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Abstract

In the case of one-dimensional filter banks, symmetric ex-
tension is a commonly used technique for constructing non-
expansive transforms of finite-length sequences. In this pa-
per, we show how symmetric extension can be extended to
the case of two-dimensional filter banks based on quincunx
sampling. In particular, we show how, for filter banks of this
type, one can construct nonexpansive transforms for input
sequences defined on arbitrary rectangular regions.

1. Introduction

Fig. 1 shows a two-dimensional two-channel filter bank. Of-
ten, such a filter bank is defined so as to operate on se-
quences of infinite extent. In practice, however, we always
deal with sequences of finite extent. Therefore, we usu-
ally require some means for adapting filter banks to such
sequences. This leads to the boundary filtering problem.
Furthermore, in many applications, such as image com-
pression, it is desirable to employ a transform that is non-
expansive (i.e., maps a sequence of N samples to a new
sequence of no more than N samples). Consequently, we
seek a solution to the boundary problem that yields nonex-
pansive transforms.
In the 1-D case, symmetric extension [1, 2] is a commonly
used technique for constructing nonexpansive transforms
of finite-extent sequences. In this paper, we explain how
this technique can be extended to the quincunx case.
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Figure 1: Two-dimensional two-channel filter bank
With the proposed symmetric extension algorithm, we use
a structure for the forward transform as shown in Fig. 2(a).
The input sequence x̃ is converted an infinite-extent peri-
odic symmetric sequence x. By carefully constraining the
choice of the analysis filters H0 and H1, the subband se-
quences y0 and y1 can always be symmetric and periodic.
Then, we use these properties to extract the independent
samples from y0 and y1. With some care, it is possible for
the resulting transform to be nonexpansive. The structure
for the inverse transform is shown in Fig. 2(b).
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Figure 2: Structure of the symmetric extension scheme:
(a) analysis side, and (b) synthesis side.

2. Symmetric Extension Preliminaries

The quincunx filter banks are two-dimensional two-channel
filter banks based on the nonseparable quincunx lattice.
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In this paper, several types of 2-D symmetry are of funda-
mental importance.
Definition 1 (Centrosymmetry). A sequence x defined on
Z2 is said to be centrosymmetric about ccc if, for some
ccc ∈ 1

2Z
2 and S ∈ {−1, 1},

x[nnn] = Sx[2ccc− nnn] for all nnn ∈ Z2.

Definition 2 (Quadrantal centrosymmetry). A sequence x
defined on Z2 is said to be quadrantally centrosymmetric
about ccc if for some S, T ∈ {−1, 1} and ccc =

[
c0 c1

]T ∈ 1
2Z

2,
x[n0, n1] = STx[2c0 − n0, 2c1 − n1]

= Sx[2c0 − n0, n1] = Tx[n0, 2c1 − n1]

for all n0, n1 ∈ Z.

In terms of S and T , four types of quadrantal centrosymme-
try are possible [3] as shown in Fig. 4.
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Figure 4: Four types of quadrantal centrosymmetry:
(a) even-even, (b) odd-odd, (c) odd-even, and (d) even-odd.

Definition 3 (Rotated quadrantal centrosymmetry). A se-
quence x defined on Z2 is said to be rotated quadrantally
centrosymmetric about ccc if, for some S, T ∈ {−1, 1} and
ccc =

[
c0 c1

]T ∈ 1
2Z

2 satisfying c0 + c1 ∈ Z,
x[n0, n1] = STx[2c0 − n0, 2c1 − n1]

= Sx[c0 + c1 − n1, c0 + c1 − n0]

= Tx[c0 − c1 + n1, c1 − c0 + n0]

for all n0, n1 ∈ Z.
Two examples of this kind of symmetry are shown in Fig. 5.
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Figure 5: Rotated quadrantal centrosymmetry: (a) ccc ∈ Z2,
and (b) 2ccc ∈ LAT(MMM), ccc 6∈ Z2.

The symmetric extension scheme for mapping a finite-
extent sequence to an infinite-extent symmetric and peri-
odic sequence is given as follows.
Definition 4 (Symmetric extension of sequence). Let x̃
be a (2-D) sequence defined on the rectangular region
{0, 1, . . . , L0 − 1} × {0, 1, . . . , L1 − 1}. Then, the symmetric
extension x of x̃ is defined as

x[n0, n1] = x̃[fw[n0, L0], fw[n1, L1]], (1)
where the function fw is given by

fw[n, L] = min{mod(n, 2L− 2), 2L− 2−mod(n, 2L− 2)}.
The 2-D symmetrically extended sequence has quadrantal
symmetry and periodicity properties as shown by Lemma 1.
Lemma 1. Let x̃ be a sequence defined on the rectangular
region {0, 1, . . . , L0 − 1} × {0, 1, . . . , L1 − 1}. Let x denote
the symmetric extension of x̃ as defined by (1). Then, x is
PPP -periodic with MMM−1PPP being an integer matrix, and is even-
even quadrantally centrosymmetric about 000.
An example of symmetric extension of a finite-extent se-
quence is shown in Fig. 6. The original sequence x̃ has
four samples a, b, c, and d on a 2 × 2 square region.

d c d c d

b a© b a© b

d c d c d

b a© b a© b

d c d c d

Symmetry center cccx = [0 0]T

Periodicity matrix PPP =

[

2 0
0 2

]

symext1s.01Figure 6: The extended sequence x.

Lemmas 2 to 5 show how the convolution and downsam-
pling operations of a filter bank affect these properties.
Lemma 2 (Preservation of symmetry under convolution).
Let x and h be sequences defined on Z2, and define y =
x ∗ h. If x and h are quadrantally centrosymmetric about cccx
and ccch, respectively, then y is quadrantally centrosymmetric
about cccy = cccx + ccch.
Lemma 3 (Preservation of periodicity under convolution).
Let x and h be sequences defined on Z2, with x being PPP -
periodic. Then, y = x ∗ h is PPP -periodic.
Lemma 4 (Downsampling of periodic sequence). Let MMM be
an arbitrary sampling matrix. Let x be PPP -periodic such
that MMM−1PPP is an integer matrix. Then, (↓ MMM)x is (MMM−1PPP )-
periodic.
Lemma 5 (Downsampling of quadrantally centrosymmet-
ric sequence). Let x be a quadrantally centrosymmetric se-
quence with symmetry center cccx ∈ Z2, and MMM =

[
1 1
1 −1

]
.

Define y = (↓ MMM)x. Then, y is rotated quadrantally cen-
trosymmetric about MMM−1cccx.

3. Symmetric Extension Algorithm

For a perfect reconstruction quincunx filter bank, if both
analysis filters have quadrantal centrosymmetry with group
delays ddd0, ddd1 ∈ Z2, then ddd0 and ddd1 must be in different cosets
of the quincunx lattice, and H0 and H1 must have the even-
even type symmetry. Such a PR filter bank is compatible
with symmetric extension.

Theorem 1 (Symmetric extension algorithm). Consider the
filter bank shown in Fig. 2, where x̃ is defined on the rect-
angular region {0, 1, . . . , L0 − 1} × {0, 1, . . . , L1 − 1} and x
is the symmetric extension of x̃ as given by (1). If H0
and H1 are quadrantally centrosymmetric with group delays
ddd0 =

[
d0,0 d0,1

]T ∈ Z2 and ddd1 =
[
d1,0 d1,1

]T ∈ Z2, respec-
tively, then the subband y0 can be completely characterized
by N0 samples with indices nnn =

[
n0 n1

]T given by⌈(
d0,0 + d0,1

)
/2

⌉
≤ n0 ≤

⌊(
d0,0 + d0,1 + L0 + L1

)
/2

⌋
− 1,

and max{d0,0 − n0, n0 − d0,1 − L1 + 1} ≤ n1

≤ min{d0,0 + L0 − 1− n0, n0 − d0,1};
y1 can be completely characterized by N1 samples with in-
dices nnn =

[
n0 n1

]T given by⌈(
d1,0 + d1,1

)
/2

⌉
≤ n0 ≤

⌊(
d1,0 + d1,1 + L0 + L1

)
/2

⌋
− 1,

and max{d1,0 − n0, n0 − d1,1 − L1 + 1} ≤ n1

≤ min{d1,0 + L0 − 1− n0, n0 − d1,1};
and N0 + N1 = L0L1 (i.e., the transform is nonexpansive).
The following is an example. The analysis filters are

H0(zzz) = 1
32

(
28− 2z−1

1 z−1
2 − 2z1z

−1
2 − 2z−1

1 z2 − 2z1z2

−z−2
1 − z2

1 − z−2
2 − z2

2 + 4z−1
1 + 4z1 + 4z−1

2 + 4z2

)
H1(zzz) = z−1

1 +
(
1 + z−1

1 z−1
2 + z−1

1 z2 + z−2
1

)
,

and the synthesis filters satisfy that G0(zzz) = H1(−zzz) and
G1(zzz) = −H0(−zzz). The group delays of the analysis fil-
ters are

[
0 0

]T and
[
0 1

]T , respectively. The frequency re-
sponses of the filters are shown in Fig. 7.
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Figure 7: Frequency responses of (a) analysis lowpass,
(b) analysis highpass, (c) synthesis lowpass, and (d) syn-
thesis highpass.

There are also other types of PR filter banks that lead to
nonexpansive transforms with slight variations on the above
algorithm. The constraints on the symmetry types and
group delays of the analysis filters are different depending
on how the original input sequence x̃ is extended. For de-
tails, please refer to [4].

4. Conclusions

In this paper, we have investigated how to preserve sym-
metry and periodicity under the convolution and downsam-
pling operations of a quincunx filter bank. This led us to
propose a new symmetric extension algorithm which can
be used to construct nonexpansive transforms associated
with quincunx filter banks. This scheme is potentially use-
ful in any application that processes finite-extent sequences
using such filter banks.
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