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ABSTRACT

Sequential quadratic programming is used to design high-performance
quincunx filter banks for image coding, where the resulting filter
banks have perfect reconstruction, linear phase, high coding gain,
good frequency selectivity, and certain prescribed vanishing-moment
properties. Design examples are presented and compared to various
previously proposed filter banks. The new filter banks are shown
to be highly effective for image coding, outperforming previously
proposed quincunx filter banks in most cases, and outperforming the
well-known 9/7 filter bank in some limited cases.

Index Terms— Multidimensional signal processing, optimiza-
tion methods, wavelet transforms, image coding

1. INTRODUCTION

Quincunx filter banks are two-dimensional (2D) two-channel non-
separable filter banks, and have been shown to be a highly effective
tool for image coding applications. In such applications, it is usually
desirable for the filter banks to have perfect reconstruction (PR), lin-
ear phase, high coding gain, good frequency selectivity, and certain
vanishing-moment properties. In the nonseparable case, however, it
is very difficult to design filter banks with all of these properties.
Most of the existing design techniques employ a transformation of
variables [1]. Using these transformation-based methods, one can-
not explicitly control the 2D filter frequency responses. In this paper,
we show how one can design quincunx filter banks to have all of the
aforementioned properties via the lifting framework [2] and sequen-
tial quadratic programming (SQP) [3]. Although designs based on
the lifting framework have been proposed in [4, 5], these methods
only consider interpolating filter banks (i.e., filter banks with two
lifting steps). In this paper, we examine the more general case.

The remainder of this paper is structured as follows. Section 2
briefly comments on some notational conventions used herein. Sec-
tion 3 introduces quincunx filter banks and the aforementioned de-
sirable properties for such filter banks. Section 4 explains the de-
sign problem formulation. Design examples are presented in Sec-
tion 5 and their effectiveness for image coding is demonstrated in
Section 6. Finally, Section 7 concludes with a summary of our work
and some closing remarks.

2. NOTATION AND TERMINOLOGY

In this paper, the sets of integers, even integers, and real numbers
are denoted as Z, Ze and R, respectively. Matrices and vectors are
denoted by upper and lower case boldface letters, respectively. For
matrix multiplication, we define the product notation as ∏N

k=M AAAk �
AAANAAAN−1 · · ·AAAM+1AAAM for N ≥ M. For convenience, a polynomial
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function of the elements of a vector xxx is simply referred to as a poly-
nomial function of xxx. Let nnn = [n0 n1]T and zzz = [z0 z1]T . Then,
we define |nnn| = n0 + n1 and zzznnn = zn0

0 zn1
1 . Furthermore, for a ma-

trix MMM = [mmm0 mmm1] with mmmk being the kth column of MMM, we define
zzzMMM = [zzzmmm0 zzzmmm1 ]T . In what follows, we will use MMM to denote the gen-
erating matrix

[
1 1
1 −1

]
of the quincunx lattice.

The Fourier transform of a sequence h is denoted as ĥ. A 2D
filter H with impulse response h is said to be linear phase with group
delay ccc if, for some ccc ∈ 1

2Z
2, h[nnn] = h[2ccc−nnn] for all nnn ∈ Z

2. For the
linear-phase filter H, its frequency response ĥ(ωωω) can be expressed
as ĥ(ωωω)= e− jωωωTcccĥa(ωωω), where ĥa(ωωω) =∑nnn∈Z2 h[nnn]cos

[
ωωωT (nnn−ccc)

]
.

For convenience, we call ĥa(ωωω) the signed amplitude response of
H. For two images x and xr of size N0 ×N1 with P bits per sam-
ple, we define the peak-signal-to-noise ratio (PSNR) as PSNR =
20log10

(
2P−1√
MSE

)
, where MSE = 1

N0N1
∑nnn

(
xr[nnn]− x[nnn]

)2.

3. QUINCUNX FILTER BANKS

Fig. 1 shows the canonical form of a quincunx filter bank, which
consists of analysis filters H0 and H1, synthesis filters G0 and G1,
and MMM-fold downsamplers and upsamplers. In wavelet-based image
coding, the filter bank is applied recursively to the lowpass channel,
resulting in an octave-band filter bank. For an L-level octave-band
filter bank, the equivalent nonuniform filter bank has L+1 channels
with analysis filters {H′

i} and synthesis filters {G′
i}. The analysis

filter transfer functions {H ′
i (zzz)} are given by

H ′
i (zzz) =

⎧⎪⎪⎨
⎪⎪⎩
∏L−1

k=0 H0

(
zzzMMM

k
)

i = 0

H1

(
zzzMMM

L−i
)
∏N−i−1

k=0 H0

(
zzzMMM

k
)

1 ≤ i ≤ L−1

H1 (zzz) i = L,

and the synthesis filter transfer functions {G′
i(zzz)} can be similarly

derived [6]. Next, we consider the relationships between quincunx
filter banks and the desirable properties identified in Section 1.

In image coding, it is often desirable for the filter banks to have
PR to facilitate the construction of a lossless compression system,
and linear phase to avoid phase distortion. Here, we introduce a
lifting-based parameterization of quincunx filter banks such that the
PR and linear-phase conditions are automatically satisfied. Fig. 2
shows the structure of the lifting realization of a quincunx filter bank.
Essentially, the filter bank is realized in its polyphase form, and the
analysis and synthesis filtering are each performed by a ladder net-
work of 2λ lifting filters {Ak}. Due to the use of the lifting frame-
work, the PR condition is automatically satisfied. Given the lift-
ing filters {Ak}, the corresponding analysis filter transfer functions
H0(zzz) and H1(zzz) can be calculated as Hk(zzz)= Hk,0

(
zzzMMM

)
+z0Hk,1

(
zzzMMM

)
,

where

[
H0,0(zzz) H0,1(zzz)
H1,0(zzz) H1,1(zzz)

]
=

λ
∏
k=1

([
1 A2k(zzz)
0 1

][
1 0

A2k−1(zzz) 1

])
.
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Fig. 1. Quincunx filter bank (canonical form).
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Fig. 2. Lifting realization of a quincunx filter bank. (a) Analysis side
and (b) synthesis side.

The synthesis filter transfer functions G0(zzz) and G1(zzz) can then be
trivially computed as Gk(zzz) = (−1)1−kz−1

0 H1−k(−zzz).
With the lifting framework, the linear-phase property can also be

easily imposed if each of the lifting filters Ak has linear phase with

group delay ccck satisfying ccck = (−1)k
[ 1

2
1
2

]T
. With this choice of

lifting filters, the analysis filters H0 and H1 have linear phase with
group delays ddd0 = [0 0]T and ddd1 = [−1 0]T , respectively.

Let xxx denote a vector containing all independent coefficients of
the 2λ lifting filters. Next, we examine the relationships between xxx
and the filter bank properties of interest (i.e., coding gain, frequency
selectivity, and vanishing moment properties), beginning with the
coding gain.

Coding gain is a measure of the energy compaction ability of
a filter bank. For an L-level octave-band quincunx filter bank, the
coding gain GSBC [7] is computed as

GSBC =
L

∏
k=0

(AkBk/αk)−αk ,

where Ak = ∑mmm∈Z2 ∑nnn∈Z2 h′k[mmm]h′k[nnn]r[mmm−nnn], Bk = αk∑nnn∈Z2 g
′2
k [nnn],

α0 = 2−L, αk = 2−(L+1−k) for k = 1,2, . . . ,L, h′k[nnn] and g′k[nnn] are the
impulse responses of the equivalent analysis and synthesis filters H′

k
and G′

k, respectively, and r is the normalized autocorrelation of the
input. Depending on the source image model, r is given by

r[n0,n1] =

{
ρ |n0|+|n1| for separable model

ρ
√

n2
0+n2

1 for isotropic model,

where ρ is the correlation coefficient (typically, 0.90 ≤ ρ ≤ 0.95).
The coding gain is a nonlinear function of xxx.

In filter bank design problems, we also desire good frequency
selectivity to minimize aliasing between subbands. To quantify the
frequency selectivity, we define a frequency response error function
to measure the difference between the actual and desired frequency
responses. For a linear-phase filter Hk, the error function ehk

is de-
fined as

ehk
=

∫
[−π, π)2

W (ωωω)
∣∣ĥak (ωωω)−Dĥdk

(ωωω)
∣∣2 dωωω,

where ĥak (ωωω) is the signed amplitude response of Hk as defined ear-
lier in Section 2, ĥdk

(ωωω) is the desired frequency response with a
diamond-shaped passband/stopband, D is a scaling factor, andW (ωωω)
is a weighting function used to control the relative importance of the
passband and stopband. In order for the filter Hk to have good fre-
quency selectivity, the error function is required to satisfy ehk

≤ δhk
,

where δhk
is a prescribed upper bound on the error. The constraints

on the frequency selectivity of the analysis filters H0 and H1 are
polynomial inequalities in xxx.

Now we consider the relationship between the lifting-filter coef-
ficients and vanishing moments. The presence of vanishing moments
is important as it helps to reduce the number of nonzero coefficients
in the higher-frequency subbands, and improve the visual quality
of the reconstructed images for lossy compression. For quincunx
filter banks, to have N primal and Ñ dual vanishing moments, the
lowpass and highpass analysis filters H0 and H1 should have Nth-
and Ñth-order zeros at [π π]T and [0 0]T , respectively. Recall that,
due to the lifting parameterization employed, H0 and H1 are lin-
ear phase with group delays ddd0 and ddd1, respectively. Therefore, to
have N primal vanishing moments, the lowpass analysis filter co-
efficients h0[nnn] should satisfy ∑nnn∈Z2(−1)|nnn−ddd0|h0[nnn] (nnn−ddd0)

mmm = 0
for all |mmm| ∈ Ze and |mmm| < N. Similarly, to have Ñ dual vanishing
moments, the highpass analysis filter coefficients h1[nnn] should sat-
isfy ∑nnn∈Z2 h1[nnn] (nnn−ddd1)

mmm = 0 for all |mmm| ∈ Ze and |mmm| < Ñ. Thus,
the conditions on vanishing moments are polynomial equations in
xxx. Moreover, for filter banks with two lifting filters A1 and A2, if
Ñ ≥ N, the conditions can be expressed as a set of linear equations
in the lifting-filter coefficients [5].

4. DESIGN PROBLEM FORMULATION

In our design problem, we use the lifting parameterization to satisfy
the PR and linear-phase conditions. Then, we maximize the coding
gain subject to constraints on frequency selectivity and vanishing
moments. The design problem is solved by SQP [3].

SQP is an effective tool for solving general nonlinear constrained
optimization problems of the form

minimize f (xxx)
subject to: ai(xxx) = 0 for i = 1,2, . . . , p, and/or

ck(xxx) ≥ 0 for k = 1,2, . . . ,q,

where f (xxx), ai(xxx), and ck(xxx) are continuous functions, whose first-
and second-order partial derivatives exist and are continuous. The
SQP method solves the constrained problem by iteratively solving
quadratic programming (QP) subproblems in a sequential manner.
The QP subproblems can be solved efficiently using a number of
software packages, such as the MATLAB optimization toolbox and
the SeDuMi [8] package.

We begin with the design of filter banks having two lifting steps.
As mentioned earlier, in this case, the vanishing moment conditions
can be expressed as a linear system of equations in the lifting-filter
coefficient vector xxx given by

AAAxxx = bbb, (1)

where xxx ∈ R
n×1, AAA ∈ R

m×n with rank r, bbb ∈ R
m×1 and m < n. By

computing the singular value decomposition (SVD) of AAA = UUUSSSVVVT ,
the solutions to (1) can be parameterized as xxx = AAA+bbb+VVVrφφφ , where
AAA+ is the Moore-Penrose pseudoinverse of AAA, VVVr is a matrix com-
posed of the last n− r columns of VVV , and φφφ is an arbitrary vector
with n− r elements. In what follows, we will use φφφ as the design



vector. In this way, the number of free variables is reduced from n
to n− r and the vanishing moment conditions are automatically sat-
isfied for any choice of φφφ . The coding gain function GSBC, and fre-
quency response error functions eh0 and eh1 can each be expressed
as a function of φφφ . Therefore, the design problem becomes

minimize − log10 [GSBC(φφφ)]
subject to: δhk

(φφφ)− ehk
(φφφ) ≥ 0 for k = 0,1.

(2)

The solution to (2) then leads to a filter bank with PR, linear phase,
high coding gain, good frequency selectivity, and certain prescribed
vanishing moment properties.

For filter banks with more than two lifting steps, the vanishing
moment conditions are no longer linear. We write the conditions as

ai(xxx) = 0 for i = 1,2, . . . ,
⌈
Ñ/2

⌉2 + 	N/2
2, (3)

where ai(xxx) is a polynomial in xxx. In this case, the design problem
has equality constraints on vanishing moments and inequality con-
straints on frequency selectivity, and can be written as

minimize − log10 [GSBC(xxx)]

subject to: ai(xxx) = 0 for i = 1,2, . . . ,
⌈
Ñ/2

⌉2 + 	N/2
2,

δhk
(xxx)− ehk

(xxx) ≥ 0 for k = 0,1.

(4)

The equality constraints in (3) are only approximately satisfied.
That is, the moments associated with the desired vanishing moment
conditions are small but not necessarily zero. To further reduce the
moments in question, we can apply an adjustment step after obtain-
ing the solution xxx∗ to (4). This step is formulated as follows. When
‖δδδxxx‖ is small, the linear approximation of ai(xxx∗ +δδδxxx) is obtained
by ai(xxx∗ +δδδxxx) = ai(xxx∗)+gggT

i δδδxxx, where gggi is the gradient of ai at the
point xxx∗. This adjustment process can then be formulated as the fol-
lowing optimization problem:

minimize ∑
i=1,2,...,	Ñ/2
2

+	N/2
2

[
ai(xxx∗)+gggT

i δδδxxx
]2

subject to: ‖δδδxxx‖ ≤ β ,
(5)

where β is a prescribed small value. The problem in (5) is equivalent
to a second-order cone programming (SOCP) problem, which can
be solved efficiently using SeDuMi [8]. Having obtained such a δδδxxx,
we then update the solution to xxx∗ +δδδxxx. After this adjustment step,
the moments in question are typically very close to zero, as will be
illustrated by the design example (i.e., SQP2) in the next section.

5. DESIGN EXAMPLES

To demonstrate the effectiveness of the SQP-based design method,
we now present two design examples. In the case of both designs, the
optimization is carried out for maximal coding gain, assuming a six-
level wavelet decomposition and an isotropic image model with cor-
relation coefficient ρ = 0.95. Our first design, which will be hence-
forth referred to as SQP1, employs two lifting steps, each having a
diamond support of 6× 6. Our second design, henceforth referred
to as SQP2, employs three lifting steps, each having a diamond sup-
port of 4×4. For comparison purposes, we consider four filter banks
designed by previously-proposed methods. The first three of these
filter banks, referred to as KS, G62, and OPT1 in what follows, are
quincunx filter banks, while the fourth is the well-known separable
9/7 filter bank from the JPEG-2000 standard. The KS filter bank is
constructed using the technique of [5], the G62 filter bank is the so
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Fig. 3. Frequency responses of the lowpass (a) analysis and (b) syn-
thesis filters for the SQP1 filter bank.
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Fig. 4. Frequency responses of the lowpass (a) analysis and (b) syn-
thesis filters for the SQP2 filter bank.

called (6,2) filter bank proposed in [4], and the OPT1 filter bank
is one of the best filter banks designed using the SOCP-based algo-
rithms proposed in [6].

The coding gains and other important characteristics of the above
filter banks are shown in Table 1. Obviously, the optimal designs,
SQP1 and SQP2, have higher isotropic coding gains than the KS and
G62 filter banks. Furthermore, the SQP2 design also has a higher
coding gain than the 9/7 filter bank. For SQP2, although the mo-
ments in question are not exactly vanishing, they are on the order of
10−9 to 10−17, which is small enough to be considered as zero for
all practical purposes. The frequency responses of the lowpass filters
for SQP1 and SQP2 are shown in Figs. 3 and 4, respectively. We see
that these lowpass filters have good diamond-shaped passbands.

In [6], we proposed a SOCP-based method to design quincunx
filter banks for image coding. Although the SQP-based method pro-
posed herein and the SOCP-based method in [6] both work by itera-
tively solving subproblems, they treat the overall design problem in
very different ways. Next, we give two examples that compare the
performance of these two design methods.

In our first example, we design filter banks which employ two
4× 4 lifting filters for maximal coding gain assuming an isotropic
model and three levels of decomposition. We apply the SQP- and
SOCP-based methods with 625 different initial points. From the 625

Table 1. Comparison of filter bank characteristics.
Name Support of Support of GSBC

lifting filters† analysis filters (dB) Ñ/N
SQP1 6×6, 6×6 13×13, 7×7 12.06 2 / 2
SQP2 4×4, 4×4, 4×4 9×9, 13×13 12.23 2 / 2
OPT1 6×6, 6×6 13×13, 7×7 12.06 2 / 2
KS 6×6, 6×6 13×13, 7×7 11.95 6 / 6
G62 6×6, 2×2 13×13, 11×11 11.64 6 / 2
9/7 2, 2, 2, 2 9, 7 12.09 4 / 4

†Support regions are diamond-shaped except for G62 and 9/7.



Table 2. Comparison of SQP- and SOCP-based methods.
Case 1: two 4×4 Case 2: two 6×6
SQP SOCP SQP SOCP

Number of iterations 12.4 24.8 14.5 51.9
Execution time (s) 58.4 77.9 252.8 517.6
GSBC (dB) 11.12 11.12 11.15 11.15

Table 3. Percentage of cases where the SQP1 and SQP2 optimal
designs outperform the KS, G62, and OPT1 (quincunx) filter banks.

Filter banks KS G62 OPT1
SQP1 80% 95% 56%
SQP2 78% 96% 71%

optimization results, the SQP-based method converges with fewer
iterations than the SOCP-based one in 95.7% of the cases, and the
total execution time of the SQP-based method is less than that of the
SOCP-based one in 85.0% of the cases. The difference between the
two methods becomes more obvious for the design of filter banks
with two 6×6 lifting filters. In this case, we use 729 different initial
points. The SQP-based method converges faster than the SOCP-
based one in 96.8% of the cases, requiring fewer iterations than the
SOCP-based approach in 727 out of the 729 cases. Table 2 shows
the average values of the total number of iterations, overall execution
time, and three levels of isotropic coding gains using each of the two
methods. Clearly, the coding gains of the optimal solutions obtained
by these two methods are essentially the same, while the SQP-based
method converges faster than the SOCP-based one in general.

Generally speaking, for a given lifting configuration, the SQP-
and SOCP-based methods achieve similar optimal solutions. The
SQP-based method usually converges with fewer iterations than the
SOCP one. Although the SQP-based method requires more com-
putation in each iteration, when assuming a small number of de-
composition levels (e.g., three or four), the overall execution time of
the SQP-based method is usually less than that of the SOCP-based
method.

6. IMAGE CODING RESULTS

To further demonstrate the effectiveness of our new filter banks, they
were employed in the embedded lossy/lossless image codec of [6].
For test data, 27 grayscale images from the JPEG-2000 test set were
used. These images were coded in a lossy manner at four com-
pression ratios and then decoded. The difference between the re-
constructed images and original images were measured in terms of
PSNR. Six and three levels of decomposition were employed in the
cases of the quincunx and separable filter banks, respectively.

Table 3 shows the percentage of cases where the SQP1 and SQP2
optimal designs outperform the KS, G62, and OPT1 filter banks,
which summarizes all of the lossy compression results for the 27 test
images at four compression ratios. We see that our new filter banks
SQP1 and SQP2 outperform KS and G62 in about 80% and 95% of
the cases, respectively. Furthermore, they also provide slightly better
performance than the OPT1 filter bank.

Table 4 shows some typical lossy compression results for an
isotropic image, namely for the finger (i.e., fingerprint) image.
Clearly, the optimal designs SQP1 and SQP2 perform very well,
consistently outperforming the KS and G62 quincunx filter banks
in all cases, and outperforming OPT1 in most cases. Moreover, our
designs achieve better results than the 9/7 filter bank in most cases.

Table 4. Lossy compression results for the finger image.
CR† PSNR (dB)

SQP1 SQP2 OPT1 KS G62 9/7
128 19.88 19.98 19.88 19.67 19.19 19.98
64 21.72 21.75 21.70 21.52 21.18 21.72
32 24.55 24.40 24.52 24.36 23.98 24.20
16 27.78 27.85 27.75 27.65 27.30 27.61

†compression ratio

This is quite an encouraging result, as the 9/7 filter bank is generally
held to be one of the very best in the literature.

7. CONCLUSIONS

In this paper, we showed how one can employ SQP to design quin-
cunx filter banks with PR, linear phase, high coding gain, good fre-
quency selectivity, and certain prescribed vanishing moments prop-
erties. New quincunx filter banks designed using this SQP-based
method were presented, and their effectiveness for image coding
was demonstrated through experimental results. The SQP-based de-
sign technique was compared to our previously proposed SOCP-
based method. The optimal solutions obtained by these two meth-
ods achieve comparable performance, while the SQP-based method
generally requires fewer iterations to converge. Moreover, for small-
sized design problems, the total execution time of the SQP-based
method is usually less than that of the SOCP-based technique.
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