An Improved Lawson Local-Optimization Procedure and Its Application

Yue Fang

University of Victoria

yuefang@uvic.ca

April 23, 2018

Outline

1 Introduction and Background

- Research Question and Purpose
- Triangulation and Triangle Mesh Models
- Triangulation-Cost Optimization
- Edge Flip
- Local Optimization Procedure(LOP)
- Triangulation Cost Function

2 N-flip Optimality

3 The Modified LOP(MLOP)

- Permissible Flip Sequence
- Proposed Permissible Flip Sequence Policy

4 Evaluation of Proposed Methods

- Mesh Optimization
- Conclusion

Research Question and Purpose

- study the problem of selecting the connectivity of a triangulation in order to minimize a given cost function
- great importance for generating triangle mesh models
- in early work, the local optimization procedure (LOP) and lookahead LOP (LLOP) can only yield triangulation that satisfy a weak optimality condition.
- our interests:
 - further improvements to LOP and LLOP
 - a more general framework, modified LOP (MLOP)
 - satisfy a stronger optimality condition
 - yield triangulation of significantly lower cost

Introduction and Background

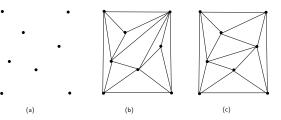
Triangulation and Triangle Mesh Models

Triangulation

Definition 1

(Triangulation). A triangulation of a finite set P of points in \mathbb{R}^2 is a set T of (non-degenerate) triangles satisfying the following conditions:

- **1** the union of all triangles in T is the convex hull of *P*;
- **2** the union of vertices of all triangles in T is P;
- $\mathbf{3}$ the interiors of any two triangles in T are disjoint; and
- 4 every edge of a triangle in T joins two and only two points from P.



Introduction and Background

Triangulation and Triangle Mesh Models

Triangle-Mesh Models

- a (triangle) mesh model consists of:
 - a set $P = \{p_i\}$ of sample points;
 - a triangulation T of P; and
 - the function values $\{z_i = \phi(p_i)\}$ for $p_i \in P$.

 apply linear interpolation over each triangle face to construct the triangle mesh model.

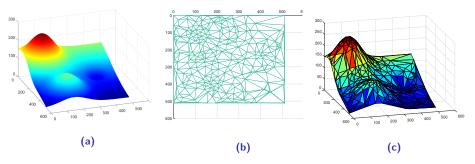


Figure 1: Mesh model of a bivariate function ϕ . (a)A bivariate function ϕ , (b) the triangulation and (c) the resulting triangle mesh model.

Yue Far	١g
---------	----

Introduction and Background

Triangulation-Cost Optimization

Triangulation-cost Optimization

Triangulation-cost Optimization Problem

Given a set P of points, a triangulation cost function^a c, and a mapping S from a triangulation of P to a subset of all triangulations of P, find a triangulation T of P such that

$$c(T) \le c(T')$$
 for all $T' \in S(T)$. (1)

^aa function maps triangulation to $\mathbb R$

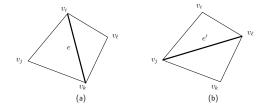


Figure 2 : (a) each black node represents a triangulations of P, (b) red and blue nodes represent T and T' respectively, where $c(T) \le c(T')$

An Improved LOP Method Introduction and Background Edge Flip

Edge Flip

- a very popular class of optimization schemes is the class based on edge flip.
- edge e is **flippable** if e has two incident faces and the union of these two faces is a strictly convex quadrilateral q.
- an edge flip is an operation that replace e by the diagonal e' of q.



a flip sequence is a sequence of edge flips. $s = (e_0, e_1, ..., e_{n-1})$

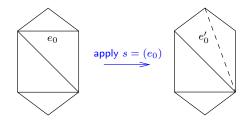
Introduction and Background

Local Optimization Procedure(LOP)

Local Optimization Procedure(LOP)

In order to address the triangulation-cost optimization problem

- the LOP chooses $S(T) = S_{\text{LOP}}(T)$.
- $S_{\text{LOP}}(T)$ is the set of all triangulation of P that are reachable from T by a single edge flip.
- no single edge flip applied to T can yield a new triangulation with strictly lower cost than T.



An Improved LOP Method
Introduction and Background
Triangulation Cost Function

Triangulation Cost Function

Triangulation cost function is defined as an accumulation of cost for individual triangulation elements, such as edges or faces.

■ an **edge-based cost function** *c* has the form:

$$c(T) = \sum_{e \in \mathcal{E}(T)} \text{edgeCost}(e),$$
(2)

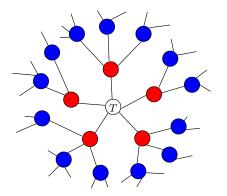
■ an **face-based cost function** *c* has the form:

$$c(T) = \sum_{f \in \mathcal{F}(T)} \text{faceCost}(f),$$
(3)

- cost functions considered in our work:
 - 1 angle between normals (ABN)
 - **2** absolute mean curvature (AMC)
 - **3** deviations from linear polynomials (DLP)
 - 4 distances from planes (DP)
 - **5** jump in normal derivatives (JND)
 - **6** squared error (SE)
 - 7 Yu-Morse-Sederberg (YMS)

N-flip Optimality

- each node corresponds to a distinct triangulation.
- two nodes are connected by an edge if the two triangulations are reachable from one another by a single edge flip.



- T is 1-flip optimal if no red node triangulation has a lower cost.
- T is 2-flip optimal if no red and blue node triangulation has a lower cost.

The Modified LOP(MLOP)

- permissible flip-sequence policy
 - specify S(T) indirectly in terms of flip sequences.
 - a rule that specifies the set of flip sequences starting with a flippable edge e_0 .
 - this set is denoted as permFlipSeqs_T(e_0).
- an edge e_0 is **optimial** if all the sequence of permFlipSeqs_T(e_0) can not reduce the cost of triangulation.
- **a** an edge e_0 whose optimality is uncertain is said to be **suspect**

The Modified LOP(MLOP) framework

given a triangulation and a triangulation cost function as input, the MLOP produces an optimal triangulation as output.

- 1 initially, mark each flippable edge in the triangulation as suspect edge
- 2 test if there exists a permissible flip sequence starting with a suspect edges can reduce the triangulation cost
- **3** if such a flip sequence exists, apply it, and then determine which edges become suspect.
- 4 iterate performing the step 2 and 3 in triangulation until no suspect edges remain.

The Modified LOP(MLOP)

Permissible Flip Sequence

Permissible Flip Sequence

- permissible flip-sequence policy: determine the particular set of flip sequences be considered.
 - four input parameters control the premissible flip sequence generation process.
 - maxLevel: determine the size of the region which edge flip can take place.
 - skip: the distance between the two adjacent edges in sequence is NOT necessary to be one if enable.
 - inward: allow to flip the edge, which has just been flipped, if enable
 - maxLength: restrict the maximum length of the flip sequences.

The Modified LOP(MLOP)

Proposed Permissible Flip Sequence Policy

Proposed Policies

Table 1 : Parameter selections for defining various permissible flip-sequence policies

	Parameter			
Policy	maxLevel	inward	skip	maxLength
$PFS_{IO}(L)$	L	true	false	∞^{\dagger}
$PFS_{IOS}(L)$	L	true	true	∞^{\dagger}
$PFS_{MLT}(L)$	L	false	true	2
PFS _{LOP}	0	false	false	1
PFS _{LLOP}	1	false	false	2

[†]Any value greater than or equal to L+1 is equivalent to ∞ .

The Modified LOP(MLOP)

Proposed Permissible Flip Sequence Policy

Proposed Methods for Using the MLOP

- **1** MLOP_A(L): apply the MLOP with PFS_{MLT}(L)
- **2** MLOP_B(L, M): apply the MLOP in two stages. Apply the MLOP with PFS_{IO}(M), and then apply MLOP with PFS_{MLT}(L). Reasons for two stages optimization:
 - avoid poor local minimum
 - allow the second stage optimization to be seeded with an initial triangulation that is in a more desirable region of the solution.
- **3** MLOP_C(L): apply the MLOP with PFS_{IOS}(L)

The Modified LOP(MLOP)

Proposed Permissible Flip Sequence Policy

Optimality Properties of the LOP, LLOP, MLOP

- LOP only guarantees 1-flip optimality.
- LLOP can only guarantees 2-flip optimality if $inflDist(c) \le 1$ (i.e. SE cost function)
- MLOP_A(L), MLOP_B(L, M) and MLOP_C(L) methods are guaranteed 2-flip optimality as long as L is sufficiently large.
- L = 2 is large enough to ensure 2-flip optimality for the cost function considered.

Evaluation of Proposed Methods

Mesh Optimization

Evaluation of Proposed Methods—Mesh Optimization

 Table 2 : Triangulation costs obtained using the various optimization methods.

Cost		Triangulation Cost				
Func.	Mesh	LOP	LLOP	$MLOP_A(2)$	$MLOP_B(2,2)$	$MLOP_{C}(2)$
ABN	lena@1-ED@0.02	11916.60	10271.55	10089.16	9539.82	9417.04
ABN	n36-w113@0.005	7349.00	7002.41	6972.81	6905.48	6897.76
AMC	lena@1-ED@0.02	106401.89	101248.28	100792.96	99810.94	99481.09
AMC	n36-w113@0.005	6918326.24	6868876.57	6857626.68	6853149.95	6851738.72
DLP	lena@1-ED@0.02	973861.70	749538.76	751934.44	693624.80	693765.19
DLP	n36-w113@0.005	7673511.72	7065988.61	7008287.94	6890063.14	6838935.10
DP	lena@1-ED@0.02	99480.75	77684.29	78242.12	67863.62	70426.29
DP	n36-w113@0.005	5909169.34	5312215.54	5262803.93	5122322.64	5082415.04
JND	lena@1-ED@0.02	203874.69	190001.90	188589.17	187041.87	186462.70
JND	n36-w113@0.005	9831.93	9519.02	9479.73	9431.13	9422.08
SE	lena@1-ED@0.02	22684438	19285947	19134957	18297542	18333058
SE	n36-w113@0.005	899889559	874421792	873570760	869878114	869931291
YMS	lena@1-ED@0.02	3056206.81	2792159.74	2781951.65	2727975.11	2724628.16
YMS	n36-w113@0.005	2049.38	1791.59	1748.12	1685.08	1680.91

Evaluation of Proposed Methods—Mesh Optimization

Table 3 : Average rankings taken across all test cases

Cost	Average Rank (with Standard Deviation [†])				
Func.	LOP	LLOP	$MLOP_{A}(2)$	$MLOP_{B}(2,2)$	$MLOP_{C}(2)$
ABN	5.00 (0.00)	3.86 (0.34)	3.14 (0.34)	1.79 (0.41)	1.21 (0.41)
AMC	5.00 (0.00)	3.97 (0.18)	3.03 (0.18)	1.72 (0.45)	1.28 (0.45)
DLP	5.00 (0.00)	3.93 (0.25)	3.07 (0.25)	1.62 (0.49)	1.38 (0.49)
DP	5.00 (0.00)	3.76 (0.43)	3.21 (0.48)	1.62 (0.55)	1.41 (0.49)
JND	5.00 (0.00)	3.97 (0.18)	3.03 (0.18)	1.83 (0.38)	1.17 (0.38)
SE	5.00 (0.00)	3.72 (0.45)	3.24 (0.50)	1.55 (0.50)	1.48 (0.56)
YMS	5.00 (0.00)	3.45 (0.72)	3.07 (0.83)	2.14 (0.90)	1.34 (0.54)
Overall	5.00 (0.00)	3.81 (0.44)	3.11 (0.46)	1.75 (0.58)	1.33 (0.49)

[†]The standard deviation is given in parentheses.

Evaluation of Proposed Methods—Mesh Optimization

Table 4 : Comparison of reduction in triangulation cost obtained with various methods relative to the LOP.

	Median Reduction in Triangulation Cost			
Cost		Relativ	e to LOP (%)	
Func.	LLOP	$MLOP_A(2)$	$MLOP_B(2,2)$	$MLOP_{C}(2)$
ABN	13.80	14.76	19.72	19.77
AMC	4.30	4.64	5.85	5.96
DLP	13.53	14.57	18.21	17.89
DP	20.70	21.35	28.34	28.25
JND	6.14	6.63	7.42	7.59
SE	5.63	5.72	7.11	7.07
YMS	22.08	24.10	27.58	30.50

Evaluation of Proposed Methods

Mesh Optimization

Evaluation of Proposed Methods—Mesh Optimization

Table 5 : Triangulation costs	obtained using $MLOP_B(2, M)$	for various choices of M
-------------------------------	-------------------------------	----------------------------

Cost		Triangulation Cost			
Func.	Mesh	M = 2	M = 3	M = 4	M = 5
ABN	lena@1-ED@0.02	9539.82	9235.90	8950.96	8881.31
ABN	n36-w113@0.005	6905.48	6877.19	6862.76	6840.55
AMC	lena@1-ED@0.02	99810.94	98830.81	98579.41	98540.33
AMC	n36-w113@0.005	6853149.95	6852002.26	6851130.46	6848777.86
DLP	lena@1-ED@0.02	693624.80	689832.86	678211.34	631582.68
DLP	n36-w113@0.005	6890063.14	6817818.32	6718116.16	6721997.02
DP	lena@1-ED@0.02	67863.62	66484.86	64318.27	62851.59
DP	n36-w113@0.005	5122322.64	5001998.30	4962355.40	4933473.46
JND	lena@1-ED@0.02	187041.87	185816.54	185728.60	185482.90
JND	n36-w113@0.005	9431.13	9408.14	9392.62	9376.06
SE	lena@1-ED@0.02	18297542	17832396	17735184	17431940
SE	n36-w113@0.005	869878114	868600878	867165140	866664396
YMS	lena@1-ED@0.02	2727975.11	2691297.40	2657434.01	2661270.97
YMS	n36-w113@0.005	1685.08	1651.44	1634.73	1623.68

20

An Improved LOP Method Evaluation of Proposed Methods Mesh Optimization

Evaluation of Proposed Methods—Mesh Optimization

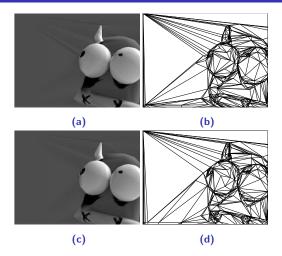


Figure 3 : Reconstructed images based on the mesh optimized by (a)(b) LOP method(34.70dB) (c)(d) LLOP method(35.36dB)

An Improved LOP Method Evaluation of Proposed Methods Mesh Optimization

Evaluation of Proposed Methods—Mesh Optimization

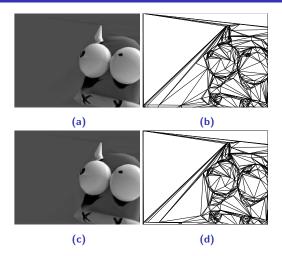


Figure 4 : Reconstructed images based on the mesh optimized by (a)(b) MLOPB(2,2) method(35.48dB) (c)(d) MLOPB(2,6) method(35.58dB)

Conclusion

- An improved version of the LOP, called the MLOP, is proposed. The MLOP framework has a number of degrees of freedom.
- $MLOP_B(L, M)$ and $MLOP_C(L)$ is guaranteed to yield 2-flip optimal triangulations for arbitrary cost functions if L is sufficiently large.
- MLOP_B(2,2) and MLOP_C(2) can produce triangulations of significantly lower cost than the LOP and LLOP.
- $MLOP_B(2,2)$ is the best choice for the cost function DP, DLP, or SE while $MLOP_C(2)$ is the best choice for the other cost function.
- MLOP_B(2, *i*) and MLOP_C(*i*) can achieve even better results by increasing *i* at the expense of increased computational cost.

An Improved LOP Method		
Evaluation of Proposed Methods		

THANK YOU

Convex Set

Definition 2

(Convex set). A set P of points in \mathbb{R}^2 is convex if and only if for every pair of points $a, b \in P$, every point on the line segment which joins points a and b is completely contained in P.

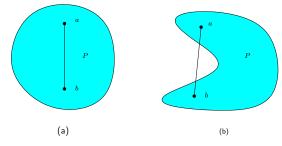


Figure 5 : Examples of (a) convex and (b) non-convex sets

Convex Hull

Definition 3

(Convex hull). The convex hull of a set P of points in \mathbb{R}^2 is the intersection of all convex sets that contain P.

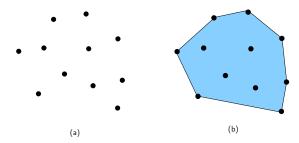
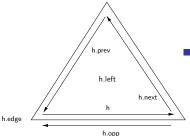


Figure 6 : Convex hull example. (a) A set P of points. (b) The convex hull of P.

An Improved LOP Method Levaluation of Proposed Methods Conclusion

Halfedge Structure

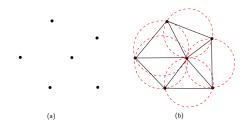


 Each edge is represented as a pair of directed edges(halfedges)

Delaunay triangulation

Definition 4

A Delaunay triangulation of a set P of points in \mathbb{R}^2 is a triangulation T such that no point in P is inside the circumcircle of any triangle in T.

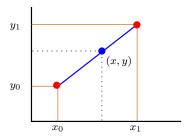


maximize the minimum interior angle of the triangles in the triangulation

An Improved LOP Method Evaluation of Proposed Methods

Linear Interpolation

Inear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

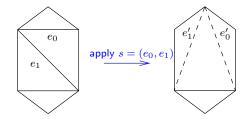


Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.

An Improved LOP Method Evaluation of Proposed Methods Conclusion

Lookahead LOP

- a variant of the LOP
- the LLOP chooses $S(T) = S_{\text{LLOP}}(T)$, where $S_{\text{LLOP}}(T) = S_{\text{LOP}}(T) \cup \Gamma(T)$.
- $\Gamma(T)$ is the set of all triangulations that are reachable from T by a valid length-2 flip sequence of the form (e_0, e_1) , where (e_0, e_1) share a common face.



N-flip Optimality

Definition 5

A triangulation T is said to be n-flip optimal with respect to the triangulation cost function c if the following condition holds:

$$c(T) \le c(T')$$
 for all $T' \in S_{\mathsf{NFO}}(T, n)$, (4)

where $S_{\text{NFO}}(T, n)$ is the set of all triangulations that are reachable from T by a (valid) flip sequence of length $\ell \leq n$.

• LOP: $\operatorname{permFlipSeqs}_T(e_0)$ chosen as $\mathsf{PFS}_{\mathsf{LOP}}$, where

$$\mathsf{PFS}_{\mathsf{LOP}}(e_0) = \{(e_0)\}$$
(5)

■ LLOP: $permFlipSeqs_T(e_0)$ chosen as PFS_{LLOP} , where

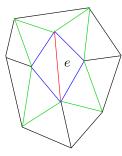
$$\mathsf{PFS}_{\mathsf{LLOP}}(e_0) = \mathsf{PFS}_{\mathsf{LOP}}(e_0) \cup \Gamma(e_0) \tag{6}$$

 $\Gamma(e_0)$: set of flip sequence (e_0, e_1) where e_1 share a common face with e_0 .

An Improved LOP Method Evaluation of Proposed Methods Conclusion

Layers and Distance between edges

$$\operatorname{layers}_{T}(e,i) = \begin{cases} e & i = 0\\ \cup_{e \in \operatorname{layers}_{T}(i-1)} \operatorname{qe}_{T}(e) & i \ge 1, \end{cases}$$



where $qe_T(e)$ is defined as a set of edges belonging to faces incident on e.

- layers $_T(e,0)$ is the set of red edge
- \blacksquare $\operatorname{layers}_T(e,1)$ is the set of red and blue edges
- $\hfill \mbox{layers}_T(e,2)$ is the set of red, blue, and green edges

 $d_T(e, e_1)$: the smallest nonnegative integer k for which $e_1 \in \text{layers}_T(e, k)$.

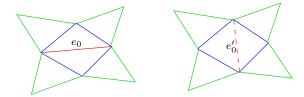
- $d_T(e, e_1) = 0$ if e_1 is the red edge
- $d_T(e,e_1) = 1$ if e_1 is the blue edge
- $d_T(e, e_1) = 2$ if e_1 is the green edge

Influence distance

the **influence distance** of a cost function c, denoted inflDist(c).

- measures the size of influence region of a single edge flip
- the maximum distance between the flipped edge e_0 and the edge e_1 whose optimality might change.

$$inflDist(c) = \begin{cases} 1 & \text{if } c \text{ is SE} \\ 2 & \text{if } c \text{ is ABN, AMC, DLP, DP, JND, YMS.} \end{cases}$$
(7)



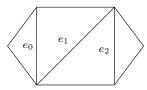
Permissible Flip Sequence I

- the particular set of flip sequences considered.
- four input parameters control the permissible flip sequence generation process.
- maxLevel: determine the size of the region which edge flip can take place.
 - maxLevel=0: $(e_0) \in \operatorname{permFlipSeqs}_T(e_0)$
 - maxLevel=1: $(e_0, e_1) \in \operatorname{permFlipSeqs}_T(e_0)$
 - maxLevel=2: $(e_0, e_1, e_2) \in \operatorname{permFlipSeqs}_T(e_0)$

```
• .....
```

skip: the distance between the two adjacent edges in sequence is NOT necessary to be one if enable.

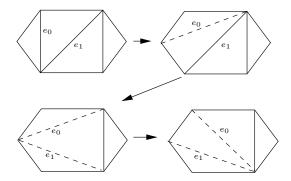
• maxLevel=2 && skip=true: $(e_0, e_2) \in \operatorname{permFlipSeqs}_T(e_0)$



Permissible Flip Sequence II

inward: allow to flip the edge, which has just been flipped, if enable

• maxLevel=2 && inward=true: $(e_0, e_1, e_0) \in \operatorname{permFlipSeqs}_T(e_0)$



maxLength: restrict the maximum length of the flip sequences.

An Improved LOP Method Evaluation of Proposed Methods Conclusion

Venn diagram to illustrate PFS policies

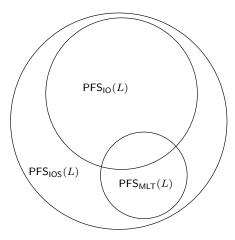


Figure 7 : Venn diagram to illustrate the permissible flip sequences considered by various PFS policies

Determination of Suspect Edges

Determination of Suspect Edges

 $suspects(T, s) = edges(propagate_{T'}(flipAffReg(T, s), L + inflDist(c) - 1))$

■ L is the value of the maxLevel parameter for the PFS policy.

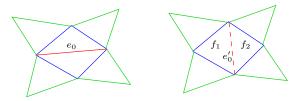


Figure 8 : Apply an edge flip sequence $s = \{e_0\}$ with L = 0

Determination of Suspect Edges

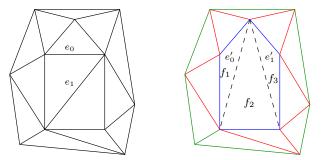


Figure 9 : Apply an edge flip sequence $s = \{e_0, e_1\}$ with L = 1

- flipAffReg(T, s) is the set of faces f_1, f_2, f_3 .
- suspects(T, s) contains blue and red edges if inflDist(c) = 1.
- suspects(T, s) contains red, blue and green edges if inflDist(c) = 2.

Evaluation of Proposed Methods—Mesh Generation

Table 6 : Individual results for mesh-generation with LOP, LLOP and $\mathsf{MLOP}_B(2,2)$ as the postprocessing

	Samp.	PSNR (dB)		
Function	Dens (%)	LOP	LLOP	$MLOP_B(2,2)$
lena	0.5	25.90	26.49	26.62
lena	1.0	28.36	29.38	29.57
lena	2.0	31.61	32.13	32.25
ct	0.5	37.82	38.24	38.33
ct	1.0	42.49	42.84	42.93
ct	2.0	47.12	47.42	47.47
n36-w113	0.5	66.52	66.99	67.11
n36-w113	1.0	69.69	70.12	70.22
n36-w113	2.0	72.81	73.25	73.35

An Improved LOP Method Evaluation of Proposed Methods Conclusion

Evaluation of Proposed Methods—Mesh Generation

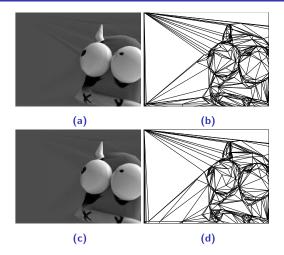


Figure 10 : Reconstructed images based on the mesh optimized by (a)(b) LOP, PSNR=34.70 dB (c)(d) LLOP, PSNR=35.36 dB

An Improved LOP Method Evaluation of Proposed Methods Conclusion

Evaluation of Proposed Methods—Mesh Generation

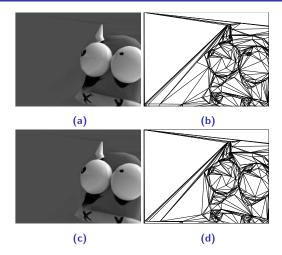


Figure 11 : Reconstructed images based on the mesh optimized by $MLOP_B(2, i)$ (a)(b) i = 2, PSNR=35.48 dB (c)(d) i = 6, PSNR=35.58 dB

Modified LOP Algorithm I

Modified LOP Algorithm

- 1: Set the current triangulation ${\cal T}$ to the input triangulation.
- 2: For each edge e in T, mark e as suspect if it is flippable; otherwise, mark e as not suspect.
- 3: while suspect edges remain in T do
- 4: Select a suspect edge e_0 in T and mark e_0 as not suspect.
- 5: Clear the list ℓ of good flip sequences.
- 6: **if** e_0 is flippable **then**
- 7: Let p denote the set of all permissible flip sequences starting with e_0 , as determined by the permissible flip-sequence policy (i.e.,

 $p = \operatorname{permFlipSeqs}_T(e_0)$).

- 8: for each flip sequence s in p do
- 9: **if** applying s to T would strictly reduce the triangulation cost **then**
- 10: Add s to ℓ .
- 11: end if

Modified LOP Algorithm II

12: end for

- 13: **if** ℓ is not empty **then**
- 14: Select a sequence s from ℓ , using the good flip-sequence selection policy (i.e., $s = \text{selGood}(\ell)$).
- 15: Update T by applying s to T.
- 16: Determine the set σ of all edges in T that become suspect as a result of s being applied to T (i.e., $\sigma = \text{suspects}(T, s)$).
- 17: Mark each edge s in σ as suspect (if not already so marked).
- 18: end if
- 19: end if
- 20: end while
- 21: Output T as the final triangulation.