Design of Optimal Quincunx Filter Banks for Image Coding

Yi Chen, Michael D. Adams, and Wu-Sheng Lu

Department of Electrical and Computer Engineering University of Victoria

May 23, 2006

- Quincunx Filter Banks
- Optimal Design Algorithm
- 4 Design Examples

Introduction of Quincunx Filter Banks

• Two-dimensional two-channel nonseparable filter banks

Quincunx lattice

$$oldsymbol{M} = egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

Motivation

• Desirable properties for image coding

- Perfect reconstruction (PR)
- Linear phase
- High coding gain
- Vanishing moments
- Good frequency selectivity
- Existing design methods
 - Transformation of variables
 - Direct optimization
 - Two-step lifting structure

Lifting Realization - Structure

• Analysis Side

Synthesis Side

Lifting Realization - Transfer Functions

• Analysis filter transfer functions $H_0(z)$ and $H_1(z)$

$$H_k(\mathbf{z}) = H_{k,0}\left(\mathbf{z}^{\mathbf{M}}\right) + z_0 H_{k,1}\left(\mathbf{z}^{\mathbf{M}}\right),$$

$$\begin{bmatrix} H_{0,0}(\boldsymbol{z}) & H_{0,1}(\boldsymbol{z}) \\ H_{1,0}(\boldsymbol{z}) & H_{1,1}(\boldsymbol{z}) \end{bmatrix} = \prod_{k=1}^{\lambda} \left(\begin{bmatrix} 1 & A_{2k}(\boldsymbol{z}) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ A_{2k-1}(\boldsymbol{z}) & 1 \end{bmatrix} \right)$$

• Synthesis filter transfer functions $G_0(z)$ and $G_1(z)$

$$G_k(\mathbf{z}) = (-1)^{1-k} z_0^{-1} H_{1-k}(-\mathbf{z})$$

Lifting Realization - Advantages

- PR is satisfied automatically.
- ② Linear phase property can be imposed structurally.

Theorem

If each lifting filter A_k is symmetric with its group delay c_k satisfying

$$\boldsymbol{c}_k = (-1)^k \left[\frac{1}{2} \frac{1}{2} \right]^T,$$

then the analysis filters H_0 and H_1 are symmetric with group delays $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} -1 & 0 \end{bmatrix}^T$, respectively.

Reversible integer-to-integer transforms

Outline Introduction Quincunx Filter Banks Optimal Design Algorithm Design Examples Conclusion

Octave-Band Filter Banks

• N-level octave-band filter bank: analysis side

• Equivalent one-level analysis filters {H'_i}

$$H_{i}'(\boldsymbol{z}) = \begin{cases} \prod_{k=0}^{N-1} H_{0}\left(\boldsymbol{z}^{\boldsymbol{M}^{k}}\right) & i = 0\\ H_{1}\left(\boldsymbol{z}^{\boldsymbol{M}^{N-i}}\right) \prod_{k=0}^{N-i-1} H_{0}\left(\boldsymbol{z}^{\boldsymbol{M}^{k}}\right) & 1 \le i \le N-1\\ H_{1}\left(\boldsymbol{z}\right) & i = N. \end{cases}$$

Coding Gain

- Measure of the energy compaction ability of a filter bank
- Coding gain G_{SBC} for an N-level octave-band filter bank

$$G_{SBC} = \prod_{k=0}^{N} (A_k B_k / \alpha_k)^{-\alpha_k},$$
$$A_k = \sum_{\boldsymbol{m} \in \mathbb{Z}^2} \sum_{\boldsymbol{n} \in \mathbb{Z}^2} h'_k[\boldsymbol{m}] h'_k[\boldsymbol{n}] r[\boldsymbol{m} - \boldsymbol{n}], B_k = \alpha_k \sum_{\boldsymbol{n} \in \mathbb{Z}^2} g'^2_k[\boldsymbol{n}],$$
$$\alpha_0 = 2^{-N}, \alpha_k = 2^{-(N+1-k)} \text{ for } k = 1, 2, \dots, N,$$

Autocorrelation r

$$r[n_0, n_1] = egin{cases}
ho^{|n_0|+|n_1|} & ext{for separable model} \
ho^{\sqrt{n_0^2+n_1^2}} & ext{for isotropic model}, \end{cases}$$

where ρ is the correlation coefficient (typically, 0.90 $\leq \rho \leq$ 0.95).

Vanishing Moments

- \tilde{N} dual vanishing moments \Rightarrow \tilde{N} th order zero at $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$ of $\hat{h}_1(\boldsymbol{\omega})$
- N primal vanishing moments \Rightarrow Nth order zero at $[\pi \ \pi]^T$ of $\hat{h}_0(\boldsymbol{\omega})$
- Linear phase filter H with group delay $\textbf{\textit{c}} \in \mathbb{Z}^2$

$$\frac{\partial^{m_0+m_1}\hat{h}}{\partial\omega_0^{m_0}\partial\omega_1^{m_1}} = \begin{cases} \sum_{\boldsymbol{n}\in\mathbb{Z}^2} h[\boldsymbol{n}] (\boldsymbol{n}-\boldsymbol{c})^{\boldsymbol{m}} \cos\left(\boldsymbol{\omega}^T (\boldsymbol{n}-\boldsymbol{c})\right) & \text{for } |\boldsymbol{m}| \text{ even} \\ -\sum_{\boldsymbol{n}\in\mathbb{Z}^2} h[\boldsymbol{n}] (\boldsymbol{n}-\boldsymbol{c})^{\boldsymbol{m}} \sin\left(\boldsymbol{\omega}^T (\boldsymbol{n}-\boldsymbol{c})\right) & \text{otherwise,} \end{cases}$$

where $\boldsymbol{m} = [m_0 \ m_1]^T$ and $\boldsymbol{m} = m_0 + m_1$. • \tilde{N} th order zero at $\boldsymbol{\omega} = [0 \ 0]^T$

$$\sum_{\boldsymbol{n}\in\mathbb{Z}^2}h[\boldsymbol{n}]\,(\boldsymbol{n}-\boldsymbol{c})^{\boldsymbol{m}}=0\quad\text{for all even }|\boldsymbol{m}|\text{ such that }|\boldsymbol{m}|<\tilde{N}.$$

Frequency Selectivity

• Error function of a linear phase filter H

$$e_{h}=\int_{\left[-\pi,\ \pi
ight]^{2}}W(oldsymbol{\omega})\left|\hat{h}_{s}(oldsymbol{\omega})-D\hat{h}_{d}(oldsymbol{\omega})
ight|^{2}\mathrm{d}oldsymbol{\omega}$$

• Ideal frequency responses and weighting function

٢

- Lifting parameterization of linear-phase filter banks
- Maximize coding gain subject to vanishing moments and frequency ٩ response constraints
- Iterative second-order cone programming

minimize $\boldsymbol{b}^T \boldsymbol{x}$ subject to: $\|\boldsymbol{A}_{i}^{T}\boldsymbol{x} + \boldsymbol{c}_{i}\| \leq \boldsymbol{b}_{i}^{T}\boldsymbol{x} + d_{i}$ for $i = 1, \dots, q$.

Linear/quadratic approximations

Two Lifting Steps - Problem Formulation (1)

- Lifting filter coefficients **x**
- Vanishing moments
 - Constraint: an underdetermined linear system Ax = b
 - Solutions: $\mathbf{x} = \mathbf{x}_s + \mathbf{V}_r \boldsymbol{\phi}$
- Coding gain
 - Define $G = -10 \log_{10} G_{SBC}$
 - ▶ For a given ϕ , seek a small perturbation δ_{ϕ} such that $G(\phi + \delta_{\phi})$ is reduced relative to $G(\phi)$
 - $\bullet \ \|\boldsymbol{\delta_{\phi}}\| \text{ is small} \Rightarrow G(\boldsymbol{\phi} + \boldsymbol{\delta_{\phi}}) \approx G(\boldsymbol{\phi}) + \boldsymbol{g}^{\mathsf{T}} \boldsymbol{\delta_{\phi}}$
 - ▶ Iteratively minimize $m{g}^{ op}m{\delta_{\phi}}$, update $m{\phi}$ until $|G(m{\phi}+m{\delta_{\phi}})-G(m{\phi})|<arepsilon$

Two Lifting Steps - Problem Formulation (2)

- Frequency selectivity
 - Analysis highpass filter frequency response

$$\hat{h}_1(oldsymbol{\omega}) = \hat{a}_1(oldsymbol{M}^{ op}oldsymbol{\omega}) + e^{j\omega_0}$$

where $\hat{a}_1(\pmb{M}^T \pmb{\omega})$ is linear in $\pmb{\phi}$

Error function

$$e_{h_1} = \boldsymbol{\phi}^T \boldsymbol{H}_{\boldsymbol{\phi}} \boldsymbol{\phi} + \boldsymbol{\phi}^T \boldsymbol{s}_{\boldsymbol{\phi}} + C_{\boldsymbol{\phi}}$$

Frequency response constraint is a second-order cone

$$\left\| \tilde{\boldsymbol{H}}_k \boldsymbol{\delta_{\phi}} + \tilde{\boldsymbol{s}}_k \right\| \leq \delta'_{h_1}$$

Introduction

Two Lifting Steps - Design Algorithm

Two Lifting Steps - Comments

- β : upper bound of $\|\boldsymbol{\delta_\phi}\|$
 - Too large: $\mathbf{g}^{T} \boldsymbol{\delta}_{\boldsymbol{\phi}}$ cannot correctly reflect the actual reduction in G
 - Too small: the solution to the SOCP subproblem is restricted to an unnecessarily small region around \u03c6k
 - Should be chosen such that

$$\boldsymbol{g}^{\mathsf{T}}\boldsymbol{\delta} pprox \mathcal{G}(\boldsymbol{\phi} + \boldsymbol{\delta}) - \mathcal{G}(\boldsymbol{\phi}) \quad ext{for} \quad \|\boldsymbol{\delta}\| = eta$$

- δ_{h_1} : upper bound of the error function e_{h_1}
 - Too small: feasible region may be empty
 - Chosen to be a scaled version of e_{h_1} evaluated at ϕ_k

$$\delta_{h_1} = d \left(\boldsymbol{\phi}_k^{\mathsf{T}} \boldsymbol{H}_{\boldsymbol{\phi}} \boldsymbol{\phi}_k + \boldsymbol{\phi}_k^{\mathsf{T}} \boldsymbol{s}_{\boldsymbol{\phi}} + c_{\boldsymbol{\phi}}
ight) \quad ext{for some} \quad 0 < d \leq 1$$

• Error e_{h_1} is reduced after each iteration.

Outline

More Than Two Lifting Steps - Problem Formulation

- Lifting filter coefficients **x**
- Coding gain: linear approximation

$$G(\mathbf{x} + \boldsymbol{\delta}_{\mathbf{x}}) = G(\mathbf{x}) + \mathbf{g}^{T} \boldsymbol{\delta}_{\mathbf{x}}$$

Vanishing moments

Introduction

- Polynomial equations in x
- Approximated by

$$oldsymbol{A}_koldsymbol{\delta}_{oldsymbol{x}}=oldsymbol{b}_k$$

- Moments are nearly vanishing
- Frequency selectivity
 - Frequency response: polynomial in x
 - Error function e_{h_1} : approximated by $\boldsymbol{\delta}_{\boldsymbol{x}}^T \boldsymbol{H}_k \boldsymbol{\delta}_{\boldsymbol{x}} + \boldsymbol{\delta}_{\boldsymbol{x}}^T \boldsymbol{s}_k + C_k$
 - Constraint: approximated by the second-order cone

$$\left\| \tilde{\boldsymbol{H}}_k \boldsymbol{\delta}_{\boldsymbol{x}} + \tilde{\boldsymbol{s}}_k \right\| \leq \delta'_{h_1}$$

Introduction

More Than Two Lifting Steps - Design Algorithm

Algorithm 2 **O** Select an initial point x_0 For the kth iteration, solve minimize $\boldsymbol{g}^{T}\boldsymbol{\delta}_{\boldsymbol{v}}$ subject to: $A_k \delta_x = b_k$ $\left\| \tilde{\boldsymbol{H}}_k \boldsymbol{\delta}_{\boldsymbol{x}} + \tilde{\boldsymbol{s}}_k \right\| \leq \delta'_{h_1}$ $\|\boldsymbol{\delta}_{\mathbf{x}}\| < \beta$ update **x** by $\mathbf{x}_{k+1} = \mathbf{x}_k + \boldsymbol{\delta}_{\mathbf{x}}$ Solution When $|G(\mathbf{x}_{k+1}) - G(\mathbf{x}_k)| < \varepsilon$, output and stop

- $\bullet\,$ Isotropic image model with $\rho=$ 0.95 for six levels of decomposition
- CAL1: two 6×6 lifting filters
- CAL2: three 4×4 lifting filters

Comparison with existing filter banks

Filter	Support of	Coding	Vanishing moments		
banks	analysis filters	gain(dB)	Ñ	Ν	Max. order
CAL1	13 imes13, $7 imes7$	12.06	2	2	0
CAL2	9 imes 9, $13 imes 13$	12.23	2	2	10^{-12}
KS	13 imes13, $7 imes7$	11.95	6	6	0
9/7	9×9 , 7×9 , 9×7 , 7×7	12.09	4	4	0

Optimal Design Algorithm

Design Examples

Conclusion

Frequency Responses of CAL1

Optimal Design Algorithm

Design Examples

Conclusion

Frequency Responses of CAL2

Scaling and Wavelet Functions for CAL1

Design of Optimal Quincunx Filter Banks for Image Coding

University of Victoria

Scaling and Wavelet Functions for CAL2

Design of Optimal Quincunx Filter Banks for Image Coding

University of Victoria

Image Coding Results

- Image coder: separable/nonseparable based on the lifting scheme
- Reversible integer-to-integer mappings
- Test images: grayscale images in the JPEG-2000 test set
- Coding
 - Lossy coding at various bit rates
 - Six/three levels of decomposition for quincunx/separable transforms
 - Difference measured in terms of PSNR
- Coding results: CAL1 and CAL2 outperform KS in 80% cases

Introduction

Experimental Results for finger

CR [†]	PSNR (dB)					
	CAL1	CAL2	KS	9/7		
128	19.88	19.95	19.67	19.98		
64	21.70	21.75	21.53	21.72		
32	24.52	24.39	24.36	24.20		
16	27.75	27.83	27.65	27.61		
[†] compression ratio						

Test image: finger

- CAL1 and CAL2 outperform the KS filter bank.
- CAL1 and CAL2 outperform the 9/7 filter bank except at the lowest bit rate.

Conclusion

- New optimization-based design method is proposed.
- This method yields linear-phase PR quincunx filter banks with high coding gain, good analysis/synthesis filter frequency responses, and prescribed vanishing moments properties.
- Effectiveness is demonstrated by the experimental results.

Optimal Design for a Particular Image

- Optimize with the autocorrelation function of the finger image
- CAL1f: same filter support as CAL1
- CAL2f: same filter support as CAL2
- Coding gains for the finger image

CAL1f	CAL2f	CAL1	CAL2	KS	9/7
12.76	12.35	12.17	12.04	12.27	12.05

Coding results

CR [†]	PSNR (dB)						
	CAL1f	CAL2f	CAL1	CAL2	KS	9/7	
128	19.92	19.35	19.88	19.95	19.67	19.98	
64	21.82	21.37	21.70	21.75	21.53	21.72	
32	24.53	24.21	24.52	24.39	24.36	24.20	
16	27.84	27.63	27.75	27.83	27.65	27.61	

[†]compression ratio