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ABSTRACT

Quincunx filter banks are two-dimensional, two-channehseparable filter banks. They are widely used
in many signal processing applications. In this thesis, twdysthe design and applications of quincunx filter
banks in the processing of two-dimensional digital signals

Symmetric extension algorithms for quincunx filter banks proposed. In the one-dimensional case,
symmetric extension is a commonly used technique to builterpansive transforms of finite-length se-
guences. We show how this technique can be extended to tiseparable quincunx case. We consider three
types of quadrantally-symmetric linear-phase quincungrfibanks, and for each of these types we show
how nonexpansive transforms of two-dimensional sequetiefised on arbitrary rectangular regions can be
constructed.

New optimization-based techniques are proposed for thiged high-performance quincunx filter
banks for the application of image coding. The new methodklylinear-phase perfect-reconstruction sys-
tems with high coding gain, good analysis/synthesis filegfiency responses, and certain prescribed vanish-
ing moment properties. We present examples of filter ban&igded with these techniques and demonstrate
their efficiency for image coding relative to existing filteanks. The best filter banks in our design examples
outperform other previously proposed quincunx filter bankapproximately 80% cases and sometimes even
outperform the well-known 9/7 filter bank from the JPEG-2@€&hdard.
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Chapter 1

Introduction

1.1 Quincunx Filter Banks

One-dimensional (1D) and multidimensional (MD) filter barilave proven to be a highly effective tool for
the processing of digital signals including speech, imagel video. Usually, the MD case is handled via
tensor product, i.e., the MD signal is decomposed into 1Dagyand processed by 1D filter banks along
each dimension. Some of the more recent efforts conceruretiee nonseparable case, where nonseparable
sampling and filtering are employed [1,[2 [ B[4 b16.17, 8]. Ghancunx sampling scheme is the simplest
two-dimensional (2D) nonseparable sampling scheme. Iséxlun many signal processing applications,
such as the handling of images returned from remote senksasallites 5] and intraframe coding of HDTV
[1.[S]. In contrast to the separable case, the quincunx sagyptheme leads to a two-channel filter bank and
reduces the scale by a factorgP.

Although the implementation of quincunx filter banks hashleigcomputational complexity than the
dyadic separable case, these filter banks offer severaktam@dvantages. Firstly, the quincunx filter bank
is a good match to the human visual system (HVS] [10]. The H¥S d higher sensitivity to changes in
the horizontal and vertical directioris [11]. This is eqlevd to saying that the HVS is more accurate in per-
ceiving high frequencies in the horizontal and verticaédiions than along diagonals. Figlitel 1.1 shows the
frequency response of a typical quincunx lowpass filter,reliee shaded and unshaded regions correspond
to the passband and stopband, respectively. With the didrbaped passband, this filter conserves hori-
zontal and vertical high frequencies, and cuts diagongluieacies by half. In this way, the quincunx filter

bank well matches the HVS. Another advantage of quincurerfilinks is that there are more degrees of



wo

Figure 1.1: Frequency responses of a quincunx lowpass filtee shaded and unshaded regions represent

the passband and stopband, respectively.

freedom in the design of such filter banks. This may lead terfianks with better performance for targeted

applications.

1.2 Historical Perspective

Although 1D filter banks have been well studied, in the MD ¢asany problems remain unsolved. Filter
banks are often defined to operate on signals of infinite &xtepractice, however, we frequently deal with
signals of finite extent. This leads to the well-known bouwggaoblem that can arise whenever a finite-extent
signal is filtered. In the 1D case, several solutions have Ipeeposed to solve this problem by extending
the finite-extent signal into a signal with infinite extenterd padding and periodic extensioni[12] 13, 14]
introduce sharp discontinuities in the extended signatschivcause distortion at edges of the reconstructed
signals. Symmetric extensioh 114,115, 16] is the most comynosed solution to the boundary problem
in the 1D case. This extension scheme provides smooth eedesignals and leads to desirable nonexpan-
sive transforms. In the MD case, symmetric extension isnofeplied to the signals separably along each
dimension.

For 1D filter banks, various design techniques have beeressfidly developed. In the nonseparable
MD case, however, far fewer effective methods have beengsexh Variable transformation methods are
commonly used for the design of MD filter banks. With such mdt) a 1D prototype filter bank is designed
first. Then it is mapped into an MD filter bank by a change ofafalés. For example, the McClellan trans-
formation [17] has been used in several design approaCBed 9120/ 211]. In these designs, the frequency
responses of the 1D filters are mapped into MD frequency resgso Other design techniques have also been
proposed where a transformation is applied to the polypbasgonents of the filters instead of the original

filter transfer functions [22]%5]1 7. 23]. These transformatbased designs have the restriction that one cannot



explicitly control the shape of the MD frequency responsgédsle in some cases the transformed MD filter
banks can only achieve approximate perfect reconstrucBinect optimization of the filter coefficients has

also been proposed[24,[2.125], but because of the involveaidarge numbers of variables and nonlinear,
nonconvex constraints, such optimization typically letda very complicated system, which is often diffi-

cult to solve. Designs through the lifting framework][26]] Bave been proposed in [28, 6] for two-channel
MD filter banks with an arbitrary number of vanishing momeméth these methods, however, only interpo-
lating filter banks (i.e., filter banks with two lifting stépsre considered. Thus, good filter banks with more

lifting steps cannot be designed with these approaches.

1.3 Overview and Contribution of This Thesis

This thesis is primarily concerned with the design and apgithn of quincunx filter banks. A symmetric ex-
tension algorithm is presented to build nonexpansive toams associated with quincunx filter banks. Then
an optimization-based design algorithm with some vantis proposed for constructing quincunx filter
banks with a number of desirable characteristics. Fintdlyoptimally designed filter banks are compared to
some previously proposed ones in terms of their performamiceage coding.

The remainder of this thesis is structured as follows. Gidbtintroduces the background necessary to
understand this work. We begin by discussing the notatiooaventions used herein. Then, we introduce
multidimensional multirate systems and filter banks, arah@re in detail the quincunx filter banks, which
are of the most interest in this work. At last, we present sbaséc concepts related to subband image coding.

Inthe 1D case, when processing signals with finite lengthmpnsetric extension is a very useful algorithm
to handle the signal boundaries and build nonexpansivefwams for such signals. In Chapfér 3, we show
how this technique can be extended to the 2D quincunx casethiFend, we first define four ways to
extend finite-extent 2D sequences to infinite-extent secpswith four-fold symmetry and periodicity. Then
we discuss how these properties can be preserved underpavabke sampling and filtering. Finally, we
propose several symmetric extension algorithms for bugidionexpansive transforms with quincunx filter
banks, and illustrate the algorithms with several examples

Chaptel# presents new optimal design algorithms for quirdiiter banks. We begin with a lifting
parametrization of quincunx filter banks such that all of fitters have symmetric or antisymmetric linear
phase. Based on this parametrization, we further show hawitd filter banks compatible with the symmet-
ric extension algorithms discussed in Chapler 3. Then amagztion-based design algorithm is proposed

for the design of quincunx filter banks with perfect reconstion (PR), linear phase, high coding gain, good



frequency selectivity and prescribed numbers of vanisiimgnents. We show how this complex design
problem can be formulated as a second-order cone progragr{(®®CP) problem. Several variations of the
proposed algorithm are also investigated. Design exanapéepresented to demonstrate the effectiveness of
our proposed design method. At the end of this chapter, wanimeathe performance of the optimal filter
banks, as well as some existing filter banks, in an image cadedrcomment on their coding performance.
The experimental results show that our new filter banks ofdpa the previously proposed quincunx filter
banks in most cases, and sometimes even outperform thet&fbfink, which is considered to be one of the
very best in the literature.

Chapteb summarizes the results presented in this thediswsggests some related topics for future

research.



Chapter 2

Preliminaries

2.1 Overview

In this chapter, we first explain some fundamental conceghésed to this work. We begin with an introduc-
tion to the notation and terminology used herein. We thesgmesome of the basic concepts on multirate
systems and filter banks in the MD case. We conclude the ahbypte brief discussion on subband image

coding.

2.2 Notation and Terminology

In this work, matrices and vectors are denoted by upper andrloase boldface letters, respectively. The
symbolsC, R, andZ denote the sets of complex numbers, real numbers, and istegspectively. The
symbol j denotesy/—1. Forc € C, ¢* denotes the complex conjugate®f In R, (a,b), [a,b], and[a,b)
denote the open intervdk : a < x < b}, the closed interva{x: a < x < b}, and the half-open half-closed
interval{x: a < x< b}, respectively. The symbol&‘, Z*, Z~, Zoqd, andZevendenote the sets of nonnegative,
positive, negative, odd, and even integers, respectielya seSand a scalak, the notatiorkSdenotes the
set{ks}scs. If ke Z*, S¢denotes the-fold Cartesian product @, i.e., = {s=[ss s - S‘*l]T}SGS‘
As an exampleZ? denotes the set of ordered pairs of integers. Furthermarrakfx k matrixM, MS denotes
the se{Ms}¢_«. The difference of two se# andB is denotedd\ B and defined a8\ B= {x: x€ A, x ¢ B}.
The symbol€901 andl are used to denote a vector/matrix of all zeros, all onesaandentity matrix,

respectively, the dimensions of which should be clear froendontext. In particulaty denotes an identity



matrix of sizek x k for somek € Z. The symbol9Q andl are used to denotedimensional vectors of all
zeros and ones, respectively, &iglQ, andli, .\, are used to denotg x k; matrices of all zeros and ones,
respectively. For two vectors/matricesndv, uov denotes th&chur product (i.e., element-wise product)

of u andv. We writeu > v if every element iru is no less than its corresponding element.iifhe notations

u>v,u<vandu< vare defined in a similar way. For tW@-dimensional vectom=[ng n; --- nD,l]T
andz=[z z - 2zp_1]",we define
D-1 D-1 '
|n|:Z)ni and z":r!)ﬂ.
i= i
Furthermore, for ® x D matrixM =[my m; --- mp_3] with mg being thekth column ofM, we define

Moo M .. ot

Note thatin| andz" are scalars, whilg is a vector. With these notations, it can be verified (Ith)" =ZMn

and (zM)L =ML For matrix multiplication, we define the product notatien a

N ANAN-1--AviiAv forN>M
[],A
k= ANANG 1 -Av-1Aw for N <M.

For convenience, in the rest of this thesis a linear (or payial) function of the elements of a vectois
simply referred to as a linear (or polynomial) functiorxof

Forae R, |a| denotes the greatest integer less than or equal émd[a] denotes the least integer no
less thara. For anM x N matrix A with the (i, j)th element beingy j, |A| and[A] each denotes & x N
matrix where thdi, j)th element g a; j| and|[a; j|, respectively. Fom,n € Z, we define thenod function

as modm,n) =m—n|m/n|.

2.3 Multidimensional Multirate Systems

Multirate systems are very useful in processing digitahalg. In this section, we explain the basic concepts
of multirate signal processing and extend them to the MD.c&&ebegin with an introduction to MD signals
and filter banks, and then concentrate on the quincunx case, We briefly comment on the relation between
quincunx filter banks and dyadic wavelet systems. Lastlyintreduce the lifting scheme that can be used to

efficiently design and implement filter banks.



2.3.1 Multidimensional Signals

We first introduce the notions of MD signals and filters. DAdimensional signak is a sequence of real
numbers given by

x={xn eRneZ"}.
An element ofx is denoted either agin] or x[ng, N1, ...,Np_1] (whichever is more convenient), whame=
o ni -~ np_1]" andn; € Z. If only a finite number ok[n] are nonzero, the sequencs said to have
finite support. For a nonsingular integer matr® if x[n] = xjn+ Pk] for all n,k € ZP, the sequence is
said to bdP-periodic andP is called aperiodicity matrix . The Fourier transform(@) of x and the inverse

Fourier transform ok(w) are defined as

. 1 T
Rw)= Y xnje 19 and xjn] = —/ K(w)el® "dow,
=2, "= P Jpo )
respectively. The-transform ofx is defined as
X@)= % x[njz ™.

nczPb
For aD-dimensional FIR filter H, its impulse responisés a finitely supported sequence definedzsh
The transfer functiot (z) and frequency responﬁew) of H are given by

H(z) = Z hinjz" and ﬁ(w): Z |,][n](:rj¢.,Tn7

neZP nezPb

respectively. Figur&2 1 shows a linear time-invariantl{LlSystem characterized by the transfer function
H(z). The output sequenges computed by the convolution afandh as
y[n] = Z x[k]hjn—K]. (2.1)
keZD
The above input-output relatiofi{®.1) is equivalent(i®) = X(w)h(w) andY (z) = X (2)H (z) in the frequency
domain and-domain, respectively.
For a 2D filter H, for convenience, we express its impulse @asph in the form of a matrixA, and
denote the relationship dfandA, as
h[n] ~ Ap. (2.2)
In Ay, the element correspondingtf®, 0] is framed. For example, a filter H with impulse respohnisel, 0] =
1,h[-1,1) = 2,h[-1,2] = 3, h[0,0] = 4, h[0,1] = 5, andh[0, 2] = 6 is denoted as




Figure 2.1: An MD digital filter.

A D-dimensional filter H with impulse responkés said to havdinear phase with group delayc if, for
somec € 3ZP andSe {-1,1},
hin] = SH2c—n] forallne ZP. (2.3)
The filter H is said to beymmetric if S= 1, andantisymmetric if S= —1. For a linear-phase filter H, its

transfer functiorH (z) satisfiesH (z) = Sz *°H(z 1), and its frequency response can be expressed as

h@) = Y hine@"=S S h2c—nje 1¥M=S § hnje "=

nczPb nczPb nczPb
_1 S hin] [e1o™n { se e (oo

2 nezPb

1

= _efijc h[n] e*ij (n—c) + Se*ij(c*n)
2 3 finl| ]

= eiijc 2 nezP h[n] COS[wT (n - C)} fors=1 (2.4)

ei(@'cim2) Snezo hinjsin[@w' (n—c¢)] for S=—1.
For the case witls = 1, we define thsigned amplitude responséi,(w) to beh(w) without the exponential
factore 19'¢ j.e.,
ha(@)= Y hinjcos[@’ (n—c)] for S=1. (2.5)

nczP

The quantityﬁa(w) determines the shape of the frequency response],ﬁa(m))] is equivalent to thempli-
tude responseof H.

The MD sequences that we have discussed above are all defirled@-dimensional integer latticgP.
In multirate systems, we often deal with sequences definedsobset oZP, called dattice, associated with
a generating matriM. Below we introduce some fundamentals on lattices.

LetM=[mp m - nb,l]T be aD x D nonsingular integer matrix witin, € ZP being thekth
column ofM. SinceM is nonsingular, the séimy} is linearly independent. The lattice LAM) is defined as

the set of all possible vectors that can be representedeggeintinear combinations afy [2Y9], i.e.,

D-1

X= %nkmk =Mn¥n=[np ny ... np_1]' €ZP } . (2.6)

LAT (M) = {xe zP
K=

Using the notation we introduced in Secton]2.2, (M) can be written aMZP. The matrixM is called a

generating matrix or sampling matrix of LAM), and its columngmy} are called the basis vectors. Note



that the generating matrix for a lattice is not unique. Sampling densityof LAT (M) is defined as

1
d_—|delM|’ (2.7)
which describes the number of lattice points in a unit volume

Given a sampling matriM, thefundamental parallelepiped denoted as FP@M), is defined as
FPDM) = {xe R°|[x=Ma,a € [0,1)° },

where[0,1)P denotes théd-fold Cartesian product of the half-open half-closed waf0,1). The finite
set of integer vectors contained in FAND) is denoted as# (M) and.# (M) = FPDIM)NZP. Letn be an

arbitrary vector irZP, thenn can be expressed 4s[20]
n=k+Mm, (2.8)

wherek andm are unique vectors satisfyige .4 (M) andm e ZP. For a given vecton and a matri>M,
we denote the unique vectkisatisfying [ZB) ak = modn,M). A cosetof LAT (M) in ZP is the set of all
vectors of the form[{Z]8), whelkis fixed and called theoset vectorof this coset. The number of distinct
cosets of LATM) is |detM]|.

Figure[Z2(a) shows a lattice with its fundamental parefigded and two basis vectamg andm,. A
generating matrix of this lattice M = [mg my] = [3 % ], and the sampling density & There are also other
matrices that generate this lattice, such&s!] and [ % ]. FigurelZZP(b) shows thigletM| = 3 distinct
cosets represented by symbe|s, andx, which are associated with coset vect@<]", [1 17, and[1 O,

respectively.

2.3.2 Multirate Fundamentals

In this part, we show the important multirate concepts fertMD case, including downsampling, upsampling
and polyphase decomposition of signals and filters. Thechmsgiding blocks of a multirate system are the
downsamplerandupsampler, which perform the operations of downsampling and upsargpliespectively.
Figure[ZB shows a downsampler, where the inpistdownsampled by a nonsingular integer maMixand
the outpuly is given by

yIn] = (| M)xn] = x[Mn, (2.9)

that is, the outpuy contains all samples on LAM). Through the downsampler, the sampling density is

reduced by a factor ofdetM|. The Fourier transforny(@) of y can be written in terms of the Fourier
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(@) (b)

Figure 2.2: (a) A lattice with generating matii %, |, and (b) its three distinct cosets.

z[n] yln]

LM
Figure 2.3: An MD downsampler.

transformx{w) of x. The relation is given by

. 1 o (A—
J(w) = de] Z(MT)X(M T(w—2nk)).

Let X(z) andY(2) be theztransforms ok andy, respectively. Then, downsampling in thelomain can be

expressed as
1

_ 1 X(@ oM™, (2.10)
|detM| ke/Vz(MT)

Y(2)

whereg = [0 €1 ... e'Dfl}T andl =lg Iy -+ Ip_q]" = (—j2nkTM*1)T. In the frequency domain, the
spectrum of the downsampled signal is the averagdeiM| shifted and stretched versions of the spectrum
of the original signal.
FiguredZ3 shows an upsampler, whihtés a nonsingular integer matrix. The outs given by
xM~1n] if n€ LAT(M)

y[n] = (T M)x[n] = (2.11)
0 otherwise

The input-output relation in the Fourier domain andomain are similar to the 1D case, and are given by

Jw) =%(M"w) and Y(@) =X(M),
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z[n] ]

<

1M

Figure 2.4: An MD upsampler.

Figure 2.5: Cascade connections and their equivalent fofrige (a) downsamplers and (b) upsamplers.

respectively. The upsampled signais nonzero only at points on the lattice LAW). In the frequency
domain, the upsampler performs a linear transformatioh@fitequency vectaw, and|detM| copies of the
original baseband spectrum are squeezed into the régiayv)?.

Sometimes the downsamplers/upsamplers are applied imd&scThey can be combined as follows.
Figure[Z®(a) shows a cascade of two downsamplers with thslmpling matriceM; andM; and its
equivalent form with a single downsampMr= M1M,. Figure[Zb(b) shows a cascade of two upsamplers
with M; andM; and its equivalent structure with a single upsamples M,M;.

The downsampler and upsampler are often used in cascaddilgth. The order of the downsam-
pler/lupsampler and the filter can be interchanged undesinesircumstances. FigurEsP.6(a) and (b) show
the equivalent structures for the downsampling and upsampperations, respectively. They are called the
noble identities. With these identities, one can apply tiresolution operation on the side of the downsampler
or upsampler with lower sampling density, which is very us& improve the computation efficiency.

Now we consider the polyphase decomposition of MD signatkfiters. From Section2.3.1, we know
that an arbitrary MD integer vectar can be expressed uniquely in the form gf12.8). Therefonsgerga

sequence and a sampling matriM, there areM = |detM| unique subsequences
xdn] = M-+ my], (2.12)

fork=0,1,....M—1, mg € 4/ (M) and {m,} are distinct. The subsequenxgis called thekth type-1
polyphase componenbf x. As x[n] is theM-fold downsampled version ofn+ my], the sequencecan be
written as the sum of the upsampled and shifted versions pillyphase componen{g,} as

M-1

x[n] = kz (1 M)x)[n—my]. (2.13)
=0
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ol yin My r e B

ofn] e N BT

(b)

Figure 2.6: Noble identities of the (a) downsampler and (isampler.

The above equatiofi{ZN 3) is called tlype-1 polyphase representatiorof x. In the Fourier domain and

z-domain, [ZIB) can be expressed as

M-1 M—1
S0 — —joTmeg AT _ —my
<) k;) e %MTw) and X(2) ké z ™ (M),

respectively.

Similarly, we define théth type-2 polyphase componentf a sequence as
xdn] = xMn—my], (2.14)

wherek € {0,1,...,M — 1}, m¢ € .4 (M) and {m} are distinct. The time domain, Fourier domain, and

z-domain expressions of the type-2 polyphase representatia sequenceare respectively given by

M-1
X[ = k;((TM)xk)[Hmd,
M-1 M-1
(@)= 3 MM w), and X(@)= ¥ 2% ().
k=0 k=0

2.3.3 Uniformly Maximally Decimated Filter Banks

The uniformly maximally decimated (UMD) filter bank is of gteimportance in multirate systems. The
block diagram of a UMD filter bank wittM = |detM| channels is shown in Figule2.7. On the analysis
side, the analysis filter§Hy} divide the input sequenceinto subbands in th®-dimensional frequency
domain. The output of each analysis filter is then downsadipyM, yielding the subband sequendsg}.
Since there ar®&1 analysis filters and each downsampler reduces the sam@imgjty by a factor oM, the
combined sampling rate of the subbargg} is the same as that of the input On the synthesis side, the
subband sequences are upsampleMbgnd then pass through the synthesis fil{gg}. The outputs of the
synthesis filters are added together to obtain the recansttisequence. If x[n] = x[n], the filter bank is

said to have thshift-free perfect reconstruction (PR) property. The shift-free PR property is desirable in
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il ——{ Ho(2) |—-|iM|y°—M-|TM|—-| Gol(2) ool
—— Hi(2) |—-|1M|y1—w-|TM|—-| Gi(2)

—’| Hy—1(2z) I—’| M IM’| T MI—’| Gr-1(2) }_,

analysis side synthesis side

Figure 2.7: AnM-channel UMD filter bank, wherkl = |detM|.

many signal processing applications. In this thesis, hentte the term PR shall denote shift-free perfect
reconstruction unless explicitly noted otherwise.
With the polyphase representation introduced in Sefi8fl2the UMD filter bank can also be imple-

mented in the polyphase domain. Each analysis filiec&h be represented in the form of
M-l
Hy(2) = Z} Z"Hy; (M), (2.15)
=

whereHy; (2) is theith type-2 polyphase component of.H'he analysis filter transfer functiogsly(z)} can

be written as

Ho(Z) Ho,o (ZM) HO,l (ZM) v HO,Mfl (ZM) zm
H Hyo (24 Hia( @) - Hima(M Pl
1.(2) _ 1,01( ) 1,1.( ) | 1M 1( ) .1 ' (2.16)
Hum-1(2) Huv-10(@) Hw-11(2) - Hw_im1(M)] |[Z™2
Hp(M)
The matrixH p(2) is called theanalysis polyphase matrix
Similarly, the synthesis filter transfer functiof8x(z)} can be written as
GO(Z) G0,0 (ZM) GO,l (ZM) ce GO,Mfl (ZM) z*mO
G Gio (M Gui(M) - Gima (M —my
1.(2) _ 1,0.( ) 1,1.( ) | 1M .1( ) z | | (2.17)
Gm-1(2) Gum-10(M) Gm-12(M) - Gu_ima(M)] [z™2

Gh(21)
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—1|n
DL
Figure 2.8: The polyphase representation of a UMD filter Haafre simplification with the noble identities.

Yo[n] _’| M |_’| o z[n]

y1[n] —’|TM|—’| p——

M I M yM—l[n] _.| 1 M |_.|z—mM,1 }J

Figure 2.9: The polyphase representation of a UMD filter bank

whereGy(2) is theith type-1 polyphase component of the synthesis filigi 8.,Gy () = zi"ialz*m«GkJ (zM)
andGy(z) is called thesynthesis polyphase matrix With (Z18) and[[(Z17), the filter bank can be imple-
mented in its polyphase domain as shown in Fidurk 2.8. Usiaqibble identities, we can interchange the
downsamplers/upsamplers and the polyphase matricesamabe simplified structure shown in Figlire]2.9.
This structure provides a convenient way to design and imeig UMD filter banks. In order for the filter

bank to have (shift-free) PR, the polyphase matrices mtisfpga

Hp(2)Gp(2) =1. (2.18)
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Figure 2.10: The quincunx lattice.
2.3.4 Quincunx Filter Banks

The two-dimensional (2Dyuincunx lattice is the simplest nonseparable lattice. Figlrel2.10 shows the
qguincunx lattice, where the symbalsando represent the two distinct cosets associated with cosébrgec
ko=1[0 O andk; = [1 O]T, respectively. There are many matrices that generate theun lattice, such as
[21] and[} % ]. Herein, we shall always choose the generating matrix fbe[1 % ]. In this way, when
two downsamplers are cascaded, the equivalent single doapisg matrix becomes a separable diagonal
matrixM? = [39].

With the quincunx downsampling matrM = [1 %], the downsampling operation, as shown in Fig-
ure[Z3B, with input sequenceand output sequenceis expressed in time domain, Fourier domain, and

z-domain as

y[no, N1} = X[No + N1, No — Ny},

(o, wy) = %[)‘((“’Og‘*’l, W) 4R (DA g S n)}, and
1

1 1 1 _1 11 1 1
Vo) =5 [x#7 Fa ) x4 75|,
respectively. The upsampling operation shown in FigurbiLekpressed in time domain, Fourier domain,

andz-domain as

x[3(no+n1),2(no—ny)] if [no ny]T € LAT (M)
y[nOa nl] =
0 otherwise

(o, w1) =R (wp+w,ap—wi), and Y(z,21) =X (207,27 ?),

respectively.
FigurelZ.Tll shows a UMD filter bank based on quincunx samplimgreM denotes the quincunx gen-
erating matrixH }1], {Hx} and{Gy} are the analysis and synthesis filters, respectively. Thié-fsee) PR
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i) —-|Ho(Z)|—-|lM|yO—M-|TM|—-|Go(z) ool
—-|H1<z)|—-|1M|yl—M-|TM|—-|G1(z>

Figure 2.11: A two-channel quincunx UMD filter bank.

w1 w1
3 3
™ ™
—TT 0 T wo —TT 0 T wo
—T —T
(@) (b)

Figure 2.12: Ideal frequency responses of quincunx filtetkbdor the (a) lowpass filters and (b) highpass

filters.
condition for the quincunx UMD filter bank is
Ho(2)Go(2) + H1(2)G1(2) =2 and (2.19a)

Ho(—Z)Go(Z) + Hl(—Z)Gl(Z) =0, (2.19b)

where{H(2)} and{Gk(2)} are the analysis and synthesis filter transfer functiorspeetively.

The quincunx lowpass and highpass filters are often chodeeviediamond-shaped frequency responses
as shown in FigurdsZl12(a) and (b), respectively. In thgseds, passband and stopband are represented by
the shaded and unshaded areas, respectively. With the dékst@ped frequency response, the lowpass filter
can preserve high frequencies in the horizontal and védioactions, which is a good match to the human
visual system as the visual sensitivity is higher to chamgésese two directions than in other directions.

In many image processing applications, a quincunx filtekbauypically applied in a recursive manner
in the lowpass channel, resulting in an octave-band filteklstructure as shown in Figute2113. With the
ideal frequency responses shown in Fidurel?.12, this stred¢ads to a frequency decomposition shown in
FigurdZIK. For ahl-level octave-band filter bank generated from a quincurerfilank with analysis filters
{Hk}, by using the noble identities and combining cascaded dampters, upsamplers and filters, we obtain

the equivalent nonuniform filter bank shown in Figlire2.1%eBquivalent filter bank has + 1 channels
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o> zr[n]

h

(b)

Figure 2.13: The structure of &ftlevel octave-band quincunx filter bank. (a) Analysis sidd @) synthesis

side.

w1
A

Figure 2.14: Frequency decomposition associated withvedtand quincunx scheme.
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Figure 2.15: The equivalent nonuniform filter bank asseciatith theN-level octave-band filter bank.

with analysis filters{H;} and synthesis filter§G/}. The impulse responses of these equivalent filters can
be computed by iterative upsampling and convolution of thgimal analysis and synthesis filter impulse

responses as

ho*(T M)ho*(T Mz)ho**(T MN_l)ho fori=0

hi = ho* (T M)hgs - (T MN==D)hg s (T MN-)hy for1<i<N-1 (2.20)
hy fori=N, and

go* (T M)go* (T M?)go -+ -+ (T MN1)go fori=0
i = 4 go* (T M)go*--- (T MNTD)ggu (1 MN)g; for1<i<N-1 (2.21)

01 fori=N.

The transfer function$H; (z) } of {H{} are given by

MN-2Ho (sz) i—0
H (2) = Hy (zM”’i) NN Ho (sz) 1<i<N-1 (2.22)
Hi(2) i=N.

The transfer function§G{(z) } of the equivalent synthesis filtef&]} can be derived in a similar way.

2.3.5 Relation Between Filter Banks and Wavelet Systems

Filter banks and wavelets are closely connected [30]. Hiléanks can be viewed as discrete wavelet trans-
forms [3]1], and continuous-time wavelet bases can be ditigang iterated filter banks[82.110]. Therefore,

when an octave-band filter bank is applied to a signal, th@eslod the basis functions of the associated
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wavelet may appear as artifacts in the reconstructed sifytied transformed coefficients are quantized. In
this section, we briefly explain how filter banks are related/iavelet systems in the quincunx case.

We consider the dyadic wavelet systems, where functionsegresented at different resolutions where
successive resolution differs in scale by a factor of two. dvelet system is a basis of (RZ) derived
from amultiresolution approximation (MRA) [B2]. Consider an MRA associated with scaling funatip
satisfying the refinement equation

P00 =v2'y clkjpMx—k), (2.23)
kez2
and wavelet functioy satisfying the wavelet equation
Y =v2 5 dkeMx—k), (2.24)
kez2
whereM is the generating matrix of the quincunx lattice. Tthal MRA is associated with scaling function
@ and wavelet functionp, whereg and § are the dual Riesz bases @fand, and satisfy the scaling and

wavelet equations

PX)=v2 Y EKeMx—K and Hx) =v2 Y dkGMx—k),
kez2 kez2
respectively.

A quincunx UMD filter bank as the one shown in Figlire 2.11 iated to the above MRA as

holn] =& [—n], hyn]=d"[-n], goln]=cln], and gu[n| =djn]. (2.25)

Therefore, the choice of filters determines the shape of ¢tabng and wavelet functions. lIteratively up-
sampling and convolving the lowpass analysis or synthdss firoduces a shape approximating the dual
or primal scaling function, respectively. Similarly, theape of the wavelet function can be approximated
with a similar approach starting from the convolution of thepass and highpass filters followed by itera-
tive upsampling and convolution with the lowpass filter. &&hg to theN-level octave-band quincunx filter
bank shown in FigurE2Z1 3 and its equivalent form in Figuf2the shape of the impulse responisg]
andgg[n] of the equivalent filters fland G, approximate the shape of the dual and primal scaling func-
tions, respectively, and the shapehéif] andg;[n] approximate that of the wavelet functions more and more
accurately asdecreases from to 1.

The number ofranishing moments of interest herein. It corresponds to the highest ordpobfnomials
that can be reproduced by the scaling function. From the bl@k point of view, it represents the highpass

filter’s ability to annihilate polynomials. If there are artaan number of vanishing moments, and the original
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signal can be well approximated by polynomials, then thénphégs and bandpass subbands contain few
nonzero coefficients, which is favorable in many signal pesing applications. The number of vanishing
moments is equivalent to the order of zerdGat]" in the highpass filter frequency response, or the order of
zero at[rr " in the lowpass filter frequency response. Similar to the sulmin the 1D case, we have the

following lemma for the quincunx case.

Lemma 2.1(Sum rule) Let ¢ and d be sequences definedZ3rwith Fourier transformsi(w) and d(w),
respectively. Ther§(w) has an Nth order zero ab = [t " if and only if
S (=1)™n"c[n] =0, for|m <N, (2.26)
nez?
andd(w) has an Nth order zero ab= [0 0|7 if and only if
> n"dn] =0
nez?

Therefore, for a UMD quincunx filter bank to hadévanishing moments, the impulse response of the

for |m| < N. (2.27)

3

corresponding lowpass or highpass filter is required tafyatiie linear systeni {Z.P6) dr {2127), respectively.

The presence of vanishing moments is desirable in manycagialns.

2.3.6 Lifting Realization of Quincunx Filter Banks

The lifting schemd26, [Zi] is an efficient method used to design and implemeter filanks. The lifting
structure provides a number of advantages over the traditfdter bank realization. It features fast and in-
place computation, satisfies the (shift-free) PR condaiatomatically, and can be used to construct reversible
integer-to-integer (ITI) transforms[B3]. Unlike the 1Dsea only a subset of all PR quincunx filter banks can
be implemented using the lifting scheme.

The lifting realization of a quincunx filter bank wittAZifting filters is shown in FigurE2.16. Without loss
of generality, we assume that none of theli#ting filter transfer functiong Ax(z) } are identically zero, except
possiblyA; (z) andAy, (z). With the lifting structure for the forward transform shownFigure[2Z16(a), the
input sequence is decomposed into its two polyphase components, and tremliéing step adds a filtered
version of the sequence in one channel to the sequence inthbeahannel. The inverse transform has a
similar structure which undoes each step of the forwardstam as shown in FiguleZZ116(b). In this way,
the PR condition is satisfied structurally.

The analysis polyphase matrix can be derived from the jffilters as

Hp(@) = [HO’O(Z) Ho’l(z)] =ﬁ (ll AZK(Z)] { . OD, (2.28)
Hio(z) H11(z)] &1\ [0 1 | [Ax1(@ 1
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Figure 2.16: Lifting realization of a quincunx filter bank) (Analysis side and (b) synthesis side.

and the corresponding analysis filter transfer functioescatculated usind (Z.1L5) as
Ho(2) = Hoo (M) +2Ho1 (M)  and Hi(z) = Hio (M) +20H11 (). (2.29)

The synthesis filter transfer functio@g(z) andGs (2) can be trivially computed &8(2) = (—1)* %z, *H;1 _k(~2)
fork=0,1.

The lifting structure can be used to construct reversilikger-to-integer transforms (i.e., PR filter banks
which map integers to integers). For each lifting step oratheysis side, a rounding operairis added to
the output of the lifting filter Asuch that the sequences after each lifting step, inclutimgtbbands, contain
only integers. On the synthesis side, the same roundingtipeés added in the corresponding lifting step.
With this method, the transform retains invertibility an@ps integers to integers. The lifting realization of

an integer-to-integer transform is shown in Figire 2.17.

2.4 Image Coding

In this thesis, we are sometimes interested in image cogiptications of quincunx filter banks. Below,
we briefly introduce the subband image compression systeis@ne measures used to evaluate the coding

performance.
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Figure 2.17: The lifting realization of a reversible intege-integer transform. (a) Analysis side and (b) syn-

thesis side.
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2.4.1 Subband Image Compression Systems

Figure[ZIB shows the structure of a subband image compresgstem. In this thesis, the subband trans-
forms are computed by aN-level octave-band quincunx filter bank. On the encoder agishown in Fig-
ure[ZI8(a), the forward subband transform is applied tootiginal image to reduce the data redundancy
by decomposing the image into a set of coefficients corredipgrto subbands at multiple resolution levels
and frequency segments. The filter coefficients are chosgnthat there are considerably more small coef-
ficients in the transformed data than in the original onecieads to more efficient compression. Next, the
transform coefficients are quantized and encoded to praalbistream of the coded image. On the decoder
side shown in FigurEZZ18(b), the bitstream is first decodetidequantized. Then the inverse transform
is applied to reconstruct the image. If the original imagexactly reconstructed from the coded data, the
compression is said to Hessless If the reconstructed image is only an approximation of thigioal one,
the compression is said to bassy. In the lossy case, the difference between the original andnstructed
images is referred to as distortion.

Next we introduce some measures used to evaluate the parioeof the compression system. The
compression ratio(CR) is usually used for lossless compression, which is ddfas the ratio between the
original and compressed image sizes in number of bits. Iha$®y case, thenean-squared error (MSE)
andpeak-signal-to-noise ratio(PSNR) are commonly used to measure distortion. For thénafignagex

and reconstructed image of sizeNy x N1, MSE and PSNR are defined as

1 Nolelfl( )2
MSE = Xr[No, N1) — X[No, N1] and (2.30)
NONl np=0n1=0
PSNR= 20lo (E) (2.31)
- g_I.O /—I\/IS ) .

respectively, wher® is the number of bits used per samplexinHigher PSNR often corresponds to better
reconstructed images, but sometimes PSNR cannot exafttigtréne visual quality of reconstructed images.

In this case, subjective image quality tests can also bepeed by human observers.

2.4.2 Coding Gain

Coding gain [34, [35] is an analytical performance measure to evaluaectding performance of filter
banks. It is used to estimate the energy compaction ablffifiter banks by computing the ratio between
the reconstruction error variance obtained by quantizismyaal directly to that obtained by quantizing the

corresponding subband coefficients using an optimal litation strategy.
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Figure 2.18: Block diagram of an image coder. (a) Encoder aitl (b) decoder side.

For anN-level octave-band quincunx filter bank as the one showndule[Z_IB, its equivalent nonuni-
form filter bank withN + 1 channels is shown in FiguEe2115. The coding daéac of this N-level octave-
band filter bank can be computed &sl[34]

N
Gsgc= EL(AkBk/ak)"’k, (2.32)

K=

where

A=Y S himibnlrim- o)

meZ2neZz?
Be=oa Y gln,
ncz?
2-N fork=0

ax =
2-(N+1-K fork=1,2,...,N,

h,[n] andg,[n] are the impulse responses of the equivalent analysis antlesys filters K and G, in Fig-
ure[ZT5, and is the normalized autocorrelation of the input. Dependingh® source image model,is
given by

pll+inl  for separable model

rno,m] = (2.33)

pV+n  for isotropic model

wherep is the correlation coefficient (typically,90 < p < 0.95).
Filter banks with high coding gain can efficiently compacatigy, which generally leads to good perfor-

mance in subband coding systems. Therefore, high codimggaidesirable property in filter bank design.
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Chapter 3

Symmetric Extension for Quincunx

Filter Banks

3.1 Overview

Symmetric extension is a commonly used technique for coatitig nonexpansive transforms for 1D se-
guences of finite length. In this chapter, we show how to ektkis technique to the case of 2D nonseparable
quincunx filter banks. In particular, we show how one can troigs nonexpansive transforms for input se-
guences defined on arbitrary rectangular regions. Someahéterial in this chapter has also been presented
in [36,[37].

3.2 Introduction

Filter banks have proven to be a highly effective tool for iarm signal processing applications. They are
often defined so as to operate on sequences of infinite extiergractice, however, we almost invariably
deal with sequences of finite extent. Therefore, we usualiyire some means for adapting filter banks to
such sequences. This leads to the well known boundary figggioblem that can arise whenever a finite-
extent sequence is filtered. Furthermore, in many signalgssing applications such as image coding, the
objective is to reduce the redundancy of the original sege@md represent it with as few bits as possible.
Therefore, it is desirable to employ a transform that is xpaesive (i.e., maps a sequencéNofamples to a

new sequence of no more thhsamples). Consequently, we seek a solution to the boundabyem that
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yields nonexpansive transforms.

In the case of 1D filter banks, various methods have been peapto solve the boundary problem. The
simplestway is zero padding, where the region beyond thadbries of the finite-extent sequence are padded
with zeros. In this way, the number of samples increasesaltheeteffect of linear convolution, resulting in
an expansive transform. Although truncation can be usetit@irononexpansive transform, it causes distor-
tion in the reconstructed signal near the boundaries. &erextension is another solution to the boundary
problem. This method concatenates the original finiteredxdequence periodically, usually generating sharp
transitions at the splice points between periods. Unfattely, this method has the disadvantage that the dis-
continuities in the extended sequence introduce undésihégh frequencies, which is detrimental in many
applications.

Inthe 1D case, symmetric extensidnl[L4, 16] is a commonly teseshnique for constructing nonexpansive
transforms of finite-extent sequences. This scheme usesduse similar to the one shown in Figdrel3.1,
where the filter bank should be viewed as an 1D filter bank Mt 2. The input sequence is first mirrored
across its boundary, and then this symmetric pattern isatedeperiodically. Therefore, the continuity is
maintained at the splice points between periods, as ilitesdrby the example shown in Figlrel3.2. The
key point to build a nonexpansive transform in this apprdachat the subband sequences should also have
certain symmetry and periodicity properties, such thay ardmall finite number of samples are independent
in each subband. This requires the analysis filters to haeatiphase with group delays satisfying certain
conditions.

In this chapter, we explain how the symmetric extensionnagre can be extended to the case of quin-
cunx filter banks. In particular, we show how one can constranexpansive transforms for input sequences
defined on arbitrary rectangular regions. We use a strutdutbe forward transform like that shown in Fig-
urel3:1(a). The input 2D sequencs Tirst extended to an infinite-extent periodic symmetripesncex. The
periodicity and symmetry properties may propagate actussonseparable downsampler by carefully con-
straining the choice of the analysis filterg &hd H,. In this way, the independent samples of the subbgsds
andy; are each located in a finite region, and then we can extrest th@mples froryy andy;. The structure
for the inverse transform is shown in Figlrel3.1(b).

The remaining part of this chapter is organized as followscti®n[3B defines several types of MD
symmetries. Sectiofi 3.4 introduces a scheme that maps a @®ditent sequence into an infinite-extent
sequence. Sectidn 8.5 discusses how symmetry and petjockiei be preserved under the operations of a
quincunx filter bank. These results are then used in SeEi@no3produce our new symmetric extension

algorithms. Finally, Section-3.7 summarizes the propogathsetric extension algorithms.
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Figure 3.1: Filter bank with symmetric extension. (a) Arsddyside and (b) synthesis side.

(c)
Figure 3.2: 1D symmetric extension. (a) Original sequefigewhole-sample symmetrically extended se-

guence, and (c) half-sample symmetrically extended saguen
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3.3 Types of Symmetries

The notion of symmetry is of fundamental importance herkirthe 1D case, only a very limited number of
symmetry types is possible. In the MD case, however, thexeansiderably more possibilities. Below, we
define several types of MD symmetry relevant to this work.dlahat we have defined linear phaselin]2.3)

for MD filters. For MD sequences, it is also called centrosyetmnas shown below.

Definition 3.1 (Centrosymmetry) A sequence defined orZP is said to becentrosymmetric aboutc (i.e.,

haslinear phasewith group delayc) if, for somec ¢ %ZD andSe {-1,1},
x[n] =SX2c—n| forallne ZP. (3.1)
The sequenceis referred to as symmetric8= 1, and antisymmetric = —1.

Centrosymmetry is a kind of two-fold symmetry, where abalf bf the samples are independent. In the
1D case, a centrosymmetric sequercesaid to have whole-sample symmetry/antisymmetry ifsitametry
centerc € Z, and half-sample symmetry/antisymmetryg i %Zodd.

In the MD case, there exist some types of higher-order symym@fe first introduce the hyper-octantal

centrosymmetry.

Definition 3.2 (Hyper-octantal centrosymmetry sequence defined orZP is said to benyper-octantally

centrosymmetric [38] aboutc if, for somec € 3ZP andA € {1,2,...,2° — 1},
x[n] = sAx[co (1 V[A]) +nov[A]] forallne ZP, (3.2)
wheres|A] € {—1,1}, V[A] = [(-1% (-1 - (-1®]T, & € {0,1}, andA = TP a2,
In order for satisfy the centrosymmetry conditi@n{3.1§ thnctions|-] must be chosen to satisfy
s[2P-1-A] =S4A], (3.3)

forallA=0,1,...,2° — 1 andS< {-1,1}. Note that by definitiors[0] = 1.
In the 2D case, the hyper-octantal centrosymmetry is calledirantal centrosymmetry, and [3:2) can

be equivalently expressed as

X[No, Mm] = ST%2C0 — No, 2C1 — 1| = S¥2Co — No, M| = TX[No, 2C1 — Ny, (3.4)

whereS T € {—1,1}. Interms ofSandT, four types of quadrantal centrosymmetry are possibled3&kted
in Table[31. Examples of the four types of 2D quadrantallyteesymmetric sequences are shown in Fig-
ure[3B. Clearly, quadrantal centrosymmetry is a type of-fold symmetry, where only (approximateli)

of the samples are independent (e.g., those with indices).
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Table 3.1: Four types of quadrantal centrosymmetry
Type | even-even odd-odd even-odd odd-evyen

S 1 -1 1 -1
T 1 -1 -1 1
d b/b d d-b'b d d bl-b -d d blb d
calac —c—alac cal—a—c calac
"c"é;é”c” "c"e{;-’a’ié . "c"e{;-’a’ié . c ’-é;-’a’ic’ .
d b:b d d bi-b -d d bi-b -d -d -b,-b -d
(@) (b) (©) (d)

Figure 3.3: Four types of quadrantal centrosymmetry: (ahesven, (b) odd-odd, (c) odd-even, and (d) even-
odd.

For a filter with the last three types of quadrantal centrasgtny in Tabld_31, its frequency response
is zero along one or both of thiey- and w;-axes. Therefore, such filters cannot be used as lowpass filte
in horizontal and/or vertical directions. This statemesut ®e shown as follows. Let H be a quadrantally

centrosymmetric filter with impulse respontsdts frequency response can be expressed as

hw)=3 3 hing,nyle J(@noten), (3.5a)
NoEZn€Z

h(w) = S5 STH2cy — ng, 2c1 — eI (@ono+wim), (3.5b)
NoEZ N1 €Z

hw)=3 3 Sh2co—ng,nle J(@notam), (3.5¢)
NoEZn€Z

and
h(w) = > > Thino, 2¢; — nyje 1 (@ono+einy) (3.5d)

NoEZ N €Z
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Equation[3b) can be rewritten as

h(w) = e 1(@co+@cr) h[ng, ny]ell®0(Co—no)+er(er—n)] (3.6a)
NoEZ N €Z

h(w) = e (@Co+@icy) z z STHn()’nl]e*j[%(CO*nO)WL(A}l(Cl*nl)]’ (3.6b)
NoEZ N €Z

h(w) = e 1(@co+@cr) z SHno, ny]e 1[@o(Co—no)—wr(cr—m)] (3.6¢)
NoEZ N €Z

and

h(w) = e (@co+@icy) z z T h[no, ny]el[%o(Co—no)—er(Cr—m)] (3.6d)

NoEZ N €Z

Averaging the expressions fofw) in @8), we have
N 1 .1 . ) . .
_ —giw'c j o (Co—no) s iap(co—no) | | giwr(cr—na) —jo(c—n)
h(w) = 28 zzh[n] [e +Se } [e +Te }
nez
g jo'c Y nezz hin] cos|an(co — Np)] cos|w (c1 — Ng)] for even-even
e i(wle-m) S nezz hn]sinfan(co — o)) sinfwi(c1 —n1)]  for odd-odd

e i(@em2) s o hin]cos|an(Co — no)|sinwi(c; —ny)]  for even-odd

e i(@em2) s o hin]sin[an(co— no)| cosla (e — )] for odd-even

Therefore, an odd-odd quadrantally centrosymmetric filtéias its frequency responEém) = 0 along both
the ap- and wy-axis. Similarly, in the even-odd casﬁ{,w) = 0 along thewyp-axis (i.e.,w; = 0), and in the
odd-even casd?l(w) = 0 along thew-axis (i.e.,awp = 0).

For a quadrantally centrosymmetric sequexeéth symmetry centee, the modulated sequengé de-
fined as<[n] = (—1)I"x[n], also has quadrantal centrosymmetry with symmetry centenere the symmetry
type depends on the location ®and the symmetry af. This relationship is shown in TadIeB.2. Note that
the ztransform of is X'(2) = Y nez2(—1)Mx[n) 2" = X (~2).

Next we introduce another type of four-fold symmetry, namegdted quadrantal centrosymmetry, for 2D

sequences. It is similar to the quadrantal centrosymniattyyith a rotation of 45 degrees.

Definition 3.3 (Rotated quadrantal centrosymmetryy sequencex defined onZ? is said to berotated

quadrantally centrosymmetric aboutc if, for someS T € {-1,1} andc = [co ¢1]" € %ZZ satisfying
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Table 3.2: Symmetry type fo¢ wherex [n] = (—1)I"x[n] andX’(z) = X(—2)

symmetry center Symmetry type ok
c=[co c1]T even-even even-odd| odd-even| odd-odd
cc7? even-even even-odd| odd-even| odd-odd
ce 37244 odd-odd | odd-even| even-odd| even-even

Co € %Zodd, Cc1 €7 || odd-even| odd-odd | even-even even-odd

CoEZ,C€E %Zodd even-odd| even-even odd-odd | odd-even

N

N ) y e & h i f e

f\\g i h/,e‘ g\\e\b 4 ¢ f

g ¢ d b h h b oa & d i

i d:a/\d i ; d/a/<&\b b

h b de 8 f e dbec 8

¢ h i 8t efih g e
(a) (b)

Figure 3.4: Rotated quadrantal centrosymmetryc@y?, and (b)c € %ngd.

Co+C1 €7Z,

X[Ng, ny] = ST %2¢o — N, 2¢1 — Ny
= SXCo+ €1 — Ny, Co+ Cp — No) (3.7

= Tx[cp— €1+ Ny, C1 — Co+ Nl for all ng,ny € Z.

Rotated quadrantal centrosymmetry is also a type of foldrggmmetry, where only approximatek/
of the samples are independent (e.g., those with indicestisfyingMn > Mc). In terms of the location
of symmetry center, there are only two possibilities fostkind of symmetry (i.e.¢ € Z? andc € %ngd).
Examples of rotated quadrantally centrosymmetric seceeeare shown in Figule_3.4.
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3.4 Mapping Scheme

We now introduce a scheme for mapping a finite-extent 2D sezpudefined on a rectangular region to an
infinite-extent sequence that is quadrantally centrosytrioend periodic. This process is called symmetric
extension.

In the 1D case, there are two ways to extend a finite-lengthesezg such that the extended sequence has
whole-sample or half-sample symmetry as shown in FiduZ8and (c). (In this work, we do not consider
antisymmetric extension as this extension scheme yieligndrd signals with large discontinuities, which is
undesirable in most applications.) The symmetric extansf@a 2D sequence can be viewed as 1D extension
operations applied independently along each dimensioheo$équence. Therefore, there are four types of

symmetric extension for a 2D sequence as defined below.

Definition 3.4 (Symmetric extension of sequencéet Xbe a 2D sequence defined on the rectangular region

{0,1,...,Lp—1} x {0,1,...,L; — 1}. Then, the symmetric extensiarof X is defined as

)h(‘[ fW[nOa L0]7 fW[n17 Ll]] type 1

" i
x[No, Ny = X[fn[no, Lo], fw[ny,L1]] type 2 -

)h(‘[ fW[nOa L0]7 fh[”la Ll]] type 3

X[fn[no, Lo, fn[n1,L1]]  type 4,

where the functiond,, and f,, are used to compute the corresponding indices for wholgagymmetry

and half-sample symmetry respectively, and are given by

fw[n,L] = min{mod(n,2L — 2),2L —2—modn,2L—2)}, and

fa[n,L] = min{mod(n,2L),2L — 1—modn,2L)}.

The 1D horizontal slices of the 2D extended sequence areewbohalf-sample symmetric arfélo — 2)-
or 2Lg-periodic in the horizontal direction depending on whethgor f;, is applied tong in @8). Similarly,
the 1D vertical slices of the 2D extended sequence are alsonsyric and periodic in the vertical direc-
tion. This leads to the symmetry and periodicity propertés 2D symmetrically extended sequence as

summarized by the below lemma.

Lemma 3.1(Properties of symmetrically extended sequencksjX be a sequence defined on the rectangu-
larregion{0,1,...,Lp—1} x {0,1,...,L; — 1}, and x be the symmetric extensiorXafs defined by (3.8). Let

M denote the quincunx generating mat{i%(}l]. Then, x is even-even quadrantally centrosymmetric about
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¢, and P-periodic withMt- 1P being an integer matrix. For the four types of symmetrie®esion o and P
are as given in Table=3.3.

Table 3.3: Properties of the extended sequences
Type 1 2 3 4

o | oo [ 4T [33)

p 2Lp-2 0 2lg 0 2g-2 0
0 2,-2 0 2,-2 0 2,

Proof. We only prove the properties of the type-2 symmetric extamsProofs for the other types can be de-
rived similarly. First, we show thatis P-periodic withP =M [tg }61111} . Since modu + kv, v) = mod(u, V)
for k € Z, we havefy[ng + 2Loko, Lo] = fh[no, Lo] and fw[ni + (2L1 — 2)ks,L1] = fw[ns,L1], for ko, ki € Z.
This implies thatn+Pk] = x[n] fork = [ky kq]T € Z2 with P = {250 2L372}' Thereforex is P-periodic,
andM1P = [tg fﬁl’fl} is an integer matrix.

Now, we show thak is quadrantally centrosymmetric ab({ul% o]T. Foru,ve€ Z, if viu, mod —u,v) =
v—modu,v); otherwise, mo@-u,v) = 0. It follows that f,[—ng,Lo] = fn[no — 1,Lo] and fw[—n1,L1] =

fw[n1,L1]. Therefore, we have
X[—1—ng, —m] = X[ fn[~1 —no,Lo], fw[—Ny, L1]] = K[fn[No, Lo], fw[n1,L1]] = X[no, ny].

Similarly, we have that[—1—ng, n;] = X[ng, N3] andx[ng, —ny] = X[Ng, N1]. Thus, from[3})x is quadrantally
centrosymmetric abow = [7% o}T. SinceS=T = 1 in (34),x has the even-even symmetry. (DuePo

periodicity,x is also quadrantally centrosymmetric abBut+ ¢, fork € %ZZ.) O

Example 3.1(Symmetric extension of a 2D sequenc€onsider an input sequence with four sames

b, ¢, andd defined on a X% 2 rectangular region as shown in Figlirt€l 3.5(a). The fourgygfesymmetri-
cally extended sequences are shown in Figlirds 3.5(b),dcand (e). It can be seen from Figlirel3.5(b)
that the type-1 symmetrically extended sequence[ﬁ@%-periodicity and even-even quadrantal centrosym-
metry with symmetry centeio o]T. For the other three types, the extended sequences als@hatental

centrosymmetry and periodicity corresponding to Tablk 3.3 O

3.5 Preservation of Symmetry and Periodicity

Recall that with the symmetric extension scheme, the straatf the analysis filter bank is shown in Fig-

ure[31(a). The symmetrically extended sequeneefed into the analysis side of the filter bank, which
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c d d c ¢ d
a a b b a a p
a a b b a a b
c d d c ¢ d
c ¢ ddc cd
—a-a-b-b-a-a b
aa b boaap

(b) (©) (d) (e)

Figure 3.5: 2D symmetric extension. (a) Input sequencend the (b) type-1, (c) type-2, (d) type-3, and

(e) type-4 symmetrically extended sequences.

consists of filters followed by downsamplers. In order fag 8ubband transform to be nonexpansive, the
preservation of four-fold symmetry and periodicity undeneolution and downsampling is very important.
In what follows, we discuss the effects of these operationsyanmetry and periodicity. We begin by con-

sidering the effect of convolution on symmetry.

Lemma 3.2 (Preservation of symmetry under convolutiotlet x and h be sequences definedZsn and

define y= xx h. Then, the following statements hold:

1. If x and h are centrosymmetric abott and @, respectively, then y is centrosymmetric abgui=c

Cx + Ch.

2. If x and h are quadrantally centrosymmetric aboutnda,, respectively, then y is quadrantally cen-

trosymmetric aboutc= cx+Cr.

3. If x and h are rotated quadrantally centrosymmetric abguand @,, respectively, then y is rotated

quadrantally centrosymmetric abotit € Cx + C.

Proof. Sincey = xx h, we have

yin|= S xkhin—K. (3.9)
kez2

Proof of 1. For the centrosymmetric caseandh satisfy

x[n] = Sx[2cx—n] and h[n] = §,h[2c, —n]. (3.10)
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Substituting[[3.710) intd(319), we have
yin| =SS ¥ x2c—Kh{2c, —n+K|. (3.11)
kez?
Letk' = 2¢c, —k, then [3IIL) becomes
yin| =SS H xK]h[2c, —n+ (26— K]
Kcz?

=SS S xklh[(2cx+2¢, —n) — K
kez?

= S&y[2(cx+¢h) —nl.

Thus,y is centrosymmetric abogj = ¢y +cy.

Proof of 2. We prove the quadrantally centrosymmetric case with theiSgtoduct form in[[(ZR). We have

x[n] = s¢[A]x[cx o (1 —V[A]) +noV[A]] and (3.12)

=
=}
I

sh[Alh[ch o (1 —V][A]) +noV[A]], (3.13)
for all n € Z2. Substituting[Z12) and313) into(B.9), we obtain

yin =5 sAx[exo (1—VIA]) +koV[A]si[Alh[cy o (1 - VIA]) + (n—K) o VA]]. (3.14)
kez?
Letk’ =cxo (1—V[A]) +koV[A]. Solving fork in terms ofk’ yieldsk = ¢x o (1 —V[A]) + K oV[A]. Applying
the change of variable th{3114), fér= 1,2, 3, we obtain

yinl = 5 sdAXK]sn[Alhlcno (1-V(A]) + (n— {cxo (1—V[A]) + K oV[A]}) oV[A]]

Kecz?

=3 SIAIX[K |sh[Alh[ch o (1 —V[A]) +noV[A] —K —cxo (1 —V[A]) oVA]]
Kecz?

= s(As[A] 3 xkh{(en+6x) o (1-VIA]) +noviAl K

keZz?

—S[A] S xKh(cx-+¢n) o (1—VIA]) +noviA] —K
kez2

= 5y[Aly[(cx+€n) o (1= V[A]) +noV[A]],

wheres,[A] = s,[Alsh[A]. Ass([-] ands,[-] each satisfie§(3.33,[-] also satisfied (3 3). Thugjs quadrantally
centrosymmetric abow} = ¢« +C,. The relation between the symmetry typegyaind that ok andh is shown
in Table[3%.
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Table 3.4: Symmetry type gfwherey = xxh
Symmetry Symmetry type ok

type ofh || even-even even-odd| odd-even| odd-odd

even-even|| even-even even-odd| odd-even| odd-odd
even-odd || even-odd| even-even odd-odd | odd-even
odd-even| odd-even| odd-odd | even-even even-odd

odd-odd odd-odd | odd-even| even-odd| even-even

Proof of 3. For the rotated quadrantal centrosymmetry casaxlet [cxo cx,l]T andc, = [Ch,o ch,l]T. We
have
X[Ng, 1] = STxX[2Cx 0 — N, 2Cx 1 — N1
= SX[Cx 0+ Cx,1 — N1, Cx 0 + Cx.1 — No] (3.15)
= TyX[Cx0 — Cx1+ N1,Cx1 — Cxo+Ngl, and
h[no, n1] = $Thh[2ch 0 — No, 2Ch 1 — Ny
= Sh[Cho+ Ch1—M1,Cho+ Ch1— NoJ (3.16)
= Thh[ch o — Ch,1 +N1,Ch 1 — Cho+ No).
From the proof of statement 1, we know tlyat X h has centrosymmetry, i.g/n] = ST S, Txy[2(Cx+Ch) —

n]. Next we prove thay[no, n1| = S¢Shy[Cx 0 + Cx,1 + Cho+ Ch1 — N1,Cx0 + Cx 1+ Cho + Ch 1 — No]. Substitut-

ing (3I%) and[(3.16) intd(3.9), we obtain

y[no, N1 = SSh ZZ ZZX[CX,O +Cx.1 — K1,Cx 0 + Cx.1 — KoJh[Cho + Ch.1 — N1+ K1, Ch o+ Ch.1 — No+Ky]
ko€EZ ki€

=S z X[K?, kolh[Ch,o+ Cha — N1+ (Cx0+ Cx1— K1) ,Cho+ Ch1 — Mo+ (Cxo + Cx1 — Kp)]
kyEZK EZ

=S& ZZ ZZX[ko, ka]h[(Ch,0+ Ch1+ Cx0+ Cx1 — N1) — Ko, (Ch,o + Ch.1+ Cxo+ Cx1 — No) — ki
ko€Z ki€

= SSy[Ch,0+ Ch1+ Cx0+ Cx1 — N1,Ch o+ Ch 1+ Cxo+ Cx1— Nol-

Similarly, we obtain thay[nog, n1] = TxThy[Cx 0+ Ch0 — Cx1 — Ch1+ N1,Cx 1+ Ch1 — Cx0 — Cho+ Noj. Thus,y
is rotated quadrantally centrosymmetric ab@ut ¢y + c. O

Note that statement 2 of this lemma holds for the case of Iniglmensional hyper-octantal centrosym-

metry. The proof can be derived easily using an approacHhasitai that of the quadrantal centrosymmetry

case. Next, we consider the effect of convolution on pecitgin the lemma below.
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Lemma 3.3(Preservation of periodicity under convolutior)et x and h be sequences definedZdnwith x

beingP-periodic. Then, y= xx*h isP-periodic.
Proof. Sincex is P-periodic,x[n] = x[n+ Pm] for m € Z2. We have

yin= ¥ xikjhin—k/= S xlk+Pmihjn—K

kez2 kez2
= 3 xK]hin— (K —Pm)]= 5 xKh[(n+Pm) K
Kcz? kez?
=y[n+Pm)|,
forme Z2. Thus,y = xx his P-periodic. O

Next, we examine the effects of downsampling on periodiaitg symmetry. First, we consider the case

of periodicity in the lemma below.

Lemma 3.4(Downsampling of periodic sequencé)etM be an arbitrary sampling (i.e., nonsingular integer)
matrix. Let x bePPperiodic such thaMVi'P is an integer matrix. Therf, M)x is (M~P)-periodic.

Proof. Sincex is P-periodic,x[n] = xjn+ PK] for k € Z2. The downsampled sequengis given by
y[n] = (| M)x[n] = x[Mn] = xMn -+ Pk] = XM (n+ (M 1P)k)]. (3.17)
SinceM 1P is an integer matrix, we have
xM(n+ (M~IP)k)] = yjn+ (M~ IP)K]. (3.18)

Substituting[[3118) intd(3.17), we have tlyén] = y[n-+ (M~*P)K] fork € Z2. Thereforey isM~1P-periodic.
O

Thus, from above, if #-periodic sequence has both of its periodicity vectors,(celumns ofP) on
LAT (M), the sequence downsampled Blyis periodic with the number of samples in one period being
reduced by a factor dtletM| relative to the original sequence. (As an aside, we notiaeltemmad$-313
and32 are not restricted to the quincunx case. They alsbfbothe general MD case.) Next, we consider

the effects of downsampling on symmetry. The key resultgaen by the lemma below.

Lemma 3.5(Downsampling of symmetric sequencékt x be a sequence defined®h Define y= (| M)x

with M being the quincunx generating matrix. Then, the follovstegements are true:

1. If x is centrosymmetric aboaf with 2c, € LAT (M), then y is centrosymmetric abat€ M~ 1c,.
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2. If x is quadrantally centrosymmetric abatt€ Z2, then, y is rotated quadrantally centrosymmetric

abouti1c,.

3. If x is rotated quadrantally centrosymmetric abayt then, y is quadrantally centrosymmetric about

M1c,.
Proof. The downsampled sequenges given by
y[no,m] = (I M)x[n] = x[Mn] = X[no + Ny, no — ny. (3.19)
Proof of 1. As x is centrosymmetric abogk = [co  ¢1]T, we have
X[No+ N1, Ng — N1] = S¥2¢o — ng — Ny, 2¢1 — Ng+ Ny). (3.20)

Since 2, € LAT (M), X[2cop — np — N1, 2C1 — No+ N1] = Y[Co + C1 — Ng, Cp — €1 — Ny]. Thus, we obtairy[n] =
Sy2M~1c, —n|. Thatis,y is centrosymmetric aboej = M~1c,.
Proof of 2. As x is quadrantally centrosymmetric ab@yt= [cp cl]T, we have
X[No + Ny, Np — Ny| = ST%2Co — Ng — Ny, 2C1 — No + My}
= SX2co — N — Ny, Np — M} (3.21)

= TX[no +nq,2¢0 —Np+ nl]

for ST € {—1,1}. Sincecy,c; € Z, we have

X[2co — No — Ny, 2C1 — Ng + Ny | = Y[Co + €1 — No, Co — C1 — My}
X[2Co — Ng — Ny, No — M| = Y[Co — N1, Co — No)
X[no +ny,2¢1 —Np+ nl] = y[01 +ny,—C1+ no].
Substituting[[3719) and the above three equations [Nidlf3v2e obtain
Y[No, n] = STYCo + €1 — No, Co — €1 — M| = SYCo — Ny, Co — No] = TY[C1 + Ny, —C1 + No].

Therefore, the downsampled sequeyibas rotated quadrantal centrosymmetry abbutc, = 23 ©-°] T

Proof of 3. As x is rotated quadrantally centrosymmetric abgut [co cl]T, we have
X[No + Ny, Mg — Ny| = ST %2Co — N — Ny, 2C1 — N + Ny
= SXCo+ €1 — Mo+ Ny, Co+ C1 — No — Ny (3.22)

= TX[Cg— €1+ Np—N1,Cp — Co+ No+ Ny
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for ST € {—1,1}. Sincec is the symmetry center of a rotated quadrantally centrosgtricmsequence,

Co=*cC1 € Z. Then, we have

X[2Co — Ng — Ny, 2C1 — Np + N1} = Y[Co + €1 — Np, Cp — C1 — Ny
X[Co+ €1 — N+ Ny, Co + €1 — Ng — N1) = Y[Co + €1 — Mo, Ny

X[Co — €1+ No — Ny, €1 — Co + No + Na] = y[No, Co — C1 + Ng).-
Substituting[[3.119) and the above three equations Inf@f3v2e obtain
¥[No, n1] = STYCo+ €1 — Mo, Co — €1 — M] = SYCo + €1 — N, N1] = Ty[No, Co — €1 + N

Therefore, the downsampled sequeyibas rotated quadrantal centrosymmetry abbutc, = 235 €8] T
O

Now, we consider the effects of the upsampler on the pelitydiod symmetry properties. These results
are useful in the inverse transform shown in Fiduré 3.1(IbeyTare also used in Chaplér 4 for the design of

linear-phase quincunx filter banks.

Lemma 3.6 (Upsampling of periodic sequence)etM be an arbitrary nonsingular integer matrix. Let x be
P-periodic. Then(] M)x is (MP)-periodic.

Proof. Sincex is P-periodic,x[n] = x[n+ PkK] for k € ZP. The upsampled sequenge- (T M)x s given by

{X[Mln] if n € LAT (M)
yln| =
0 otherwise
B xM~In+Pk] if nc LAT(M)
- 0 otherwise
B xM~1(n4+MPK)] if n+MPk € LAT (M)
- 0 otherwise
=yn+(MPK],
fork € ZP. Thereforey is (MP)-periodic. O

At last, we consider preservation of symmetry under upsengplhe key results are given in the lemma

below.
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Lemma 3.7 (Upsampling of symmetric sequence)et x be a sequence defined 8h Define y= (1 M)x

with M being the quincunx generating matrix. Then, the followstajements hold:
1. If x is centrosymmetric aboat,ahen y is centrosymmetric abagt-e Mcy.

2. If x is quadrantally centrosymmetric abaty ¢hen y is rotated quadrantally centrosymmetric about

¢y = Mc,.

3. If x is rotated quadrantally centrosymmetric abayt then y is quadrantally centrosymmetric about

Cy = MCX
Proof. The proof is similar to that of Lemm&sB.5 dndl3.6 and is omhittere. O

The above results show that the symmetry and periodicitggntees may be preserved under convolution
and the downsampling and upsampling operations of the guinfilter banks. These results will be used in

later derivations of our new symmetric extension algorghm

3.6 Symmetric Extension Algorithm

Using our previous results, we now derive a scheme basedromsyric extension that allows for the con-
struction of nonexpansive transforms based on a quincutex filank. For nonexpansive transforms, the
number of independent samples in each of the subbgndady; is approximately half of that in the ex-
tended input sequencewhere the sequences are as defined in Figufe 3.1(a). Thiestsghat the subband
sequences also have four-fold symmetry and periodicityer&fore, from Lemm&-35, the analysis filters
Hp and H should have quadrantal centrosymmetry and their groupyslelaould be chosen such that the
symmetry centers afy andu; are both on the integer lattice.

We recall the PR condition for a quincunx filter bank is given b
Ho(2)Go(2) + H1(2)G1(z) =2 and (3.23a)

Ho(~2)Go(2) +Hi1(~2)G1(2) =0, (3.23b)

whereHo(2), Hi1(Z), Go(z), andG1(2) are the lowpass analysis, highpass analysis, lowpassesisttand
highpass synthesis filter transfer functions, respegtivewe let Go(z) = —2H1(—2) andG;(2) = Z2Ho(—2)
with somel = [l 11]" € Z?, then [323D) is satisfied. If we further defiR@) = Ho(2)H1(—2), then [323a)
becomes

P(z) —P(—2) = -2z (3.24)



41

If Ho and H have quadrantal centrosymmetry with group deldys= [do o dovl]T andd; = [dig dlvl]T,
respectively, the?(z) andP(—z) are also quadrantally centrosymmetric with group dellgy= do +d;. We
can see that wheld has more than two nonzero coefficients, in order to safiSB4()3P must have even-even
quadrantal centrosymmetry with symmetry centge 72\ LAT (M), and the coefficients d® are zero at all
non-lattice points exceoly.

Now we examine the possible choices of the quadrantallyesyrinmetric analysis filters. As previously
shown in Sectio 313, a filter with odd-even, even-odd, or-odd quadrantal centrosymmetry cannot be a
good lowpass filter. Therefore, the lowpass analysis filigntdst have the even-even type of symmetry. In
order forP to have the even-even type of symmetry with group delay 72, by using TableE312 afd 3.4,
there are altogether four possibilities of the choice ofttlgtpass analysis filter Haccording to the location

of the group delado = [doo do’l]T of the lowpass analysis filterdg
1. whendg € Z?, H; must have even-even type symmetry wdthe Z?;
2. whendo € 3Zodq anddo 1 € Z, H; must have odd-even type symmetry Wiy € 3Zoqq andds 1 € Z;
3. whendy € Z anddo 1 € 3Zoqq, H1 must have even-odd type symmetry wily € Z anddy 1 € 3Zogq;
4. whendg € 172, H, must have odd-odd type symmetry with € 372.

In the remainder of this chapter, we discuss, for each of tlee@four cases, how one can construct nonex-

pansive transforms with the mapping scheme introduceddétic®43.3.

3.6.1 Type-1 Symmetric Extension Algorithm

We first consider the case where both analysis filters have-even quadrantal centrosymmetry with group
delaysdo,d; € Z2. As mentioned earlier, the group delayR(z) = Ho(2)H1(—2) should satisfy thad, =

do +d; € Z?\ LAT (M). Therefore, it follows thatly andd; are in different cosets of the quincunx lattice.
This suggests that such a PR filter bank is compatible withyibe-1 symmetric extension scheme[ln]3.8)

and leads to the result below.

Theorem 3.8(Type-1 symmetric extension algorithmEonsider the filter bank shown in FigureB.1, where
the input sequencgis defined on the rectangular regid®,1,...,Lo—1} x {0,1,...,L; — 1} and x is the
type-1 symmetric extensionsoés given by[{318). If fland H; are quadrantally centrosymmetric with group
delaysdh = [doo doa]" € Z2 anddh = [d1o d11]" € Z2, respectively, andigland dy are in different

cosets of the quincunx lattice, then the subband outpuatn be completely characterized by Bhmples
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with indicesm= [ny n;]T given by

{do,o—i—do,lw o< Ldo,o—kdo,l—i—Lo—i—LlJ _1. and
2 2 (3.25)
max{doo— No,No —dp1— L1+ 1} <ny <min{dgo+Lo—1—ng,ng—do1};
y1 can be completely characterized by damples with indices & [ng ny]" given by
d d d d Lo+L
{ 10+ 1,1-‘ <no< { 1o+di1+Lot 1J_17 and
2 2 (3.26)

max{dio—nNo,No—d11—L1+1} <ng <min{dio+Lo—1—ng,ng—dy1};
and Ny + N; = LgL 1, i.e., the transform is nonexpansive.
Proof. In what follows, we refer to the definitions of sequences guiFe3.1(a). From Lemnia3.1, we know
thatx is P-periodic withP = [2"%’2 2|_1°72} , and is quadrantally centrosymmetric abOut@bnsider the first
channel, where Klis quadrantally centrosymmetric with group detitye Z2. Then, the analysis filter output
U is P-periodic from Lemmd#3]3, and quadrantally centrosymmethout®+ do = dg from Lemma3P.
SinceM 1P = [tgj ,"ﬁl;ll] is an integer matrix ando € Z?, yo is M~!P-periodic from Lemm&3]4, and
rotated quadrantally centrosymmetric abbut'd, from Lemmd3b.

Thereforeyy can be completely characterized by samples with indicegny ni]™ given by
Mn e {do‘yo, do,yo-i— 1,..., d0,0+ Lo— 1} X {do,l, d0,1 +1,... 7d(),1 +L— 1}. (3.27)

Solving [32F), we obtain the conditions fiog andn; as shown in[[3.25). The numbip of characteristic

samples ofyg is given by

%LoLl for LoLq even
No=1{ (LoL1+1) forLoLs odd,do € LAT (M) (3.28)
3(LoLy—1) for LoLy odd,do & LAT (M)

which can be equivalently written as
No = | 3(LoL1+doo+do1+1)| — [2(doo+do1)]-

Similarly, y; is characterized by samples with indiaes- [ny ny]" given by [325). The numbeM; of

characteristic samples gf is given by

LoL1 for LoL1 even

N1 =4 3(LoLy+1) forLolL; odd,d; € LAT (M) (3.29)

NI NI NI

(LoLl — 1) for LoL1 Odd,dl € LAT (M)
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Since only one ofly andd; is on the quincunx lattice, froni (3.28) ald (3.29), we hbiye- N; = LgL;. [

Below, we show an example of the type-1 symmetric extendgorithm. We first give a quincunx filter

bank satisfying the conditions in Theor€ml3.8, then appbyfther bank to a finite-extent input sequence.

Example 3.2(Type-1 symmetric extension algorithmJhe filter bank is constructed using the method pro-
posed in[[B] with two primal and two dual vanishing momentsisTfilter bank was also proposed [n]34].

Using the matrix notation defined iB{2.2) in Sectlon 2.3hE impulse responses of the analysis filtegs H

and H, are expressed by

0 0 -1 0 0
0 -2 4 -2 0 0 -1 0

holn ~ 3 | -1 4 4 -1 and hfn~z|-1 4 : (3.30)
0 -2 4 -2 0 0 -1 0
0 0 -1 0 0

and the group delays afé 0]" and[—1 Q]", respectively. The synthesis filter transfer functionscme-
puted asGo(z) = —z;*H1(—2) andGi(2) = z,*Ho(—2). The frequency responses of the filters are shown
in Figure[3®, and the primal/dual scaling and wavelet fiomstare depicted in FiguEes3.7.

We apply this filter bank to the input sequenxda Exampld=31L as shown in FigureB.5(a), which contains
four independent samplesb, ¢, andd defined on{0,1} x {0,1}. We use the symmetric extension structure
shown in Figurd=311(a). The type-1 extended sequeriseshown in Figuré3]5(b). The sequenegsu;
andyp, y1 are shown in FigurEZ3.8. For each sequence, the boldfacdesngpresent points on the lattice
generated by the periodicity matrix of this sequence, theafwesents the symmetry center, and the samples
inside the dashed lines are the independent samples ottiiesce. We can see from Figures 3.8(c) and (d)
that the subband sequengghas two independent sampléSBa— d+b+c)and %(Bd —a-+b+c) located
at(0,0) and(1,0), respectively, angi;"has two independent samples- 3 (a+d) andb— 3(a+d) located
at(1,—1) and(1,0), respectively. The above results are consistent with thaltein Theorerfi 318. O

3.6.2 Type-2 Symmetric Extension Algorithm

Recall that at the beginning of Sectibnl3.6, we have intreddour types of quadrantally centrosymmetric
PR quincunxfilter banks. In this section, we consider thesdtype of PR filter bank, where;Hhas the odd-
even quadrantal centrosymmetry, and the group delayg afid H, satisfydyg,d1o € %Zodd, do1,d11 € Z,

anddg +d; € Z2\ LAT (M). In order for this filter bank to have the nonexpansive proypéne sequences
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Figure 3.8: The intermediate sequencesug)b) u; and output sequences (g), (d) y1 in the type-1 filter

bank. The sequences are as defined in Figule 3.1(a).
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Vo andyy, as defined in Figure—3.1(a), should have four-fold symmatrg periodicity. This requires the
sequencesp andu; to be quadrantally centrosymmetric with symmetry centershe integer latticeZ?.
These observations suggest that this type of PR filter banklbmmacompatible with the type-2 symmetric
extension defined if.(3.8), where the extended sequeisdelf-sample symmetric in the horizontal direction
and whole-sample symmetric in the vertical direction. Tlisfact, is the case, as demonstrated by the

theorem below.

Theorem 3.9 (Type-2 symmetric extension algorithmConsider the analysis filter bank shown in Fig-
ure[31(a), where the input sequeritis defined on the rectangular regigf, 1,...,Lo— 1} x {0,1,...,L; —

1} and x is the type-2 symmetric extensiorXads given by[(318). Le¥Mlenote the quincunx generat-
ing matrix H 711]. Suppose that the analysis filterg End H; satisfy the following conditions: 1) ¢has
even-even quadrantal centrosymmetry with group de{ay ¢dg o do’l]T, doo € %Zodd and 1 €%Z; 2)H;
has odd-even quadrantal centrosymmetry with group delastddio  di1]", dho € %Zodd and d1 € Z;
3)dp —d; € LAT(M). In this case, the subband outpytgan be completely characterized by 8amples

with indicesm= [ng ny]" given by

’7d0’0—|—d0’1—%—‘ <o < \‘do,o-l-do,l-l-LO—FLl_%J and

2 2 (3.31)
max{doo—No— 2,Mo—do1 — L1+ 1} <ny <min{doo+Lo—No— 3,no—do1};
y1 can be completely characterized by damples with indices & [ng  n]" given by
dio+diq+3 dio+dig+Lo+Lls—2
[ 1,0+ 011+ 2—‘ <no< { 10+01+Lo+La ZJ and
2 2 (3.32)

max{dyo—No+ 3,Mo—dy1 — L1+ 1} <ng <min{dio+Lo—nNo—3,no—dy1};
and Ny + Ny = LgL 4, i.e., the transform is nonexpansive.
Proof. In what follows, we refer to the definitions of sequences igur¢[31(a). From Lemnfa’3.1, we
know thatx is P-periodic withP = {Zgo 2Lf72} and quadrantally centrosymmetric abdut; o]T. Consider
the first channel, where Hs quadrantally centrosymmetric with group detly= [doo do1]" satisfying
doo € %Zodd anddpy € Z. Then, the analysis filter outpug is P-periodic from Lemmd-3]3 and quad-
rantally centrosymmetric abogg, = [dO,O — % dovl]T from Lemmd3R. SincM~1P = {'[g fﬁljrll} is an
integer matrix anay, € Z2, yo is M~1P-periodic from Lemm&3]4 and rotated quadrantally centroagt-
ric aboutM ~1c,, from Lemme&3b. Thereforgp can be completely characterized by samples with indices

n=[ny ny|" givenby

Mn € {doo— 3,doo+3,....doo+Lo— 3} x {doz,do1+1,...,do1 + L1 —1}. (3.33)
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Solving [3:3B), we obtain the conditions fog andn; as shown in[[3.31). The numbip of characteristic

samples ofyp is given by

$(Lo+ 1)Ly for (Lo+1)L1 even
No=9 [(Lo+1)Ly+1] for (Lo+ 1)Ly odd,Cy, € LAT (M) (3.34)
$[(Lo+1)Ly—1] for (Lo+ 1)Ly odd,cy, & LAT (M).

The above equation can be equivalently written as
No = | 3((Lo+1)L1+doo+doa+3)|—[3(doo+do1—3)]-

Now we consider the second channel. Similar to the case dfirgtechannel, we know thai, is P-
periodic and quadrantally centrosymmetric abmyt= [dw — % dlvl]T. Since H has odd-even symmetry,
u; also has odd-even symmetry. Note that each 1D horizonta efiu; has whole-sample antisymmetry.

Then,y; can be completely characterized by samples with indicegny ny]" given by

Mne {dio+2,dio+3,...,dio+Lo— 3} x {di1,d11+1,...,d11+ L —1}. (3.35)

Solving [3356), we obtain the conditions fog andn; as shown in[[3:32). The number of characteristic

samples ofy; is given by

F(Lo— 1)Ly for (Lo — 1)L; even
Ni=< 1[(Lo—1)Ly—1] for (Lo— 1)Ly odd,cy, € LAT (M) (3.36)
$[(Lo—1)L1+1] for (Lo— 1)Ly odd,cy, & LAT (M).

The above equation can be simplified as
N1 = [3((Lo—1)Li+diotdia+3)|—[5(dio+dia+3)].

Sincedp —d; € LAT (M), ¢,, andc, are in the same coset of the quincunx lattice. Thereforen {f&33)
and [3:3b), we havislp + N; = Lol ;. O

The above theorem is illustrated by the following exampleguincunx filter bank satisfying the three

conditions in Theoref 3.9 is given, then it is applied to thuit sequence in Exam@leB. 1.

Example 3.3 (Type-2 symmetric extension algorithmin example of this type of PR filter bank is the

Haar-like filter bank given by the transfer functions

Ho(20,21) = 3 (1+20) ,H1(20,21) = 1— 2, Go(20,21) = 1+ 5%, andGy(20,21) = 3 (—1+27).
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Figure 3.11: The intermediate sequencesuga)b) u; and output sequences (), (d) y1 in the Haar-like
filter bank. The sequences are as defined in Figuie 3.1(a).

The group delays of the analysis filters are both O]T. The frequency responses are shown in Fifure 3.9,
and the scaling and wavelet functions associated with ikes bank are illustrated in Figufe=3]110.

We apply this filter bank to Example=B.1 given in Secfion 3.thwhe type-2 symmetric extension, where
the original input sequencewith four samples is shown in Figufe_B.5(a), and the exterssegience is
shown in Figuré3]5(c). The outputs, uz, Yo, andy;, as defined in Figule=3.1(a), are shown in Fidurel3.11,
where the boldface samples represent points on the peitioidittice, the dot represents the symmetry center,
and the independent samples of each sequence are locatiltims area surrounded by the dashed lines.
From Figured=3.11(c) and (d), we see thgthas three independent samp%(sH- b), c andd at (0,0),
(0,—1) and(1,0), respectively, ang; has only one independent sample b at (0,0). The total number of

independent samples in the subbands is four. Thus, thédrams nonexpansive. O
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3.6.3 Type-3 Symmetric Extension Algorithm

Recall that there are four types of PR quincunx filter bankk wuadrantally centrosymmetric filters. Next
we consider the third type, where ks even-odd quadrantally centrosymmetric. In the beloveotém, we
show this type of filter bank is compatible with the type-3 syeatric extension defined il (3.8), where the
extended sequencehas whole-sample symmetry in the horizontal direction aalftsample symmetry in

the vertical direction.

Theorem 3.10(Type-3 symmetric extension algorithmonsider the analysis filter bank shown in Fig-
ure[31(a), where is defined on the rectangular regid®,1,...,Lo — 1} x {0,1,...,L; — 1} and x is the
type-3 symmetric extension ®fas given by[(318). LeviMienote the quincunx generating matr[i% }1}.
Suppose that the analysis filterg Bind H; satisfy the following conditions: 1)¢-has even-even quadrantal
centrosymmetry with group delaly &= [doo do’l]T, dop€Z and th1 € %Zodd; 2) Hy has even-odd quad-
rantal centrosymmetry with group deldy & [d1 o dlvl]T, dipeZandd 1€ %Zodd; 3)dp—d; € LAT (M).

In this case, the subband outpytean be completely characterized by $mples with indices & [ng  ng]"

given by
doo+do1— 2 doo+do1+Lo+Ly—3
[ 0,0 +do,1 2—‘ <no< { 0,0+ o1+ Lo+L1 ZJ and
2 2 (3.37)
max{do,0—No,No — do1 — L1+ 3} <ny < min{doo+Lo—no—1,no—do1+3};
y1 can be completely characterized by damples given by
dio+di1+3 dio+dia+Llo+Lls—3
[ 1,0+ 1,1+2—‘ <no< { 10+ 011+Lo+ L1 ZJ and
2 2 (3.38)

max{dy,0—No,Mg —d11— L1+ 3} <ny <min{dio+Lo—no—Lno—dy1—3};

and Ny + N; = LgL 4, i.e., the transform is nonexpansive.

This theorem can be proved in a way similar to that of Thedi&dwath interchanged horizontal and
vertical indices. An example of this type of PR filter bankigeg by the analysis and synthesis filter transfer

functions

Ho(20,21) = 3 (1+ 1), Hi(20,21) = 1—21,Go(20,21) = 1+ 7}, andGy(z0,21) = 5 (71 - 1).

3.6.4 Type-4 PR Quincunx Filter Banks

We have discussed three out of the four types of quadramatyrosymmetric PR quincunx filter banks in

the preceding sections. Now we show that for the last typerofi@incunx filter bank, where Hs odd-odd
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quadrantally centrosymmetric with group delhye %ngd, no nonexpansive transform can be constructed
for any of the symmetric extension schemes definef1d (3r8}hik case, the total number of independent
samples in the subband sequenggeandy; combined is always greater than that in the original finiteeet
sequence.”We prove this statement in a constructive way. In what feflowe refer to the definitions of
sequences in Figufe3.1(a).

For this type of PR quincunx filter bank, the analysis filters éhd H, have even-even and odd-odd
guadrantal centrosymmetry, respectively, and their gdripys satisfy thadp,d; € %ngd. In order for the
filter bank to be nonexpansive, the subband sequepicaady; are required to have four-fold symmetry
and periodicity. It follows that the symmetry center of theemnded sequencesatisfiexy € %ngd. From
Lemmal3L, we know the original inputshould be extended using the type-4 symmetric extensionestefi
in @&8). Thenx is quadrantally centrosymmetric abagit= [-% —1]", and {250 28J—periodic. In this
case, the subband sequergehas rotated quadrantal centrosymmetry with symmetry cegppes Z? and

Lo L1

periodicity withM—1P = [Lo 7LJ. Thereforeyp can be completely characterized by samples with indices

n=[ng ny]" given by
Mn e {dO,O—%,d0,0+%,---,dO,O+LO—%} X {do,l—%,do,l—i—%,...,do,l—i—Ll—%},

and the number of independent samplegirs

I(Lo+1)(L1+1) for (Lo+1)(Ly+1) even
No = % [(Lo +1)(L1+1)+ 1} for (Lo + 1)(L1 +1) odd, (do +¢x) € LAT (M)
2[(Lo+1)(Ly+1)—1] for (Lo+1)(Ly+1) odd,(do +Cx) & LAT (M).

Similarly, for the second channel, sineghas odd-odd type quadrantal centrosymmeirgan be completely

characterized bi; samples with indicea = [ng ny]" given by

Mn e {dl,o-l- %,dl,o—i— %,...,d1’0+ Lo— %} X {dj_’j_-l- %,d1’1+ %,...,d1’1+ L, — %}, and

3(Lo—1)(L1—1) for (Lo—1)(L1— 1) even
Ni=1{1[(Lo-1)(L1—1)+1] for (Lo—1)(Ls— 1) odd, (dy+Cx) € LAT (M)
$[(Lo—1)(Li—1)—1] for (Lo—1)(Ly— 1) odd,(d; +¢) & LAT (M).

We can see that wheéhp+1)(L1+ 1) € Zeven the total number of independent samplegiandy; is always

LoL; + 1. Therefore, we cannot construct nonexpansive transfaamng this type of PR filter bank.
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3.6.5 Octave-Band Decomposition

A weakness of the symmetric extension algorithms introducdhe preceding sections is that they cannot
be used in an octave-band decomposition where the filter isaapplied recursively in the lowpass channel.
With the proposed algorithms in Theoremsl $38] 3.9, 3Hdextent of the lowpass output sequence
Vo assumes the shape of a°4%tated rectangle. At the second level of an octave-bardrdpositionyg
becomes the input sequence to the symmetric extensionsteln Figurd-31(a), while this structure only
operates on sequences defined in rectangular regions. fdteeréhese algorithms cannot be applied to an
octave-band filter bank. For the type-1 symmetric extenalgarithm, however, if we constrain the analysis
filters more tightly, the filter bank can still be used to const nonexpansive transforms with an octave-band

decomposition, as demonstrated by the below theorem.

Theorem 3.11(Type-1 symmetric extension algorithm for octave-banddegositions) Consider the two-
level octave-band filter bank shown in Figlire3.12, whigiedefined on the rectangular regi¢f, 1, ...,Lo—
1} x {0,1,...,L; — 1} and x is the type-1 symmetric extensiorkas given by[(318). If land H, have
both quadrantal and rotated-quadrantal centrosymmetny] their group delaysglanddy satisfy thaidy =
[doo doa]T € LAT(M) anddh = [d1o d11]T € Z2\ LAT (M), respectively, then the subband outpeg y
can be completely characterized bygl$amples with indices & [ng  ny]" given by

d d Lo—1 d d L1—1
doo+ {%w <o < doo+ {%Jﬂ 02 J and {%w <n < {%JJ{ 12 J; (3.39)

Yo1 can be completely characterized byy/amples with indices & [ng ;)" given by

doo+dio+di < doo+dio+di1 n Lo—1
2 =10= 2 2
do1+dig—d do1+dig—d L;—1

[ b,1 ;o 1,1} <ny< { b1 ;o 1,1J +{ 12 J

J , and
(3.40)

y1 can be completely characterized by samples with indicen & [ng )" given by [326); and b+

No1+ Ni = Lol 1, i.e., the transform is nonexpansive.

Proof. From Theorerf:318, we know thgs has rotated quadrantal centrosymmetry alogui= M-1d, € 72
andPy,-periodicity withPy, =M P = [tgj fﬁl;ll} € LAT (M), and its independent samples are located in
a finite region given by[(3.25).

At the second decomposition level, since kbs rotated quadrantal centrosymmetry, from Lerfimia 3.2,
Uoo is also rotated quadrantally centrosymmetric with symgneéntercy,, = ¢y, +do € 7? and periodic

with periodicity matrixPy, € LAT (M). From LemmaB=314 ard3.%0 has quadrantal centrosymmetry with
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—+ Hy(z) }UI—MH M } aln] Independent — ¢ [n]
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Figure 3.12: Symmetric extension for two-level octavebflter banks.

symmetry centecy,, andPy,,-periodicity, where

_ _ T
Cyoo =M '€y =M ?do+do = [doo+3do1  3doo] and (3.41)

- Lo-1 0
Pypo =M P= [ 0o Lrl} :
Thereforeygg can be completely characterized by samples with indiagisen by
[C0] <1< [€0) + |3 [Lo-2L1]T|. (342)

Substituting [3:411) into[{3:42), we obtain the indices of thdependent samples ygo as in [33P). The

number of the independent samples is calculated as

Noo = {LOTHJ {LlTHJ fordo & Zen (3.43)

][] rordoc s

Next we consider the channel with subband sequggceSimilarly, yo; has quadrantal centrosymmetry

with symmetry centecy,, andPy,,-periodicity, where
T - -
Cyo1 = [% (d0,0 + dl,O + d1,1) %(doﬁl + dl,o - dl-,l)} andPYOl =M 2P = [LOO ! Ll(il} :

Sinced; € 72\ LAT (M), we haved; o+ d1 1 € Zoggq. Thereforeyp: can be completely characterized by

samples with indicen given by

[c}’m-‘ =n< |_cy01J + {:—ZL [Lo-1 Llfl]TJ .

The preceding inequality can be rewritten[@S(B.40). Sthce Z?\ LAT (M), d10+ d1 1 € Zogg, the number
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of independent samples yg; can be calculated as

. P“’T’l] [LlelW fordo € Z3en 04

Lo+1 Li+1

Combining [3:2B) and(3.34), we obtain

Lo—1][L1—1 Lo+1||Li+1
N No1 =
ot S22 [272| [ [ 2
ZLols for LoL1 € Zeven
— (3.45)
$(LoL1+1) for LoLy € Zoga.
From Theoreni 318y, can be characterized Ny samples with indices given bz (3126), and
$Lols for LoL1 € Zeven
N; = (3.46)
%(L()Ll — 1) for LoL1 € Zogg.
Combining [3:4b) and(3.36), we haMgo+ Ny + N3 = LoL1. O

The independent samples in the lowpass subband sequenoceatesl in a rectangular region. Therefore,
if we cascade this two-level structure, with the originalisture in Figur&3]1(a) cascaded as the last step, in
the form of an octave-band quincunx filter bank with any nunmidedecomposition levels, a nonexpansive
transform can still be obtained.

Consider the filter bank from ExamgdleB.2. The analysis filee given by the impulse responses

0o 0 -1 0 0

0 2 4 -2 0 -1 0
holnj ~ 5 -1 4 4 -1/ and mn~Z|-1 4 :

0 2 4 -2 0 -1 0

0o 0 -1 0 0

and group delaydp = [0 0]" andd; = [-1 O]". The analysis filters satisfy the conditions in Theofeml3.11

Therefore, this filter bank can be used in conjunction witietl symmetric extension to construct nonex-

pansive transform for an octave-band decomposition withrhitrary number of levels.

3.7 Summary

In this chapter, we have shown four ways to extend a 2D finiterg input sequence of a quincunx filter

bank to an infinite-extent periodic symmetric sequence, disdussed how the periodicity and symmetry
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properties of the extended sequence can be preserved bpéhations of the quincunx filter banks. Then,

we have proposed new algorithms to construct nonexpansinsforms for three types of quadrantally cen-
trosymmetric PR quincunx filter banks. At last, we have shbew the type-1 algorithm can be extended for
use with multi-level octave-band decompositions. Thesarsgtric extension schemes are potentially useful

in applications that process finite-extent sequences wgimgunx filter banks.
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Chapter 4

Optimal Design of Quincunx Filter

Banks

4.1 Overview

In this chapter, new optimization-based techniques angqeed for the design of high-performance quincunx

filter banks for the application of image coding. These newhwods are used to build linear-phase PR systems
with high coding gain, good analysis/synthesis filter freiey responses, and certain prescribed vanishing
moment properties. Examples of filter banks designed ubiesgttechniques are presented and shown to be

highly effective for image coding. The material in this cteaghas also been partly presented.r [39].

4.2 Introduction

Filter banks have proven to be a highly effective tool for gmaoding application$ [40]. Compared to the
case with 1D filter banks, the nonseparable 2D filter banksrareh more difficult to design and far fewer

effective methods have been proposed. Inimage codingcgpioins, one typically desires filter banks to have
PR, linear phase, high coding gain, good frequency selggtand satisfactory vanishing moment properties.
The PR property is desirable as it facilitates the consooodf a lossless compression system. That is,
if the system possesses this property, then in absence ofizgat#on, the original image can be precisely
reproduced from the subband coefficients. The linear phageepty is crucial to avoiding phase distortion.

High coding gain often leads to efficient energy compactibimages. The presence of vanishing moments
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helps reduce the number of nonzero coefficients in the highgabbands, and good frequency selectivity can
diminish aliasing in the subband signals. Designing noassge 2D filter banks with all of the preceding
properties is an extremely challenging task. In this chagtreral new optimization-based techniques are
proposed for constructing quincunx filter banks with allteé aiforementioned desirable characteristics.

The remainder of this chapter is organized as follows. 8eBfi3 presents a parametrization of linear-
phase PR quincunx filter banks based on the lifting scheme chese the lifting-based parametrization
because the PR and linear-phase properties can be stilyctomaosed on the filter bank, which simplifies
the later optimization algorithms. Then, an optimal desadgorithm for quincunx filter banks with two
lifting steps is proposed in SectiGga ¥.4. In this section, skew how coding gain, vanishing moments,
and frequency selectivity are related to the lifting-filbkeefficients, and discuss how the design of quincunx
filter banks with all of the desired characteristics can benfdated as a constrained optimization problem.
In Section[Zb, a scheme is proposed for the design of filtekdavith more than two lifting steps. In
this case, the relationships between the desirable piepemd the lifting filter coefficients become more
complicated than in the two-lifting-step case. We explaowhhe design can be formulated as a similar
optimization problem. In Sectidn 4.6, a suboptimal desigo@thm is proposed for filter banks with at least
three lifting steps using the above two algorithms. Seveesign examples are presented in Sedfioh 4.7
and their effectiveness for image coding is demonstratekictioTZB. Finally, the results obtained in this

chapter are summarized in Sectionl 4.9.

4.3 Lifting Parametrization of Linear-Phase PR Quincunx Filter Banks

For filter banks in image processing applications, the PRliaedr phase properties are often highly desir-
able. In this section, we introduce a parametrization oflasstiof linear-phase PR quincunx filter banks
based on the lifting scheme. The use of the lifting-basedrmatrization is helpful in several respects. First,
as discussed in Sectibn 2.6, the PR condition is autoatitizatisfied by such a parametrization. Further-
more, the linear-phase condition can be imposed with welaase. This eliminates the need for additional
cumbersome constraints for PR and linear phase during mgatiion. Lastly, reversible integer-to-integer
mappings can be readily constructed from the lifting redion [33]. Recall that with the lifting structure,
the synthesis filters are completely determined by the aisfifters. Therefore, in what follows, we only
consider the analysis side of the filter bank.

The canonical form of the analysis side of a quincunx filtarkoaith analysis filters Ijand H, is shown
in Figure[41. The lifting realization of the analysis sidieha2A lifting filters {Ag} is shown in Figur&Z12.
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x[’n] —-|Ho(z) |_.| | Ml—»yo[n]
——{H1(2) {1 M}——>ui[n)

Figure 4.1: Analysis side of a quincunx filter bank.

D— e

B

Yo[n]

E@ |A1(z)| |A2(z)| |A2A—1(Z)| |A2/\(Z)|

1) n > y1[n]

Figure 4.2: Analysis side of the lifting realization of a quunx filter bank.

Without loss of generality, we assume none of the transfectfans{A(z)} are identically zero, except
possiblyA;(z) and Ay (z). Using this lifting structure, the linear-phase conditican be satisfied with a
prudent choice of lifting filter§Ay}. In particular, in what follows, we will introduce threetliig-based
parameterizations of PR quincunx filter banks that resuinigar-phase analysis/synthesis filters. The filter
banks associated with these parameterizations are heticedterred to as type-1, type-2, and type-3 filter

banks.

4.3.1 Type-1 Filter Banks

The first lifting parameterization results in symmetric lgsss filters Hy and H, with group delays on the
integer latticeZ?. The detail regarding the choice of the lifting filtef8,} in Figure[Z2 is given by the

theorem below.

Theorem 4.1 (Construction of type-1 filter banks)Consider a quincunx filter bank constructed from the
lifting scheme witt2A lifting filters as shown in FigurE12, where none of the tf@endunctions{Ax(z)} are
identically zero, except possibly &) and A (2). If the lifting filters { A} are symmetric, and the filter, A
has group delaggsatisfying

= (—1)¥[ ]T,

NI
NI

then the analysis filters gfand H, are symmetric with group delay8 0" and[—1 Q]7, respectively.
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Proof. Let the analysis filters associated with the fkdifting steps be denoted a{d—li(k)} fori=0,1. We
prove this theorem by induction on Considerr = 0. In this caseH(()O) (z=1 andH{O) (z) = 2. Thus, the
analysis filters I{;D) and I-ﬁo) have symmetric linear phase with group del@y/€|™ and[—1 0|7, respectively.
Therefore, the theorem holds fér= 0.

Now, assume that the theorem holds foe k (i.e., I—léZK) and I—lek) have symmetric linear phase with

group delay$0 0" and[—1 Q]7, respectively). FoA = k+ 1, from [Z28), we have

k k- k k

HEP@ HE?@| |1 Axe@ 1 0| [HY@ HY@
k k - k k :

HE& Y2 HZ )| o 1 ||Aku@ 1] [H¥ @) HZ@)

Using the above equation, the analysis filter transfer funtst{HiQkJrz> (z)} can be computed as

HZ P (2) = HP Y (2) = HP @)+ Agc 1 HE™ @) and “.1)

HZ (2) = HP Y (2) + Age o @MHIZE (2) = I (2) + Age, o @M HIZ D (2). (4.2)

In @), since the lifting filter A1 has symmetric linear phase with group detay. ; = [7% %]T, from
Lemmal3y Ax,1(ZV) has symmetric linear phase with group deMgo 1 = [-1 0]T. By assumption,
H((,2k> (2) is symmetric with group delaf@ 0]". Then, from LemmEElZQ\ZKH(zM)HéZk) () has symmetric
linear phase with group deld@ 0" +[-1 O =[-1 0. Therefore, I‘f”z) has linear phase with
group delayj—1 Q]T. Similarly, in &2),Ax.2(2) has symmetric linear phase with group dedg,, » =

[1 Q. Thus, it follows that I{fkﬂ) has linear phase with group del&y 0]". Therefore, the theorem
holds forA = k+ 1. This completes the proof. O

We henceforth refer to the filter banks constructed usingofidre[4.1 asype-1 filter banks. Below we
show an example of a type-1 filter bank. This filter bank is pimal in [6/-34] and previously discussed in
Exampld:3P in Sectidn3.8.1.

Example 4.1(Type-1 filter bank) Consider the filter bank from Exam@leB.2 with the analysisifimpulse

responses
0O 0 -1 0 O
0 -2 4 -2 0 0 -1 0
1 1
holn ~ =5 | -1 4 4 -1 and hjnj~2|-1 4 :
0 -2 4 -2 0 0o -1 0
0O 0 -1 0 0
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This filter bank can be realized using two lifting steps. Ti@llse responses of the lifting filterg And Ay

are given by
1|1 1 1
auln| ~ — 2 and agfn] ~ * |
411 1 8 1
and the group delays offand A arec; = [ -3 %]T andc; = [ 3 %]T respectively. O

In order to allow the frequency responses of the lifting andlysis filters to be expressed in a compact
form, we introduce some notation in this regard. Since tfimgj filter Ax has linear phase with group
delayc, = (—1)¥[4 1]T, the support region of Ais a rectangle of sizely x 2l 1 for somely,lx1 € Z7,
and the number of independent coefficients inigA2y ol 1. Letax be a vector containing the independent
coefficients of A. Then, there arel@ly 1 elements ira, indexed from 0 to B gl 1 — 1.

For an odd-indexed lifting filter A1, its support region can be expressed{ad 10, —lx-10+
1. 00— 1) x {=la11,—lx-11+1,...,la11—1}. The coefficient vectoay._1 of Ay_1 is then

defined as
T
-1 = |ak-1[0,—lok-11] a@x-1[0,—lk-11+1] - ax-1llak-10—1Ix-11— 1]} : (4.3)
That is, thenth element oy _; is defined asik_1[no, N1] with ng andn; computed by

Np = Ln/(2|2k,1’1)J S {0, 1, cey |2k71,0 — 1} and

Ny =modn, 2 _11) —lx-11€ {—lix-11,—lx-11+1... lxk11—1}.

(4.4)

Since Ay_1 has symmetric linear phase, the frequency responseiafiAan be written froml{214) as

R il
b 1(@) = €191 S ay q[n]cos[w" (N—Cx1)]
ncz2
o Ik-10-1 lk-11-1
= 2elilre)  § > aaltom cos[wn(Mo+3) + wi(n+3)].
=0 m=—Ix 11
In the upsampled domaing 1 (M w) can be expressed as
lok—10-1 lok—11-1

o 1(MTw) = 26/ > Z apk—1[No, N1 cos|ap(no -+ Ny + 1) + wi(ng — ny)].
np=0 m=-lx 11

With the notatioray_1, &x_1(MT w) can be compactly written as

boc1(MTw) = ePaj vy 1, (4.5)
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wherevy_1 is a vector of 1 glok—11 €lements indexed from 0 td2_1 olok—1,1 — 1, and thenth element
of vy is
Vak-1[n] = 2cos[an(No + Ny + 1) + wi(no — Ny )] (4.6)
with ng andn; given by [Z3}).
Similarly, for an even-indexed lifting filter 4, its support region i§ —loxo+ 1, —loko+2,...,lx 0} x
{=lx1+1,—lx1+2,...,l21}. The coefficient vectoay, of Ay is then defined as

.
ay = [32k[1,—|2k,1+1] ax[2,—lx1+2] -+ ax(lxo,lxal| - (4.7)

That is, thenth element ofy is ax[no, n1] with ng andn; given by

Np = Ln/(2|2k’1)J +1e {1, 2,..., |2k,0} and

(4.8)
n =modn, 2y 1) —loki+1e€ {—law1+1,—lx1+2,...,lx1},
respectively. The frequency resporesg(@) of Ay is computed by
o laco ok
fx(w) = 2¢ J2(wra) § Z agk[no, na] cosan(no — 3) + wi(n1 — 3)],
No=1m=I-lp1
and in the upsampled domaag,(M" w) can be expressed as
ax(MTw) = e 1Val vy (4.9)

In @3), v is a vector of Py olox 1 elements indexed from 0 td&olox 1 — 1, and thenth element ol is

defined as

Vo [n] = 2cos{ap(no+ Ny — 1) + wy(Ng — Ny ) | (4.10)

with ng andn; given by [4.8).
We rewrite [Z2B) and{Z.16) in the Fourier domain as

Ho(w) = rjo,o(w) [10,1(“’) :ﬁ 1 ax(w) 1 0 and (4.11)
hio(@) hi(@)| x21\[0 1 d-1(w) 1

bl -
hl(w) elwo

respectively. Substitutin§{ZN 1), }.5) abd14.9) ilfd ), we obtain the frequency responses of the analysis

filters as i _
el s D e
hl(w) k=1 0 1 ejaha;-k71V2k,1 1 el

ﬁo)o (MTOJ) F‘O,l (MTO))
ﬁl,O (MTOJ) F]j_’l (MTO))
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We further define a vectorcontaining all of the independent coefficieqgg} of the lifting filters { Ay}

as
T
X — [aI al - "‘M , (4.14)
Thus,x hasly = Zzizjlli,oli,l elements. Each vectag can be expressed in terms»oés
&= [02|k,o|k,1xao |2|k,o|k,1 02|k,o|k,1XBo] x=EX, (4.15)
=

whereao = 25K i oli 1 andBo = 252, , 1 li oli.1. Substituting[Z15) intd{413), we have

fmo(w) _ lill 1 e 1xTE] vy | 1 0 .1 | (4.16)
hi(w)| =1\ |0 1 el@xTE], Va1 1|/ |el®

By expanding the preceding equation, each of the analyés filequency responses can be viewed as a
polynomial inx, the order of which depends on the number of lifting steps.

Now we consider a special case of Theofem 4.1. If, in additidhe conditions in Theoreln34.1, the lifting
filters {Ax} have rotated quadrantal centrosymmetry vt T = 1, whereSandT are defined in(317), then
the analysis filters Hland H_have even-even quadrantal centrosymmetry with group dé@ay0]’ and
[-1 O, respectively. The above statement can be easily provedduction with the help of statement
3 in Lemmal3J. In this case, the analysis filters &hd H, satisfy the three conditions in Theoréml3.8.
Therefore, this filter bank can be used to build nonexpanswvesforms with the type-1 symmetric extension

of sequences defined in TheorEm 3.8.

4.3.2 Type-2 and Type-3 Filter Banks

We consider now two related lifting-based parameterizatiof quincunx filter banks, where the lowpass
and highpass analysis filters are symmetric and antisynunesispectively. The first parameterization is

described by the theorem below.

Theorem 4.2(Construction of type-2 filter banks)Consider a quincunx filter bank constructed from the lift-
ing scheme witi2A lifting filters as illustrated in Figur€4]2, where none oétlransfer functiongAx(z)} are
identically zero, except possiblyXz). Suppose that the lifting filtedsA } satisfy the following conditions:
D A(Z)=-1;,2)Ax(2) = %; and 3) A is antisymmetric with group delaye= [0 0T fork > 3. Then, Ry is

symmetric with group delaly-3 o]T and H, is antisymmetric with group deldy- 3 o]T.

Proof. Let Hi(k) fori = 0,1 denote théth analysis filter associated with the fikslifting steps. We prove this
theorem by induction oA. AssumeA = 1. Then,H(()2> (z) = %(14— %) andHi2> (2) = =1+ 7. Therefore, H
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is symmetric with group delaj-3 o]T, and H is antisymmetric with group delaly-3 o]T. Therefore, the
theorem holds foA = 1.
Now, we assume that the theorem holdsXet k (i.e., H(()Zk) and I-fk) have symmetric and antisymmetric

linear phase with group delays} o]T, respectively). Then, fok = k+ 1, we have

HP P (2) = HP Y (@) = HP @)+ Agc 1 HE™ @) and (4.17)

HP 2 (@) = HP @) + Aac @R @), (4.18)

In @), since A1 has antisymmetric linear phase with group dedgyi1 = [0 0, Ay..1(Z¥) has anti-
symmetric linear phase with group deldcy.1 = [0 O]". Then, from LemmEElZQ\ZKH(zM)H(()Zk> (z) has
antisymmetric linear phase with group deIE}y% O}T. Thus, it follows that |11I2k+2) is antisymmetric with
group delay[—3 O]T. Similarly, from [ZI8), |{g2k+2> is symmetric with group delay—3 O]T. Therefore,

this theorem holds fok = k+ 1. This completes the proof. O

Henceforth, we refer to quincunx filter banks constructedgi$heoreniiZ12 aype-2 filter banks. The
filter bank from Exampl&313 in Sectidn 3.6.2, whetg(zy,z) = % (1+2) andH1(zy,z1) = 1— 2y, can be
parameterized using the above theorem Witk 1.

For type-2 filter banks, if fok > 3 the lifting filters {Ay} are not only antisymmetric but also rotated
guadrantally centrosymmetric with= —1 andT = 1, then the resulting analysis filters satisfy the three
conditions in Theoref3.9. Thus, the filter bank can be usednstruct nonexpansive transforms for finite-
extent sequences extended with the type-2 symmetric égtessheme defined in Theoréml3.9.

A variation of Theoreni 412 is given below. In this case, thalgsis filters still have symmetric and

antisymmetric linear phase, but their group delays aredifft from those obtained by TheorEm 4.2.

Theorem 4.3(Construction of type-3 filter banks)Consider a quincunx filter bank constructed from the
lifting scheme witt2A lifting filters as shown in FigurE412, where none of the tf@n$unctions{Ax(z)} are
identically zero, except possiblyAz). Suppose that the lifting filtersAc} satisfy the following conditions:
1) A(2) = —z; 2) Ao(2) = 3z%; and 3) A is antisymmetric with group delaye= (—1)¥[0 1 for k> 3.
Then, the analysis filter ¢lis symmetric with group dela@O — %]T and H, is antisymmetric with group
delay [—1 %}T

The above theorem can be proved with an approach similaratoothTheoreniZ]l2. Theorem#.3 can
also be extended to build filter banks that lead to nonexpansansforms. Suppose that in addition to the
conditions in Theoredn 4.3, the lifting filtefg\¢} further have rotated quadrantal centrosymmetry Bith1
andT = —1 for k> 3. Then, the resulting analysis filters satisfy the condiim Theoreniz310. That is,
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the filter bank can be used to construct nonexpansive transffor finite-extent sequences extended with the
type-3 symmetric extension scheme defined in Thedrem 3.10.

Although type-2 and type-3 filter banks have PR and lineasehi is likely that these filter banks will
not lead to good results in image coding applications. Thikie to the antisymmetry of the highpass analysis
filters, as we explain in what follows.

Consider a type-2 filter bank, wherg Has antisymmetry with group deldy = [d1 o d11]" =[-3 o]".

Then, from[ZH#), we have
ho(w) = e i(@"dur71/2) Y hinjsinfw' (n—dy)] .
nezb
Let ap = 0, we obtain
h1(0, ) = e 172 S S hin]sin(cwin).

NoEZNEZ

Therefore,y(0,0) = 0 andhy(0,4m) = 0. The first equality implies that the filter bank has at least o
dual vanishing moment. The second equality, however, ptevée filter H from having good diamond-
shaped stopband. A similar result also holds for the syrgligéers. We have that there is at least one primal
vanishing moment, but the frequency response of the highpagthesis filter is zero & + 1. For type-3
filter banks, similar results can be derived. Due to theiatiin on the frequency responses, these filter banks
would likely not perform well in image coding applicationsn example illustrating the above statement will
be given in Sectiof4l7. In the following part of this chaptee focus on the type-1 filter banks where both

analysis filters are symmetric.

4.4 Design of Type-1 Filter Banks with Two Lifting Steps

Consider a quincunx filter bank with two lifting steps as showFigurd/ZB. For image coding application,

we seek a filter bank with PR, linear phase, high coding gantam vanishing moment properties, and
good frequency selectivity. We use the lifting-based patairation introduced in Theoreln#.1 to enforce
the PR and symmetric linear-phase properties. In whatvaljave first investigate how the other desirable
characteristics (i.e., high coding gain, vanishing morseanhd good frequency selectivity) are related to
the lifting filter coefficients. Then, we show how this desjgioblem can be formulated as a constrained

optimization problem.
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z[n] — zr[n]
> | M »(1) >? T M }—»{ % ———————»
[20] [4)]  [4@)] [40)]  [4@)] 2l
y1[n] Ya
Figure 4.3: A quincunx filter bank with two lifting steps.
4.4.1 Coding Gain
Recall that for ariN-level octave-band quincunx filter bank, the coding gairoismputed by
N
Gssc= rL(AkBk/ak)iaka (4.19)
k=

where

A=Y S himibnlrim- o]

meZ2neZ?
Be=ak 5 gZn),
nez?
2-N fork=0

ox =
2-(N+1-K) fork=1,2,...,N,
hi[n] and gi[n] are the impulse responses of the equivalent analysis arttiesys filters K and G, re-
spectively, and is the normalized autocorrelation of the input. Tiidevel octave-band filter bank and its
equivalent nonuniform filter banks are depicted in Figltdd 2and 216, respectively.
For a type-1 filter bank, the analysis filter impulse resperase functions of the lifting filter coefficient
vectorx. Therefore, théN-level coding gain can be expressed as a functiaxa ddote that the coding gain

function is potentially highly nonlinear.

4.4.2 Vanishing Moments

In Sectio 2315, we explained that for a UMD filter bank, tieber of vanishing moments is equivalent to
the order of zero a0 0" or [T 7" in the highpass or lowpass filter frequency response, résphc In
order to haveN vanishing moments, the impulse response of the highpassvpiaks filter must satisfy a set
of M linear equations of the form of (Z27) dr(2126), respedyivéf a filter H has symmetric linear-
phase with group delay on the lattiZg, then the number of equations [112.26) BI{2.27) can be mtiuc
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This can be shown as follows. For a symmetric linear-phatse fl with group delay € Z2, its frequency
responsél(w) can be computed b{(2.4) with= 1. Themth-order partial derivative of its signed amplitude
responsé,(w) defined in[Zb) is then given by

hin] (n—d)™cos[w’ (n—d)]  for |m| € Zeven

o mhs(w) | &
w0y ~ 3 hin(n—d)™sin[w" (n—d)]  otherwise,
nez?

wherem= [my my]". From the above equation, we see that wimine Zqq, themth-order partial derivative
of ha(w) is automatically zero af0 07 and [ mT. Therefore, in order to have aith order zero at
w = [0 0T, the filter coefficients need only satisfy
> hinj(n—d)™=0 forall|m| € Zevensuch thatm| < N. (4.20)
nez?

Similarly, in order to have aNth order zero atv = [T 7", the filter coefficients need only satisfy

S (=)™ “hn](n—d)™ =0 forall jm| € Zevensuch tham| < N. (4.21)

necz2

Since we only need to consider the case Withe Zeyenin @20) and[[421), the number of linear equations
is reduced tdN/2]2. Therefore, in order for a filter bank to hafledual andN primal vanishing moments,
the analysis filter coefficients are required to satisfy ¢iquna like those shown in[{4.20) arid(4.21). Since
we use the lifting-based parametrization, the relatigmshieed to be expressed in terms of the lifting filter
coefficients.

For a quincunx filter bank constructed with two lifting filkeA; and A, as depicted in Figule4.3, the
constraints on dual and primal vanishing moments form aalirgystem of equations in the lifting filter
coefficients. In what follows, we introduce the reader to edmy results from[]6] and then apply these
results to type-1 filter banks.

In order for the filter bank shown in FiguEE#.3 to halVedual andN primal vanishing moments, the

lifting filter impulse responses; [n] anday[n] of A1 and A should satisfy

ay[n](—n)™ = -1, forme (Z*)> andjm/ <N and (4.22)
ncz?
az[n)(—n)™ = %rg‘, forme (z*)? and|m| < N, (4.23)
ncz2
respectively, wherg, = [} %]T andt, = -11 =[-} %]T [6]. The total number of equations i {4122)

and [Z2B) combined ig¥31) + (N} 1) = BN 1 jllustrate the use of the above result, we consider

the simple example below.
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Example 4.2(Vanishing moments condition)Consider a quincunx filter bank with two lifting steps, where

each of the lifting filters A and A has a support size of:22. The support regions offand A, are chosen

to be centered aroundt; = —[4 $]" and—1, =[4 4], respectively. In order for this filter bank to have

two dual and two primal vanishing moments, the impulse respa; of A; is required to satisfy

5 alnl(-m o =~ (1337)" "
nez2
n n[01]T* %%T[Ol]T7 q
3 ainl(n) (1337)" " an
aulnl(-mi* o7 = — (13 477)"°
nez?

In turn, this implies that
a[—1,-1]+a[—1,0]+a1[0,—1] +a1]0,0] = —1,
ar[—1,—1]+a[0,-1] = —%, and
ay[~1,~1] +ag[-1,0 = _%.

Similarly, the impulse response|n| of A; is required to satisfy

3 a5 (-1 SR

oy
aoln] (-1 =2 (~337)° " and
ncz2

ncz?

This, in turn, implies that

1
a-Z[Oa O] + a2[07 1] + a2[11 O] + a2[17 1] =5

2
—a2[0,1] — a[1,1] = —%, and
1
_a2[17 0] - a2[11 1] = _Z'
Thus, the total number of equations that must be satisfié@ﬁé);rz(il> =6. O

The above results on vanishing moments can be applied to/pleelt filter banks, where the analysis
filters have symmetric linear phase with group deldysl; € Z?. The support region of Ais {=l10,—l10+
1,...0l10—1} x{—l11,—l11+1,...,l11— 1} for somel1 0,111 € Z. Then, [Z2R) can be rewritten as

|1}071 Il,lfl
al[no, n1] [(no + 1)”’°(n1+ 1)m1 + (—no)nb(—nl)ml} = _27(n‘0+m1)7 (4.24)

np=0 n1:7|1}1
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for mp,m € Z* andmg+ m; < N. As previously discussed, we only need to consider the citbermy +
M € Zeven Therefore, the number of equationslin(4.24) is reduce[d?lt)(ﬂz. If we usea; to denote the
independent coefficients ofifas defined in[{413), the set of linear equation§1n{4.24) eaexpressed in a
compact form as

Aa; = by, (4.25)

whereA; is an Mg x My matrix with Mg = [N/Z}Z andM; = 2l;0l11, andb; is a vector Withm/ﬂ2
elements. Each elementAf assumes the forrifng + 1)™(ny 4+ 1)™ + (—ng)™(—n;)™, and each element
of b; assumes the form 2 (Mo+m)

Similarly, because of the linear-phase property of the s difting filter A,, @23) becomes

I2,0 l2.1
Z az[No, N1] [ (Mo — 1)™ (g — 1)™ + (—ng) ™ (—ng)™] = —(—2)~ (MM 1) (4.26)
no=1lny=—lp1+1

for mo,my € Z*, mp+my € Zevenandmp + my < N. With a, denoting the B ol 1 independent coefficients
of A, as defined in{417)[{4.26) can be rewritten as

Acay = bz, (4.27)

whereA; is anMg x My matrix withMg = [N/2]2 andM; = 21,0, 1, andb is a vector withN/2]% elements.
Elements ofA; andb, assume the forms @fip — 1)™ (ng — 1)™ + (—ng)™(—n;)™ and—(—2)~ (Mo+m+1)
respectively.
Combining [£2b) and{4.27), we have a linear system of égumtnvolving the lifting filter coefficient
vectorx as
Ax—b, (4.28)

whereA = [%1,?2},x= (3], andb= “:ﬂ The number of equations iATZ128)[l/2]% + [N/2]2.
Example 4.3(Vanishing moment condition for type-1 filter bankonsider the filter bank in Examfdle®.2,

which has two % 2 lifting filters A; and A. In the linear-phase case, the conditions for two dual amd tw

primal vanishing moments becomes

233]0,—1]+281[0,0] = —1 and 2,[1,0]+2ay[1,1] = %,
respectively. Using the vector fore = [a1[0,-1] al[O,O]]T, ay = [a[10] a2[1,1]]T, andx = [g;}, the condition

for two dual and two primal vanishing moments becomes a tiegstem of equations involvirngas

X= .
00 2 2 1/2
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It is worth noting that for a type-1 filter bank with two liftinsteps, the analysis filter frequency responses
have some special properties if this filter bank has at leasdoial vanishing moment. In particular, we have

the theorem below.

Theorem 4.4 (Frequency responses of type-1 filter banks with two liftetgps) Consider a type-1 filter
bank with two lifting steps. Leﬁo(w) and ﬁl(w) be the frequency responses of the lowpass and highpass

analysis filters | and Hy, respectively. If this filter bank has at least one dual vaimig moments, then

ho(0,0)=1 and (4.29a)

hy(m,m) =-2 (4.29b)

(i.e., the DC gain of the lowpass analysis filteg 4 one and the Nyquist gain of the highpass analysis filter

H1 is two).

Proof. From [Z.ZB), we have

ho(w) = 14+ 4 (MTw)&(MTw) + “°4(M"w) and (4.30)

hi(w) =& (MTw) + /. (4.31)

Since the filter bank has at least one dual vanishing momeraptainh, (0,0) = 0. From [Z31)ai(M T w) =
—el forw=1[0 Q. It follows from {@3D0) that fow = [0 0

ho(@) = 1+ &1 (MTw)a(M"T w) + e/ @8 MT w)
=1-e95HM )+ @5 M w)
=1
Therefore, the DC gain of §is one.

The lifting filter A1 has symmetric linear phase with group detay= [-1 %]T. Then, from[ZH), its

frequency respons® (w) can be written as

81(w) = 19" 5 ay[n|cos[w’ (n—cy)]. (4.32)
nez2

Substituting[[4:32) intd{4:31), we obtain

hy(w) = e 0™ Y ancos[@’ (Mn—Mc)] + €
nez?

— elw { ZZ Zzal[no’ ny] cosfan(no+ng+ 1) + wi(no — ng)] + 1} :
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Sincehy (0,0) = 0, we have thay n,cz ¥ nyez @[no, ] = —1. Therefore, we conclude

hy (T, n):ei"{ z Z a1[Ng, M) cos|(2ng + 1)7T]+1}

NoEZn1€Z

= Z al[no,nl]—l
NoEZN1€Z

=2
Thus, the Nyquist gain of His two. O

In the preceding discussion for filter banks with two liftisgps, it is assumed that the number of dual
vanishing moments is no less than that of the primal ones K.e= N). This is usually desired in image
processing applications such as image coding, as the doahiag moments are more important than the
primal ones for annihilating polynomials which are used ppraximate images. If in some special cases,
more primal vanishing moments are needed than dual onesamwiaterchange the roles of the analysis and
synthesis filters. This interchange, however, may have siratde effects on the other filter bank properties

such as the coding gain.

4.4.3 Frequency Response

For image coding, we desire analysis filters with good fregyeselectivity. Since a lifting-based para-
metrization of quincunx filter banks is employed, we consite relationship between the analysis filter
frequency responses and the lifting filter coefficients.

To measure the difference between a symmetric linear-iigeseH and an ideal filter i, we define the

weighted frequency response error function of H as
%:A )ﬂW@Wd@—D%mM%@ (4.33)
J[-mm

whereW(w) is a weighting function defined o1, 1), ha(w) is the signed amplitude response of H as
defined by[ZZB)ﬁd(w) is the frequency response of the ideal filtgy, lAndD is a scaling factor. In order for

the filter H to approximate the ideal filter, the frequencyp@sse error functiom,, is required to satisfy

& < n, (4.34)

whered, is a prescribed upper bound on the error. Note théw) in @33) is possible to be negative. The
errore, will be large if ﬁa(w) changes sign in the passband. This, however, will not leathygproblem, as

in this case, the filter does not have good frequency seigctiv



71

w1 w1
A A
s s
—T 0 ™ o -7 0 ™ o
—T —T
(a) (b)

Figure 4.4: ldeal frequency responses of quincunx filteikbdor the (a) lowpass filters and (b) highpass

filters, where the shaded and unshaded areas represenstiimpd and stopband, respectively.

For a quincunx filter bank with sampling mattk= [1 2 |, the shape of filter passband is not unidué [20,
28]. Herein, in order to match the human visual system, wedism®ond-shaped ideal passband/stopband
for the analysis and synthesis filtef$ [9]. Figlrd 4.4 (aistitates the ideal lowpass filter frequency response
given by

1 forlmmtw|<m

hoa (@) = (4.35)
0 otherwise

and FiguréZ}4(b) depicts the ideal highpass filter frequeesponse given by

- 1 for|awp=£wi| > m andwy,w € [—m, 1T
hyg(w) = | | | ) (4.36)

0 otherwise
The weighting functioW(w) is used to assign different weights for the passband, staplzand transi-
tion band. For a quincunx highpass filter with a diamond-sdegiopband, the weighting functitvi(w) is
defined as
1 for passban¢tw + wi| > 1T+ wp, andwy, wy € [— 11, 7M)
W(w) = {y for stopbandawn+ wi| < ws (4.37)
0 otherwise (i.e., transition band)

wherey > 0. By adjusting the value of, we can control the filter's performance in the stopbandikeddo the
passband. In the case of highpass filters, for example, tightireg function is depicted in Figufe3.5. The
weighting function for a quincunx lowpass filter is definedaisimilar way (i.e., with the roles of passband
and stopband interchanged in{4.37)).
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Figure 4.5: Weighting function for a highpass filter with miand-shaped stopband.

Consider a type-1 filter bank constructed with two liftingeik A and A as the one shown in Figure®.3.

From [£16), we obtain the frequency responses of the ardilyers as

[ﬁo(a))] B [1 ej‘*’OxTEgvzl [ 1 0] [ 1 ] B [1+XTE;v2+xTE{v2vIE1x

hy (w) 0 1 elx"Elv; 1| |el® a el (14+XTE]vy)
Then, the signed amplitude resporﬁ@g(w) of Hy is
hia(@) = 1+X"EJvy.
The frequency response error function of the highpass aisdiiter H; is computed as
o= [ W) (@) - Dhug(@)*de (4.38)

whereW(w) is the weighting function defined iE@]?,fw)J,d(w) is the ideal frequency response of a quincunx
highpass filter defined il .{Z186), and the scaling fa&tas chosen to b® = 2 in accordance witH{Z.2bb).
The frequency response error functionlIn (4.38) can be sgprkas the quadratic polynomial in the lifting

filter coefficient vectox
€n, =X HyX+XTs¢+ ¢y, (4.39)
where
Hy = / W(w)EIviVIE1dw, s= / ' 2W(@)E]v; [1 - 2hyg(w)] dw,
[-m, rr)2 J[-m, rr)2
o = / W(®) [1 - 2Pyq()) de,
[77-[) n)2

andHy is a positive semidefinite matrix. Substitutilg(4.39) itite constraint on the frequency respoilise{4.34),

we obtain an inequality involving as

XTHy X+ X8+ ¢ — 6, < 0.
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For illustrative purposes, we now consider a simple exaropldne computation of the frequency re-
sponse error function for the highpass analysis filtgr Fhe lifting filters have the same support as those in

ExampldZD.

Example 4.4(Frequency response error functiorfonsider a type-1 filter bank with two>22 lifting fil-
ters Ay and A. The filter A; has two independent coefficieras|0, —1] anda; [0,0], and A also has two

independent coefficients[1,0] anday[1,1]. The vectox and its associated parameters are given by

]
x=[a10,-1 (0.0 210 al1.1] .

2 coswy 1 0 0O 0 010
Vi =V = , E,= s and E; = .
2 coswy 01 00 0 0 0 1
The quantitie# y, sy, andcy in (#39) are computed as
4f n 2 W(w) cos wdw 4 2 W(w)cosupcoswdw 0
HX =

0 0 0

0

4 2 W(@) cosupcoswy dw 4]‘[7n.n)2W(w)co§wodw 00
O’

0 0 0 O

N n T
Sc= |4)_p, e W(®) [1- 2Pg(@)] coswndd 42 W(w)[1— 2hq()] cosndw 0 0]

andcy = / W(w) [1 - 2hyq(w)] ° doo,
[77-[*, 7.[)2

whereW (w) andhyq(w) are defined in{Z37) anf{Z136), respectively.

From [4IB), for a type-1 filter bank with two lifting stepbgtfrequency responﬁg(w) of the highpass
analysis filter H is independent of the second lifting filter,A Therefore, the frequency response error
functioney,, in @39) only involves the filter coefficients [n] of the first lifting filter A;. This observation

explains the zeros iHy andsy. O

4.4.4 Design Problem Formulation

Consider a type-1 filter bank with two lifting steps as showrFigure[ZB. The design of such a filter

bank with all the desirable properties (i.e., PR, lineargghdigh coding gain, certain vanishing moment
properties, and good frequency selectivity) can be fortedlas a constrained optimization problem. Our
design employs the lifting-based parametrization intaedlin Theoreri4l1. In this way, the PR and linear-
phase conditions are automatically satisfied. We then magithe coding gain subject to a set of constraints,

where these constraints ensure that the desired vanistongent and frequency selectivity conditions are
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met. In what follows, we will show more precisely how this gsproblem can be formulated asecond-
order cone programming (SOCP) problem.
In an SOCP problem, a linear function is minimized subjeet $et of second-order cone constraints [41].

In other words, we have a problem of the form:
minimize  b'x
subject to: HA,—Tx+ciH <b'x+d fori=1,...,q,

wherex € R" is the design vector containimgfree variables, and € R", Ai e R™™ ¢ € R™, b € R", and
di € R. The constrainf|A"x+¢i|| <bx+d; is called asecond-order cone constraint

Consider a type-1 filter bank with two lifting filters;fand Ap, each having support size of3 x 211 1
and 2, x 2l,1, respectively. Leg;, vi, andE; be as defined in Sectidn 4.B.1, andxXedenote the vector
consisting of the B ol1 1+ 2l20l21 independent lifting-filter coefficients defined in{4.14).s Axplained
previously, in terms of the lifting filter coefficient vecterthe constraint on vanishing moments is linear and
the constraint on the frequency response of the highpa$gsanfilter is quadratic.

From SectiofZ.4]2, we know that in order for a filter bank twehi primal andN dual vanishing

momentsx needs to be the solution of a system|bif/2] 24 [N/2]? linear equations given by
Ax=Db. (4.40)

In @Z0),A € R™" with rankr andb € R™*, wherem = [N/Z}z—i— N/21%, n=2l10l11+ 2l20l21, and

r < min{m,n}. The system is underdetermined when there are enougtylfitter coefficients such that
m< n. In what follows, we assume that the system is underdeterigo that the feasible region of the design
problem contains more than one point. Let the singular vdkemposition (SVD) oA beA=USVT. All

of the solutions td{4.40) can be parameterized as

_ At _
X=A"b+V,@p=%s+V,0, (4.41)
Xs
whereA™ is the Moore-Penrose pseudoinverséoW¥, = V1 Vri2 -+ Vp] iS @ matrix composed of

the lastn — r columns ofV, and@ is an arbitrary(n — r)-dimensional vector. Henceforth, we shall uge
as the design vector insteadfThus, the vanishing moment condition is enforced and thebwr of free
variables involved is reduced fromton—r.

The design objective is to maximize the coding g&igsc of an N-level octave-band quincunx filter
bank, which is computed b{ {Z119) and can be expressed adiaemrfunction of the design vectq:. Let

G = —10log,;Gssc Then, the problem of maximizinGsgcis equivalent to minimizings. Although taking
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the logarithm helps improve the numerical stability of tigimization algorithm and reduce the nonlinearity
in G, direct minimization ofG remains to be a very difficult task. Our design strategy i$, tfoa a given
parameter vectap, we seek a small perturbatidig such thaG(@+ dy) is reduced relative tG(¢@). Because

|0¢|| is small, we can write the quadratic and linear approxinmetiof G(@ + 8) as
1
G(p+8p) ~G(@) +9"8p+ 56;Q6¢ and (4.42)

G(@+8¢) ~ G(@) +9' B, (4.43)
respectively, wherg is the gradient o5(@) andQ is the Hessian oG(¢) at the pointp. Having obtained
such ady (subject to some additional constraint to be describedtlgothe parameter vectap is updated
to @+ d¢. This iterative process continues until the reductiofsiti.e., \G(¢p+ Op) — G(tp)\) becomes less
than a prescribed toleranee

Consider the constraint on the frequency response. In@ddEB, we showed that for filter banks

constructed with two lifting steps, the frequency resparser functione,, of the highpass analysis filternH
is a quadratic polynomial ir as given by[[4.:39). Substituting{4141) infa{4.39), we have

en, = @ Hy@+ @' Sp 4 Co, (4.44)
where

Hp=V/HV:, sp=V] (Hx+H})xs+V]s,,
Cp = X HiXs +XJ S + Gy,
andHy, s, andcy are given in[[439). Note that from the above definition, ltdies from the factHy is
positive semidefinite thdt, is also positive semidefinite. Further, let us replgcey @« +- 34 and let the
SVD ofHy be given by
Hp=Un3V],.
Then, [£24) can also be written as
~ “ 112 =
en, = [[HiBg +&]|"+ &

and the constrainf{4.B4) becomes the second-order coséraimn

|Adp +&||° < S, — &, (4.45)

where

~ - 1~_
Ay =Z2U7,, 8= A T (2Hp@+Sp), and

& = OrH P + @S+ Co — |[&cl1%
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Based on the preceding discussions, we now show how to entipdo8OCP algorithm to solve the
problem of maximizing the coding gafBsgc(X), or equivalently minimizings, with the vanishing moment
constrainiAx = b as in [£.4D) and the frequency response constegjnt d,, as in [A34). This problem can

be formulated as the following iterative algorithm:

Algorithm 4.1 (Design algorithm for type-1 filter banks with two liftingegis) This algorithm consists of
the following steps:

Step 1. ComputeA andb in @2Z8) for the desired numbers of vanishing moments, ahclitateH,
Sp, andcy in [@44). Then, select an initial poigl. This point can be chosen randomly, or chosen to be a
quincunx filter bank proposed ihl[6]. The vanishing momentdition is satisfied, and because of the way
we choose the upper bouidd, for the frequency response error function, which will becdissed latemg
will not violate the frequency response constraint. In Wy, the initial point is in the feasible region.

Step 2. For thekth iteration, at the poingy, compute the gradiegtof G(¢) in (@.43), and calculatdly,
§, andc in (@Z3). Then, solve the SOCP problem given by:

minimize  g' &,
subjectto:  ||[Hkbp+8]| < /6, —& and (4.46)
18| < B,

wheref is a given small value used to ensure that the solution isimnvitre vicinity of @x. Then, updatepy
by @«1 = @ + ydyp, wherey = 1 or is a scalar determined by a line-search step explainetne detail
later. A number of software packages are available for sgldOCP problems. In our work, for example,
we use the SeDuMi optimization packa@el[42] to seek the aptolutiondy.

Step 3. If |G(@k:1) — G(@x)| < €, outpute* = @y, 1, computex* = Xs+V,@*, and stop. Otherwise, go
to step 2.

The vectox* output by the above algorithm is then the optimal solutiothts problem. The filter bank
constructed with the lifting filter coefficients’ has high coding gain, good frequency selectivity, and the
desired vanishing moment properties.

Two additional comments are now in order concerning the S@©@Blem [£.4b) in the second step of the
above iterative algorithm. In particular, the choicefois critical to the success of the algorithm. It should
be chosen such that

9’3 ~G(p+8)-G(@) for 8] =p.
If B is too large, the linear approximation (4143) is less adeyreesulting in the linear terrgTG,,, not

correctly reflecting the actual reduction@ If 3 is too small, the solution is restricted to an unnecessarily
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small region aroungy with k being the number of iterations, causing points outsidertiggon which may
provide a greater reduction (& to be excluded. For this reason, we incorporate a line séastep 2 to find
a better solution along the direction 8. We first evaluatés at Np equally spaced points betweep and
@« + ady along the direction 08, for somea > 1, including the pointpy + d4. Then, we use the point
@;; corresponding to the minim& to selecty. By including a line search, in each iteration the reduction
G is as large as the reduction obtained without the line sedrats makes the algorithm converge with less
iterations. The choice af depends on the choice #f Whenf is large, we can choose = 1. Whenp is
small, we can choose to be one or greater. Note that a greater valua afay imply more evaluations of
the coding gain functiofs in each iteration.

The second comment about step 2 concerns the choice of tiee bippnddy,, of the frequency response
error function in the SOCP probleln{4146).4, is too small, the feasible region of the SOCP problem may
be an empty set, especially for designs starting from a nariddial point. Therefore, we choos®, to be a

scaled version of the error functien, evaluated agy. That is, we select

&, = d (@FH P+ @iSp+Co) ,

where 0< d < 1is a scaling factor. In this way, the ermy;, is reduced after each iteration, and the frequency

response of the highpass analysis filtgrifdproves gradually with each iteration.

4.4.5 Design Algorithm with Hessian

In Algorithm[Z] of the preceding section, a linear appraaiion [Z:4B) of the coding gain functid is
employed. This necessitates that the perturbalipbe located in a small region. For this design problem,
we can instead use the quadratic approximatiofi.in4.42)hitnway, the approximation accuracy can be
improved, and the solution can be sought in a larger regiolgo®hm[Z1 can be adapted to utilize the
guadratic approximation with some minor changes to the SP®@BIem in each iteration. In step 2, we

minimizeg' 8 + %6qT,Q6¢. instead o' 8¢ in @Z8). That is, we seek a solution to the problem
minimize g8+ %6LQ6¢
subjectto:  [|[H8g+8|| < \/ﬁ and (4.47)
18] < B-

Letthe SVD of%Q be%Q = UQZQV(B. WhenQ is positive semidefinite, we can rewrite the objective fiorct

as
1 ~ - .
9" 8¢+ 58,Q0¢ = 1856 +%0|* + o (4.48)
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where
~ i 1~_7
_ T & _
Q_zéuQa %_ EQ ga and
to = ~o-

If we introduce another variableg to be the upper bound (ﬂf(z)&p+§Q
b=[10 --- 0T, then [Z4V) becomes the SOCP problem

‘ and defineSqD =n 6¢]T and

minimize  b' 3,
subject to: Hé&,ﬁ—ﬁg” < bTSqn
<4/0n, —¢ and

Hp+3

5 <5

whereQ — 0 Q] A= [0 H], andi = [0 1]. With the quadratic approximation, the algorithm reaches
the optimal solution with fewer iterations than the linegproximation case, but it takes longer for each iter-
ation as the coding gain is evaluated many more times whepgting the Hessian. An example illustrating

the above statement is given as follows.

Example 4.5(Design example with the Hessian matriX)wo filter banks, EX1 and EX2, are designed using
Algorithm[Z] and the revised algorithm with the Hessiaspestively. These filter banks are optimized for
two dual and two primal vanishing moments and maximal codjaig assuming an isotropic image model
with correlation coefficienp = 0.95 and a one-level decomposition. For both of the designlenady the
same initial point is used, which corresponds to the filtenkbeonstructed using the method [d [6] with
four primal and four dual vanishing moments. Informatiowmatithe optimization processes and results are
summarized in TablE4.1. From this table, we see that veriasinesults are obtained for these two designs
in terms of the coding gain. For the design with the quadegijgroximation, the time used for each iteration

is increased compared to the linear-approximation casehbunumber of iterations is reduced greatly™

Note that [Z.288) holds only whe@ is positive semidefinite an@ need not always be positive semidefi-

nite. WhenQ is not positive semidefinite, we can always revert to the disleedlinear approximation.

4.5 Design of Type-1 Filter Banks with More Than Two Lifting Steps

The strategy for the design of type-1 filter banks with momntiwo lifting steps is similar to the two-

lifting-step case. When more lifting filters are involvedwever, the relationships between the filter bank
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Table 4.1: Comparison of algorithms with linear and quadi@proximations
Filter bank EX1 EX2

Approximation linear | quadratic

One-level isotropic coding gain (dB) 6.86 6.86

Number of evaluations db per iteration| 10 65
Average time per iteration 0.4 1.0
Number of iterations 41 5

Total time (seconds) 20.1 51

characteristics (i.e., coding gain, vanishing moment pri@s and frequency selectivity) and the lifting filter
coefficients become more complicated. In this section, wisider how to formulate the design as an SOCP
problem based on these relationships.

The computation of coding gains in this case is basically#me as the two-lifting-step case discussed in
SectioZ.411. For aN-level octave-band quincunx filter bank, the coding gaiscis computed by[{4.39),

andGsgcis a nonlinear function of the lifting filter coefficients.

4.5.1 Vanishing Moments

Compared to the two-lifting-step case, the vanishing mdmeondition changes considerably for a type-1
filter bank with at least three lifting filters, like the oneasim in Figure[lZP. The condition is no longer
linear with respect to the lifting filter coefficient vectar With the notationsy, v, X, andEy introduced in
SectiofZ311, the frequency respongbgw)} of the analysis filters are given by {4116), affti(w)} can
each be expressed as a polynomiat.in

In order for this filter bank to hav8l dual vanishing moments, the frequency resp(fmls{e)) of the

highpass analysis filter should havéith-order zero a0 0]T. Therefore,

- 9™ M gy (ap, )
h(m) (O, O) _ la )
la a%nbaw{nl 00

—0 (4.49)

forallm= [mg ml]T, Mo + My € Zeven andmg+my < N, whereﬁla(w) is the signed amplitude response of
H, as defined in{Z15). As thas linear phase arﬁd(w) can be viewed as a polynomial)'mﬁla(w) and thus
ﬁ(l';‘)(o, 0) can also be viewed as polynomialséinin this way, in order to hav8l dual vanishing moments,

the lifting-filter coefficients irk needs to satisf)PN/Z]z polynomial equations. Similarly, in order to haMe
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primal vanishing moments, the frequency resp(flﬁgé(w) of the lowpass analysis filterg-should satisfy

anb+ml F‘Oa(o-bv o‘)l)
dap o™

ﬁgm (rm,m) =

=0 (4.50)

(mt,m)
for allm= [my my]" such thaimg +my € Zeyenandmy +my < N. It follows thatx needs to satiszN/Z}2
polynomial equations.

Below we give an example of a type-1 filter bank with more thvamlifting steps. We show how to derive

the condition for up to four dual and four primal vanishingments.

Example 4.6(Vanishing moment condition for a filter bank with threeifify steps) Consider a type-1 filter
bank with three lifting steps. The lifting filter coefficiemectorx is defined in [[£15). Fron{41l6), the
analysis filter frequency responses are
ho(w) = 1+x"EJvix'EJv, +X'EJv, and (4.51)

h(@) = & (X'E]vy +X"EJvs + X EJViX EJVoX EJvs + 1+ X EJvoX Elvs) . (4.52)
Recall that thenth elements ofs, assumes the form given il {#.6) ald (4.10), agch; € Z are defined
in (34) and[[ZB) for the odd- and even-indexed cases, césply. We define vectons, o andn ; to denote
the coefficients otw andwy in v, respectively. Themy o andny; each have Zgly 1 elements. Theth

element ofy g isng+ ny + 1 orng +ny — 1, and thenth element ofy 1 is ng — ny. We further defingy to be

= Ng dy © Nk d; Oik for do,dl S {0, 1}.

a Ay ol 1-dimensional column vector of all ones, amgh, 4,

With the above notation in place, frofdi{4149), in order foe fiiter bank to have two dual vanishing

momentsx should satisfy a third-order polynomial equation given by
8 EJilXEJioX"EJis+4X"EJiIX"Elis+ 2X"Eli; + 2X"Elis+1=0.
In order to have four dual vanishing momentsieeds to satisfy three more third-order equations
8X"E] Uy gy 0, X EZioX EJiz+8X EJitX  EJup g 0, X  Efiz+8X"Eliix"ELiX EJ Uz gy g,
+AXTEJUS 4 0, X" EZiz+4XTEJi3X EJUs 4o o, + X" E U o g, + X ESUg gq, =0,

for (do,d;) = (0,0), (0,1) and(1,1). Similarly, in order for the filter bank to have two primal vglining

momentsx should satisfy the quadratic equation
ax"Elixx"Elio— x"Eli,+1=0. (4.53)
To have four primal vanishing momenssneeds to satisfy three additional quadratic equations

TeT TeT; TeT; vieT TeT
AX'Ejug gy, X Eslo +4X E 11X EjUp gy 4, — 2X EjUs gy 4, =0,
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for (dp,d1) = (0,0), (0,1) and(1,1). O

Now we introduce another approach to enforce the conditiodesired vanishing moments properties.
Consider a type-1 filter bank witK lifting filters {A;}, where none of the transfer functiof8i(z)} are
identically zero, except possibBy (2). If the firstK — 1 lifting filters are fixed, to have a certain number of
dual or primal vanishing moments, the constraint onKttie lifting filter coefficients is a linear system. We

denote the analysis filters constructed with the fitgting filters as{Hi(')} fori =0,1. If K € Zeven We have

A (@) =AY P (w) and
A (@) = A V(@) + acMT )R (@) = i (@) + e“Caluchy Y (w).
Therefore, thekth lifting filter Ak can be used to impo$¢ dual vanishing moments to the filter bank. The

signed amplitude responﬁg) (w) of H(lK) needs to satisfy [4.19). Sinﬁg) (w) contains only the first-order
term ofax, (£.49) becomes a set {)IKI/Z]Z linear equations adx . Similarly, if K € Zqqq, We have

A (e) =AY

—

w) and

A5 (@) = A V(@) + &M )h{ Y (@) = A (@) + &1 Pafuch ™ ().

The Kth lifting filter Ak can provideN primal vanishing moments to the filter bank, if its indepemtde
coefficient vectorak satisfies a linear system (jSN/Z]2 equations. In summary, the last lifting filtercA
can be used to provide a certain number of dual or primal iémgsmoments if its coefficients satisfy a set
of linear equations. These results are useful in the sulmaptiesign algorithm proposed in Sectlonl 4.6, as

well as in Sectiofi 2513 for the choice of initial points.

4.5.2 Frequency Responses

Recall that in the two-lifting-step case, the frequencyoese constraint is defined 0 (4133) abhd (#.34), and
the constraint on the highpass analysis filter is a secoddraone. For type-1 filter banks with more than
two lifting steps, we defined the frequency response constiraa similar way. The frequency response
error functions of the lowpass and highpass analysis filtesaiever, are at least fourth-order polynomials
in the lifting filter coefficients. This is because the fregagresponses of the analysis filters &hd H, are

at least quadratic polynomials in the lifting filter coeféint vectorx when more than two lifting filters are
involved. Below is an example of the highpass analysis fileguency response of a type-1 filter bank with

three lifting steps.
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Example 4.7 (Frequency response of the highpass analysis filter witkethfting steps) Consider a filter
bank with three lifting filters A, A2, and Ag, where none of the transfer functions is identically zersing
x, Ex, andvi as defined in SectidiZ.3.1, frof{4.52), the signed ammitesponsé;,(w) of the highpass

analysis filter is a third-order polynomial in the liftingtél coefficient vectox given by
hia(@) = X"E]vy + X EJva + X E]vax" EJvox  EZvs + 1+ X EJvox EJvs.

Therefore, it follows that the frequency response errocfiome,, of H; as defined in[{433) is a sixth-order

polynomial inx. O

4.5.3 Design Problem Formulation

In the two-lifting-step case, we see that the vanishing mdroendition is a linear system of equations and
the frequency response constraint is a second-order carenits of the lifting filter coefficients. Thus, the
design can be formulated as an SOCP problem. For filter baitkawere than two lifting steps, the design
problem becomes complicated as the constraints on vagishoments and frequency responses become
higher-order polynomials in the lifting filter coefficients order to use SOCP, the constraints on vanishing
moments and the frequency response must be approximatatbhy &nd quadratic constraints, respectively.

We deal with the coding gaiGsgd(X) with the same strategy as in the two-lifting-step case. Tieal
approximation of with G(x) = —10log,, Gsed(X) is given by

G(x+8x) = G(x) +0' Jx,

whereg is the gradient ofs at pointx. We iteratively seek a small perturbatidgin x such thaG(x+ dx) is

reduced relative t&(X) until the difference betweeB(X+ dx) andG(X) is less than a prescribed tolerance.
As discussed in Sectidn Z.b.1, the constraint on vanishimigemts is a set of polynomial equationsin

We substitutex with xi + dx. Provided that|dx|| is small, the quadratic and higher-order termsjircan be

neglected, and these polynomial equations can be apprtedrbg the linear system
Adx = by (4.54)

In this way, the filter bank constructed with lifting filter efficientsx + dx has the desired vanishing moment
properties. Due to the problem formulation, the momentsitafrest are only guaranteed to be small, but not
exactly zero. In practice, however, the moments are tylyizaly close to zero, as will be illustrated by our
design examples.

As explained above, we can approximate the vanishing moomttitions by linear equations. Below,

we provide an example to illustrate the process of the liaparoximation.
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Example 4.8(Linear approximation of the vanishing moment conditioA$ shown in Examplg4l6, in order
for a filter bank with three lifting steps to have two primahighing moments, the lifting filter coefficient
vectorx needs to satisfy a quadratic equatibn{#.53). Replaciwgh x, + dx and neglecting the quadratic
term indx, we have thal{Z:%3) is approximated by the linear equatidy ias given by

(4% (EJi1igEp+EJizi{E1) — AJE5] 6x = — 4% Efirig EoX+ G EJin — 1.
O

Now we consider the frequency response of the highpassssdilfer H;. The weighted error func-
tion ey, is defined in[[433). In order to have good frequency seliégtithe functione,, must satisfy the
constraint [42:34). FronﬂZR8§11a(w) has at least a second-order termxin Therefore &, is at least a
fourth-order polynomial irx. Using a similar approach as above, we repbadsy X, + dx in ﬁla(w) with
|x|| being small, and neglect the second- and higher-order tierdis Now, hya(w) is approximated by a

linear function ofdx. Using [43B), a quadratic approximationeyf is obtained as
_aT T
e = 6XHk6x—|—6XSK—|—Ck,

whereH\ is a symmetric positive semidefinite matrix, add, ¢, andcy are dependent axx. Therefore, the

constraini,, < &y, can be expressed in the form of a second-order cone corsigin
v & [2 ~
[Hidx+ 5" < O, — & (4.55)

Note that the approximation is not appliede, butﬁla(w). In this way, the matriHy is guaranteed to be
positive semidefinite, which allows for the form of a secander cone as if{4.55).

As introduced above, for a filter bank with more than two tiftisteps, the frequency response error
functions can be approximated by quadratic functions oflitting filter coefficients. We illustrate the ap-

proximation process by the example below.

Example 4.9(Approximation of the frequency response error functio@pnsider a type-1 filter bank with
three lifting filters A, A,, and A;. From Exampl&4]7, we know that the signed amplitude respl?me)

of the highpass analysis filter is a cubic polynomial in tffnlg filter coefficient vectok given by
hia(@) = X"E]v1 +X ESVs + X EJvax" EJvox  E3vs + 1+ X EJVoX ESvs.

Replacingk by xi + dx and neglecting the quadratic and higher-orderternﬁs(Jﬁla(w) is approximated by
the linear function oy given by

hya(@) = 85 Ui + i,
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where
U =E{vi +Elvs+ (EJVoViE3 + ESVaVi Ep) Xy + ETvix  ESvoxg Elva
+EJVoX I Elvex ETv; + Elvex E]vix EJv, and

lk = Xg ETva + %) EZv3 + X} ETvix] EZVox] EZV3 + 14X ESvox] ELvs.

Then, the frequency response error functignis a quadratic function ady given by
en, = Oy Hidx + 8¢ Sc + Ci, (4.56)

where

Hye = / W(@udl do, sc= / 2W (@)U [ — Dhgg(@)] dew,  and
B [77'[, Tl')2 * [7“-! 7'[)2
' ~ 2
o = / _W(®) [I— Dhyg()]” de.

[77-[3 Tf)

SinceHy is positive semidefinite, the constraint on the frequenspoase of H can be rewritten as a second
order cone constraint d5{4155). Note that for filter bankh faiur lifting filters, the frequency response error

function for H; assumes the same form as[in{4.56). O

The approximation method illustrated by the preceding edarman also be used to control the frequency
response of the lowpass analysis filtey fidr filter banks with two or more lifting steps. For examplathw
two lifting steps, the analysis lowpass filter frequencpmaseﬁo(w) is a quadratic polynomial in the design
vectorg. We can replace by @ +dg in ﬁo(w) and keep only the constant and first-order terms. Then, the
error functiore,, computed with this linear approximation Iﬁu‘(w) becomes a quadratic functiondj, and
the constraing,, < &, can be expressed as a second-order codg.in

Based on the preceding approximation methods of the vargisihioment condition and frequency re-
sponse constraint, the design of filter banks with more thanlifting steps can be formulated as an iterative
SOCP problem. To solve this design problem, we use a schemikrsio Algorithm[4]. LetK be the

number of lifting steps. The new algorithm is given below.

Algorithm 4.2 (Design algorithm for type-1 filter banks with more than twitrig steps) This algorithm is
comprised of the following steps:

Step 1. Select an initial poinkg such that the resulting filter bank has the desired numbeamiting
moments. We can choose the first two lifting filters using thethad proposed for the two-lifting-step
case, and then set the other 2 filter coefficients to be all zeros. Alternatively, we canaamly select

the coefficients of the firgk — 2 filters, and then use the last two lifting filters to provideatland primal
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vanishing moments. In this way, the filter bank construct#t the initial pointxy has the desired number of
vanishing moments. Moreover, since the upper badndor the frequency response error function is chosen
in the same way as in Algorithin4.1, the frequency responastcaint will not be violated. Thereforgg is
inside the feasible region.

Step 2.  For thekth iteration, at the point,, compute the gradiegtof G(x), A andby in @54), and
Hy, &, andc in @358). Then, solve the SOCP problem:

minimize @' o«
subjectto:  Axdx = by,

|Hdx+5&|| < /&, — & and

18x]| < B.

The linear constraind dx = by can be parameterized as in Algoritfiml4.1 to reduce the nuwféesign

(4.57)

variables, or be approximated by the second-order {@néx —by|| < &5 with &5 being a prescribed toler-
ance. Then, we can use the optimal solutdgrto updatex by X«,1 = Xk + 0x. We can also incorporate a
line search into this process to improve the efficiency ofdlgerithm.

Step 3. If |G(Xk 1) — G(X)| < &, then outpuk® = X, ; and stop. Otherwise, go to step 2.

Upon termination of the above algorithm, the outgtitwill correspond to a filter bank with all of the
desired properties. In step 2, we deal with the consbgpin the same way as in Algorithin 3.1 and it
is chosen to be a scaled version of the error function eveduat the poink,. We use a variable scaling
factorD in the frequency response error functibn(%.33) since thguigt gain of H is not fixed in this case.
For thekth iteration, we choosP to be the Nyquist gain of the highpass analysis filter obthiinem the
previous iteration (i.eD = ﬁla(n, 17) with Flla(w) being the signed amplitude response gfdthtained from
the (k— 1)th iteration).

Due to the linear approximatiofi.{4154), the moments astetiaith the desired vanishing moment con-
ditions are only guaranteed to be small but not necessamity. ZAn adjustment step can be applied after step 3
to further reduce the moments in question at the expenselafta decrease in the coding gain. This step
is formulated as follows. Lefl"i(x)} = 0 be the set of polynomial equations that the lifting filteeffizient
vectorx needs to satisfy to achieweprimal andN dual vanishing moments. Whejdy|| is small, the linear

approximation of ' (x* + dx) is obtained by
Fi(X* +8x) = Ti(X') + 9/ x,

whereg; is the gradient of ; at the poink*. This adjustment process can then be formulated as thevialip
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optimization problem:

minimize 'y [Fi(x") +978,)°
| (4.58)
subjectto:  [|0x|| < Ba,

wheref; is a prescribed small value. The objective functior QI (& be rewritten as

23 Ti(x)gi | + 5 FEx).

Z (ri(X*) +g;r6x)2 = 5; (Zg@r) 5x+6)-(r

Sincey;gig’ is positive semidefinite, the objective function can be ezped in the forrﬁﬁ 50x+55 H2+ Cs-
If we introduce another variablg to be the upper bound of the teri 58« + 35|, the problem in[[Z-H8)

becomes
minimize n
subjectto:  |[Hg8x+5%) <n and
([0l < Ba-
The above problem is equivalent to the SOCP problem
minimize b &y
subject to: Hl-zlgéx—i—%H <b"é, and
13| < Ba,

wheredy, = [ 84)T,b=[10--- O]T,As=[0 Azl andi=[0 1].
Similar to the two-lifting-step case, for the design of filkanks with more than two lifting steps, we can

also use the quadratic approximation of the coding gaintfan& given by
T 1ot
G(x+0x) ~ G(xX) +g' dx + §6X Q0.

A similar change can be made to the SOCP probleml4.57) insiteplgorithm[Z2.

4.6 Suboptimal Design Algorithm

For filter banks with more than two lifting steps, Algoritiim@4an only guarantee nearly vanishing moments
due to the approximation in the design process. In this@ective introduce a suboptimal design method

to obtain exact vanishing moments for filter banks with mow@nttwo lifting steps. LeK be the number
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of lifting steps. The strategy is to first design a filter bankhwK — 2 lifting steps without any vanishing
moments. Then, we design two additional lifting filters irder to achieve desired numbers of dual and
primal vanishing moments. In this case, as discussed anthefeSectiod 4511, the constraint on vanishing
moments is linear and exact vanishing moments can be achiéuge procedure for the design of a filter

bank withK lifting steps withN dual andN primal vanishing moments is given by the following:

Algorithm 4.3 (Suboptimal design algorithm for filter banks with more tiaa lifting steps) This algorithm
consists of the following steps:

Step 1.Design a filter bank constructed wikh— 2 lifting steps with high coding gain and good frequency
response, but without any vanishing moments.

Step 2. Design the(K — 1)th lifting filter Ax_1. If K € Zeven Ax_1 is designed to provid&l dual
vanishing moments. The condition is a linear systen\il‘?b/fﬂ2 equations in the filter coefficients of¢A ;.
Therefore, A_1 should have at Ieas{tﬂl/z]2 independent coefficients. K € Zyqq, Ak_1 is designed to
provideN primal vanishing moments and must have at Iéals/tZ]z independent coefficients.

Step 3. Design theKth lifting filter Ak. Similar to the previous step, f&¢ € ZeyenandK € Zoqq, Ak
is designed to providsl primal andN dual vanishing moments, respectively. This filter must hevieast
N/2]? or [N/Z]Z independent coefficients.

For step 1, we use Algorithin 4.1 br#.2 with the constraint anishing moments being completely
removed. For steps 2 and 3, since the constraint is line&eidésign vector, we employ an algorithm similar

to Algorithm[Z1. In this way, the resulting filter banks halesired number of (exact) vanishing moments.

4.7 Design Examples

In order to demonstrate the effectiveness of our propossididenethods, we now present several examples of
filter banks constructed using our methods. For all of thégthesxamples in this section, the optimization is
carried out for maximal coding gain assuming an isotropiggamodel with correlation coefficient= 0.95

and a six-level wavelet decomposition.

Several type-1 filter banks, identified by names OPT1 to OREre designed using our proposed algo-
rithms. For comparison purposes, we also consider a tyge2bank, referred to as TYPEZ2, and three filter
banks, referred to by the names KS1, KS2, and 9/7, producettliyods previously proposed by others. The
KS1 and KS2 filter banks are quincunx filter banks construagidg the method il [6]. The 9/7 one is the

well-known separable 9/7 filter bank 40], with four primaldafour dual vanishing moments. Some of the
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Table 4.2: Filter bank comparison

Filter Support of Analysis filters Coding gain(dB)| Vanishing moments
banks lifting filters™ Lowpass Highpass Iso. Sep. |N N Max.
OPT1 6x6,6x6 13x13 =<7 12.06 1359 | 2 2

OPT2 6x6,6x6 13x 13 Tx7 12.02 1338 |4 4

OPT3 4x4,4x4,4x4 9%x9 13x 13 | 12.23 1326 | 2 2 10712
OPT4 4x4,4x4,2x2,2x2 | 13x13 11x11 | 12.21 1307 | 2 2 10710
OPT5 | 4x4,4x4,2x2,2x2 | 13x13 11x11 | 1214 1290 |4 4 101
OPT6 4x4,4x4,4x4,4x4 | 17x 17 13x13 | 12.23 1302 | 2 2 108
OPT7 || 2x2,2x2,4x4,4x4 | 13x13 9% 9 12.16 13.08 | 2 2

TYPE2 || 1x1,1x1,5%x5,5x5| 18x17 10x 9 12.03 1233 (1 1

KS1 4x4,4%x4 9%x9 5x5 11.94 1308 | 4 4

KS2 6x6,6x6 13x 13 Tx7 1195 1364 |6 6

9/7 2,2,2,2 9 7 12.09 1488 | 4 4

Tall of these filter banks employ lifting filters with diamormstiaped support, except TYPE2 and 9/7

important characteristics of the various filter banks amshin TabldZR, where the columns in order cor-
respond to the filter bank names, support sizes of the liftitegs, support sizes of the lowpass and highpass
analysis filters, six-level isotropic and separable codjams (three-level for the 9/7 separable filter bank),
numbers of dual and primal vanishing moments. Some of tle fitinks are designed using Algorithml4.2,
and thus these filter banks have nearly vanishing moments.migximal order of the moments in question
for these filter banks are shown in the rightmost column ind@Bl. The frequency responses and the scaling
and wavelet functions associated with the first eight filenks are illustrated in Figur€s#.9[fa 4.24. From
these figures, we see that the optimal filter banks have g@wdatid-shaped frequency responses, and result
in smooth scaling and wavelet functions. For the optimdigigned filter banks OPT1 to OPT7, the lifting
filter coefficient vectorda;} as defined inl{413) anf{4.7) are given in Figure$[4.8, 4.7Hzhd

The first two filter banks, referred to as OPT1 and OPT2, wesigded using AlgorithnizZl1 with
two lifting steps. Exact vanishing moments are achieveduph the linear constrainf{4140). Compar-
ing OPT2 with OPT1, the degrees of freedom in the design poaee reduced as the number of vanish-
ing moments increases. The filter bank obtained with moréskiarg moments has a slightly lower cod-
ing gain, but smoother frequency responses and assocaédgsand wavelet functions as shown in Fig-

uredZ AT 410, abd412.
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Figure 4.6: Lifting filter coefficients for (a) OPT1, (b) OP;Ténd (c) OPT3.
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Figure 4.7: Lifting filter coefficients for (d) OPT4, (e) OP;Tand (f) OPT6.
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Figure 4.8: Lifting filter coefficients for OPT7.

The next four filter banks, referred to as OPT3 to OPT6, wesigded using Algorithir 212 with either
three or four lifting steps. In this case, as the vanishingrmaat condition is approximated by a linear
system[[4.54), the moments in question are small but notgelgzero. For these design examples, however,
the zeroth and second (if applicable) moments are nearhiagien the order of 1 to 10~13, which is small
enough to be considered as zero for all practical purposhs.fiist and third moments are automatically
zero due to the linear-phase property as previously discuss Sectiod.Z511. The filter bank OPT5 has
the same lifting filter supports as OPT4, but is designed & maore dual and primal vanishing moments.
From FigureEZ 1% 21172116, dnd4.18, we see that, comhpa@PT4, OPT5 has better frequency responses
and leads to smoother scaling and wavelet functions, butddéeng gain of OPT5 is about 0.07 dB lower
than that of OPT4.

The filter bank OPT7 was designed using the suboptimal mettgarithm[Z3, where the four lifting
filters are designed using three separate steps. We seeRAat iias a lower coding gain than filter banks
obtained with AlgorithnZZ12 where all of the lifting filtersajointly optimized. In this case, however, the
moments in question are exactly vanishing.

The TYPEZ2 filter bank is an example of a type-2 filter bank. Redbtat for a type-2 filter bank, the
highpass analysis filter t+has antisymmetry. This leads to the frequency respﬁf(sa) of Hy being zero
at[0 0" and[0 + ", and at least one dual and one primal vanishing moments. tfiés?2 filter bank
has a high coding gain but poor frequency responses as tipassfilters cannot preserve the vertical high
frequencies, as illustrated in Figlire4.23.

From TabldZ4P, clearly, the optimal designs, OPT1 to OP&Vethigher isotropic coding gains than the
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Figure 4.9: Frequency responses of the (a) lowpass analyslsighpass analysis, (c) lowpass synthesis, and

(d) highpass synthesis filters of OPT1.

qguincunx KS1 and KS2 filter banks. Furthermore, the desigtfs three and four lifting steps also have a
higher coding gain than the 9/7 filter bank, which is very iegsive considering that the 9/7 filter bank is

well known for its high coding gain.

4.8 Image Coding Results and Analysis

In order to further demonstrate the utility of our new filteariixs, they were employed in the embedded
lossy/lossless image coder pf[43]. This coder can be ustdeither nonseparable or separable filter banks
based on the lifting framework. Reversible integer-te@gdr versions of filter banks are employed. For the

most part, the JPEG-2000 test images [44] were used in owariexents. Using each of the filter banks
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Figure 4.10: Scaling and wavelet functions for OPT1

wavelet, and (d) dual scaling functions.
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Figure 4.11: Frequency responses of the (a) lowpass asa{pgihighpass analysis, (c) lowpass synthesis,
and (d) highpass synthesis filters for OPT2.
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Figure 4.12: Scaling and wavelet functions for OPT2. Thep(apal wavelet, (b) primal scaling, (c) dual

wavelet, and (d) dual scaling functions.
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Figure 4.13: Frequency responses of the (a) lowpass asa{pgihighpass analysis, (c) lowpass synthesis,

and (d) highpass synthesis filters of OPT3.
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Figure 4.14: Scaling and wavelet functions for OPT3. Thep(apal wavelet, (b) primal scaling, (c) dual

wavelet, and (d) dual scaling functions.
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Figure 4.15: Frequency responses of the (a) lowpass asa{pgihighpass analysis, (c) lowpass synthesis,

and (d) highpass synthesis filters for OPT4.
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Figure 4.16: Scaling and wavelet functions for OPT4

. Theptapal wavelet, (b) primal scaling, (c) dual
wavelet, and (d) dual scaling functions.
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Figure 4.17: Frequency responses of the (a) lowpass asa{pdihighpass analysis, (c) lowpass synthesis,
and (d) highpass synthesis filters for OPT5.
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Figure 4.18: Scaling and wavelet functions for OPT5. Thep(apal wavelet, (b) primal scaling, (c) dual

wavelet, and (d) dual scaling functions.
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Figure 4.19: Frequency responses of the (a) lowpass asa{pgihighpass analysis, (c) lowpass synthesis,

and (d) highpass synthesis filters for OPT6.
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Figure 4.20: Scaling and wavelet functions for OPT6.

wavelet, and (d) dual scaling functions.
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Figure 4.21: Frequency responses of (a) lowpass analpibjghpass analysis, (c) lowpass synthesis, and

(d) highpass synthesis filters for OPT7.

98



99
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Figure 4.22: Scaling and wavelet functions associated@RfA 7. The (a) primal wavelet, (b) primal scaling,

(c) dual wavelet, and (d) dual scaling functions.
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Figure 4.23: Frequency responses of the (a) lowpass asap3ihighpass analysis, (c) lowpass synthesis,

and (d) highpass synthesis filters for the type-2 filter bank.
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Figure 4.24: Scaling and wavelet functions for the type+{2ifibank. The (a) primal wavelet, (b) primal

scaling, (c) dual wavelet, and (d) dual scaling functions.

Table 4.3: Test images

Image Size Bits/sample| Model | Description

finger| | 512x 512 8 isotropic | fingerprint

sar? 800x 800 12 isotropic | synthetic aperture radar
gold 720x 576 8 separablel houses

in Table[42, the test images were coded in a lossy manneriatusgait rates, and then decoded. The error
between reconstructed and original images were measutedis of PSNR. In the cases of quincunx and
separable filter banks, six and three levels of decompasitere employed, respectively.

We present coding results for three images, namel\figer, sar2, andgold images. Information
about each of these images is provided in Téablé 4.3. Thenaliginages and the contour plots of their
normalized autocorrelation functions are illustrated igufe 4. 2H 2.6, add Z127. We see faiger and
sar?2 are images more isotropic in nature, wtgield is more separable.

Since our filter banks are designed assuming an isotropigemeodel, we first discuss coding results for
thefinger| andsar2 images shown in Tablés 3.4 andl4.5, respectively. Obviothetyoptimal filter banks
perform very well, consistently outperforming the KS filanks. For th#inger image, the OPT3 design
outperforms the 9/7 filter bank, except at the lowest bit.r&te thesar2image, our optimal designs OPT1
to OPT6 achieve better results than the 9/7 filter bank in wass. This is a very encouraging result, as the
9/7 filter bank is generally held to be one of the very best aliferature. The lossy reconstructed images
for finger at the compression ratio of 32:1 using OPT1, OPT3, KS2, and& shown in Figule Z.P8. It
is apparent from the figures that the reconstructed images@sed with the optimal filter banks have good
subjective quality. Now we consider the coding results faijgo1d image shown in Table4.6. This image
is more separable than isotropic in nature, as demonstogtdte contours of its normalized autocorrelation

function plotted in Figur€&Z.27(b). From Tallle 4.6, we ses th most cases the optimally-designed filter
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Figure 4.25: (a) ThEinger/image and (b) the contour plots of its normalized autocati@h function.
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Figure 4.26: (a) Thear2image and (b) the contour plots of its normalized autocatih function.
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Figure 4.27: (a) ThigoLld image and (b) the contour plots of its normalized autocati@h function.

banks, OPT1 to OPT7, outperform the KS1 and KS2 quincunx filéaks. It is worth noting that, although
we only present results for three test images herein, thienapfilter banks proposed above consistently
provide better coding performance than the KS1 and KS2 Edeks for other JPEG-2000 testimages in most
cases. In particular, OPT1, OPT3, and OPT4 consistentfyesfarm the previously proposed quincunx filter
bank for the JPEG-2000 test images in approximately 80%scasel OPT3 has the best overall performance
among the optimally-designed filter banks.

Our experimental results in image coding show that the @pdimin, frequency selectivity, vanishing
moments, and the scaling and wavelet functions all havetsffin the coding performance of the associated
filter bank. High coding gains are important for a filter baolathieve good coding performance. Although
the coding results highly depend on the particular imagd#tea bank with a high isotropic coding gain
normally leads to better results in lossy coding for isoitamages. The separable coding gain is important
for images that are more separable than isotropic. For ebeartie 9/7 filter bank has a separable coding
gain of 14.88 dB, which is 1.5 to 2.2 dB higher than that of thieeo filter banks in TablEZ4.2. This filter
bank outperforms the other filter banks for the separgblel] image except at the lowest bit rate. If the
analysis and synthesis filters of our optimal designs or tBefiker banks are interchanged, the resulting
filter banks still have good frequency responses and smaating and wavelet functions, but the coding
gains are lowered by 1 to 2 dB compared to the original filterkisa When employed in the image coder,

these filter banks yield low PSNR and poor subjective qualitthe reconstructed images. An example of
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Table 4.4: Lossy compression results for/fii@ger image

Filter bank| PSNR (dB) at various CR
128 64 32 16
OPT1 19.52 21.28 24.15 27.46
OPT2 1941 21.18 24.04 27.38
OPT3 19.60 21.50 24.05 27.49
OPT4 19.68 21.36 24.07 27.46
OPT5 19.54 21.18 23.87 27.21
OPT6 19.69 21.42 2412 27.48
OPT7 19.47 21.22 24.01 27.48
TYPE2 19.25 21.10 23.58 26.56
KS1 19.24 2099 23.78 27.14
KS2 19.27 21.07 24.02 27.3R
9/7 19.70 21.48 24.00 27.47%

Tcompression ratio

Table 4.5: Lossy compression results for#ag2 image

Filter bank| PSNR (dB) at various CR
128 64 32 16
OPT1 22.63 23.47 24.68 26.638
OPT2 22.60 23.43 24.63 26.58
OPT3 22.69 23.53 24.78 26.75
OPT4 22.67 23.54 2473 26.70
OPT5 22.63 2349 24.69 26.72
OPT6 22.65 2353 24.76 26.74
OPT7 2259 2347 24.67 26.68
TYPEZ2 22.43 23.36 2456 26.5D
KS1 2251 23.32 2450 26.51
KS2 2256 23.38 2455 26.51
97 22.64 2351 24.65 26.60

Tcompression ratio
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Table 4.6: Lossy compression results for/ged image

Filter bank| PSNR (dB) at various CR
128 64 32 16
OPT1 27.14 28.84 30.82 33.27
OPT2 27.06 28.80 30.76 33.22
OPT3 27.14 28.87 3091 33.37
OPT4 27.02 28.83 30.81 33.28
OPT5 26.90 28.67 30.74 33.1B
OPT6 27.11 28.82 30.85 33.2b
OPT7 27.04 2881 30.80 33.18
TYPE2 26.65 2841 30.40 32.80
KS1 26.98 28.66 30.66 33.1P2
KS2 27.00 28.75 30.72 33.19
97 27.03 29.03 31.25 33.78

Tcompression ratio

the reconstructed image illustrating the above statensestiown in Figur€&Z.29(a), where the filter bank is
derived from KS2 with interchanged analysis and synthdsis<i

The primal scaling and wavelet functions affect the subjeauality of the reconstructed image. In the
case of lossy coding, the shape of these functions may appeatifacts in reconstructed images. Fidurel4.29
shows part of the lossy reconstructed images using varitias lfianks, including the Haar-like one from
Exampld3.B discussed in Sectlon316.2. The scaling funstissociated with the Haar-like filter bank have
the shape of a parallelogram as illustrated in Fidurel3.108e garallelogram-shaped artifacts are clearly
visible in the reconstructed image depicted in Fiqurelhp9(

The frequency selectivity is also important for a filter bardoding performance. This is demonstrated
by the coding results of the TYPE2 filter bank. Recall that fliier bank has a high coding gain of.03 dB,
which is very close to that of OPT1 and OPT2, but the lowpaatyais filter of TYPE2 does not have a desir-
able diamond-shaped passband and cannot preserve higkficgs in the vertical direction. Tab[esSI4Z] 4.5
and[Z® show that this filter bank performs worse than OPT1GIR@2 in all cases with.Q dB to Q9 dB
lower PSNR. Furthermore, comparing Figures¥.29(c) andffd)image reconstructed using the type-2 filter
bank contains less details than the image reconstructad @#T2.

Therefore, in order to have high performance in image cadiriidter bank should have high coding gain,
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Figure 4.28: Part of the reconstructed imagesfibriger] at the compression ratio 32 using (a) OPT1,
(b) OPTS3, (c) KS2, and (d) 9/7 filter banks.
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smooth scaling and wavelet functions, and good frequerspyoreses. Our optimal filter banks have all of

these properties, and have proven to be very efficient fogatading.

4.9 Summary

In this chapter, we have presented our new lifting-basedrmaterization for three types of linear-phase PR
quincunx filter banks and examined how the parametrizatiorbe used to build filter banks with quadrantal
centrosymmetry, which are compatible with the symmetrieesion algorithms introduced in Chapfér 3.
Then, we have proposed several new optimization-basedoaiefor the design of high-performance quin-
cunx filter banks for the application of image coding. In oawmdesign methods, the lifting parametrization
is employed, and the coding gain is maximized subject totcaimss on the vanishing moment and frequency
response properties. In this way, these algorithms yiakhli-phase PR quincunx systems with high coding
gain, good analysis/synthesis filter frequency selegtiahd certain vanishing moment properties. Finally,
we have presented several examples of filter banks desigtiedw method, and demonstrated by experi-

mental results that these design examples work well for ecagling.
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Figure 4.29: Part of the reconstructed imagesffiger at compression ratio 32 using (a) KS2 with inter-
changed analysis and synthesis filters, (b) the Haar-iReQPT2, and (d) TYPEZ2 filter banks.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, we have studied the design and applicaticqquafcunx filter banks. In particular, we have
introduced symmetric extension algorithms for quincurtefibanks and proposed design methods for con-
structing high-performance quincunx filter banks for thplegation of image coding.

In the 1D case, the symmetric extension technique is a cortymusad solution to the boundary problem
when finite-length sequences are processed. We have shawthisatechnique can be extended to the 2D
nonseparable quincunx case. We have examined three tygeadifantally-centrosymmetric quincunx filter
banks, and proposed an algorithm for each type to build renesive transforms of 2D sequences defined on
arbitrary rectangular regions. The type-1 algorithm cathfer be applied in an octave-band decomposition if
the analysis filters satisfy certain additional conditiofikese schemes are potentially useful in applications
that process finite-extent sequences using quincunx fiteks

Filter banks are highly effective forimage coding applicas. We have proposed three new optimization-
based techniques for the design of quincunx filter banksagie coding. The proposed design techniques
are summarized in Algorithnis 4 L 1.2, dndl 4.3 and yielddifghase PR systems with high coding gain,
good analysis/synthesis filter frequency responses, atairteual and primal vanishing moment properties.
In our design algorithms, a parametrization of quincuneifiianks based on the lifting scheme is employed
to structurally impose the PR and linear phase propertiesn;Tthe coding gain is maximized subject to a set
of constraints on vanishing moments and frequency selctiklgorithm[Z] is used to design filter banks

with two lifting steps. Algorithm&Z12 arld4.3 both work foltér banks with more than two lifting steps. In
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Algorithm[Z2, all of the lifting filter coefficients are joily optimized, while AlgorithnTZB is a suboptimal
one which utilizes the first two algorithms to optimize thigitig filter coefficients in three separate steps.
It is observed that although Algorithim 2.3 yields filter bantith exact vanishing moments, in general, this
algorithm does not work as well as AlgoritimM$.2. Another artant observation is that Algorithin2.2 yields
the best filter banks among all of our designs. Design exasgiiiiter banks with all the desirable properties
were presented for each of the three techniques. Thesealffiier banks were employed in an image coder
and their coding performance was compared to that of sonsérxiquincunx and separable filter banks. The
experimental results show that our new filter banks outpertbe previously proposed quincunx filter banks
for the set of JPEG-2000 test images in most cases, and soesdtiese designs are even able to outperform
the 9/7 filter bank, which is considered to be one of the vest bethe literature. In particular, the OPT1,
OPT3, and OPT4 filter banks consistently outperform theiptesly proposed quincunx filter banks for the
JPEG-2000 test images in approximately 80% of the casesseTtesults demonstrate the effectiveness of

our new design techniques.

5.2 Future Research

In this thesis, we focus exclusively on quincunx filter banikhich are the simplest multidimensional non-
separable filter banks. Thus, more work can be done for thergemultidimensional case. For example,
symmetric extension algorithms for the face-centeretasttombic lattice (an extension of the quincunx lat-
tice to the three-dimensional (3D) case) would be usefudéaling with finite-extent 3D sequences. Another
example of future research in this regard is the constrnafdinear-phase multidimensional, multichannel,
nonseparable filter banks based on the lifting structur@ahticular, it would be helpful to parameterize the
lifting filters such that the resulting analysis and synihé&kers have desired linear-phase properties.

In our optimal design algorithms for linear-phase PR quimdiilter banks, we assume either an isotropic
or a separable image model when maximizing the coding gdiilewnost images are not completely sepa-
rable or isotropic in nature. Therefore, if the separabtiaatropic coding gains could be optimized jointly,
the resulting optimal filter bank may achieve better perfamge in image coding.

In the filter bank design algorithms, we also used a diamdraghad passband for the ideal frequency re-
sponse. With the quincunx sampling matrix, however, thendiad shape is not the only possibility. Although
this kind of passband matches the human visual system arebisadle in image coding, in some cases, a
hexagonal- or fan-shaped passband may be more suitabls, Ttuould be useful to design quincunx filter

banks for different passband shapes.
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The type-2 and type-3 filter banks introduced in SediionZtve antisymmetric highpass filters. As
mentioned previously, it is impossible for these filter bautét have good diamond-shaped frequency re-
sponses, thus limiting their utility for image coding. Tisgid, however, such filter banks may be advan-
tageous in other applications which employ hexagonal- wistaaped passband/stopband. Therefore, algo-

rithms for the design of type-2 and type-3 filter banks candipfhl for these applications.
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