for eatthe two LOPs or LLOPs used for
final connectivity adjustment, as no particular choice ek#hcriteria could lead to a method that was
consistently better than others. For this reason, we didonsider the two-level final connectivity

adjustment in the material presented before Section 3.7.
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Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we have studied DDT-based triangle mesh ladoleimage representation. In particu-
lar, we have proposed a computational framework for meskergéion that modifies the ED method
to use DDTs in conjunction with the LOP, and derived two mgsheration methods from this frame-
work. By using DDTs in conjunction with the LOP (instead of Bhay triangulations), triangulation
connectivity can be chosen optimally so as to minimize axpration error. As the proposed frame-
work has several free parameters, we studied how variousehéor each of the free parameters
affect the mesh quality and advocated two particular clsofoe those parameters, leading to two
specific mesh-generation methods known as MED1 and MEDZ2ouljtr experimental results, our
MED1 and MED2 methods were shown to produce image approxmsadf much higher quality
than the ED method, both in terms of PSNR and subjective tyuali a relatively modest computa-
tional cost. In particular, the MED1 and MED2 methods werevginto outperform the ED method
by margins of approximately 3.26 to 3.81 dB on average. Owrnvethods allow a different trade
off to be made between computational cost and approximau@tity, allowing our approach to be

useful in a wider range of applications. As part of our worle, proposed two novel optimality crite-
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ria to be used in conjunction with the LOP, namely the ELSE MIAGE criteria. These two criteria
were shown to outperform other well known criteria from therbature. Of our two newly proposed
criteria, the ELSE criterion was found to perform best and used as a key component of our MED1
and MED2 methods. Since the LOP is used in many differeniieatmns and the MSE (as in (2.3))
is a frequently employed error metric, our proposed ELSEMAGE criteria have the potential to
be useful in a much broader range of contexts than the pkatimesh-generation methods proposed
herein. The MED1 and MED2 methods are of great utility to agapions that employ mesh models
of images. Furthermore, our new optimality criteria, ELStl MASE, can be exploited by future

mesh-generation schemes that employ the LOP in order texachinproved results.

4.2 Future Research

Although the work presented in this thesis has covered by faide range of topics related to DDT-
based mesh-generation methods, there are still some @btmeas that are worth exploring for future
research. In what follows, we discuss these potential éuteisearch areas.

When presenting the LLOP in Section 2.9, we mentioned thatkegevay in which the LLOP
differs from the LOP is that the LLOP allows two types of tgafation transformation. Instead of
only allowing the triangulation to be transformed by a singtige flip in each step (as in the case
of the LOP), the LLOP allows the triangulation to be transfed by: 1) a single edge flip; or 2) a
sequence of two edge flips. Consequently, the LLOP is usualita find a better local optimum than
the LOP. This has been supported in the comparison of our temyged methods, namely MED1 and
MED?2. It was shown in Section 3.6 that our MED2 method yieldsshes of higher quality than our
MED1 scheme, with the higher quality coming from the use efriore effective LLOP (instead of
the LOP) for final connectivity adjustment. The above factigabes us to think about the following
possibility. If we introduce a third type of triangulatiorahsformation in addition to the above two,
by allowing a sequence of three edge flips, it is highly likélat we would be able to obtain even

better results than the LLOP. One potential weakness adnting a third type of transformation
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would be the extra computation being added relative to the/LOOP. If an application has a less
computationally-constrained environment and the boostésh quality is a high priority, however,
this idea is still worth consideration.

One area that we have dedicated significant time exploringglthe development of our work is
the triangulation optimality criterion used for the LOPtt#dugh we have proposed two novel opti-
mality criteria (i.e., ELSE and MASE) that were shown to @rfprm other well known criteria from
the literature, the future development of new high-perfamse optimality criteria can still be of great
interest. We suggest two potential areas that can be stddrath the development of new optimality
criteria in the future. The first potential area is the depglent of new optimality criteria that are
heuristic based. We have shown in Section 3.4 that heuhased criteria can lead to higher quality
image approximations than cost-based criteria due to tttetfiat heuristic-based criteria take into
account both triangle shape and squared error. Given thehfaicour proposed ELSE and MASE
criteria are both heuristic based and both perform extrnemvell, heuristic-based criteria are worth
studying further. The second potential area is the devedmprof better optimality criteria that em-
ploy the SE criterion. It was shown in Section 3.4 that the 8tron performs extremely poorly
when used during point insertion, mainly due to the existesfanany poorly-chosen sliver triangles
in the triangulation. Although we provided explanationswdny the SE criterion typically yields tri-
angulations with many poorly-chosen sliver triangles, enextensive investigation could be done in
this regard for future work, with the goal of finding more sifieceasons that caused the SE criterion
to become trapped in such a poor local optimum. If more irfidjneasons can be identified, they
could potentially lead to better optimality criteria thamgloy the SE criterion and at the same time

are capable of combating poorly-chosen sliver trianglecavely.
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Appendix A

Software User Manual

A.1 Introduction

The software that implements the mesh-generation franleaod methods proposed in the thesis
was independently developed by the author, with a greataldep from his supervisor, Dr. Michael
Adams. The software was written in C++ to run under Linux, aodststs of around 9000 lines of
code. It makes heavy use of the Computational Geometry AlgurLibrary (CGAL) [61] and the
Signal Processing Library (SPL) [62], and also utilizesBloest Library [63] and the SPL Extensions
Library (SPLEL).

The software package contains two executable prograngenperate_mesh and
reconstruct_image , for mesh generation and image reconstruction, respéctive The
generate_mesh program reads an image from a specified file and generates la medel of
the image based on the desired sampling density and meshagien method specified by the user.
The reconstruct_image program reads a mesh in a special format (to be introducediyphand
produces a rasterized image.

The remainder of this appendix provides details on how tédbamnd use the software. A few

examples are also provided for illustrating how to use tHievsoe.
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A.2 Building the Software

We chose to use thiglake utility to build our software. Make is a utility that autonizlly builds
executable programs and libraries from source code byngddes called makefiles which specify
how to generate the target programs. Since some functi@satif C++11 are utilized in the code,
the compiler one uses to compile the code has to be compatitiieC++11. The compiler we have
been using in our development is GCC 4.7.3. As mentioneckeaolir software package also utilizes
libraries such as CGAL, Boost, SPL, and SPLEL. Thus, thesarldgs must be correctly installed
before one can build our software. The versions of the liesathat have been verified to work with

our software are:
e CGAL 3.8.2,
e Boost 1.46.0,
e SPL1.1.11, and
e SPLEL 1.1.18.

To build the software, one needs to first go to the directoriclvicontains the makefile. Then,
to delete all the object files and executable files generated previous building processes, run the

command:
make clean
To generate the executable programs, invoke the command:

make
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A.3 File Formats

The input of thegenerate_mesh program and the output of threconstruct_image program are
both portable gray map (PGM) images. The mesh generated by gleeerate_mesh program
is output inobject file format (OFF) [65]. The input file of theeconstruct_image has a special
format consisting of the following fields (in order), with adrafield separated by a white space or

newline:

1. the width of the image,
2. the height of the image,
3. the maximum value of the image, and

4. the mesh of the image in OFF format.

We assign an extension “.mesh” to files with the above format.

For the benefit of the reader, we provide an example illusgahe above format. Suppose that
we have an image with the width, height, and maximum valuadg#&D, 10, and 255, respectively.
The mesh model of the image is associated with a triangulatomsisting of two triangles, namely
ABD and BCD, as shown in Figure A.1, where vertices A, B, C, and D haveoordinateg0,0),
(10,0), (10,10), and(0,10), respectively. The z values of A, B, C and D are 100, 200, 150,58n

respectively. The “.mesh” file of the above mesh model woel@b follows:

10 10 255
OFF
420

0 0 100
10 0 200
10 10 150
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A B

Figure A.1: A simple triangulation consisting of two faces.

0 10 50
3013
3123

A.4 Detailed Program Descriptions

As introduced earlier, our software contains two execet@iobgrams, namelgenerate_mesh and

reconstruct_image . In what follows, we provide details in how to use these twagpams.

A.4.1 Thegener at e_nesh Program
SYNOPSIS
generate_mesh [OPTIONS]

DESCRIPTION

This program reads an image in PGM format from a specifieddibel, generates a mesh model of
the image based on the desired sampling density and meshagjen method specified by the user.
The image file and desired sampling density are specifieddgphionsf and-D, respectively, and

these two options are required by the program. With comniisedeptions, the user can choose
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different sample-point-selection methods, differentiaimesh-construction methods, and different

final-connectivity-adjustment methods. The width, heigimtd maximum value of the image, along

with the generated mesh in OFF format are printed to stanolatigut (by default). In the context

of this appendix, we use the termaximum visit countto denote the maximum number of times

that each edge is allowed to be tested for optimality in thé’L&nhd the ternrmesh size tolerance

to represent the maximum difference allowed between thgetasize and actual size of the mesh

model in the sample-point-selection process. The progednnns O for a normal exit a nonzero value

otherwise.
OPTIONS

-f $inputimage

-D $sampDensity

-0 $filtOrder

-g $gamma

-S $subMethod

Specifies the image for processing tdfputimage . This

option is required.

Specifies the sampling density to®sampDensity (in dec-

imals). This option is required.

Specifies the order of binomial filter applied to the image to
be $filtOrder . The default value offiltOrder is1(no
filtering).

Specifies the gamma parameter in the ED method to be

$gamma The default value dfgammais 1.

Chooses the method for sample point selection to be
$subsetMethod , which can be chosen from Table A.2. The

default value ofssubsetMethod is "ywb”.



-z $szErrThresh

- $insertCri

-s $subsetFile

-| $lookAhead

-c $maxVisits

-v $exitOnCycle
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Specifies the mesh size tolerance té&eErThresh . The

default value offszErThresh is 0.

Chooses the optimality criterion for the LOP during point
insertion to bebinsertCri  , which can be chosen from Ta-

ble/A.3. The default value dfinsertCri  is “delaunay”.

Specifies the file to which print the coordinates of the se-
lected sample points. If not specified, the program will not

output this information.

A flag to indicate whether the LLOP is enabled, “1” for
enabled and “0” for disabled. By default the flag is “0”.
Note that only the SE criterion is available for the LLOP.

Sets the maximum visit count to I$eaxVisits . When

an edge has been visited more ttamxVisits  times, it

is deemed that a cycle has occurred. The default value of
$maxVisits  is 10000.

A flag to indicate the special action to be taken when the
maximum visit count has been exceeded for an edge. If
$exitOnCycle  is “0” (which is the default case), the pro-
gram will skip this edge in the remainder of the currently
running LOP; if $exitOnCycle  is “1”, the program will

terminate the currently running LOP immediately.



Table A.2: Various methods for sample point selection

Method Description

ywb  |MMSODD as density function and raster scan order in erréusiibn
ywbs |MMSODD as density function and serpentine scan order irr eliffusion
sked |skewness as density function and raster scan order in effusidn
skeds [skewness as density function and serpentine scan ordemdgfusion

-m $mainProc

-E $mainCri

-i $iviewerFile

-0 $offFile

-t $tcFile

A flag to indicate whether the final-connectivity-adjustien
step is enabled, with “1” for enabled and “0” for disabled.

The default value o$mainProc is “1”.

Chooses the optimality criterion for the final connectivity
adjustment to b&mainCri , which can be chosen from Ta-
ble/A.3. The default value dfmainCri is “se”.

Specifies a file to which print the generated triangulation in
iviewer-readable format. If not specified, the program will

not output this information.

Specifies a file to which write the final mesh in OFF format.
If not specified, the program will write the mesh to standard

output in OFF format.

Specifies a file to which print the timing information. If not

specified, the program will not output this information.

A.4.2 Thereconstruct i mge Program

SYNOPSIS

70
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Table A.3: Optimality criteria

Optimality |Description Reference
Criterion

delaunay |(preferred-directions) Delaunay [Section 3.2]
se squared error (SE) [Section 3.2]
abn angle between normals (ABN) [Section 3.2]
jnd jump in normal derivatives (JND) [Section 3.2]
el Edge length (EL). Cost-based optimality cri-

terion. For an edge in the triangulationT,
edgeCod(T, e) is defined as the length ef

elabn absolute mean curvature (AMC) [Section 3.2]

eljind EL-weighted JND (ELJND) [30, Section 111.B]

dip deviations from linear polynomials (DLP) |[Section 3.2]

dp distances from planes (DP) [Section 3.2]

yms Yu-Morse-Sederberg (YMS) [29] and [30, Section II1.B]
jndse JND-weighted SE (JNDSE) [Section 3.2]

elwse EL-weighted SE (ELSE) [Section 3.2]

sgse shape-quality-weighted SE (SQSE) [Section 3.2]

mase minimum-angle-weighted SE (MASE) [Section 3.2]

ghh Garland-Heckbert hybrid (GHH) [Section 3.2]

reconstruct_image [OPTIONS]

DESCRIPTION

This program reads a mesh in “.mesh” format from standardtitipy default), and reconstructs an
image from the mesh. The reconstructed image is saved in Riaiat to a file specified by the
option-w, and this option is required by the program. The progranrmetQ for a normal exit and a

nonzero value otherwise.

OPTIONS



72

-w  $recimage  Specifies the file to which write the reconstructed image in

PGM format. This option is required.

-0 $offFile Specifies the file that contains the OFF part of the “.mesh”
file. If specified, the program will first read the non-OFF
part of the “.mesh” file from standard input and then the
OFF part from the specified file; otherwise, the program

will read all parts of the “.mesh” file from standard input.

A.5 Examples of Software Usage

A few examples are provided in what follows to illustrate tisage of our software.

Example 1A. Suppose that we want to generate a mesh for the lena imageaaadhe mesh
along with other information that are printed to standargbatito the filelena+0.02.mesh , with the

following requirements:
e set the sampling density to be 2%;
e set the binomial filter order to be 3;

e set the sample-point-selection method to use the MMSODRasity function and the serpen-

tine scan order in error diffusion for the ED method:;
e set the mesh size tolerance to be 0;
e set the maximum visit count to be 15;

e set the program to skip the edge in the remainder of the cilynemning LOP if the maximum

visit count has been exceeded for an edge;

e choose the optimality criterion used for the LOP during paisertion as ELSE; and
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¢ use the LOP for final connectivity adjustment, with the SEecion being applied.

The above task can be accomplished by invoking the commenetate_mesh  as follows:
generate_mesh -flena.pnm -D0.02 -O3 -Sywbs -z0 -lelwse -cl 5\

-v0 -ml1 -Ese > lena+0.02.mesh

Example 1B. Suppose that we want to reconstruct an approximation ofatha image from the
mesh generated in Example 1A and write the reconstructedenalena+rec.pgm , this can be

accomplished by running the commanedonstruct_image as follows:

reconstruct_image -wlena+rec.pgm < lena+0.02.mesh

Example 2. Suppose that we want to generate a mesh for the bull imagesaedlse mesh to an

file bull+mesh.off in OFF format, with the following requirements:

e set the sampling density to be 1%;

disable the binomial filter (i.e., set the filter order to be 1)

e set the sample-point-selection method to use the skewsedsreity function and the raster

scan order in error diffusion for the ED method;
e set the mesh size tolerance to be 10;
e set the maximum visit count to be 20;

e set the program to terminate the currently running LOP ifrtteximum visit count for an edge

has been exceeded,;
e choose the optimality criterion used for the LOP during poisertion as MASE; and
e use the LLOP for final connectivity adjustment, with the Skecion being applied.

The above task can be accomplished by invoking the commenedate_mesh  as follows:
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generate_mesh -fbull.pnm -D0.01 -Ol1 -Ssked -z10 -Imase -I1 -c20 \

-vl -m1 -Ese -obull+mesh.off

Example 3. Suppose that we want to generate a mesh for the cr image amtdthpgi mesh to

standard output in OFF format, with the following requirerise
e set the sampling density to be 0.5%;
e set the order of the binomial filter to be 5;

e set the sample-point-selection method to use the MMSODZeasity function and the raster

scan order in error diffusion for the ED method;
e set the mesh size tolerance to be O;
e set the maximum visit count to be 10;

e set the program to skip the edge in the remainder of the dlynremning LOP if the maximum

visit count for an edge has been exceeded;
e choose the optimality criterion used for the LOP during paisertion as Delaunay;
¢ disable the final-connectivity-adjustment step;
e print the xyz-coordinates of the selected sample pointstgubset.dat ; and
e print the final triangulation to the iviewer-readable fitetri.tri ;

The above task can be accomplished by invoking the commenetdate_ mesh  as follows:

generate_mesh -fcr.pnm -D0.005 -O5 -Sywb -z0 -ldelaunay -c 10 \

-v0 -m0 -scr+subset.dat -icr+tri.tri
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