
Edgebreaker Based Triangle Mesh-Coding Method

by

Yue Tang
B.Sc., Queen Mary University of London, 2013

B.Sc., Beijing University of Posts and Telecommunications, 2013

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF ENGINEERING

in the Department of Electrical and Computer Engineering

c⃝ Yue Tang, 2016
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

Edgebreaker Based Triangle Mesh-Coding Method

by

Yue Tang
B.Sc., Queen Mary University of London, 2013

B.Sc., Beijing University of Posts and Telecommunications, 2013

Supervisory Committee

Dr. Michael Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member
(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Michael Adams, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Wu-Sheng Lu, Departmental Member
(Department of Electrical and Computer Engineering)

ABSTRACT

The Edgebreaker triangle mesh-coding method is presented along with a software imple-
mentation of the method developed by the author. The software consists of two programs.
The first program performs the mesh compression, and the second program performs the
mesh decompression. Various aspects of the method’s performance are studied through ex-
periments, such as coding efficiency and the time and memory complexity. In terms of coding
efficiency, our Edgebreaker method outperform the gzip text-based compression technique
on an average 4.19 times.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Algorithms xii

Acknowledgements xiii

Dedication xiv

1 Introduction 1
1.1 3-D Triangle Mesh Compression . 1
1.2 Historical Perspective . 2
1.3 Overview and Organization of Report . 4

2 Background 5
2.1 Introduction . 5
2.2 Polygon Mesh . 5
2.3 Halfedge Data Structure . 7
2.4 Object-File Format . 10
2.5 Data Compression for Meshes . 11

2.5.1 Arithmetic Coding . 11
2.5.2 Quantization . 13

3 The Edgebreaker Mesh-Coding Method 15
3.1 Introduction . 15

v

3.2 Encoding Method . 15
3.2.1 C-type Triangle . 21
3.2.2 L-type Triangle . 21
3.2.3 R-type Triangle . 23
3.2.4 S-type Triangle . 24
3.2.5 E-type Triangle . 24
3.2.6 M-type Triangle . 26
3.2.7 M’-type Triangle . 27
3.2.8 Remarks on Handles . 29
3.2.9 Transmitted Data . 33

3.3 Examples of the Encoding Method . 34
3.3.1 Example 1: Mesh with One Bounding Loop and No Handles 34
3.3.2 Example 2: Mesh with Zero Bounding Loops and No Handles 36
3.3.3 Example 3: Mesh with Two Bounding Loops and No Handles 37
3.3.4 Example 4: Mesh with Zero Bounding Loops and One Handle 39

3.4 Parallelogram-Prediction Scheme . 41
3.5 Decoding Method . 46

3.5.1 Decompression Initialization Phase 48
3.5.2 Decompression Generation Phase . 49

3.6 Examples of the Decoding Method . 58
3.6.1 Example 1: Mesh with One Bounding Loop and No Handles 58
3.6.2 Example 2: Mesh with Zero Bounding Loops and No Handles 61
3.6.3 Example 3: Mesh with Two Bounding Loops and No Handles 64
3.6.4 Example 4: Mesh with Zero Bounding Loops and One Handle 67

4 Software 71
4.1 Introduction . 71
4.2 Building the Software . 71
4.3 The encode_mesh Program . 72
4.4 The decode_mesh Program . 73
4.5 EB File Format . 75
4.6 Software Usage Examples . 77

5 Results and Analysis 79
5.1 Introduction . 79
5.2 Methodology . 79
5.3 Coding Efficiency . 81

vi

5.4 Time Complexity . 83
5.5 Memory Complexity . 88

6 Conclusions 91

A Supplementary Material 92

Bibliography 94

vii

List of Tables

Table 2.1 Probability distribution for the symbols {0, 1} 12

Table 3.1 Variables in the decoding initialization phase 49
Table 3.2 Calculation of the e, s, and S parameters in the initialization phase . 59
Table 3.3 Calculation of the e parameter in the initialization phase 63
Table 3.4 Calculation of the e, s, and S parameters in the initialization phase . 64
Table 3.5 Calculation of the e, s, and S parameters in the initialization phase . 67

Table 4.1 Items included in the encoding result file 74
Table 4.2 Items included in the decoding result file 74
Table 4.3 Codewords for three binary code series 76

Table 5.1 Basic information of the test meshes 80
Table 5.2 Individual coding efficiency results . 82
Table 5.3 Coding efficiency comparison of the Edgebreaker and other mesh-coding

methods . 82
Table 5.4 Individual time complexity results. Time listed in table is the median

execution time over 30 runs for each program. 84
Table 5.5 Encoding time complexity analysis with profiling. Results showing in

table are the accumulated time from eleven runs. 85
Table 5.6 Decoding time complexity analysis with profiling. Results showing in

table are the accumulated time from eleven runs. 87
Table 5.7 Memory complexity analysis based on the major data structures . . . 88
Table 5.8 Individual memory complexity results 90

viii

List of Figures

Figure 1.1 Examples of triangle meshes. (a) Sphere. (b) Parabolic cylinder.
(c) Twisted torus. 1

Figure 1.2 Tetrahedral mesh and its triangle strip. (a) Tetrahedral mesh. (b) Tri-
angle strip of the tetrahedral mesh. 3

Figure 2.1 Triangle mesh and its elements. (a) Hexagon mesh. (b) to (d) Vertices,
edges, and facets of the mesh, respectively. 6

Figure 2.2 Example of closed meshes and a mesh with boundary. (a) and (c) Closed
meshes. (b) A mesh with boundary. 6

Figure 2.3 Example of homeomorphism. (a) Coffee cup. (b) Donut. 7
Figure 2.4 Examples of manifolds and non-manifolds. (a) and (b) Closed mani-

folds. (c) A manifold with boundary. (d) A non-manifold. 7
Figure 2.5 Examples of orientable and non-orientable surfaces. (a) A sphere,

which is orientable. (c) A Mobius strip, which is not orientable. . . . 8
Figure 2.6 Triangle meshes with different genus. (a) Sphere, which has genus 0.

(b) Torus, which has genus 1. (c) Multiple torus, which has genus 9. . 8
Figure 2.7 Definition of the halfedge data structure. 9
Figure 2.8 Pictorial view of the halfedge data structure. 9
Figure 2.9 Pictorial view of halfedge data structures for a triangle and its two

adjacent triangles. 10
Figure 2.10 An OFF file example. (a) The hexagon mesh. (b) The corresponding

OFF data for the hexagon mesh. The edge information is omitted in
the example. 11

Figure 2.11 Graphic representation of the arithmetic encoding process. 12
Figure 2.12 Graphic representation of the arithmetic decoding process. 13

Figure 3.1 Definition of the extend halfedge data structure. 17
Figure 3.2 Pictorial view of the extended halfedge data structure. 17
Figure 3.3 Definition of the vertex data structure in encoder. 17
Figure 3.4 Seven triangle types. 19

ix

Figure 3.5 An example illustrating the C-type operation. (a) The initial mesh
corresponds to a C-type triangle. (b) The resulting mesh obtained
after the C-type operation. 21

Figure 3.6 An example illustrating the L-type operation. (a) The initial mesh
corresponds to an L-type triangle. (b) The resulting mesh obtained
after the L-type operation. 22

Figure 3.7 An example illustrating the R-type operation. (a) The initial mesh
corresponds to an R-type triangle. (b) The resulting mesh obtained
after the R-type operation. 23

Figure 3.8 An example illustrating the S-type operation. (a) The initial mesh
corresponds to an S-type triangle. (b) The resulting mesh obtained
after the S-type operation. 26

Figure 3.9 An example mesh corresponds to an E-type triangle. 26
Figure 3.10 An example illustrating the M-type operation. (a) The initial mesh

corresponds to an M-type triangle. (b) The resulting mesh obtained
after the M-type operations. 29

Figure 3.11 An example illustrating the M’-type operation. (a) The initial mesh
corresponds to an M’-type triangle. (b) The resulting mesh obtained
after the M’-type operation. 31

Figure 3.12 An example illustrating the split operation. (a) The initial bounding
loop before the split operation. (b) and (c) The resulting left and right
submeshes obtained after the split operation, respectively. 32

Figure 3.13 The halfedge stack’s change for the given op-code sequence. (a) and
(b) The resulting halfedge stack after encoding the first and second S-
type triangles (i.e., S1 and S2), respectively. (c) The resulting halfedge
stack after encoding the first E-type triangle. (d) The resulting halfedge
stack after encoding the third S-type triangle (i.e., S3). 33

Figure 3.14 A triangle mesh with one bounding loop and no handles. (a) The
triangle mesh with boundary. (b) Steps in the Edgebreaker encoding
process. 35

Figure 3.15 A triangle mesh with zero bounding loops (i.e., closed) and no han-
dles. (a) The tetrahedral mesh. (b) A cut and flattened view of the
tetrahedral mesh. (c) Steps in the Edgebreaker encoding process. . . 37

Figure 3.16 A triangle mesh with two bounding loops (i.e., one hole) and no han-
dles. (a) The triangle mesh with a hole. (b) Steps in the Edgebreaker
encoding process. 38

x

Figure 3.17 A triangle mesh with zero bounding loops and one handle. (a) The
torus mesh in perspective view. (b) and (c) The top and bottom
views of the mesh. (d) The connectivity of the torus mesh obtained
after cutting and flattening the original mesh. 40

Figure 3.18 The internal steps of the Edgebreaker encoding process. (a) and
(b) The encoding sequence of the first 17 and 20 triangles, respectively.
(c) The resulting active bounding loop after the M’-type operation. . 42

Figure 3.19 The internal steps of the Edgebreaker encoding process. (a) - (c) The
coding sequence after processing the second, third, and fourth S-type
triangles, respectively. (d) The entire encoding process of the torus
example. 43

Figure 3.20 Parallelogram-prediction scheme. 44
Figure 3.21 Different cases of the parallelogram-prediction scheme. (a) to (d) Pic-

torial view of cases 1 to 4. 45
Figure 3.22 A parallelogram to illustrate the prediction residual generation process. 45
Figure 3.23 Pictorial view of the notations used in the decoding method. 48
Figure 3.24 Definition of the vertex data structure in decoder. 48
Figure 3.25 An example illustrating the C-type operation. (a) and (b) The bound-

ing loop before and after the C-type operation, respectively. 51
Figure 3.26 An example illustrating the L-type operation. (a) and (b) The bound-

ing loop before and after the L-type operation, respectively. 52
Figure 3.27 An example illustrating the R-type operation. (a) and (b) The bound-

ing loop before and after the R-type operation, respectively. 53
Figure 3.28 An example illustrating the S-type operation. (a) The bounding loop

before the S-type operation. (b) and (c) The left and right submeshes’
bounding loops after the S-type operation, respectively. 54

Figure 3.29 The bounding loop before the E-type operation. 54
Figure 3.30 An example illustrating the M-type operation. (a) and (b) The bound-

ing loop before and after the M-type operation, respectively. 56
Figure 3.31 An example illustrating the M’-type operation. (a) The bounding

loop before the M’-type operation. (b) The bounding loop needs to be
merged. (c) The bounding loop after the M’-type operation. 58

Figure 3.32 A triangle mesh with one bounding loop and no handles. (a) The
triangle mesh with boundary. (b) Steps in the Edgebreaker encoding
process. 60

xi

Figure 3.33 The internal steps of the Edgebreaker decoding process. (a) The ini-
tial bounding loop. (b) The resulting bounding loop after decoding
the first C-type triangle. (c) and (d) The resulting bounding loops
after decoding the first and second R-type triangles, respectively. (e)
and (f) The resulting left and right submeshes’ bounding loops after
decoding the S-type triangle, respectively. (g) and (h) The resulting
bounding loops after decoding the first and second L-type triangles,
respectively. 62

Figure 3.34 A triangle mesh with zero bounding loops (i.e., closed) and no han-
dles. (a) The tetrahedral mesh. (b) A cut and flattened view of the
tetrahedral mesh. (c) Steps in the Edgebreaker encoding process. . . 63

Figure 3.35 The internal steps of the Edgebreaker decoding process. (a) The ini-
tial bounding loop. (b) and (c) The resulting bounding loops after
decoding the first and second C-type triangles, respectively. (d) The
resulting bounding loop after decoding the first R-type triangle. . . . 64

Figure 3.36 A triangle mesh with two bounding loops (i.e., one hole) and no han-
dles. (a) The triangle mesh with a hole. (b) Steps in the Edgebreaker
encoding process. 65

Figure 3.37 The internal steps of the Edgebreaker decoding process. (a) The initial
bounding loop. (b) and (c) The resulting left and right submeshes’
bounding loops after decoding the first S-type triangle, respectively.
(d) The resulting bounding loop after decoding the first M-type triangle. 66

Figure 3.38 A triangle mesh with zero bounding loops and one handle. (a) The
triangle mesh with a handle. (b) Steps in the Edgebreaker encoding
process. 68

Figure 3.39 The internal steps of the Edgebreaker decoding process. (a) and
(b) The resulting left and right submeshes’ bounding loops after decod-
ing the S-type triangle, respectively. (c) and (d) The resulting bound-
ing loops after decoding the C-type and R-type triangles, respectively.
(e) The resulting bounding loop after decoding the M’-type triangle. . 70

Figure 4.1 Structure of the EB file. 75

xii

List of Algorithms

1 Mesh encoding process. 16
2 Triangle type distinction. 20
3 C-type encode operation. 22
4 L-type encoding operation. 23
5 R-type encoding operation. 24
6 S-type encoding operation. 25
7 E-type encoding operation. 27
8 M-type encode operation. 28
9 M’-type encoding operation. 30
10 Mesh decoding process. 46
11 Op-code sequence preprocessing. 49
12 Decoding initialization phase. 50
13 C-type decoding operation. 52
14 L-type decoding operation. 52
15 R-type decoding operation. 53
16 S-type decoding operation. 55
17 E-type decoding operation. 55
18 M-type decoding operation. 57
19 M’-type decoding operation. 59
20 Pseudocode for simple meshes decoding initialization phase. 92
21 Pseudocode for M-type encoding operation. 93

xiii

ACKNOWLEDGEMENTS

I would like to thank:

My supervisor Dr. Michael Adams. Thank you for your guidance and encouragement
throughout my graduate study. Thank you for always being so nice and patient to me.
I truly appreciate all the time and advice you gave me throughout my graduate study
at the University of Victoria.

Professor Craig Gotsman from Technion - Israel Institute of Technology. Thank y-
ou for sending me the triangle meshes that were used in your previous research. With-
out your generous help, I could not have produced such good comparison with other
mesh-coding methods in my project.

My supervisory committee member Dr. Wu-Sheng Lu. Thank you for being on my
supervisory committee and spending time reviewing my report. Thank you for deliver-
ing those great courses such as Digital Signal Processing and Engineering Optimization.

Ms. Gillian Saunders from the Centre for Academic Communication. Thank y-
ou for suggesting me to participate in the Learning Plan and helping me improve my
academic writing skills. Your hard work and dedication to teaching have motivated
me in my studies. It has been such a pleasure working with you.

My friends. I would like to express my sincere gratitude to Dan Han, Yue Fang, Xiao Feng,
Xiao Ma, and all other friends. Thank you for being my friends and the three years in
Victoria is so wonderful and unforgettable.

My dearest mother Quan Tang. Thank you for being such a wonderful parent. Thank
you for your endless love, support and encouragement. Without you I would never
experience so much happiness and joy in my life.

xiv

DEDICATION

To my family.

Chapter 1

Introduction

1.1 3-D Triangle Mesh Compression

In recent years, three-dimensional (3-D) animation, modeling, and special visual effects have
been widely used and had a significant impact on a number of markets. These applications
also play an important role in a variety of disciplines such as computer science, engineer-
ing, planetary science, medicine, and architecture. The polygon mesh, a group of polygons
stitched together to represent the surface of 3-D objects, is considered to be the most popular
representation of 3-D models. More specifically, triangle meshes with all their polygons as
triangles, are favored by most graphic applications. In order to help readers better under-
stand triangle meshes, we include several examples in Figure 1.1. The triangle meshes in
Figures 1.1(a), (b), and (c) represent the surface of a sphere, a parabolic cylinder, and the
surface of a twisted torus, respectively.

Although meshes shown in Figure 1.1 only contain hundreds or thousands of vertices, the
mesh datasets used in real world applications can be huge, containing billions of polygons.
In many applications that use meshes, the model must often be very accurate. In order

(a) (b) (c)

Figure 1.1: Examples of triangle meshes. (a) Sphere. (b) Parabolic cylinder. (c) Twisted
torus.

2

to include more details in the mesh and achieve a higher resolution, the amount of storage
space required by the meshes has rapidly grown. Moreover, many mesh applications require
high-speed data transmission through the Internet, or remote access to the mesh datasets.
This has led to the requirement of efficient representation of the mesh models, which has
given rise to the development of various mesh-compression methods.

From the mesh examples in Figure 1.1, we know that triangle meshes consist of vertices,
edges, polygon facets, and their incidence relationships. These incidence relationships are
called the connectivity information. When compressing a triangle mesh, some methods
encode the connectivity information first. This kind of mesh compression method is said to
be connectivity driven. The main contribution of this project is the development of a software
implementation of one of the well-known connectivity-driven mesh-coding methods, namely
the Edgebreaker method proposed by Rossignac in 1999 [1].

1.2 Historical Perspective

In order to efficiently represent the raw data of triangle meshes, numerous connectivity-
driven mesh-coding methods have been proposed [1–13]. Based on how the connectivity
information is coded, the most popular methods can be classified into four categories: the
triangle-strip approach, the spanning-tree approach, the valence-driven approach, and the
triangle-traversal approach.

The main idea of the triangle-strip approach is to split the 3-D triangle mesh into long
triangle strips, and then encode these strips. A triangle strip is a sequence of vertices, where
each vertex is combined with the previous two vertices in the strip to form a new triangle.
In Figure 1.2, we give an example of a tetrahedral mesh and its corresponding triangle strip.
Figure 1.2(a) shows the tetrahedral mesh, and Figure 1.2(b) shows the corresponding triangle
strip. The compression process of the triangle-strip approach is as follows. The first triangle
is coded by its three vertices. After the first triangle is successfully coded, a new vertex index
in the strip codes the connectivity of a new triangle. One of the pioneering methods using
the triangle-strip approach was proposed by Deering in 1995 [2]. This method combines
generalized triangle strips with a vertex buffer. The coded vertices are pushed to the buffer
and can be referred to by their index in the buffer. In this way, the number of times each
vertex is transmitted and processed by the graphics system is reduced. Other mesh-coding
methods based on the triangle-strip approach can be found in [5, 6].

Next, we talk about the spanning-tree approach to mesh coding. A 3-D triangle mesh
can be converted to a planar polygon by cutting along a selected set of edges. Therefore, the
mesh’s connectivity information can be represented by a planar graph and the corresponding

3

V0 V1

V2

V3

V0 V0V1

V2V2 V3

(a) (b)

Figure 1.2: Tetrahedral mesh and its triangle strip. (a) Tetrahedral mesh. (b) Triangle strip
of the tetrahedral mesh.

structure of cut edges. Based on this theory, in 1998, Taubin and Rossignac proposed the
topological-surgery method [3]. The topological-surgery method encodes the original mesh
by using two spanning trees: a vertex spanning tree and a triangle spanning tree. The
vertex spanning tree is used to predict the vertex position. The difference between the
predicted position and the actual position is then encoded by the method. Moreover, the
triangle spanning tree is used to encode the connectivity information of the mesh. Some
other mesh-coding methods employing the spanning-tree approach can be found in [12,13].

Another approach to encoding triangle meshes is the valence-driven approach. For most
triangle meshes in practice, the number of triangles is approximately twice the number of
vertices. This observation has led to the valence-driven mesh-coding approach, which focuses
on a vertex’s local connectivity. The valence of a vertex is the number of edges incident on
that vertex. The algorithm proposed by Touma and Gotsman in 1998 [4] is one of the well-
known methods employing this approach. The main idea of this method is to expand the
mesh’s boundary. Starting from an arbitrary vertex of the initial triangle, the algorithm
adds adjacent vertices. The valence of the inserted vertex is encoded, and the output of this
method is a stream of vertex valences. Other mesh-coding methods using the valence-driven
approach can be found in [7, 8].

The last mesh-coding approach to be discussed is the triangle-traversal approach. Some
mesh-coding methods encode the connectivity of meshes by iteratively visiting their triangles.
One advantage of this approach is simplicity. The Edgebreaker method, proposed in 1999 by
Rossignac [1], is a pioneering work employing the triangle-traversal approach. At each step,
the method encodes the relationship between the current triangle and the remaining mesh’s
boundary, and then traverses to an adjacent triangle. Some other mesh-coding methods
based on the triangle-traversal approach can be found in [9–11].

4

1.3 Overview and Organization of Report

This project focuses on the 3-D triangle mesh coding. The project first studies the Edge-
breaker mesh-coding method thoroughly. This is presented along with a software implemen-
tation of the method developed by the author. The software consists of two programs to
perform the mesh encoding and decoding. Various aspects of the method’s performance are
measured through experiments. The reminder of this report is organized into five chapters
and one appendix.

Chapter 2 introduces some essential background information to facilitate a better un-
derstanding of the work in this project. First, polygon and triangle meshes are introduced.
This is then followed by the description of the halfedge data structure and the object-file
format (OFF). Finally, some fundamentals of data compression are discussed.

Chapter 3 presents the Edgebreaker mesh-coding method implemented in this project.
To begin, an overview of the mesh-coding method is presented. Then, we describe the
compression and decompression methods in detail along with the parallelogram-prediction
scheme used in the mesh-coding method.

Chapter 4 introduces the Edgebreaker mesh-coding software developed by the author.
This chapter starts with an overview of the software, including a description of its constituent
programs. This is then followed by instructions on how to build the software. Further, we
present a detailed introduction to the programs’ command-line interfaces. In addition, the
file format used to store the compressed triangle-mesh data is described. Finally, several
examples are provided to illustrate the use of the software.

Chapter 5 evaluates the performance of the Edgebreaker method. To begin, an overview
of the test datasets is presented. Next, we discuss the coding efficiency. This is then followed
by the time complexity analysis of the mesh-coding method through experiments. Further,
the memory complexity is analyzed.

Chapter 6 summarizes the key points in this report and gives some suggestions for po-
tential future work.

During the course of her work, the author found some typographical errors and missing
technical details from the original Edgebreaker paper [1]. As supplemental information,
corrections to these errors are provided in Appendix A.

5

Chapter 2

Background

2.1 Introduction

In this chapter, some necessary background information is provided to help readers better
understand the work presented in this report. This includes polygon meshes, halfedge data
structures, OFF format, and data compression. In what follows, we start by introducing the
concept of a polygon mesh.

2.2 Polygon Mesh

A polygon is a closed two-dimensional (2-D) shape that is formed by a finite chain of straight
line segments. Those line segments are called edges, and the points where two edges join
together are called vertices. The simplest polygon is a triangle. A polygon mesh defines
the surface of a polyhedral object usually in three-dimensions, and is a collection of vertices,
edges, and facets. The facets are the polygons that are stitched together to form the mesh.
A triangle mesh is a polygon mesh with all its facets being triangles. This project is
concerned with the encoding and decoding of triangle meshes. In Figure 2.1, we give an
example of a triangle mesh and its elements. Figure 2.1(a) shows a triangle mesh, and
Figures 2.1(b), (c) and (d) show the vertices, edges, and facets of the mesh, respectively.

A polygon mesh consists of two types of information: geometry information and connec-
tivity information. The geometry information specifies the position of each vertex in 3-D
space. The connectivity information, or topological information, describes the incidence re-
lationship among the mesh’s vertices, edges, and facets. An edge that neighbors two facets is
called an interior edge, while an edge that is incident on only one facet is known as a bound-
ary edge. The boundary of the mesh is the union of all of the boundary edges. A polygon

6

(a) (b) (c) (d)

Figure 2.1: Triangle mesh and its elements. (a) Hexagon mesh. (b) to (d) Vertices, edges,
and facets of the mesh, respectively.

(a) (b) (c)

Figure 2.2: Example of closed meshes and a mesh with boundary. (a) and (c) Closed meshes.
(b) A mesh with boundary.

mesh is said to be closed if it does not have any boundary edges. To better illustrate the
concept presented above, three triangle meshes are shown in Figure 2.2. The triangle meshes
in Figures 2.2(a) and (c) are closed meshes, while the mesh in Figure 2.2(b) is a mesh with
boundary.

In order to define a manifold, we need to first introduce the concept of homeomorphism.
A homeomorphism is essentially an elastic deformation. Elastic deformation means one
shape can be transformed into another by stretching, compressing, bending, and twisting,
but not by cutting, tearing, splitting, or joining the original shape. If one shape can be elas-
tically deformed into another shape, then these two shapes are said to be homeomorphic.
To better illustrate the concept of homeomorphism, we provide an example in Figure 2.3.
Figures 2.3(a) and (b) show the surfaces of the coffee cup and the donut, respectively. Since
the coffee cup can be transformed into the donut (or vice versa) by an elastic deformation,
the surfaces of the coffee cup and the donut are homeomorphic.

If all vertices of a mesh have a neighborhood that is homeomorphic to a disc or half-disc,
the mesh is known as a manifold. Otherwise, the mesh is a non-manifold. Examples of
manifold and non-manifold meshes can be found in Figure 2.4. The meshes in Figures 2.4(a)
and (b) are closed manifolds, the mesh in Figure 2.4(c) is a manifold with boundary, and
the mesh in Figure 2.4(d) is non-manifold.

7

(a) (b)

Figure 2.3: Example of homeomorphism. (a) Coffee cup. (b) Donut.

(a) (b) (c) (d)

Figure 2.4: Examples of manifolds and non-manifolds. (a) and (b) Closed manifolds. (c) A
manifold with boundary. (d) A non-manifold.

A manifold mesh is said to be orientable if one can specify a consistent orientation
(clockwise or counterclockwise) for all closed paths in the manifold. Figure 2.5 illustrates
the concept of orientability. Figure 2.5(a) is an orientable surface, while Figure 2.5(b) is a
non-orientable surface.

The genus of a closed orientable manifold is defined as the number of handles [14]. More
generally, the mesh’s genus g can be calculated as

g = 1− 1

2
b− 1

2
(V − E + F), (2.1)

where V,E, F , and b are the numbers of vertices, edges, facets, and bounding loops of the
mesh, respectively. Examples of meshes with different genus are shown in Figure 2.6. The
sphere in Figure 2.6(a) has genus zero. The torus in Figure 2.6(b) contains one handle, so
its genus is one. The mesh in Figure 2.6(c) has nine handles, so its genus is nine.

2.3 Halfedge Data Structure

Having introduced polygon meshes, we now consider how such meshes are represented in
memory. There are lots of way to represent meshes in memory. The halfedge data struc-

8

(a) (b)

Figure 2.5: Examples of orientable and non-orientable surfaces. (a) A sphere, which is
orientable. (c) A Mobius strip, which is not orientable.

(a) (b) (c)

Figure 2.6: Triangle meshes with different genus. (a) Sphere, which has genus 0. (b) Torus,
which has genus 1. (c) Multiple torus, which has genus 9.

9

struct Halfedge {
Vertex* vertex; // The incident vertex
Halfedge* prev; // The previous halfedge around the facet
Halfedge* next; // The next halfedge around the facet
Halfedge* opp; // The opposite halfedge
Facet* facet; // The incident facet

};

Figure 2.7: Definition of the halfedge data structure.

Figure 2.8: Pictorial view of the halfedge data structure.

ture is one of the well-known representations. Each edge in mesh is represented as a pair of
directed edges that are oriented in opposite directions. Each of these directed edges is called
a halfedge. The pseudocode of the halfedge data structure is shown in Figure 2.7, and the
pictorial view of the halfedge data structure can be found in Figure 2.8. As can be seen from
Figure 2.8, the end vertex is the incident vertex of the halfedge, and the left side facet is the
incident facet of the halfedge. As shown in Figure 2.7, each halfedge stores the pointers to
its incident vertex, the previous and next halfedges around the facet, the opposite halfedge,
and the incident facet.

The halfedge data structure has two significant benefits: 1) since halfedges are oriented,
this orientation property can be used to simplify algorithms that must navigate around
meshes; and 2) a halfedge can also be used to identify a particular vertex and facet in the
mesh. Since the halfedge data structure has these two obvious advantages, it is heavily
used in practice. For example, the well known Computational Geometry Algorithms Library
(CGAL) [15] utilizes this data structure.

As has been noted, the orientation property of halfedge can be used to simplify algo-
rithms that must navigate around meshes. In the following example, we illustrate such
ideas. Figure 2.9 shows the current triangle cur.facet and its two adjacent triangles
left_tri.facet and right_tri.facet. Suppose that the user wants to move from the
halfedge cur (which points to the current triangle cur.facet) to the halfedge left_tri

10

Figure 2.9: Pictorial view of halfedge data structures for a triangle and its two adjacent
triangles.

(which points to the left adjacent triangle left_tri.facet). This can be achieved by code
like:

left_tri = cur.prev.opp;

Suppose that the user wants to move from the halfedge cur (which points to the current
triangle cur.facet) to the halfedge right_tri (which points to the right adjacent triangle
right_tri.facet). This can be achieved by code like:

left_tri = cur.next.opp;

2.4 Object-File Format

The object-file format (OFF) is a popular way for storing the 3-D polygon meshes on disk.
Data in the OFF format consists of: a header, and information for the vertices, facets, and
edges in order. The edge data is optional.

The header contains two parts. The first is the file signature “OFF”. The second is the
numbers of vertices, facets, and edges in the mesh. If the number of edges equals zero, it
means the edge data is omitted. The mesh’s vertices are listed after the header part. For
each vertex, its three coordinates are listed. The facet data is presented after the vertex list.
For each facet, the number of vertices is specified first. This is then followed by the indices
of the facet’s vertices in the previous vertex list. The vertices in the vertex list are indexed
from zero. If the edge data is included, its data is presented after the facet data. An OFF
file example with respect to a simple triangle mesh is given in Figure 2.10. Figure 2.10(a)
shows the mesh, and Figure 2.10(b) gives its corresponding OFF data. The edge data is
omitted in this example.

11

V0 = (0, 0, 0) V1 = (2, 0, 0)

V2 = (1, 1, 0)V3 = (-1, 1, 0)

V4 = (-2, 0, 0)

V5 = (-1, -1, 0) V6 = (1, -1, 0)

(a)

OFF
7 6 0
0 0 0
2 0 0
1 1 0

-1 1 0
-2 0 0
-1 -1 0
1 -1 0

3 0 1 2
3 0 2 3
3 0 3 4
3 0 4 5
3 0 5 6
3 0 6 1

(b)

Figure 2.10: An OFF file example. (a) The hexagon mesh. (b) The corresponding OFF data
for the hexagon mesh. The edge information is omitted in the example.

2.5 Data Compression for Meshes

As explained earlier, the raw data of the 3-D triangle mesh usually needs to be compressed
in practice. Data compression is a technique that reduces the number of bits needed to store
or transmit the original information. The coding can be divided into two types: lossless and
lossy. If information is lost during the coding process, the coder is said to be lossy; otherwise,
it is said to be lossless. Quantization is a technique to remove less important information from
the original data. In the case of lossy coding, quantization can help achieve a more compact
representation. Therefore, the decoded data is only an approximation to the original. In
the Edgebreaker mesh-coding method, an arithmetic coder is employed, which is a type of
lossless coding technique. In what follows, we present the details of the arithmetic coding.

2.5.1 Arithmetic Coding

Arithmetic coding is a widely-used lossless coding scheme. It represents the entire message
as a number in the interval [0, 1). As the source message becomes longer, the interval needed
to represent the message becomes smaller, and the number of bits needed to specify that
interval grows [16]. The binary arithmetic coding uses only two symbols (i.e., 0 and 1) in
the given model. To encode a message using a binary arithmetic coder, the initial range is
specified as [0, 1). As each symbol in the source message is coded, the interval is narrowed

12

Table 2.1: Probability distribution for the symbols {0, 1}

Symbol Probability Interval
0 0.6 [0.0, 0.6)
1 0.4 [0.6, 1.0)

1.0

0.0

Initial 0

0.6

0.0

0.36

0.0

0.216

0.0 0.1296 0.18144

0 0 1 1

0.202176

0

0.216 0.216

0.18144

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 2.11: Graphic representation of the arithmetic encoding process.

in accordance with the symbol and its probability. If the probability distribution is selected
based on the contextual information, rather than always using the same set of probabilities,
the arithmetic coder is said to be context based. Moreover, the coder is adaptive if it
updates the probability for each symbol during the coding process.

In what follows, we present a short example illustrating the (binary) arithmetic coding
process for a particular message chosen from a binary alphabet {0, 1}, namely the message
“000110”. The probability distribution for the symbols {0, 1} is given in Table 2.1.

The encoding process is shown in Figure 2.11. Initially, the interval is set to [0.0, 1.0).
The first symbol narrows the interval to [0.0, 0.6), which corresponds to the interval of
symbol 0 in the initial range. Similarly, the second and third symbols narrow the interval
to [0.0, 0.216). When the encoder sees the fourth symbol (i.e., symbol 1) from the source
message, the new interval [0.1296, 0.216) is obtained. Proceeding in this way, the final interval
[0.18144, 0.202176) for the given source message is generated. Since the decoder does not
need to know both ends of the final interval, a single number within the range is sufficient
to decode the message. Therefore, the lower bound of the final interval (i.e., the number
0.18144) is transmitted to the decoder side. In addition to the transmitted value, the decoder
also needs to know the number of symbols encoded.

Now we consider the case of decoding for the above example. The decoding process is

13

1.0

0.0

Input:

0.18144 0

0.6

0.0

0.36

0.0

0.216

0.0 0.1296 0.18144

0 0 1 1

0.202176

0

0.216 0.216

0.18144

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 2.12: Graphic representation of the arithmetic decoding process.

shown in Figure 2.12. Initially, the interval for decoding is set to [0.0, 1.0). To begin, the
decoder receives the transmitted value 0.18144 and the number of symbols that are coded by
the encoder side. The number 0.18144 is located in the range [0.0, 0.6), which corresponds
to the interval that is allocated to the symbol 0 in the initial range. Hence, the first symbol
decoded is 0. Based on the transmitted value 0.18144, as seen from Figure 2.12, the next
two symbols decoded are also 0. The new interval obtained after the decoder decodes the
third symbol is [0.0, 0.216). Proceeding in this way, the decoder identifies the whole message
“000110” and generates the final interval [0.18144, 0.202176). Six symbols are coded by the
encoder side. Therefore, after the sixth symbol is successfully deciphered, the decoding
process terminates.

A binary arithmetic coder can only code binary symbols. If a non-binary symbol needs to
be coded with the binary coder, the symbol must first be binarized before the coding process.
Binarization is the process of converting a non-binary symbol to a sequence binary ones.
An example is the UI-binarization scheme in [17], which is also used in the Edgebreaker
mesh-coding method as seen later.

2.5.2 Quantization

As explained earlier, quantization can be used in lossy coding to discard less important infor-
mation. Quantization helps reduce the number of bits needed to represent the information.
Therefore, a quantizer can be described by two rules: the classification rule and the recon-
struction rule. The classification rule maps a real number x to the integer quantization
index k, and the reconstruction rule maps the quantization index k to the reconstruction

14

value y.
A basic type of quantizer is the uniform scalar quantization, which rounds a real

number x to the nearest integer Q(x). The classification rule of a typical midtread uniform
scalar quantizer is given by

k = (sgnx)

⌊
|x|
∆

+
1

2

⌋
, (2.2)

where ∆ denotes the quantization step size. If ∆ = 1, the quantizer rounds x to the nearest
integer. The reconstruction rule for this quantizer is simply

y = Q(x) = k ·∆. (2.3)

15

Chapter 3

The Edgebreaker Mesh-Coding Method

3.1 Introduction

The connectivity-driven mesh-coding method of interest herein is the Edgebreaker method.
We begin this chapter by introducing the details of the encoding method. This is then
followed by a detailed description of the decoding process.

3.2 Encoding Method

To begin, we introduce the encoding method in general terms. The basic idea of the Edge-
breaker method is triangle traversal. At each step, the encoding method produces an op-code
to describe the topological relationship between the current triangle and the remaining mesh’s
boundary, and the position of any newly encountered vertex is also coded. Since all vertex
coordinates are real numbers and the binary arithmetic coder is used, the first step is to
quantize all vertex coordinates to produce integer quantizer indices. The method visits each
triangle in the mesh until all triangles are visited. For each visited triangle, the following
steps are performed. First, the encoder produces an op-code describing the triangle’s type
and adds this type to the op-code sequence. Second, the encoder predicts the position of
any newly encountered vertex by using the parallelogram-prediction scheme. The difference
between the predicted and actual positions of the vertex (i.e., the prediction residual) is
then binarized (using the UI-binarization scheme in [17]) and encoded by the arithmetic
coder. Third, the encoder moves to a particular adjacent triangle. The pseudocode for mesh
encoding can be found in Algorithm 1.

Having introduced the Edgebreaker encoder in general terms, we now present the encod-
ing method in detail. The main state information for the encoder consists of the following:

16

Algorithm 1 Mesh encoding process.
1: Quantize all mesh vertices to produce integer quantization indices.
2: while Not all the triangles are processed by the encoding method. do
3: Find the current triangle’s type and add it to the op-code sequence.
4: Predict the position of newly encountered vertex in the current triangle.
5: Calculate, binarize, and encode the prediction residuals.
6: Move to a particular adjacent triangle.
7: end while

• The input triangle mesh, which is represented by the halfedge data structure.

• The op-code sequence, which is used to store the triangle types.

• The prediction residuals sequence, which is used to store the coded vertices.

• The halfedge stack, which is used to store the representative halfedges of the boundaries
that are not currently being processed.

• The M table, which is used to store the information related to holes.

• The M’ table, which is used to store the information related to handles.

• The offset table, which is only used for meshes that contain handles.

• The S counter, which is used to count how many S-type triangles have been encountered
so far.

Now, we introduce the data structures used to represent some of the preceding state.
As explained earlier, the halfedge data structure is used by the encoding method. In this
context, some extra information is added to the data structure as originally introduced in
Section 2.3 (on page 7). The pseudocode of the extended halfedge data structure is shown
in Figure 3.1, and the pictorial view of the extended halfedge data structure can be found
in Figure 3.2. As seen from the pseudocode in Figure 3.1, an integer mark and two extra
pointers are added to the data structure. The mark mark is used to indicate the halfedge’s
category. The two extra pointers prev_bor and next_bor are used to find the adjacent
halfedges in the bounding loop. These two pointers refer to the current halfedge’s previous
and next halfedges along the bounding loop.

Some extra information is also added to the vertex data structure. The pseudocode for
the vertex data structure is shown in Figure 3.3. As seen from Figure 3.3, an integer mark
and a boolean type flag have been added to the data structure. The mark mark is used to
distinguish the vertex’s category, and the flag flag indicates whether the vertex is coded
or not. The vertex flag is used as follows. At the beginning of the encoding process, the

17

struct Halfedge {
Vertex* vertex; // The incident vertex
Halfedge* prev; // The previous halfedge around the facet
Halfedge* next; // The next halfedge around the facet
Halfedge* opp; // The opposite halfedge
Halfedge* prev_bor; // The previous halfedge around the border
Halfedge* next_bor; // The next halfedge around the border
Facet* facet; // The incident facet
int mark; // The halfedge mark

};

Figure 3.1: Definition of the extend halfedge data structure.

Figure 3.2: Pictorial view of the extended halfedge data structure.

encoder sets all the vertex flags to false. This means none of the vertices have been coded.
During the encoding process, when a vertex is encountered, the encoder first checks its flag.
If the vertex flag equals false, the encoder encodes the vertex and sets the vertex flag to true.

Having presented the major data structures, we now introduce some terminology and
notation used by the encoding process. The active gate is a special halfedge of the mesh,
and the initial active gate is the starting point of the encoding process. At each step,
the topological relationship of the triangle incident upon the active gate is detected by the
encoder. For a closed mesh, an arbitrary halfedge can be chosen as the initial active gate.

struct Vertex {
double x_coordinate; // The x coordinate
double y_coordinate; // The y coordinate
double z_coordinate; // The z coordinate
int mark; // The vertex mark
bool flag; // The vertex flag
Halfedge halfedge; // The corresponding halfedge

};

Figure 3.3: Definition of the vertex data structure in encoder.

18

For a mesh with boundary, an arbitrary halfedge of boundary edge opposite to boundary
can be chosen.

During the encoding process, the triangle mesh may split into two separate parts: the left
and right submeshes. The bounding loop is the union of all the halfedges that are located
on the remaining mesh’s boundary. The bounding loop is active if it belongs to the submesh
that is currently being processed. Otherwise, the loop is inactive. An inactive gate is a
specific halfedge located on an inactive bounding loop. For all the inactive bounding loops,
the inactive gate from each loop is temporarily stored in the halfedge stack. The following
notation is used in our explanation of encoding method:

• The symbol g denotes the active gate.

• The symbol B denotes the active bounding loop. Note that B contains g.

• The symbol h.e denotes the ending vertex of the halfedge h.

• The symbol h.s denotes the starting vertex of the halfedge h.

• The symbol h.v denotes the vertex which locates opposite of the halfedge h in the
triangle incident upon h.

• The symbol h.m denotes the halfedge mark of the halfedge h.

• The symbol h.v.m denotes the vertex mark of the vertex h.v.

• The symbol h.p denotes the previous halfedge of the halfedge h in the triangle incident
upon h.

• The symbol h.n denotes the next halfedge of the halfedge h in the triangle incident
upon h.

• The symbol h.o denotes the opposite halfedge of the halfedge h.

• The symbol h.P denotes the previous halfedge of the halfedge h on B.

• The symbol h.N denotes the next halfedge of the halfedge h on B.

As has been noted, the connectivity-coding algorithm in the Edgebreaker method classi-
fies the triangles into different types. The triangle type describes the topological relationship
between the vertex opposite the active gate and the mesh’s boundary. Seven different tri-
angle types (C, L, R, E, S, M, and M’) are identified by the Edgebreaker method. The
pictorial view of these seven types can be found in Figure 3.4. Shortly, we will explain how
to distinguish between these seven triangle types.

19

C-type L-type R-type E-type

S-type M-type M’-type

Figure 3.4: Seven triangle types.

Before proceeding further, we need to first introduce the vertex and halfedge marks and
their initialization process. This digression is necessary due to the fact that vertex marks are
used to distinguish triangle types. Four marks are used to indicate the vertex and halfedge
categories.

• Zero. A mark value of zero indicates that the halfedge or vertex is located inside the
mesh, or all of the processing for the halfedge is completed.

• One. A mark value of one indicates that the halfedge or vertex is located on the active
bounding loop, or all of the processing for the vertex is completed.

• Two. A mark value of two indicates that the halfedge or vertex is located on a hole’s
boundary.

• Three. A mark value of three indicates that the halfedge or vertex is located on an
inactive bounding loop.

Moreover, the mark initialization process is as follows. At the beginning of the encoding
process, the encoder sets all the interior vertex and halfedge marks to zero. For all the
vertices and halfedges located on mesh’s boundary, their marks are initialized to one. For

20

Algorithm 2 Triangle type distinction.
1: if g.v.m = 0 then
2: C-type triangle. {g.v is not belong to B.}
3: else if g.v.m = 2 then
4: M-type triangle. {g.v belongs to hole’s boundary.}
5: else
6: if g.p = g.P then
7: if g.n = g.N then
8: E-type triangle. {g.v is immediately precedes and follows g.}
9: else

10: L-type triangle. {g.v is immediately precedes g.}
11: end if
12: else
13: if g.n = g.N then
14: R-type triangle. {g.v is immediately follows g.}
15: else
16: if g.v.m = 3 then
17: M’-type triangle. {g.v is neither immediately precedes nor follows g.}
18: else
19: S-type triangle. {vg.v is neither immediately precedes nor follows g.}
20: end if
21: end if
22: end if
23: end if

all the vertices and halfedges located on the holes’ boundary, their marks are initialized to
two.

With the help of vertex marks, the seven triangle types can be easily identified. If the
vertex opposite the active gate’s mark (i.e., g.v.m) equals zero, the triangle is C-type. If
the vertex opposite the active gate’s mark (i.e., g.v.m) is two, triangle is M-type. For all
the other five types, the distinction between those types can be achieved by the relationships
between g.v and B. Since the S-type and M’-type triangles share the same g.v and B

relationship, they can be distinguished as follows. If the vertex opposite the active gate’s
mark (i.e., g.v.m) is three, the current triangle is M’-type. Otherwise, the triangle is S-type.
The pseudocode for triangle type distinction is presented in Algorithm 2.

Having presented the triangle-type distinction rule, we can now introduce the encoding
operations for each triangle type. The triangle types are introduced in the given order: C,
L, R, E, S, M, and M’. For each type, we first introduce the purpose of the triangle type,
and then present how the triangle type is processed.

21

Figure 3.5: An example illustrating the C-type operation. (a) The initial mesh corresponds
to a C-type triangle. (b) The resulting mesh obtained after the C-type operation.

3.2.1 C-type Triangle

The first type of triangle to be considered is C-type. For typical meshes, this is the most
commonly occurring triangle type. A C-type triangle arises when the active gate g has an
opposing vertex g.v that has not yet been encountered previously in the coding process (as
determined by its mark value). An example of this situation is illustrated in Figure 3.5(a),
where the facet contains the active gate g shown. During the processing of the C-type trian-
gle, the active gate is moved to the halfedge g.n.o, and various marks are updated. Then,
the incident facet of g (before g was moved) is deleted, and the bounding loop is updated
accordingly. This yields the updated bounding loop with the mesh shown in Figure 3.5(b).
The processing steps described above are shown in more detail in Algorithm 3, including
exactly how the various halfedges and marks should be updated.

3.2.2 L-type Triangle

The second type of triangle to be considered is L-type. An L-type triangle arises when the
active gate g has an opposing vertex g.v that belongs to B and immediately precedes g on
B. An example of this situation is illustrated in Figure 3.6(a), where the facet contains the
active gate g shown. As seen from Figure 3.6(a), an L-type triangle represents the local
leftmost triangle. This means that the halfedges g.p and g.P are the same halfedge. During
the processing of the L-type triangle, the active gate is moved to the halfedge g.n.o, and
various marks are updated. Then, the incident facet of g (before g was moved) is deleted,
and the bounding loop is updated accordingly. This yields the updated bounding loop with
the mesh shown in Figure 3.6(b). The processing steps described above are shown in more
detail in Algorithm 4, including exactly how the various halfedges and marks should be
updated.

22

Algorithm 3 C-type encode operation.
1: {append C to op-code sequence.}
2: O_seq = O_seq|C;

3: {update marks.}
4: g.m = 0;

5: g.p.o.m = 1;

6: g.n.o.m = 1;

7: g.v.m = 1;

8: {connect the halfedges g.P and g.p.o.}
9: g.P.N = g.p.o;

10: g.p.o.P = g.P;

11: {connect the halfedges g.p.o and g.n.o.}
12: g.p.o.N = g.n.o;

13: g.n.o.P = g.p.o;

14: {connect the halfedges g.n.o and g.N.}
15: g.n.o.N = g.N;

16: g.N.P = g.n.o;

17: {update the active gate g.}
18: g = g.n.o;

Figure 3.6: An example illustrating the L-type operation. (a) The initial mesh corresponds
to an L-type triangle. (b) The resulting mesh obtained after the L-type operation.

23

Algorithm 4 L-type encoding operation.
1: {append L to op-code sequence.}
2: O_seq = O_seq|L;

3: {update marks.}
4: g.m = 0;

5: g.P.m = 0;

6: g.n.o.m = 1;

7: {connect the halfedges g.P.P and g.p.o.}
8: g.P.P.N = g.n.o;

9: g.n.o.P = g.P.P;

10: {connect the halfedges g.n.o and g.N.}
11: g.n.o.N = g.N;

12: g.N.P = g.n.o;

13: {update the active gate g}
14: g = g.n.o;

Figure 3.7: An example illustrating the R-type operation. (a) The initial mesh corresponds
to an R-type triangle. (b) The resulting mesh obtained after the R-type operation.

3.2.3 R-type Triangle

The third type of triangle to be considered is R-type. An R-type triangle arises when the
active gate g has an opposing vertex g.v that belongs to B and immediately follows g on B.
An example of this situation is illustrated in Figure 3.7(a), where the facet contains the active
gate g shown. As seen from Figure 3.7(a), an R-type triangle represents the local rightmost
triangle. This means that the halfedges g.n and g.N are the same halfedge. During the
processing of the R-type triangle, the active gate is moved to the halfedge g.p.o, and various
marks are updated. Then, the incident facet of g (before g was moved) is deleted, and the
bounding loop is updated accordingly. This yields the updated bounding loop with the mesh
shown in Figure 3.7(b). The processing steps described above are shown in more detail in
Algorithm 5, including exactly how the various halfedges and marks should be updated.

24

Algorithm 5 R-type encoding operation.
1: {append R to op-code sequence.}
2: O_seq = O_seq|R;

3: {update marks.}
4: g.m = 0;

5: g.N.m = 0;

6: g.p.o.m = 1;

7: {connect the halfedges g.p.o and g.N.N.}
8: g.N.N.P = g.p.o;

9: g.p.o.N = g.N.N;

10: {connect the halfedges g.P and g.p.o.}
11: g.P.N = g.p.o;

12: g.p.o.P = g.P;

13: {update the active gate g.}
14: g = g.p.o;

3.2.4 S-type Triangle

The next type of triangle to be considered is S-type. An S-type triangle arises when the active
gate g has an opposing vertex g.v that belongs to B and neither immediately precedes nor
follows g on B. An example of this situation is illustrated in Figure 3.8(a), where the facet
contains the active gate g shown. During the processing of the S-type triangle, the current
mesh is split into two separate parts: the left and right submeshes. As explained earlier, the
halfedge stack is used to store the inactive gates. The halfedge g.p.o from the left submesh
is pushed to the halfedge stack. Various marks on the left submesh’s bounding loop are
updated. The offset table is then updated by the S-type operation. Next, the active gate
is moved to the halfedge g.n.o, and various marks are updated. Finally, the incident facet
of g (before g was moved) is deleted, and the bounding loop is updated accordingly. This
yields the updated bounding loop with the mesh shown in Figure 3.8(b). The processing
steps described above are shown in more detail in Algorithm 6, including exactly how the
various halfedges and marks should be updated. The encoder moves to the right submesh
after processing the S-type triangle. The offset table related operation in step 39 will be
explained later in Section 3.2.8.

3.2.5 E-type Triangle

The next type of triangle to be considered is E-type. An E-type triangle arises when the
active gate g has an opposing vertex g.v that belongs to B and both immediately precedes
and follows g on B. An example of this situation is illustrated in Figure 3.9, where the facet

25

Algorithm 6 S-type encoding operation.
1: {append S to op-code sequence.}
2: O_seq = O_seq|S;

3: {update marks.}
4: g.m = 0;

5: g.p.o.m = 1;

6: g.n.o.m = 1;

7: b = g.n; {initial candidate for the halfedge b.}
8: while b.m ̸= 1 do
9: b = b.o.p; {turn around vertex g.v.}

10: end while
11: {connect the halfedges g.P and g.p.o.}
12: g.P.N = g.p.o;

13: g.p.o.P = g.P;

14: {connect the halfedges g.p.o and b.N.}
15: g.p.o.N = b.N;

16: b.N.P = g.p.o;

17: edge_stack.push(g.p.o); {update the halfedge stack.}
18: g_n = g.p.o.N; {initial candidate for the halfedge g_n.}
19: while g_n.m ̸= 3 do
20: {update marks.}
21: g_n.m = 3;

22: g_n.e.m = 3;

23: g_n = g_n.N; {move to next edge around left submesh.}
24: end while
25: {connect the halfedges b and g.n.o.}
26: b.N = g.n.o;

27: g.n.o.P = b;

28: {connect the halfedges g.n.o and g.N.}
29: g.n.o.N = g.N;

30: g.N.P = g.n.o;

31: offset = 1;

32: o_edge = g.n.o.N; {initial candidate for the halfedge o_edge.}
33: while o_edge ̸= g.n.o do
34: offset = offset + 1;

35: o_edge = o_edge.N; {move to next edge around right submesh.}
36: end while
37: offset = offset - 2; {calculate the offset value.}
38: s_count = s_count + 1; {update s_count. }
39: offset_table.add(offset, s_count); {update the offset table.}
40: g = g.n.o; {update the active gate g.}

26

Figure 3.8: An example illustrating the S-type operation. (a) The initial mesh corresponds
to an S-type triangle. (b) The resulting mesh obtained after the S-type operation.

g

g.v

g.P g.N

Figure 3.9: An example mesh corresponds to an E-type triangle.

contains the active gate g shown. As seen from Figure 3.9, E-type triangle is the last triangle
in the current mesh or submesh. This means that the halfedges g.p and g.P are the same
halfedge, and the halfedges g.n and g.N are the same halfedge. During the processing of
the E-type triangle, various marks are updated. If the E-type triangle is the last triangle in
the mesh, the entire encoding procedure is finished. Otherwise, a halfedge is popped from
the halfedge stack and used as the active gate g for subsequent processing. The processing
steps described above are shown in more detail in Algorithm 7, including exactly how the
various halfedges and marks should be updated. The offset table related operation in step 7
will be explained later in Section 3.2.8.

3.2.6 M-type Triangle

The next type of triangle to be considered is M-type. An M-type triangle arises when the
active gate g belongs to a hole’s boundary (as determined by its mark value). An example
of this situation is illustrated in Figure 3.10(a), where the facet contains the active gate g

shown. During the processing of the M-type triangle, the hole’s boundary is merged into
the active bounding loop. As explained earlier, the M table is used to store the information
related to holes. A pair of values is stored for each table entry. The first value is the number
of S-type triangles encountered since the previous M-type triangle or since the beginning of
the encoding process for the first M-type triangle. The second value is the number of vertices

27

Algorithm 7 E-type encoding operation.
1: {append E to op-code sequence.}
2: O_seq = O_seq|E;

3: {update marks.}
4: g.m = 0;

5: g.p.o.m = 0;

6: g.n.o.m = 0;

7: if size(offset_table) > handle_s then
8: offset_table.pop_back(); {update the offset table.}
9: end if

10: if edge_stack ̸= ∅ then
11: g = edge_stack.pop(); {Update the halfedge stack.}
12: b = g.N; {initial candidate for the halfedge b.}
13: while b.m ̸= 1 do
14: {update marks.}
15: b.m = 1;

16: b.e.m = 1;

17: b = b.N; {move the halfedge b.}
18: end while
19: else
20: Encoding process end.
21: end if

located on the hole’s boundary. Next, the active gate is moved to the halfedge g.n.o, and
various marks are updated. Then, the incident facet of g (before g was moved) is deleted,
and the bounding loop is updated accordingly. This yields the updated bounding loop with
the mesh shown in Figure 3.10(b). The processing steps described above are shown in more
detail in Algorithm 8, including exactly how the various halfedges and marks should be
updated.

3.2.7 M’-type Triangle

The last type of triangle to be considered is M’-type. An M’-type triangle arises when the
active gate g has an opposing vertex g.v that belongs to an inactive bounding loop (as
determined by its mark value). An example of this situation is illustrated in Figure 3.11(a),
where the facet contains the active gate g shown. During the processing of the M’-type
triangle, the inactive bounding loop (i.e., a bounding loop associated with one of the inactive
gates in the halfedge stack) is merged into the active bounding loop. As explained earlier,
the M’ table is used to store the information related to handles. Three values are stored in
each table entry. The first is the position of the halfedge (i.e., the inactive gate of the inactive

28

Algorithm 8 M-type encode operation.
1: {append M to op-code sequence.}
2: O_seq = O_seq|M;

3: {update marks.}
4: g.m = 0;

5: g.p.o.m = 1;

6: g.n.o.m = 1;

7: b = g.n; {initial candidate for the halfedge b.}
8: while b.m ̸= 2 do
9: b = b.o.p; {turn around the vertex g.v.}

10: end while
11: len = 0; {initial hole length count.}
12: while b.m ̸= 1 do
13: {update marks.}
14: b.m = 1;

15: b.e.m = 1;

16: len = len + 1; {update the hole length count.}
17: b = b.N {move to next edge around hole.}
18: end while
19: m_table.add(len, s_count); {update M table.}
20: {connect the halfedges g.P and g.p.o.}
21: g.P.N = g.p.o;

22: g.p.o.P = g.P;

23: {connect the halfedges g.p.o and b.N.}
24: g.p.o.N = b.N;

25: b.N.P = g.p.o;

26: {connect the halfedges b and g.n.o.}
27: b.N = g.n.o;

28: g.n.o.P = b;

29: {connect the halfedges g.n.o and g.N.}
30: g.n.o.N = g.N;

31: g.N.P = g.n.o;

32: {update the active gate g.}
33: g = g.n.o;

29

Figure 3.10: An example illustrating the M-type operation. (a) The initial mesh corresponds
to an M-type triangle. (b) The resulting mesh obtained after the M-type operations.

loop that needs to be merged) in the halfedge stack. The second is the offset value for the
M’-type triangle. The offset is the distance between the halfedge in the stack and the vertex
opposite the active gate (i.e., g.v). The third is the number of S-type triangles encountered
since the previous M’-type triangle or since the beginning of the encoding process for the
first M’-type triangle. Next, the active gate is moved to the halfedge g.n.o, and various
marks are updated. Then, the incident facet of g (before g was moved) is deleted, and the
bounding loop is updated accordingly. This yields the updated bounding loop with the mesh
shown in Figure 3.11(b). The detailed processing steps in the M’type operation are shown
in Algorithm 9, including exactly how the various halfedges and marks should be updated.
The offset table related operation in step 34 will be explained later in Section 3.2.8.

3.2.8 Remarks on Handles

In what follows, we introduce the additional coding complexity produced by the handles.
Rossignac’s original paper on Edgebreaker in [1] did not fully specify all details of how to
process handles. Therefore, some ideas from Zhu’s thesis in [18] were used to provide missing
details.

As explained earlier, the S-type operation splits the mesh into the left and right submesh-
es. An example of this situation is illustrated in Figure 3.12(a), where the facet contains
the active gate g shown an S-type triangle. At the encoder side, the two split points for
the S-type operation are always the active gate’s incident vertex and the vertex opposite the
active gate (i.e., vertices V1 and V5 in the figure). After the split operation, the encoder
generates the left and right submeshes, as shown in Figures 3.12(b) and (c), respectively.
In the decoder, the method performs the same split operation when processing the S-type

30

Algorithm 9 M’-type encoding operation.
1: {append M’ to op-code sequence.}
2: O_Seq = O_seq|M’;

3: {update marks.}
4: g.m = 0;

5: g.p.o.m = 1;

6: g.n.o.m = 1;

7: b = g.n; {initial candidate for the halfedge b.}
8: while b.m ̸= 3 do
9: b = b.o.p; {turn around the vertex g.v.}

10: end while
11: b_n = b.N; {initial candidate for the halfedge b_n.}
12: while b_n.m ̸= 1 do
13: {update marks.}
14: b_n.m = 1;

15: b_n.e.m = 1;

16: b_n = b_n.N; {move to next edge around handle.}
17: end while
18: {connect the halfedges g.P and g.p.o.}
19: g.P.N = g.p.o;

20: g.p.o.P = g.P;

21: {connect the halfedges g.p.o and b.N.}
22: g.p.o.N = b.N;

23: b.N.P = g.p.o;

24: {connect the halfedges b and g.n.o.}
25: b.N = g.n.o;

26: g.n.o.P = b;

27: {connect the halfedges g.n.o and g.N.}
28: g.n.o.N = g.N;

29: g.N.P = g.n.o;

30: position = edge_stack.find(); {find the halfedge position from the halfedge s-
tack.}

31: edge_stack.remove(position); {delete the halfedge from the halfedge stack.}
32: offset = distance(position, g.v); {calculate the offset value.}
33: mp_table.add(position, offset, s_count); {update the M’ table.}
34: handle_s = size(offset_table); {update the counter handle_s.}
35: g = g.n.o; {update the active gate g.}

31

Figure 3.11: An example illustrating the M’-type operation. (a) The initial mesh corresponds
to an M’-type triangle. (b) The resulting mesh obtained after the M’-type operation.

triangles. Therefore, the decoder needs to know the two split points for the active bounding
loop. If the mesh contains no handles, this information can be determined by the transmitted
op-code sequence. When handles are present, however, it is not possible for the decoder to
determine one of the split points for some of the S-type triangles. The split point that cannot
be determined is the vertex opposite the active gate (i.e., the vertex V5 in Figure 3.12(a)).
To resolve this problem, the information stored in the offset table is used to determine the
split point in the decoder. A pair of values is stored for each offset table entry: the first
value is the S-type triangle counter, and the second value is the offset value OV. The offset
value OV can be calculated by

OV = RV − 2, (3.1)

where RV denotes the number of vertices located on the right submesh’s boundary. The offset
value can also viewed as how many steps the method moves from the next halfedge of the
active gate on the bounding loop’s incident vertex (i.e., the vertex g.N.e) to the split point
along the bounding loop. For example, as shown in Figure 3.12(a), the method moves three
steps following the numbered arrows in order to reach the vertex V5 (i.e., from V2 to V5).
Therefore, the offset value for this S-type triangle is three. From Figure 3.12(c), we see that
RV equals five. By using (3.1), the offset value OV is obtained as

OV = RV − 2 = 5− 2 = 3. (3.2)

32

g

1

2

3

V1

V2

V3

V4

V5

V6

V7

V8

V0

V5

V6

V7

V8

V0 V1

V2

V3

V4

V5

(a) (b) (c)

Figure 3.12: An example illustrating the split operation. (a) The initial bounding loop before
the split operation. (b) and (c) The resulting left and right submeshes obtained after the
split operation, respectively.

The offset value calculated above matches the result we obtained from Figure 3.12(a).
As explained earlier, when mesh contains handles, some of the S-type triangles’ split

points cannot be determined by the decoder. In what follows, we will explain how to de-
termine whether or not an S-type triangle’s split point can be determined at the decoder
side.

When the encoder visits an M’-type triangle, there must be one or more halfedges on
the halfedge stack. For all the halfedges on the halfedge stack, their corresponding S-type
triangles’ split point cannot be determined by the decoder. We use a short example to
explain the above concept. For example, suppose that the opcode sequence obtained is
S1RS2E S3M’RRLERRE. The indices of S-type triangles indicate the order in which they are
visited by the encoder. Figure 3.13 shows the halfedge stack’s change for the given op-code
sequence, and entries in each stack illustrate the halfedge generated by the corresponding
S-type triangles. Figures 3.13(a) and (b) show the halfedge stack after encoding the first and
second S-type triangles, respectively. Figure 3.13(c) shows the halfedge stack after encoding
the first E-type triangle, while Figure 3.13(d) shows the halfedge stack after encoding the
third S-type triangle. From Figure 3.13(d), we notice that two halfedges (i.e., halfedges from
triangles S1 and S3) are on the stack when the encoder encounters the M’-type triangle. This
means the split points for S1 and S3 triangles cannot be determined by the decoder, and this
information needs to be read from the offset table.

From the above example, we notice that the split point of the second S-type triangle
(i.e., S2) can be determined by the decoder. This due to the fact the after encoding the
the first E-type triangle, the halfedge produced by S2 is popped from the halfedge stack,
as shown in Figure 3.13(c). An S-type triangle is considered to be affected by a handle
(i.e., known as the handle-related S-type triangle) if its split point cannot be determined by

33

S1 S1

S2

S1 S1

S3

(a) (b) (c) (d)

Figure 3.13: The halfedge stack’s change for the given op-code sequence. (a) and (b) The
resulting halfedge stack after encoding the first and second S-type triangles (i.e., S1 and
S2), respectively. (c) The resulting halfedge stack after encoding the first E-type triangle.
(d) The resulting halfedge stack after encoding the third S-type triangle (i.e., S3).

the decoder. At the point when the encoder meets an S-type triangle, the method cannot
determine whether the S-type triangle is affected by a handle or not. This identification,
however, can only be facilitated at the E-type operation and with the help of the counter
handle_s. The counter handle_s is initialized to zero at the beginning of the encoding
process, and its value is updated to the offset table’s size in each M’-type operation. The
operation to update counter handle_s can be found in step 34 of Algorithm 9 (on page 30).

The detailed offset table update operations are as follows. In the S-type operation, an
entry is added to the offset table, as shown in step 39 of Algorithm 6 (on page 25). In the
E-type operation, as shown in step 7 of Algorithm 7 (on page 27), the encoder first compares
the counter handle_s with the offset table’s size. If the offset table’s size is larger than
the value of handle_s, this means the last table entry should be removed from the table.
Otherwise, all entries in the offset table belong to the handle-related S-type triangles and
should be kept in the table.

3.2.9 Transmitted Data

Having presented the encoding details for each triangle type, we can now introduce the
variables and data structures that are transmitted to the decoder side. Since the number
of handles and holes are typically small in practical applications, the method uses the S
symbol in the op-code sequence that is transmitted to the decoder side to represent S-, M-
and M’-types triangles. Moreover, the information stored in both M table and M’ table is
sufficient to separate these three types in the decoder side. Therefore, the transmitted op-
code sequence only contains five symbols: C, L, R, E, and S. The op-code sequence, the offset
table, the M table, the M’ table, and the coded prediction residuals are transmitted to the
decoder side. For triangle meshes without holes, the M table is empty. For triangle meshes

34

without handles, the M’ table and offset table are empty. The encoding program gathers all
the data structures in the given order, codes them into a binary file, and transmits the file
to the decoder side. The coded binary file is stored in EB format. A detailed description of
the EB format can be found in Section 4.5.

3.3 Examples of the Encoding Method

Having fully described the encoding method, we now provide some mesh-coding examples
for illustrative purposes. In particular, we consider four examples:

1. A mesh with one bounding loop and no handles.

2. A mesh with zero bounding loops and no handles.

3. A mesh with two bounding loops.

4. A mesh with zero bounding loops and one handle.

3.3.1 Example 1: Mesh with One Bounding Loop and No Handles

The first mesh-coding example considered is for a mesh with one bounding loop and no
handles. Figure 3.14(a) shows the mesh, and Figure 3.14(b) shows the resulting encoding
sequence. This example contains all five triangle types (C-, L-, E-, R-, and S-types) such that
we can illustrate the encoding process for each type specifically. As shown in Figure 3.14(b),
the encoder traverses the mesh by following the arrows in sequence.

The encoding preprocessing steps are as follows. All mesh’s vertices are quantized to
obtain the integer quantization indices. Then, all vertex flags are set to false meaning no
vertex has been coded. Next, all boundary halfedge and vertex marks are set to one, and all
interior halfedge and vertex marks are set to zero. Under this circumstance, vertices V0 to
V13 in Figure 3.14(b) have a mark of zero, and vertices V14 to V17 have a mark of one.

Having finished the above preprocessing steps, the encoding process is started. The initial
active gate chosen in this example is the halfedge

−−−→
V13V0 (i.e., the halfedge with label 1 in

Figure 3.14(b)). Since the vertex V14 is located inside the mesh and its mark equals zero,
the first triangle is C-type. Then, the encoder updates V14’s mark from zero to one, meaning
V14 is located on the remaining mesh’s boundary. Next, the encoder predicts the positions
of the three vertices in the C-type triangle, calculates the differences between the predicted
and the actual positions, and binarizes and encodes the prediction residuals. The vertex flag
is set to true after coding each vertex. Following the halfedge with label 2 in Figure 3.14(b),
the encoder moves to the second triangle, and the new active gate is the halfedge

−−−→
V14V0.

35

S

E

E

R

RR

R

V0

V1

V2
V3

V4V5

V6

V7V8

V9

V10

V11 V12 V13

1415

16

17
V14V15

V16

V17

(a)

(b)

Figure 3.14: A triangle mesh with one bounding loop and no handles. (a) The triangle mesh
with boundary. (b) Steps in the Edgebreaker encoding process.

36

Since the vertex V1 is located on the mesh’s boundary and immediately follows the active
gate, the second triangle is R-type. The halfedge relationships on the mesh’s boundary are
updated. According to step 4 of Algorithm 1 (on page 16), the encoder needs to check and
encode the newly encountered vertex. The vertex V1 is coded by the method and its flag
is set to true after the vertex encoding. Further, the active gate is updated to the halfedge
−−−→
V14V1. Proceeding in a similar way, the third triangle encoded is also R-type, and the active
gate is set to the halfedge

−−−→
V14V2.

The vertex V6 has three characteristics: 1) it is located on the mesh’s boundary, 2) it
neither immediately precedes nor follows the active gate, and 3) it has a mark of one. Based
on the above information, the fourth triangle is S-type. The S-type operation splits the
current mesh into two submeshes. The left submesh’s boundary contains the vertices V6,
V7, ..., V14, and the right submesh’s boundary contains the vertices V2, V3, ..., V6. For all
the vertices and halfedges located on the left submesh’s boundary, their marks are updated
to three. The halfedge

−−−→
V14V6 is then pushed to the halfedge stack and will be used as the

active gate when processing the left submesh. Next, the encoder updates the offset table,
sets the active gate to the halfedge

−−−→
V6V2, and traverses the right submesh.

The first triangle of the right submesh is L-type. This is due to the fact that the vertex
V5 is located on the right submesh’s boundary and immediately precedes the active gate.
Similarly, the second triangle of the right submesh is also L-type, and the active gate is
set to the halfedge

−−−→
V4V2. Since the vertex V3 is located on the submesh’s boundary and

immediately precedes and follows the active gate, the last triangle is E-type. The counter
handle_s equals zero and its value is less than the offset table’s size (i.e., one). Therefore, an
entry is removed from the offset table and the offset table becomes empty. Next, the encoder
checks the halfedge stack and pops the halfedge

−−−→
V14V6. Starting from the popped halfedge

−−−→
V14V6, the encoder traverses along the left submesh’s boundary and update the vertex and
halfedge marks to one. The remaining portion of the mesh is processed similarly. The op-
code sequence generated after the entire coding process is CRRSLLECCRRRCRRRSREE.

3.3.2 Example 2: Mesh with Zero Bounding Loops and No Handles

The second mesh-coding example considered is for a tetrahedral mesh. This example il-
lustrates the encoding process for a mesh with zero bounding loops (i.e., closed) and no
handles. Figure 3.15(a) shows the original mesh, while Figure 3.15(b) shows a cut and
flattened view of the mesh. Note that Figure 3.15(b) is only for visualization purposes as
the Edgebreaker method codes the input mesh directly without any cutting or flattening
operation. Figure 3.15(c) illustrates the steps in the encoding process.

37

Figure 3.15: A triangle mesh with zero bounding loops (i.e., closed) and no handles. (a) The
tetrahedral mesh. (b) A cut and flattened view of the tetrahedral mesh. (c) Steps in the
Edgebreaker encoding process.

In the mesh preprocessing, the encoder quantizes all vertex coordinates, initializes all
vertex and halfedge marks to zero, and sets all vertex flags to false. Since the original
mesh is closed, an arbitrary halfedge can be chosen as the initial active gate. As shown in
Figure 3.15(c), the halfedge

−−−→
V1V0 is chosen. The initial bounding loop is formed by the

initial active gate. Therefore, the initial active gate’s vertex and halfedge marks need to be
updated. The vertices V1’s and V0’s marks are set to one, and the halfedge

−−−→
V1V0’s mark is

also set to one. The encoding process starts after the mark updates. Proceeding in a similar
way as the first example, the encoder generates the op-code sequence: CCRE.

3.3.3 Example 3: Mesh with Two Bounding Loops and No Handles

The third mesh-coding example considered is for a mesh with two bounding loops (i.e., one
hole) and no handles. The purpose of providing this example is to show how the hole is
handled by the encoding method. Figure 3.16(a) shows the mesh, and Figure 3.16(b) shows
the steps in the encoding process. Both arrows and vertices in Figure 3.16(b) are labeled
with indices. The preprocessing steps of this example is similar to the previous examples.
Vertices V0’s to V13’s marks are set to one, vertices V14’s to V18’s marks are set to two, and
the vertex V19’s mark is set to zero. The initial active gate is the halfedge

−−−→
V13V0. The first

triangle is S-type and the mesh is split into two submeshes. Vertices V0, V1, ..., V8 form the
right submesh’s boundary, and vertices V8, V9, ..., V13 form the left submesh’s boundary.

As shown in Figure 3.16(b), the active gate for the right submesh is the halfedge
−−−→
V8V0.

Since the vertex V14’s mark is two, the first triangle of the right submesh is M-type. As
explained earlier, the M-type operation inserts an entry into the M table, updates the vertex
and halfedge marks on hole’s boundary, and also merges the hole’s boundary into the active
bounding loop. By traversing the hole’s boundary, the encoder computes the number of
vertices located on hole’s boundary which is five. The encoder only meets one S-type triangle

38

V0 V1 V2

V3

V4

V5V6

V7

V8

V9V10

V11

V12 V13

V14

V15

V16

V17

V18V19

(a)

(b)

Figure 3.16: A triangle mesh with two bounding loops (i.e., one hole) and no handles. (a) The
triangle mesh with a hole. (b) Steps in the Edgebreaker encoding process.

39

in the previous encoding process. Therefore, two values (i.e., one and five) are added to the
M table. Next, the encoder updates the vertex and halfedge marks on hole’s boundary and
merges the bounding loops. After the halfedge relationship updates, the halfedge

−−−→
V8V14’s

next halfedge on the bounding loop is the halfedge
−−−−→
V14V15, and the halfedge

−−−→
V14V0’s previous

halfedge on the bounding loop is the halfedge
−−−−→
V18V14. The active gate after the M-type

operation is updated to the halfedge
−−−→
V14V0. As shown in the figure, the encoder traverses

the mesh by following the arrows in sequence. Upon completion of the above process, the
op-code sequence SMRLRRLRLRRRLRECRRRRE is obtained. As explained earlier, the
transmitted op-code sequence only uses five symbols (i.e., C, L, R, E, and S), and the S
symbol is used to represent S-, M-, and M’-types triangles. Therefore, the op-code sequence
that is transmitted to the decoder side is SSRLRRLRLRRRLRECRRRRE.

3.3.4 Example 4: Mesh with Zero Bounding Loops and One Handle

The fourth mesh-coding example considered is for a mesh with zero bounding loops and
one handle. The simplest such mesh corresponds to a torus. The purpose of providing this
example is to show how a handle is processed by the encoding method. For this reason, we
focus mainly on the processing of M’-type triangle in the example. Figure 3.17 shows a pic-
torial view of the torus mesh. Figure 3.17(a) shows the torus mesh in perspective view, while
Figures 3.17(b) and (c) show top and bottom views of the mesh, respectively. Figure 3.17(d)
shows the connectivity of the torus mesh obtained after cutting and flattening the original
mesh. Note that Figure 3.17(d) is only for visualization purposes, since the Edgebreaker
method codes the input mesh directly without any cutting or flattening operation.

The mesh preprocessing steps are identical to the coding example in Section 3.3.2 (on
page 36). Figure 3.18 shows the internal steps of the Edgebreaker encoding process. Fig-
ures 3.18(a) and (b) presents the coding sequence of the first 17 and 20 triangles, respectively.
Figure 3.18(c) shows the resulting active bounding loop after the M’-type operation.

The initial active gate is the halfedge
−−−→
V0V4 in Figure 3.18(a). The triangle traversal

sequence follows the numbered arrows in order. The op-code sequence obtained for the first
17 triangles is CCCCCRCCCRCCRCCRS. In Figure 3.18(a), the left submesh’s boundary
contains the vertices V9, V8, V1, V6, V14, and V10, and the right submesh’s boundary
contains the vertices V12, V8, V11, V3, and V7. The thick dotted line in the figure shows
the symmetric part of the bounding loop on the other side of the mesh. All vertices and
halfedges on the left submesh’s boundary have the mark of three. The halfedge

−−−→
V9V8 in

Figure 3.18(a) is pushed to the halfedge stack.
By following the arrows in Figure 3.18(b), the next two triangles encoded are C- and

40

V0

V1

V2

V8

V9

V10

V11

V12

13

14

V15

V7

V1

V2V3

V0

V4 V5

V6V7

V9

V10V11

V8

V12 V13

V14V15

V0 V5

V13

V1

V4

V12

V12

V8

V9

V9

V2V2

V2V2 V7

V7

V10 V10

V14 V14

V6 V6V15

V11

V3

(a) (b)

(c) (d)

V5

V6

V4

Figure 3.17: A triangle mesh with zero bounding loops and one handle. (a) The torus mesh
in perspective view. (b) and (c) The top and bottom views of the mesh. (d) The connectivity
of the torus mesh obtained after cutting and flattening the original mesh.

41

R-types. The third triangle (i.e., the triangle with vertices V15, V7, V6) is M’-type. This is
due to the fact that the vertex V6 is located on the mesh’s boundary and neither precedes
nor follows the active gate, and has the vertex mark of three. For the M’-type triangle, the
encoder updates the M’ table and also merges an inactive loop into the active bounding loop.
The vertex opposite the active gate for the M’ triangle is the vertex V6, and the halfedge
sought in the halfedge stack is the halfedge

−−−→
V9V8 in Figure 3.18(b). Since

−−−→
V9V8 is the only

halfedge located in the stack, the position value for the current M’-type triangle is zero.
Starting from

−−−→
V9V8, after moving two steps along the boundary (i.e.,

−−−→
V8V1 and

−−−→
V1V6), the

encoder reaches the vertex V6. Therefore, the offset value for the current M’-type triangle
is two. The encoder only meets one S-type triangle in the previous encoding process, so the
third value of the M’ table entry is one. Hence, the position value, the offset value, and
the number of S-type triangles encountered previously are zero, two, and one, respectively.
These three values are grouped together in the given order and added to the M’ table.

Next, the encoder updates the counter handle_s to one. Then, the encoder updates
the vertex and halfedge marks on the bounding loop which contains the vertices V9, V8, V1,
V6, V14, and V10 in Figure 3.18(b) and merges this bounding loop to the active bounding
loop. After the halfedge relationship updates, the halfedges

−−−→
V8V15,

−−−→
V15V6, and

−−−→
V6V14 are

connected in order, and the halfedges
−−−→
V1V6,

−−−→
V6V7, and

−−−→
V7V3 are connected in order. The

bounding loop after the M’-type encoding is shown in Figure 3.18(c). Furthermore, the
active gate is set to the halfedge

−−−→
V6V7.

The rest of the torus mesh can be encoded in a similar way, as shown in Figure 3.19.
Upon completion of the above process, we obtain the op-code sequence CCCCCRCCCRC-
CRCCRSCRM’CRSRLSEERSEE is obtained. Moreover, the op-code sequence transmitted
to the decoder side is CCCCCRCCCRCCRCCRSCRSCRSRLSEERSEE.

3.4 Parallelogram-Prediction Scheme

As explained earlier, the parallelogram-prediction scheme in [4] is used by the Edgebreak-
er method to predict vertex positions. The integer difference between the predicted and
actual positions (i.e., the prediction residual) are binarized and encoded by the arithmetic
coder. The scheme’s name originates from its geometric interpretation. The parallelogram-
prediction scheme predicts one vertex in a parallelogram from zero or more other vertices
in that parallelogram. The scheme predicts a vertex r in a parallelogram from zero or more
of the other three vertices u, v, and w, as shown in Figure 3.20. In order to combine the
parallelogram-prediction scheme with the Edgebreaker method, Rossignac proposed four d-
ifferent cases [19]. In some cases, vertices u, v, and w are not all known before the prediction.

42

(a) (b)

(c)

Figure 3.18: The internal steps of the Edgebreaker encoding process. (a) and (b) The
encoding sequence of the first 17 and 20 triangles, respectively. (c) The resulting active
bounding loop after the M’-type operation.

43

(a) (b)

(c) (d)

Figure 3.19: The internal steps of the Edgebreaker encoding process. (a) - (c) The coding
sequence after processing the second, third, and fourth S-type triangles, respectively. (d) The
entire encoding process of the torus example.

44

r

u v

w

Figure 3.20: Parallelogram-prediction scheme.

Each of these cases is shown in Figure 3.21.
Case 1. In this case, none of the vertices is known before the prediction, as shown in

Figure 3.21(a). The vertex r is predicted as the origin (i.e., r̂ = (0, 0, 0)). This case is used
to predict the first vertex of the triangle first processed by the Edgebreaker method.

Case 2. In this case, only the vertex u is known before the prediction, as shown in
Figure 3.21(b). The vertex r is predicted as the vertex u (i.e., r̂ = u). This case is used to
predict the second vertex of the triangle first processed by the Edgebreaker method.

Case 3. In this case, two vertices u and v are known before the prediction, as shown
in Figure 3.21(c). The vertex r is predicted to the average of the two known vertices as r̂,
where

r̂ =
1

2
(u+ v) (3.3)

This case is used to predict the third vertex of the triangle first processed by the Edgebreaker
method.

Case 4. In this case, all three vertices u, v, and w are all known before the prediction,
as shown in Figure 3.21(d). The vertex r can be predicted as r̂, where

r̂ = v + u− w. (3.4)

As explained earlier, the difference between the actual and the predicted positions is the
data encoded for each vertex. When quantizer indices are used, the prediction is rounded to
an integer value to maintain the integer nature of data. Therefore, the prediction residual
∆ can be calculated by

∆ = r − round(r̂). (3.5)

In what follows, we provide a short example to illustrate the prediction process. Fig-

45

r

? ?

?

r

u ?

?

r

u v

?

r

u v

w

(a) (b) (c) (d)

Figure 3.21: Different cases of the parallelogram-prediction scheme. (a) to (d) Pictorial view
of cases 1 to 4.

r = (10, 5, 0)

v = (8, 1, 0)u = (6, 5, 0)

w = (4, 1, 0)

Figure 3.22: A parallelogram to illustrate the prediction residual generation process.

ure 3.22 shows four vertices u, v, w, and r that form a parallelogram, where

u = (6, 5, 0), v = (8, 1, 0), w = (4, 1, 0), and r = (10, 5, 0). (3.6)

Since all three vertices u, v and w are known before the prediction, equation in (3.4) is used
to predict the vertex r̂ as follows

r̂ = u+ v − w = (6, 5, 0) + (8, 1, 0)− (4, 1, 0) = (10, 5, 0). (3.7)

By using (3.5), the prediction residual is obtained as

∆ = r − r̂ = (10, 5, 0)− (10, 5, 0) = (0, 0, 0). (3.8)

Therefore, the prediction residual encoded for this example is (0, 0, 0).

46

Algorithm 10 Mesh decoding process.
1: Initialization phase: Compute quantities that are used by the generation phase.
2: Generation phase:
3: while Not all the op-codes are processed by the decoding method. do
4: Read the op-code and compute the three indices of the triangle.
5: Decode the prediction residuals of newly encountered vertex in the current triangle.
6: Predict and reconstruct the vertex position.
7: Move to the next op-code in the op-code sequence.
8: end while

3.5 Decoding Method

Having fully described the encoding process, we now turn our attention to the decoding pro-
cess. To begin, we introduce the decoding method in general terms. The decoder receives the
op-code sequence and coded prediction residuals from the encoder side, and reconstructs the
mesh from this. The mesh connectivity is reconstructed from the op-code sequence, and the
mesh geometry is reconstructed from the coded prediction residuals. The decoder performs
two traversals of the op-code sequence. The first traversal, known as the initialization phase,
calculates quantities that are used in the mesh reconstruction. The second traversal, known
as the generation phase, creates triangles in the same order as processed by the encoder
and also reconstructs the vertex positions. The reconstructed triangles in the generation
phase are represented by the indices of their three vertices. For each op-code, the decoder
first computes the three vertex indices of the triangle. Then, the prediction residuals of
any newly encountered vertex in the triangle is decoded. Similar to the encoding process,
the parallelogram-prediction scheme and the UI-binarization scheme are used to reconstruct
the integer quantizer indices. Next, the vertex positions are reconstructed from the integer
quantizer indices by applying the quantizer reconstruction rule. Finally, the decoder moves
to the next op-code in the op-code sequence. The generation process is iterated until all of
the op-codes in the op-code sequence are processed. The pseudocode for the mesh decoding
can be found in Algorithm 10.

Having introduced the Edgebreaker decoder in general terms, we now present the de-
coding method in detail. The main state information used by the decoder consists of the
following:

• The intermediate mesh’s boundary, which is represented by a circular doubly-linked
list.

• The op-code sequence, which stores the triangle types.

• The prediction residuals sequence, which stores the coded vertices.

47

• The facet table, which is used for storing the reconstructed facets.

• The vertex table, which is used for storing the reconstructed vertices.

• The M table, which is used to store the information related to holes.

• The M’ table, which is used to store the information related to handles.

• The offset table, which is used for storing the offset values for the S-type operations
whose offset value cannot be otherwise determined, due to the presence of handles.

• The S table, which is used for storing the offset values for all S-type triangles.

• The node stack, which is used to store the representative nodes of the boundaries that
are not currently being processed.

• The vertex counter, which is used to count how many vertices have been encountered
so far.

• The S-type counter, which is used to count the number of S-type triangles that have
been encountered by the generation phase.

As explained earlier, the intermediate mesh’s bounding loop is represented by a circular
doubly-linked list. This means that the main data structure used in the decoding process
is a circular doubly-linked list. Each node in the list represents a vertex that is located on
the intermediate mesh’s boundary. Each node is associated with a vertex index. Therefore,
the previous and next nodes on the list represent the previous and next vertices on the
intermediate mesh’s boundary, respectively. The active node is a node that is used to identify
the triangle that is currently being reconstructed. The notation used in our explanation of
the decoding method is as follows:

• The symbol G.i denotes the vertex index of the node G.

• The symbol G.P denotes the previous node of G in the list.

• The symbol G.N denotes the next node of G in the list.

The pictorial view of the above notation can be found in Figure 3.23.
The vertex flag is also used by the decoder. The pseudocode of the vertex data structure

in the decoder can be found in Figure 3.24. The flag flag in this data structure indicates
whether the vertex is decoded or not. The vertex flag is used as follows. At the beginning
of the decoding process, all vertex flags are set to false, meaning none of the vertices has
been processed by the decoder. During the decoding process, when a vertex is encountered,

48

G.P

···

···

G G.N

Figure 3.23: Pictorial view of the notations used in the decoding method.

struct Vertex {
double x_coordinate; // The x coordinate
double y_coordinate; // The y coordinate
double z_coordinate; // The z coordinate
bool flag; // The vertex flag

};

Figure 3.24: Definition of the vertex data structure in decoder.

the decoder first checks its flag. If the vertex flag equals false, the decoder reconstructs the
vertex position and sets the vertex flag to true. The checking process is necessary due to the
fact that the decoder only decodes each vertex once.

As explained in the encoding section, only five codewords (i.e., C, L, R, E, and S) are
used to code the seven triangle types. In particular, the S-, M-, and M’-types triangles are
all represented by the same codeword. Under this circumstance, the first step of decoding is
to preprocess the input op-code sequence to distinguish between the S-, M-, and M’-types
triangles which use the same codeword. The triangle type identification is based on the
the S-type counter value stored in both M and M’ tables. A counter s_opcode_count is
initialized to zero at the beginning of the preprocessing phase, and its value is updated each
time an S codeword is encountered by the decoder. The pseudocode for the op-code sequence
preprocessing is shown in Algorithm 11. The symbol m_count in Algorithm 11 represents
the S-type counter in the M table, and mp_count represents the S-type counter in the M’
table.

3.5.1 Decompression Initialization Phase

Having fully introduced the op-code sequence preprocessing step, we now present the ini-
tialization phase details. The operations in the initialization phase calculate the number
of vertices on the mesh’s boundary, and also generate the S table. To begin, we introduce
the variables and data structures used in the initialization phase. The initialization phase
maintains a counter e, a counter s, an ES-pair stack, and the S table. The detailed descrip-
tions of these variables are listed in Table 3.1. The operations of the initialization phase are

49

Algorithm 11 Op-code sequence preprocessing.
1: if op_code = S then
2: if s_opcode_count = m_count then
3: ++s_opcode_count; {M-type triangle.}
4: Updates the value of m_count to the S-type counter of the next table entry.
5: else if s_opcode_count = mp_count then
6: ++s_opcode_count; {M’-type triangle.}
7: Updates the value of mp_count to the S-type counter of the next table entry.
8: else
9: ++s_opcode_count; {S-type triangle.}

10: end if
11: end if

Table 3.1: Variables in the decoding initialization phase

Variables Initialization Description
e Zero The final value of e represents the number of vertices

located on the mesh’s boundary.
s Zero Tracks the number of S-type triangles encountered by the

initialization phase.
ES-pair stack Empty Saves the (e, s) pairs, helps generate the S table.

S table Empty Saves the offset values for all the S-type triangles.

presented in Algorithm 12. Since the decoding initialization details for the M’-type triangle
are omitted from [1], with the help of [18], the author of this report independently developed
the algorithm for the M’-type triangles. The (ep, sp) in Algorithm 12 denotes the popped
ES-pair value, and S[sp] denotes the spth entry in the S table.

3.5.2 Decompression Generation Phase

Having computed all the required quantities, the decoder now enters the generation phase.
In the generation phase, the decoder creates triangles in the same order as processed by the
encoder and reconstructs the mesh’s vertices. Each created triangle is represented by the
indices of its three vertices, and the entire generation process is finished by bounding loop
adjustments. The initial bounding loop is created as follows. The number of nodes in the
initial loop is set to the final value of the external vertex counter e. The vertex index of
the first node is assigned zero, and the vertex indices of the remaining nodes are assigned
successive increments of one from the previous node’s vertex index. For example, if an initial
bounding loop contains N nodes, the vertex indices for these N nodes are 0, 1, 2, ..., N - 1.

Before proceeding further, we need to first introduce the variables of the generation phase.
The S table, M table, M’ table, vertex table and facet table are used in the generation phase.

50

Algorithm 12 Decoding initialization phase.
1: while Not all the op-code are processed by the initialization phase. do
2: if op_code = C then
3: e = e - 1;

4: else if op_code = L or op_code = R then
5: e = e + 1;

6: else if op_code = S then
7: e = e - 1;

8: s = s + 1;

9: ES_pair_stack.push(e, s); {push an entry to the ES-pair stack.}
10: S.add(∅) {add an empty entry to the S table.}
11: else if op_code = E then
12: e = e + 3;

13: if ES_pair_stack ̸= ∅ then
14: (ep, sp) = ES_pair_stack.pop(); {pop the ES-pair stack.}
15: S[sp] = e - ep - 2; {update S table.}
16: end if
17: else if op_code = M then
18: e = e - (len + 1); {len is the length of the hole.}
19: else if op_code = M’ then
20: e = e - 1;

21: while ES_pair_stack ̸= ∅ do
22: (offset, s_count) = offset_table.begin(); {obtain the beginning entry

from the offset table.}
23: offset_table.erase(offset_table.begin()); {update the offset table.}
24: S[s_count] = offset {update S table.}
25: ES_pair_stack.pop(); {pop the ES-pair stack.}
26: end while
27: end if
28: end while

51

G.P

···

···

G G.N

(a)

G.P

···

···

G G.NA

(b)

Figure 3.25: An example illustrating the C-type operation. (a) and (b) The bounding loop
before and after the C-type operation, respectively.

The counter c, initialized to e - 1, is introduced to count the number of vertices that
have been encountered by the generation phase. Furthermore, the S-type counter s_cnt,
initialized to zero, is also maintained to count the number of S-type triangles that have been
encountered by the generation phase. In what follows, we describe how each of the seven
triangle types is handled during the generation operations.

C-type Triangle

Recall that, in the encoder, a C-type triangle corresponds to the situation when the vertex
opposite the active gate is not on the active bounding loop. The processing of such a triangle
(in the encoder) results in the active bounding loop being modified by adding a new vertex.
Therefore, when a C-type triangle is encountered in the decoder, a new node must be added
to the active bounding loop. In particular, a new node A with the next available free index
(i.e., c + 1) is added to the bounding loop just before the current position G. The updating
of the bounding loop is illustrated in Figure 3.25. Figure 3.25(a) shows the original bounding
loop with the active node G, and Figure 3.25(b) shows the updated bounding loop with the
newly added node A. In addition to the above processing, the counter c (for vertices) is
incremented and a new facet is added to the facet table with vertex indices G.P.i, G.i, and
A.i. The above processing steps are shown in detail in Algorithm 13.

L-type Triangle

Recall that, in the encoder, an L-type triangle corresponds to the situation when the vertex
opposite the active gate precedes the active gate on the bounding loop. The processing
of such a triangle (in the encoder) results in the active bounding loop being modified by
deleting a vertex. Therefore, when an L-type triangle is encountered in the decoder, a node
must be deleted from the active bounding loop. In particular, the node G.P is deleted from
the bounding loop, where G denotes the active node. The updating of the bounding loop is
illustrated in Figure 3.26. Figure 3.26(a) shows the original bounding loop with the active
node G, and Figure 3.26(b) shows the updated bounding loop (where the node G.P has been

52

Algorithm 13 C-type decoding operation.
1: {create new node A.}
2: New node A.i = c + 1;

3: {update facet table.}
4: facet_table.add(G.P.i, G.i, A.i)

5: {connect the G.P and A nodes.}
6: G.P.N = A;

7: A.P = G.P;

8: {connect the A and G nodes.}
9: A.N = G;

10: G.P = A;

11: {update vertex count c.}
12: c = c + 1;

G.P

···

···

G G.N

(a)

G.P.P

···

···

G G.N

(b)

Figure 3.26: An example illustrating the L-type operation. (a) and (b) The bounding loop
before and after the L-type operation, respectively.

deleted). In addition to the above processing, a new facet is added to the facet table with
vertex indices G.P.i, G.i, and G.P.P.i (before node G.P is deleted). The above processing
steps are shown in detail in Algorithm 14.

R-type Triangle

Recall that, in the encoder, an R-type triangle corresponds to the situation when the ver-
tex opposite the active gate follows the active gate on the bounding loop. The processing
of such a triangle (in the encoder) results in the active bounding loop being modified by
deleting a vertex. Therefore, when an R-type triangle is encountered in the decoder, a node
must be deleted from the active bounding loop. In particular, the active node G is deleted

Algorithm 14 L-type decoding operation.
1: {update facet table.}
2: facet_table.add(G.P.i, G.i, G.P.P.i)

3: {connect the G.P.P and G nodes.}
4: G.P.P.N = G;

5: G.P = G.P.P;

53

G.P

···

···

G G.N

(a)

G.P

···

···

G.N G.N.N

(b)

Figure 3.27: An example illustrating the R-type operation. (a) and (b) The bounding loop
before and after the R-type operation, respectively.

Algorithm 15 R-type decoding operation.
1: {update facet table.}
2: facet_table.add(G.P.i, G.i, G.N.i)

3: {connect the G.P and G.N nodes.}
4: G.P.N = G.N;

5: G.N.P = G.P;

6: {update active node.}
7: G = G.N;

from the bounding loop. The updating of the bounding loop is illustrated in Figure 3.27.
Figure 3.27(a) shows the original bounding loop with the active node G, and Figure 3.27(b)
shows the updated bounding loop (where the node G has been deleted). A new facet is added
to the facet table with vertex indices G.P.i, G.i, and G.N.i (before the node G is deleted).
In addition to the above processing, the node G.N (before the node G is deleted from the
bounding loop) becomes the active node in the following process. The above processing steps
are shown in detail in Algorithm 15.

S-type Triangle

Recall that, in the encoder, an S-type triangle corresponds to the situation when the vertex
opposite the active gate neither precedes nor follows the active gate on the bounding loop.
The processing of such a triangle (in the encoder) results in the active bounding loop being
split into left and right submeshes. Therefore, when an S-type triangle is encountered in the
decoder, the active bounding loop is also split into two subloops. The decoder first finds
the split node (i.e., the node D) of the current S-type triangle. Next, a new node A with the
the same vertex index as the node D is added to the bounding loop just before the current
position G. This node A is then pushed to the node stack and will be used as the active node
when the decoder processes the left submesh. Next, the bounding loop is split into the two
subloops. The updating of the bounding loop is illustrated in Figure 3.28. Figure 3.28(a)
shows the original bounding loop with the active node G, while Figures 3.28(b) and (c) show

54

G.P

···

···

G G.N D D.N

(a)

G.P

···

···

A D.N

(b)

G G.N D

(c)

Figure 3.28: An example illustrating the S-type operation. (a) The bounding loop before
the S-type operation. (b) and (c) The left and right submeshes’ bounding loops after the
S-type operation, respectively.

G.P G G.N

Figure 3.29: The bounding loop before the E-type operation.

the left and right subloops after the S-type operation, respectively. In addition to the above
processing, a new facet is added to the facet table with vertex indices G.P.i, G.i, and D.i.
The above processing steps are shown in detail in Algorithm 16.

E-type Triangle

Recall that, in the encoder, an E-type triangle corresponds to the situation when the vertex
opposite the active gate both precedes and follows the active gate on the bounding loop. The
processing of such a triangle (in the encoder) results in the entire active bounding loop being
deleted and an inactive bounding loop being popped from the halfedge stack (presuming
the stack is not empty). Therefore, when an E-type triangle is encountered in the decoder,
the active bounding loop is deleted. Figure 3.29 shows the bounding loop with the active
node G before the E-type operation. If the current E-type triangle is the last op-code in the
op-code sequence, the entire decoding procedure is finished. Otherwise, a node is popped
from the node stack and used as the active node for subsequent processing. In addition to
the above processing, a new facet is added to the facet table with vertex indices G.P.i, G.i,
and G.N.i (before the nodes are deleted). The above processing steps are shown in detail
in Algorithm 17.

55

Algorithm 16 S-type decoding operation.
1: {update S-type count count s_cnt.}
2: s_cnt = s_cnt + 1;

3: {initialize candidate for node D.}
4: D = G.N;

5: Repeat D = D.N; for s_cnt times
6: {update facet table.}
7: facet_table.add(G.P.i, G.i, D.i)

8: {create new node A.}
9: New node A.i = D.i;

10: {connect the G.P and A nodes.}
11: G.P.N = A;

12: A.P = G.P;

13: {connect the A and D.N nodes.}
14: A.N = D.N;

15: D.N.P = A;

16: {push the node A to the node stack.}
17: node_stack.push(A)
18: {connect the D and G nodes.}
19: D.N = G;

20: G.P = D;

Algorithm 17 E-type decoding operation.
1: {update facet table.}
2: facet_table.add(G.P.i, G.i, G.N.i)

3: {delete the G.P, G, G.N nodes from bounding loop.}
4: Delete G.P, G, G.N;

5: if node_stack ̸= ∅ then
6: G = node_stack.pop(); {pop the active stack.}
7: else
8: Decoding process end.
9: end if

56

G.P

···

···

G G.N

(a)

G.P

···

···

A1 An An+1 G G.N

(b)

Figure 3.30: An example illustrating the M-type operation. (a) and (b) The bounding loop
before and after the M-type operation, respectively.

M-type Triangle

Recall that, in the encoder, an M-type triangle corresponds to the situation when the vertex
opposite the active gate belongs to a hole’s boundary. The processing of such a triangle
(in the encoder) results in the active bounding loop being modified by merging with the
hole’s boundary. Therefore, when an M-type triangle is encountered in the decoder, a hole’s
boundary is merged with the active bounding loop. To begin, a new facet is added to the
facet table with vertex indices G.P.i, G.i, and c + 1. Next, the hole’s length len is first
read from the M table, and then len + 1 nodes are inserted into the bounding loop just
before the current position G. The updating of the bounding loop is illustrated in Figure 3.30.
Figure 3.30(a) shows the original bounding loop with the active node G, and Figure 3.30(b)
shows the updated bounding loop with the newly added nodes A1 to AN+1, where N equals
to the hole’s length len. The above processing steps are shown in detail in Algorithm 13.

M’-type Triangle

Recall that, in the encoder, an M’-type triangle corresponds to the situation when the
vertex opposite the active gate belongs to an inactive bounding loop. The processing of
such a triangle (in the encoder) results in the active bounding loop being merged with the
inactive bounding loop. Therefore, when an M’-type triangle is encountered in the decoder,
an inactive bounding loop is merged with the active bounding loop. To begin, the merging
node (i.e., the node D) is found from the node stack. Next, a node A with the same vertex
index as the node D is added to the bounding loop just before the current position G. Then,
the inactive bounding loop is merged into the active bounding loop by various link updates.
The updating of the bounding loop is illustrated in Figure 3.31. Figure 3.31(a) shows the

57

Algorithm 18 M-type decoding operation.
1: {update facet table.}
2: facet_table.add(G.P.i, G.i, c + 1)

3: {initialize the node T.}
4: T = G.P;

5: repeat
6: {update vertex count c.}
7: c = c + 1;

8: {create new node A.}
9: New node A.i = c;

10: {connect the T and A nodes.}
11: T.N = A;

12: A.P = T;

13: {update node T.}
14: T = A;

15: until len times;
16: {create new node A.}
17: New node A.i = c - len + 1;

18: {connect the T and A nodes.}
19: T.N = A;

20: A.P = T;

21: {connect the A and G nodes.}
22: A.N = G;

23: G.P = A;

58

G.P

···

···

G G.N

(a)

D.P

···

···

D D.N

(b)

G.P

···

···

...A D.P D G G.ND.N

(c)

Figure 3.31: An example illustrating the M’-type operation. (a) The bounding loop before
the M’-type operation. (b) The bounding loop needs to be merged. (c) The bounding loop
after the M’-type operation.

active bounding loop with the active node G, and Figure 3.31(b) shows the inactive bounding
loop with the node D. Figure 3.31(c) shows the bounding loop after updating (i.e., with the
merged inactive bounding loop and the newly added node A). In addition to the above
process, a new facet is added to the facet table with vertex indices G.P.i, G.i, and D.i.
The above processing steps are shown in detail in Algorithm 19.

Mesh Generation

Having introduced the decoding operations for each triangle type thoroughly, we can now
present the triangle mesh generation process. The decoded triangle mesh is simply generated
by the vertex and the facet tables.

3.6 Examples of the Decoding Method

Having fully introduced the decoding process, we now provide some examples to better
illustrate the decoding details. These mesh examples are continuations of the encoding
examples from Section 3.3 (on page 34). Tables are used to show certain key calculations in
the initialization phase. The triangle creation process is also described.

3.6.1 Example 1: Mesh with One Bounding Loop and No Handles

The first coding example is a continuation of the example in Section 3.3.1 (on page 34). Fig-
ure 3.32(a) shows the triangle mesh, and Figure 3.32(b) shows the steps in the Edgebreaker
encoding process. The op-code sequence CRRSLLECCRRRCRRRSREE is transmitted to

59

Algorithm 19 M’-type decoding operation.
1: {fetch and remove the required node.}
2: D = remove(position);

3: {find the node D.}
4: Repeat D = D.N; for offset_m times
5: {update facet table.}
6: facet_table.add(G.P.i, G.i, D.i)

7: {create new node A.}
8: New node A.i = D.i;

9: {connect the G.P and A nodes.}
10: G.P.N = A;

11: A.P = G.P;

12: {connect the A and D.N nodes.}
13: A.N = D.N;

14: D.N.P = A;

15: {connect the D and G nodes.}
16: D.N = G;

17: G.P = D;

Table 3.2: Calculation of the e, s, and S parameters in the initialization phase

C R R S L L E C C R R R C R R R S R E E
e -1 0 1 0 1 2 5 4 3 4 5 6 5 6 7 8 7 8 11 14
s 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
S[s] 3 2

the decoder side. Since this example is a mesh without handles or holes, the offset table, M
table, and M’ table are all empty. The offset value in the S table can be calculated directly
from the op-code sequence. Moreover, since there are no M- or M’-types triangles in the
mesh, the op-code sequence preprocessing step is omitted.

Table 3.2 shows the calculation of the e, s, and S parameters in the initialization phase.
Note that the decoder first enters the offset value for the first S-type triangle (i.e., S[1])

S[1] = 5− 0− 2 = 3, (3.9)

then enters the offset value for the second S-type triangle (i.e., S[2])

S[2] = 11− 7− 2 = 2. (3.10)

The final value for e corresponds to the number of vertices located on the mesh’s boundary
(i.e., 14).

60

S

E

E

R

RR

R

V0

V1

V2
V3

V4V5

V6

V7V8

V9

V10

V11 V12 V13

1415

16

17
V14V15

V16

V17

(a)

(b)

Figure 3.32: A triangle mesh with one bounding loop and no handles. (a) The triangle mesh
with boundary. (b) Steps in the Edgebreaker encoding process.

61

Given the external vertex count e = 14, the decoder starts the generation phase with a
14 node initial bounding loop with vertex indices 0, 1, 2, ..., 13, as shown in Figure 3.33(a).
The counter c (for vertices) is initialized to 13. The first C-type operation creates a triangle
with vertex indices 13, 0, 14. A node with index 14 is added to the bounding loop, as shown
in Figure 3.33(b). The counter c (for vertices) is then updated to 14. The active node after
the first C-type triangle operation is still the node with index 0. The three vertices in the
first C-type triangle are reconstructed and added to the vertex table. Cases 1, 2, and 3 of the
parallelogram-prediction scheme in Section 3.4 (on page 41) are used to predict the positions
of these vertices.

The second R-type operation creates a triangle with vertex indices 14, 0, 1 and deletes
the node with index 0 from the bounding loop, as shown in Figure 3.33(c). The node with
index 1 becomes the active node in the subsequent processing. Proceeding in a similar way,
the vertex position of the node with index 1 is reconstructed and stored in the vertex table.
The third R-type operation creates a triangle with vertex indices 14, 1, 2 and updates the
bounding loop. The resulting bounding loop contains 13 nodes with vertex indices 2, 3, 4,
..., 14, as shown in Figure 3.33(d). Since the fourth triangle is S-type and the offset value is
S[1] = 3, the S-type operation skips the three nodes with indices 3, 4, and 5 in the bounding
loop, and creates a triangle with vertex indices 14, 2, 6. Next, the bounding loop is split
into two subloops contain nodes with vertex indices 6, 7, 9, ..., 14 and 2, 3, 4, 5, 6, as shown
in Figures 3.33(e) and (f), respectively. Next, the node with index 6 is pushed to the node
stack, and the node with index 2 becomes the active node during subsequent processing.

The first triangle of the right submesh is L-type. L-type operation creates a triangle with
vertex indices 6, 2, 5 and deletes the node with index 6 from the bounding loop, as shown
in Figure 3.33(g). The second L-type operation creates a triangle with vertex indices 5, 2, 3
and deletes the node with index 5. The resulting bounding loop after decoding the second
L-type triangle is shown in Figure 3.33(h). The seventh triangle is E-type. The E-type
operation creates a triangle with vertex indices 4, 2, 3. This E-type triangle the last triangle
in the current stream, therefore, the node with index 6 is popped from the node stack. The
remaining portion of the op-code sequence can be processed in a similar way.

3.6.2 Example 2: Mesh with Zero Bounding Loops and No Handles

The second coding example is the continuation of the example in Section 3.3.2 (on page 36).
Figures 3.34(a) and (b) show the original mesh and a cut and flattened view of the mesh,
respectively. Figure 3.34(c) shows the steps in the Edgebreaker encoding process. The op-
code sequence transmitted to the decoder side is CCRE. The offset table, M table, and

62

V1
V2

V3

V4

V5

V6

V7
V8

V0

(a)

V10

V9

V11

V12

V13

V1
V2

V3

V4

V5

V6

V7
V8

V0

(b)

V10

V9

V11

V12

V13

V14

V1
V2

V3

V4

V5

V6

V7
V8

(c)

V10

V9

V11

V12

V13

V14

(d)

V6

V7
V8

(e)

V10

V9

V11

V12

V13

V14

V2

V3

V4

V5

V6

(f)

V2

V3

V4

V5

V6

V7
V8

V10

V9

V11

V12

V13

V14

V2

V3

V4

V5

(g)

V2

V3

V4

(h)

Figure 3.33: The internal steps of the Edgebreaker decoding process. (a) The initial bound-
ing loop. (b) The resulting bounding loop after decoding the first C-type triangle. (c) and
(d) The resulting bounding loops after decoding the first and second R-type triangles, re-
spectively. (e) and (f) The resulting left and right submeshes’ bounding loops after decoding
the S-type triangle, respectively. (g) and (h) The resulting bounding loops after decoding
the first and second L-type triangles, respectively.

63

Figure 3.34: A triangle mesh with zero bounding loops (i.e., closed) and no handles. (a) The
tetrahedral mesh. (b) A cut and flattened view of the tetrahedral mesh. (c) Steps in the
Edgebreaker encoding process.

Table 3.3: Calculation of the e parameter in the initialization phase

C C R E
e -1 -2 -1 2

M’ table are all empty in this example. Moreover, this example does not have any S-type
triangles. Therefore, the S table is also empty.

Table 3.3 shows the calculation of the e parameter in the initialization phase. From
Table 3.3, we know that the initial bounding loop in the generation phase only contains two
nodes. This observation fits the operations performed in the encoding process. As explained
earlier, for a mesh without bounding loops (i.e., closed), an arbitrary halfedge can be chosen
as the initial active gate, which forms the initial bounding loop. In this example, the halfedge
−−−→
V1V0 is chosen as the initial active gate (in the encoder), as shown in Figure 3.34(c). The
generation phase starts with a two node initial bounding loop with vertex indices 0, 1, as
shown in Figure 3.35(a). The counter c (for vertices) is initialized to 1. The first C-type
operation creates a triangle with vertex indices 1, 0, 2 and inserts a node with index 2 to the
bounding loop. After the C-type operation, the bounding loop contains three nodes with
vertex indices 2, 0, 1, as shown in Figure 3.35(b). The counter c (for vertices) is then set
to 2, and the active node is still the node with index 0. Then, the three vertices in the first
triangle are reconstructed and added to the vertex table. Proceeding in a similar way, the
triangle mesh in Figure 3.34(a) can be easily decoded.

In order to provide readers with a better visualization about the internal stages of the
coding process, two additional diagrams are included in Figures 3.35(c) and (d). These two
figures show the resulting bounding loops after decoding the second C-type triangle and the
R-type triangle, respectively.

64

(a)

V0

V1

(b)

V2

V0

V1

(c)

V3

V2

V0

V1

(d)

V1

V3

V2

Figure 3.35: The internal steps of the Edgebreaker decoding process. (a) The initial bounding
loop. (b) and (c) The resulting bounding loops after decoding the first and second C-type
triangles, respectively. (d) The resulting bounding loop after decoding the first R-type
triangle.

Table 3.4: Calculation of the e, s, and S parameters in the initialization phase

S M R L R R L R L R R R L R E C R R R R E
e -1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 8 7 8 9 10 11 14
s 1
S[s] 7

3.6.3 Example 3: Mesh with Two Bounding Loops and No Handles

The third coding example is the continuation of the example in Section 3.3.3 (on page 37).
Figure 3.36(a) shows the input mesh, while Figure 3.36(b) shows the steps in the Edgebreaker
encoding process. The op-code sequence SSRLRRLRLRRRLRECRRRRE is transmitted to
the decoder side. In addition to the op-code sequence and the coded prediction residuals,
the (non-empty) M table is also transmitted. Therefore, the op-code sequence preprocessing
step is performed to distinguish between the S- and M-types triangles. The op-code sequence
obtained after the op-code sequence preprocessing step is SMRLRRLRLRRRLRECRRRRE.

Table 3.4 shows the calculation of the e, s, and S parameters in the initialization phase.
The hole’s length read from the M table is five. Therefore, the decoder subtracts six (i.e.,
the hole’s length plus one) from the external vertex count e when processing the op-code M
in the initialization phase. Next, the decoder calculates the offset value for the first S-type
triangle (i.e., S[1]) as

S[1] = 8− (−1)− 2 = 7. (3.11)

The generation phase starts with a 14 node initial bounding loop with vertex indices 0,
1, 2, ..., 13, as shown in Figure 3.37(a). The counter c (for vertices) is set to 13. Since the
offset value of the first S-type triangle is S[1] = 7, seven nodes in the bounding loop are
skipped. In particular, the first S-type triangle creates a triangle with vertex indices 13, 0,
8. Then, the bounding loop is split into left and right subloops containing nodes with vertex

65

V0 V1 V2

V3

V4

V5V6

V7

V8

V9V10

V11

V12 V13

V14

V15

V16

V17

V18V19

(a)

(b)

Figure 3.36: A triangle mesh with two bounding loops (i.e., one hole) and no handles. (a) The
triangle mesh with a hole. (b) Steps in the Edgebreaker encoding process.

66

V1
V2

V3

V4

V5

V6

V7
V8

V0

(a)

V10

V9

V11

V12

V13

V8

(b)

V10

V9

V11

V12

V13

(c)

V1
V2

V3

V4

V5

V6

V7
V8

V0
V1

V2

V3

V4

V5

V6

V7
V8

V0

(d)

V15

V14

V16

V17

V18

V14

Figure 3.37: The internal steps of the Edgebreaker decoding process. (a) The initial bounding
loop. (b) and (c) The resulting left and right submeshes’ bounding loops after decoding the
first S-type triangle, respectively. (d) The resulting bounding loop after decoding the first
M-type triangle.

67

Table 3.5: Calculation of the e, s, and S parameters in the initialization phase

C C C C C R C C C R C C R C C R
e -1 -2 -3 -4 -5 -4 -5 -6 -7 -6 -7 -8 -7 -8 -9 -8
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S[s]

S C R M’ C R S R L S E E R S E E
e -9 -10 -9 -10 -11 -10 -11 -10 -9 -10 -7 -4 -3 -4 -1 2
s 1 1 1 1 1 1 2 2 2 3 3 3 3 4 4 4
S[s] 3 1 5 1

indices 8, 9, ..., 13 and 0, 1, ..., 8, respectively. The resulting bounding loops after the S-type
operation are shown in Figures 3.37(b) and (c). The node with index 8 from the left subloop
is pushed to the node stack, and the active node for the right subloop is the node with index
0.

The second M-type triangle creates a triangle with vertex indices 8, 0, 14. Five nodes
with indices 14, 15, 16, 17, and 18 are inserted into the bounding loop just before the node
with index 0. Next, a node with index 14 is created and added to the bounding loop between
the nodes with vertex indices 18 and 0. The bounding loop obtained after the nodes insertion
contains nodes with vertex indices 0, 1, ..., 8, 14, 15, ..., 18, 14, as shown in Figure 3.37(d).
The counter e (for vertices) is then updated to 18. Next, the R-type operation creates a
triangle with vertex indices 14, 0, 1 and deletes the node with index 0 from the bounding loop.
Proceeding in a similar way, the triangle mesh shown in Figure 3.36(a) can be successfully
decoded.

3.6.4 Example 4: Mesh with Zero Bounding Loops and One Handle

The last coding example is the continuation of the example in Section 3.3.4 (on page 39).
Figure 3.38(a) shows a planar graph of the torus mesh, and Figure 3.38(b) shows the steps
in the Edgebreaker encoding process. Since the torus mesh contains a handle, the offset
table and M’ table in the transmitted file are not empty. The op-code sequence transmit-
ted to the decoder side is CCCCCRCCCRCCRCCRSCRSCRSRLSEERSEE. The op-code
sequence obtained after the op-code sequence preprocessing step is CCCCCRCCCRCCRC-
CRSCRM’CRSRLSEERSEE.

Table 3.5 shows the calculation of the e, s, and S parameters in the initialization phase.
Note that the offset value S[1] = 3 is directly read from the offset table. The decoder first
enters the offset value S[3] = 1, then enters S[2] = 5, and then enters S[4] = 1.

In the generation phase, we focus on the processing of the M’-type triangle. Proceeding

68

V0 V5

V13

V1

V4

V12

V12

V8

V9

V9

V2V2

V2V2 V7

V7

V10 V10

V14 V14

V6 V6V15

V11

V3

(a)

(b)

Figure 3.38: A triangle mesh with zero bounding loops and one handle. (a) The triangle
mesh with a handle. (b) Steps in the Edgebreaker encoding process.

69

in a similar way as the other examples, the first S-type operation splits the active bounding
loop into left and right subloops containing the nodes with vertex indices 8, 9, ..., 13 and 4,
5, ..., 8, respectively. The resulting bounding loops after the S-type operation are shown in
Figures 3.39(a) and (b). In addition, the node with index 8 is pushed to the node stack. The
next two op-codes, C and R, update the right subloop to contain nodes with vertex indices
5, 6, 7, 8, 14. The resulting bounding loops after decoding the C- and R-types triangles are
shown in Figures 3.39(c) and (d), respectively. Then, the decoder encounters the op-code
M’. To begin, the D node (i.e., the node with index 8) is found from the node stack. The
pseudocode D = D.N; is then repeated offset_m times to obtain the final D node (i.e., the
node with index 10). As explained earlier, offset_m is the offset value read from the M’
table (i.e., offset_m = 2). Next, a node with same vertex index as the D node (i.e., 10)
is added to the bounding loop between the nodes with vertex indices 14 and 11. Then, the
nodes with vertex indices 10 and 5 are connected. In this way, an active inactive bounding
loop is merged with the active bounding loop. The resulting bounding loop contains nodes
with vertex indices 14, 10, 11, 12, 13, 8, 9, 10, 5, 6, 7, 8, as shown in Figure 3.39(e). The
active node in the subsequent processing is still the node with index 5. The remaining portion
of the op-code sequence, which now contains CRSRLSEERSEE, is processed similarly.

70

V8

(a)

V10

V9

V11

V12

V13

V14

V5

V6

V7

V8

(d) (e)

V6

V7

V8

V14

V10

V11

V5

V13

V12

V8

V19

V10

V4

V5

V6

V7

V8

(b)

V14

V5

V6

V7

V8

(c)

V4

Figure 3.39: The internal steps of the Edgebreaker decoding process. (a) and (b) The result-
ing left and right submeshes’ bounding loops after decoding the S-type triangle, respectively.
(c) and (d) The resulting bounding loops after decoding the C-type and R-type triangles,
respectively. (e) The resulting bounding loop after decoding the M’-type triangle.

71

Chapter 4

Software

4.1 Introduction

Having studied the Edgebreaker mesh-coding method thoroughly in the previous chapter,
we now introduce the software implementation. The main contribution of this project is the
development of a software implementation of the Edgebreaker mesh-coding method. This
implementation is written in C++ language and consists of more than 6000 lines of code. In
addition to the C++ standard library, the software makes heavy use of CGAL [15] and the
Signal Processing Library (SPL) [20].

The software consists of two programs, encode_mesh and decode_mesh, to provide
functionalities of the Edgebreaker mesh-coding method. The encode_mesh program per-
forms 3-D triangle mesh encoding, given a triangle mesh in OFF format. The coded triangle
mesh is stored in EB format, whose details will be introduced shortly. The decode_mesh

program performs 3-D triangle mesh decoding. Given a coded triangle mesh in EB format,
this program produces the decompressed triangle mesh and outputs the mesh in OFF format.

The remainder of this chapter presents details on how to build and use the software.
Several examples are also provided to illustrate the use of the software.

4.2 Building the Software

The author’s mesh coding software should build on any Linux system with a C++ compiler
compliant with C++14 standard. The compiler version the author has been using in software
implementation is GCC 5. 1. 0. The user needs to guarantee that the CGAL and SPL libraries
are installed prior to building the software. The following versions of libraries have been
verified to work with our software:

72

• CGAL: 4. 2. 1

• SPL: 1. 1. 18.

The Make [21] utility is chosen to build (i.e., compile and link) the code. To build the
code, the user needs to change the working directory to the software package folder first.
Then, the user needs to delete any old object files and executable files by executing the
command:

make clean

Finally, the user can build the executable programs by invoking the command:

make all

4.3 The encode_mesh Program

The encode_mesh program reads a triangle mesh in OFF format from standard input, gen-
erates the coded mesh, and writes the compressed triangle mesh in EB format to standard
output. The encode_mesh program can only encode triangle meshes having a single com-
ponent. If an invalid mesh is given, the program will terminate with an error. With the
command line options, the user can specify the quantization step size for x, y, and z coor-
dinates. If the user specifies the -d option as a command line argument, the encode_mesh
program will check and remove the duplicate vertices that are found in the mesh.

Synopsis

encode_mesh [Options]

Options

73

-x $x_size Specifies the x vertex coordinate quantization step size to be
$x_size. The default step size is (xmax − xmin)/2

16, where xmax and
xmin are the maximum and minimum x vertex coordinates in the input
mesh.

-y $y_size Specifies the y vertex coordinate quantization step size to be
$y_size. The default step size is (ymax − ymin)/2

16, where ymax and
ymin are the maximum and minimum y vertex coordinates in the input
mesh.

-z $z_size Specifies the z vertex coordinate quantization step size to be $z_size.
The default step size is (zmax − zmin)/2

16, where zmax and zmin are the
maximum and minimum z vertex coordinates in the input mesh.

-b $bits Sets the number of bits used to encode each vertex coordinate to be
$bits. The default value is 16. The quantization step size for each
vertex coordinate can be determined by: (coormax − coormin)/2

$bits,
where coormax and coormin are the maximum and minimum vertex
coordinates in the input mesh.

-d Enables the “check and remove duplicate vertices function” in the
program. Any duplicate vertex that is found by the encode_mesh

program will be removed.

-h Prints help information and exit.

-r $results Specifies a results file to which the program will store the coded mesh’s
statistics information. All the statistics are printed on a single line in
the file, separated by a single space. Items included in the results file
are listed in Table 4.1.

Exit status

The program returns zero for a normal exit and a nonzero value otherwise.

4.4 The decode_mesh Program

The decode_mesh program performs mesh decoding. In general, the program reads an
coded triangle mesh in EB format from standard input, produces a decompressed triangle
mesh, and writes the decoded mesh in OFF format to standard output.

74

Table 4.1: Items included in the encoding result file

Variables Description
Vertices Number of vertices in the mesh
Edges Number of edges in the mesh
Facets Number of facets in the mesh
Boundaries Number of bounding loops in the mesh
Genus Genus of the mesh
Data size Number of total bytes of coded data
Geometry Number of bytes of coded geometry data
Connectivity Number of bytes of coded connectivity data
Time Time in seconds needed for mesh encoding
Memory Maximum amount of memory used by the encoding program
Quantizer The actual quantization step size used by the encoding program

Table 4.2: Items included in the decoding result file

Variables Description
Vertices Number of vertices in the mesh
Edges Number of edges in the mesh
Facets Number of facets in the mesh
Boundaries Number of bounding loops in the mesh
Genus Genus of the mesh
Data size Number of total bytes of coded data
Geometry Number of bytes of coded geometry data
Connectivity Number of bytes of coded connectivity data
Time Time in seconds needed for mesh decoding
Memory Maximum amount of memory used by the decoding program
Quantizer The actual quantization step size used by the decoding program

Synopsis

decode_mesh [Options]

Options

-h Prints help information and exit.

-r $results Specifies a results file to which the program will store the coded mesh’s
statistics information. All the statistics are printed on a single line in
the file, separated by a single space. Items included in the results file
are listed in Table 4.2.

Exit status

75

Header

Op-code Sequence

M Table

Handle-related S-type Offset Table

M’ Table

Geometry Data

Figure 4.1: Structure of the EB file.

The program returns zero for a normal exit and a nonzero value otherwise.

4.5 EB File Format

The file format used in software for the coded triangle mesh data is known as the EB format.
EB files contain six main parts, as shown in Figure 4.1. In what follows, we present the EB
file structure in more detail.

Header. The header specifies the triangle mesh’s basic information. Eight elements are
contained in the header part:

• The EB file signature.

• A single integer number that represents the code series adopted by the current EB
file. Three code series are used by the EB format, and the code series details will be
introduced shortly.

• The number of bytes used to store the binary op-code sequence.

• The number of holes in the mesh.

• The number of handles in the mesh.

• The number of handle-related S-type triangles in the mesh.

• The number of bits used to encode the x, y, and z vertex coordinates.

76

Table 4.3: Codewords for three binary code series

Op-code Code 1 Code 2 Code 3
CA 0 0 0
SA 10 10 10
RA 11 11 11
CN 0 00 00
SN 100 111 010
RN 101 10 011
L 110 110 10
E 111 01 11

• The quantization step size for the x, y, and z vertex coordinates.

Op-code Sequence. The op-code sequence specifies the mesh’s connectivity informa-
tion. This part contains the binary op-code sequence generated by the encode_mesh pro-
gram. According to King and Rossignac’s paper in [22], the Edgebreaker method adopts
three alternative prefix binary code series. One of the three code series is used by the cur-
rent EB file. The code series is determined by the mesh’s connectivity characteristics. The
codewords for each code series are listed in Table 4.3. For each code series, the notation CA

denotes the situation where a C op-code immediately follows another C op-code, and CN

denotes otherwise. The similar notation is used for S and R op-codes.
M Table. The M table stores the hole information. If the triangle mesh contains no

holes, the M table is empty. Two elements are included for each hole. The first is the number
of S-type triangles encountered since the previous M-type triangle or since the beginning of
the op-code sequence for the first M-type triangle. The second is the number of vertices
located on the hole’s boundary.

M’ Table. The M’ table specifies the handle information. If the triangle mesh contains
no handles, the M’ table is empty. As explained in the description of the M’-type encoding
operation (on page 27), for each handle, three elements are included: 1) the position of the
representative halfedge in the halfedge stack, 2) the offset value for the M’-type triangle, and
3) the number of S-type triangles encountered since the previous M’-type triangle or since
the beginning of the op-code sequence for the first M’-type triangle.

Handle-related S-type Offset Table. The handle-related S-type offset table stores
the handle-related S-type triangle’s offset values. As explained earlier, the handle-related S-
type triangles are related to handles (i.e., the M’-type triangles). If the coded mesh contains
no handles, the offset table is empty. Two elements are included for each offset table entry.
The first is the S-type triangle’s counter, and the second is the offset value.

Geometry Data. The geometry data specifies the mesh’s vertices information. For

77

each vertex, the prediction residual between the actual and the predicted vertex positions is
binarized and encoded by the arithmetic coder.

4.6 Software Usage Examples

The programs in our software package have been introduced thoroughly in the previous
sections. In what follows, several examples are provided to illustrate the use of our software.

Example 1A. Suppose that the user wants to encode a triangle mesh stored in a file
named bunny.off with following requirements:

• The number of bits used to encode each coordinate is set to 8.

• The coded triangle mesh’s result information is stored in the file enc_result.txt.

• The coded triangle mesh is stored in the file bunny.eb.

The above task can be accomplished by running the encode_mesh program as follows:

encode_mesh -b8 -r enc_result.txt < bunny.off > bunny.eb

Example 1B. Suppose that the user wants to decode the mesh that is generated in
Example 1A with following requirements:

• The decoded triangle mesh’s statistic information is stored in the file dec_result.txt.

• The decoded triangle mesh is stored in the file bunny_dec.off.

The above task can be accomplished by running the decode_mesh program as follows:

decode_mesh -r dec_result.txt < bunny.eb > bunny_dec.off

Example 2. Suppose that the user wants to both encode and decode a triangle mesh
stored in the file named hand.off with following requirements:

• The duplicate vertices are checked and removed from the input mesh;

• The encoded triangle mesh’s result information is stored in the file enc_result.txt.

• The decoded triangle mesh’s result information is stored in the file dec_result.txt.

• The decoded triangle mesh is stored in the file hand_dec.off.

This can be accomplished by invoking the command:

encode_mesh -d -r enc_result.txt < hand.off | decode_mesh \

-r dec_result.txt > hand_dec.off

78

Example 3. Suppose that the user wants to both encode and decode a triangle mesh
stored in the file named lena.off with following requirements:

• The quantization step size for x coordinates is set to 1.

• The quantization step size for y coordinates is set to 1.

• The quantization step size for z coordinates is set to 1.

• The decoded triangle mesh is stored in the file lena_dec.off.

This task can be accomplished by executing the command:

encode_mesh -x1 -y1 -z1 < lena.off | decode_mesh > lena_dec.off

79

Chapter 5

Results and Analysis

5.1 Introduction

In this chapter, we evaluate the performance of the Edgebreaker mesh-coding method using
the software implementation introduced in Chapter 4. We also study some performance
characteristics of this implementation. We start this chapter by introducing the test datasets
and methodology that is used in our experiments.

5.2 Methodology

Before discussing our various experiments, we briefly introduce the datasets used. The 20
triangle meshes we used in our experiments have been widely used in the research literature.
In Table 5.1, basic information for each mesh is given, including the number of vertices,
edges, facets, bounding loops, genus, and the source/origin of the mesh. These particular
datasets were chosen to cover a wide variety of mesh types, including meshes having: zero
bounding loops and zero handles, one or more bounding loops and zero handles, and zero or
more bounding loops and one or more handles.

In our test datasets, we found some meshes contain duplicate vertices. These duplicate
vertices are likely caused by an insufficient number of significant digits being stored in the
mesh data file. All duplicate vertices must be removed before the coding process. If we do
not remove the duplicate vertices, errors will arise during the mesh compression since the
mesh is not valid. In our experiments, unless otherwise noted, the mesh vertex coordinates
are quantized to 16 bits. The 16 bit quantization is adequate for our datasets.

80

Table 5.1: Basic information of the test meshes

Name Vertices Edges Facets Boundaries Genus Source
9handle_torus 9392 28224 18816 0 9 [23]
animal 44382 132971 88590 1 0 [24]
beethoven 2258 6686 4429 1 0 [4, 25]
blob 8036 24102 16068 0 0 [4, 25]
bunny_hole 34835 104310 69473 4 0 [26]
casting 5096 15336 10224 0 9 [26]
dragon 50000 150000 100000 0 1 [26]
eight 766 2304 1536 0 2 [4, 25]
fandisk 6475 19419 12946 0 0 [27]
globe_west 199065 597189 398126 0 0 [28]
hand 36616 109554 72937 3 0 [26]
heart 1280 3782 2494 8 1 [27]
heptoroid 286678 860160 573440 0 22 [29]
horse 112642 337920 225280 0 0 [26]
hypersheet 487 1407 917 3 1 [27]
lena 7864 23432 15569 1 0 [24]
ramesses 826266 2478792 1652528 0 0 [26]
shape 2562 7680 5120 0 0 [4, 25]
tre_twist 800 2400 1600 0 1 [27]
triceratops 2832 8490 5660 0 0 [4, 25]

81

5.3 Coding Efficiency

We begin our evaluation by analyzing coding efficiency of the Edgebreaker method. We
first present the coding efficiency results that are produced by our software. This is then
followed by the coding rate comparison. The coding performance of the Edgebreaker method
is compared with the topological-surgery (TS) method in [3] and the Touma-Gotsman (TG)
method in [4].

In the first experiment, we compare the coding rate of the Edgebreaker method with
the gzip text-based compression technique. For all 20 triangle meshes in our test datasets,
we first ran the encoding program to generate the coded triangle mesh and measured the
coded bitstream size in bits per vertex. Then, we used the gzip program to compress the
input triangle mesh files individually and measured the file size. Moreover, we calculated the
median value of the Edgebreaker and the gzip results. The results are presented in Table 5.2.

Examining the results in Table 5.2, we see that the Edgebreaker mesh-coding method is
roughly 4.19 times better than the gzip method in terms of the coding rate. The median
coding rate for the Edgebreaker method and the gzip method are 38.58 bits/vertex and
161.71 bits/vertex, respectively. We also found that the horse mesh achieves the lowest
coding rate among the 20 meshes in the datasets with 3.02 bits/vertex for connectivity coding
and 20.39 bits/vertex for geometry coding. Furthermore, we notice that in the case of all ten
meshes without handles or holes, the Edgebreaker method requires 3.02 to 3.52 bits/vertex
for connectivity coding. These values lie within the theoretical worst-case guaranteed bound
(i.e., 3.67 bits/vertex) that was stated in [22].

Next, we wanted to know how the Edgebreaker method compared to other popular mesh-
coding methods in terms of the coding efficiency. Therefore, we compared the Edgebreaker
method with the TS and TG methods. The coding rates of the TS and TG methods are
taken from [4] since we do not have the access to the programs that implement the TS
and TG methods, while Edgebreaker results are obtained with our software. The paper [4]
included coding results for eight meshes, but we only have access to five of the meshes.
So, our experiment is limited to these meshes. In particular, the five meshes used in this
experiment are beethoven, blob, eight, shape, and triceratops. The quantization of
vertex coordinates used in [4] was 8 bits. To allow a fair comparison, we also quantized the
vertex coordinates to 8 bits. In this experiment, we first ran the Edgebreaker encoder to
generate the coded triangle mesh and measured the coded bitstream size in bits per vertex.
Next, we compared the Edgebreaker, TS, and TG methods in terms of connectivity coding.
Then, we compared geometry coding rate of the Edgebreaker and TS methods. The results
can be found in Table 5.3.

82

Table 5.2: Individual coding efficiency results

Name Vertices Geometry Connectivity Total Gzipped Gzipped/Edgebreaker
(bits/vertex) (bits/vertex) (bits/vertex) (bits/vertex) Ratio

9handle_torus 9392 39.20 3.81 43.06 141.60 3.29
animal 44382 35.25 3.52 38.78 163.04 4.20
beethoven 2258 39.10 3.36 42.69 145.80 3.42
blob 8036 35.28 3.33 38.68 142.34 3.68
bunny_hole 34835 26.93 3.24 30.19 199.70 6.61
casting 5096 30.63 3.58 34.31 178.43 5.20
dragon 50000 33.38 3.52 36.91 220.12 5.96
eight 766 36.22 3.69 40.57 128.60 3.17
fandisk 6475 26.64 3.23 29.95 153.27 5.12
globe_west 199065 29.58 3.40 32.98 191.06 5.79
hand 36616 29.54 3.17 32.72 162.83 4.98
heart 1280 35.11 3.95 39.46 118.01 2.99
heptoroid 286678 20.41 3.06 23.47 158.59 6.76
horse 112642 20.39 3.02 23.41 169.80 7.25
hypersheet 487 41.68 4.16 46.88 169.28 3.61
lena 7864 40.94 3.51 44.51 149.78 3.37
ramesses 826266 27.18 3.43 30.61 188.96 6.17
shape 2562 38.53 3.08 41.81 115.18 2.75
tre_twist 800 43.89 3.70 48.23 157.67 3.27
triceratops 2832 34.92 3.38 38.49 174.22 4.53
median value — — — 38.58 161.71 4.19

Table 5.3: Coding efficiency comparison of the Edgebreaker and other mesh-coding methods

Name Vertices
Size: bits/vertex

Edgebreaker TS method TG method
Geometry Connectivity Geometry Connectivity Geometry Connectivity

beethoven 2258 10.4 3.4 15.0 4.8 10.8 2.4
blob 8036 7.7 3.3 10.3 3.4 7.9 1.7
eight 766 9.2 3.7 12.0 3.8 7.1 0.6
shape 2562 9.1 3.1 14.3 2.2 9.3 0.2
triceratops 2832 9.8 3.4 10.3 4.3 8.3 2.2

83

According to Table 5.3, the TG method achieves the lowest connectivity coding rate
among these three methods in all five cases. The TG method beats the Edgebreaker and the
TS methods in terms of connectivity coding in all five test cases by a margin of 1.0 to 3.1
bits/vertex and 1.7 to 3.2 bits/vertex, respectively. According to the survey in [14], the TG
method is considered to be a state-of-the-art technique for single-rate 3-D mesh compression.
This conclusion fits with the connectivity coding results above.

In what follows, we compared the geometry coding rate of the Edgebreaker and TS
methods. From Table 5.3, we see that the Edgebreaker method is better than the TS
method in terms of the geometry coding. The Edgebreaker method beats the TS method in
all five test cases by a margin of 0.5 to 5.2 bits/vertex. This is due to the fact that the TS
method uses a simpler prediction scheme that predicts the vertex position as the previously
coded vertex. This shows the effectiveness of the parallelogram-prediction scheme.

5.4 Time Complexity

Next, we consider the computational complexity of the Edgebreaker method as measured
by execution time. Before proceeding further, a brief digression is necessary to introduce
the hardware that was employed during the experiments. The experimental results were
collected on a computer with a 3.16 GHz Intel Core2 Duo CPU and 4.0 GB of RAM. The
version of GCC used was 5.1.0, and all code was compiled with full optimization enabled.

In what follows, we consider the time complexity of the encoding and decoding programs.
For the 20 triangle meshes in our test datasets, we measured the execution time required
by both programs. The median execution time over 30 runs of each program is given in
Table 5.4.

To begin, we explore the relationship between the encoding time and the number of
handles and holes in the mesh. When two meshes contain the similar number of vertices,
we expect that the mesh with more handles or holes will take a longer encoding time. Our
expectation is confirmed by the time complexity results in Table 5.4. As can be seen from
Table 5.4, the eight and tre_twist meshes, and the lena and blob meshes, contain the
similar number of vertices. By comparing the time results of these two pairs of meshes, we
find that the triangle mesh with more handles or holes requires 20% to 30% more time to
encode.

In the above results, we notice that the ramesses and heptoroid meshes take the
largest execution time. Therefore, we performed code profiling on both programs. The goal
of the code profiling is to find the bottleneck in our code and provide suggestions for software
improvement. The encoder profiling details for the ramesses and heptoroid meshes are

84

Table 5.4: Individual time complexity results. Time listed in table is the median execution
time over 30 runs for each program.

Name Vertices Encode Time Decode Time
(seconds) (seconds)

9handle_torus 9392 0.209 0.261
animal 44382 1.213 1.177
beethoven 2258 0.073 0.083
blob 8036 0.138 0.271
bunny_hole 34835 0.626 0.807
casting 5096 0.110 0.169
dragon 50000 1.053 1.560
eight 766 0.031 0.032
fandisk 6475 0.131 0.232
globe_west 199065 4.389 4.895
hand 36616 0.646 1.033
heart 1280 0.040 0.057
heptoroid 286678 5.111 6.762
horse 112642 2.223 2.951
hypersheet 487 0.025 0.022
lena 7864 0.210 0.260
ramesses 826266 25.174 17.625
shape 2562 0.074 0.123
tre_twist 800 0.024 0.037
triceratops 2832 0.068 0.106

85

Table 5.5: Encoding time complexity analysis with profiling. Results showing in table are
the accumulated time from eleven runs.

(a) ramesses mesh

Percentage time Cumulative time Self time Function description(%) (seconds) (seconds)
37.59 79.34 79.34 Process S-type triangle
7.23 94.59 15.25 Find halfedge’s incident vertex
6.09† 107.45 12.86 Encode coordinates in regular mode∗

5.47 118.99 11.54 Find number of connected components in the mesh
5.00† 129.55 10.56 Entropy coding∗

4.26 138.54 8.99 Updates adjacent halfedges information
3.87† 146.70 8.16 Arithmetic encoding function∗

2.83 152.68 5.98 Output encoded bits∗

2.76 158.50 5.82 Lookup halfedges in the mesh
2.48 163.74 5.24 Predict the vertex position

(b) heptoroid mesh

Percentage time Cumulative time Self time Function description(%) (seconds) (seconds)
14.51† 5.84 5.84 Encode coordinates in regular mode∗

8.84† 9.40 3.56 Entropy coding∗

8.49 12.82 3.42 Find halfedge’s incident vertex
7.45† 15.82 3.00 Arithmetic encoding function∗

7.10 18.68 2.86 Updates adjacent halfedges information
5.14 20.75 2.07 Find number of connected components in the mesh
4.07 22.39 1.64 Output encoded bits∗

3.97 23.99 1.60 Lookup halfedges in the mesh
2.86 25.14 1.15 Read mesh from OFF file
2.86 26.29 1.15 Update the probability distribution for the arithmetic coder∗

∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

included in Tables 5.5(a) and (b), respectively. In these tables, we provide the profiling
results for the ten functions that had the largest execution times accumulated over eleven
runs. In what follows, we examine the result tables and give the corresponding explanations.

First, we study the time complexity in the encoding program based on the profiling
details. Examining the ramesses mesh profiling details in Table 5.5(a), we notice that the
function which encodes the S-type triangles takes the largest execution time (i.e., 37.59% of
the encoding time). We explain the reasons for this phenomenon as follows. As presented
in Chapter 3, the S-type encoding operation splits the current mesh into two submeshes
and traverses the left submesh’s boundary to update the vertex and halfedge marks. The
bounding loop traversal is a very time consuming operation, since the encoder needs to
find the adjacent boundary halfedge for the current halfedge and also move along the entire

86

bounding loop. By examining the encoding details of all meshes in our test datasets, we
find that the encoder generates the largest number of S-type triangles when processing the
ramesses mesh (i.e., 85970 S-type triangles which is 5.2% of all triangles in the mesh). This
explains why the encoding program spends 37.59% of the time to process the S-type triangles
in the ramesses mesh. Next, we consider the influence of the bounding loop traversal on
the other functions. From the profiling results in Tables 5.5(a) and (b), we see that 5% of
the time is spent in finding the number of connected components in the mesh. Since the
function to detect the number of connected components requires bounding loop traversal,
this explains why this function took a long time to execute in both cases. Therefore, if we
could reduce the time that is required by the bounding loop traversal, the execution time of
the encoding program would decrease.

The decoder profiling details for the ramesses and heptoroid meshes are included in
Tables 5.6(a) and (b), respectively. In these tables, we provide the profiling results for the
ten functions that had the largest execution times accumulated over eleven runs.

To begin, we analyze the execution time that is spent on the arithmetic coder related
functions in the decoding program. By summing the profiling results marked with a dagger
in Tables 5.6(a) and (b), we notice that the arithmetic-coding functions take a significant
amount of time to execute (i.e., approximately 55% of the decoding time). This implies that
decoding the binary prediction residuals is the most time consuming operation.

Next, we compare the execution time that is spent on the arithmetic coder related func-
tions in both encoding and decoding programs. The reason we want to conduct this compar-
ison is as follows. We do not observe a significant time percentage taken by the arithmetic-
coding functions in the encoder profiling results and we want to find a explanation for this
phenomenon. Since the functions used to measure the arithmetic coding time are shown in
both the encoding and decoding results, a fair comparison between the encoder and decoder
can be made. For the arithmetic-coding functions, the encoder and decoder take approxi-
mately 20% and 55% of time to execute, respectively. If we measure the arithmetic coder
related time consumptions in seconds, we notice that the execution time are similar in both
programs. The encoder and decoder require 31.58 and 30.11 seconds for the ramesses mesh,
and 12.40 and 11.31 seconds for the heptoroid mesh to execute, respectively. The above
results imply that the actual time spent on the arithmetic-coding functions in both programs
are approximately the same.

87

Table 5.6: Decoding time complexity analysis with profiling. Results showing in table are
the accumulated time from eleven runs.

(a) ramesses mesh

Percentage time Cumulative time Self time Function description(%) (seconds) (seconds)
28.93† 15.81 15.81 Decode coordinates in regular mode∗

18.99† 26.19 10.38 Entropy coding∗

13.98 33.83 7.64 Arithmetic coder probability adjustment∗

7.73 38.06 4.23 Update the probability distribution for the arithmetic coder∗

7.17† 41.98 3.92 Arithmetic decoding function∗

5.10 44.77 2.79 Read encoded bits∗

4.61 47.29 2.52 Arithmetic coder interval check∗

3.93 49.44 2.15 Read EB file from input stream
2.56 50.84 1.40 Decode vertex coordinates in bypass mode∗

1.57 51.70 0.86 Predict the vertex position

(b) heptoroid mesh

Percentage time Cumulative time Self time Function description(%) (seconds) (seconds)
32.32† 6.46 6.46 Decode coordinates in regular mode∗

17.08† 9.88 3.42 Entropy coding∗

14.21 12.72 2.84 Arithmetic coder probability adjustment∗

9.08 14.53 1.82 Update the probability distribution for the arithmetic coder∗

7.15† 15.96 1.43 Arithmetic decoding function∗

5.50 17.06 1.10 Arithmetic coder interval check∗

3.85 17.83 0.77 Read EB file from input stream
3.20 18.47 0.64 Read encoded bits∗

2.10 18.89 0.42 Predict the vertex position
1.25 19.14 0.25 Decode vertex coordinates in bypass mode∗

∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

88

Table 5.7: Memory complexity analysis based on the major data structures

(a) Encoding memory usage

Data structure Memory usage (bytes)
vertex 28
op-code sequence 12
offset table 12
halfedge stack 32

(b) Decoding memory usage

Data structure Memory usage (bytes)
vertex 12
circular doubly-linked list 8
op-code sequence 12
facet table 12
vertex table 12
offset table 12
node stack 32

5.5 Memory Complexity

Next, we consider the memory complexity of the Edgebreaker method. We first analyze
the memory complexity by studying the major data structures’ size in each program. Since
the analysis is based on the memory size required by the major data structures, it cannot
reflect the practical memory usage. This analysis, however, still can provide users with the
information about the basic memory requirement of both programs.

The major data structures’ memory requirement in the encoding program are listed in
Table 5.7(a). According to the Euler’s formula, the number of triangles is approximately
twice the number of vertices, and the number of edges is approximately three times the
number of vertices. By checking the encoding details of all meshes in our test datasets, we
find that the S-type triangles take approximately 3.2% of the total triangle types. Hence,
for a triangle mesh with N vertices, the memory required by the encoding program in bytes
is

28 · (V + E + F) + 12 · F + (12 + 32) · 3.2% · F

= 28 · 6N + 12 · 2N + (12 + 32) · 3.2% · 2N ≈ 195N (5.1)

where V,E, F denote the number of vertices, edges, and facets in the mesh, respectively.
The major data structures’ memory requirement in the decoding program are listed in Ta-

89

ble 5.7(b). As has been noted, the circular doubly-linked list contains approximately the
same number of nodes as the number of vertices in the mesh. Hence, for a triangle mesh
with N vertices, the memory required by the decoding program in bytes is

12 · V + 8 · V + 12 · F + 12 · (V + F) + (12 + 32) · 3.2% · F

= 12N + 8N + 12 · 2N + 12 · 3N + (12 + 32) · 3.2% · 2N ≈ 83N (5.2)

where V,E, F denote the number of vertices, edges, and facets in the mesh, respectively.
In what follows, we consider the actual peak memory that are used by our software. For

the 20 triangle meshes in our datasets, we measured the peak memory required by both
programs. The memory usage results can be found in Table 5.8.

To begin, we analyze the actual peak memory used in both programs. Examining the
individual results in Table 5.8, we observe that the encoding and decoding programs require
0.78 MB to 154.35 MB and 0.69 MB to 22.06 MB memory, respectively. By comparing
the actual peak memory consumed in both programs to the memory analysis based on the
major data structures, we find that both programs comsume approximately 1.4 times memory
compare to the value we calculated. We explain the reasons for this phenomenon as follows.
First, the libraries we used in the code may not be memory efficient. The linking process may
included some extra functions and codes from the library to our software, and this linking
process can increase the memory usage. Second, some other data structures that are not
tightly related to the Edgebreaker method but used in both programs are not included in
Tables 5.7(a) and (b). For example, the sets and vectors that used in the functions to find
the duplicate vertices and number of connected components are not counted in Tables 5.7.

90

Table 5.8: Individual memory complexity results

Name Vertices Encode peak Decode peak
memory (bytes) memory (bytes)

9handle_torus 9392 2476032 949248
animal 44382 9227264 1867264
beethoven 2258 1123328 745984
blob 8036 2275328 885248
bunny_hole 34835 7389696 1671168
casting 5096 1645568 825344
dragon 50000 10046464 1985536
eight 766 826880 707072
fandisk 6475 1900032 854016
globe_west 199065 38011392 5870592
hand 36616 7647232 1703936
heart 1280 917504 723456
heptoroid 286678 55522304 8670208
horse 112642 21260288 3550720
hypersheet 487 783360 689664
lena 7864 2243072 883712
ramesses 826266 154351616 22059008
shape 2562 1171968 760832
tre_twist 800 832000 707584
triceratops 2832 1239040 763392

91

Chapter 6

Conclusions

In this project, the Edgebreaker method for 3-D triangle mesh coding has been studied. As
part of the work, the author has implemented the method in software. The performance
of the Edgebreaker method is evaluated by analyzing the experimental results produced by
the mesh-coding software. The coding efficiency of the Edgebreaker method was studied. In
terms of coding rate, the Edgebreaker method outperforms the gzip text-based compression
technique on average by a factor of 4.19 times. We also compared the coding performance
with other well-known mesh-coding methods. Moreover, the time complexity of the Edge-
breaker method was analyzed by evaluating in terms of the execution time. Furthermore,
the memory complexity for both programs was studied.

The Edgebreaker mesh-coding method has been shown to be effective by our software
implementation and the experimental results obtained with it. Although the work presented
in this report has achieved the desired level of performance, there is still some additional work
that is worth exploring in the future. As explained earlier in Section 5.4, when a triangle
mesh results in a large number of S-type triangles, it takes a fairly long time to encode. If
we could reduce the time that is required for the bounding loop traversal, it is highly likely
that we would be able to obtain even better time complexity results than the current ones.
Earlier we showed the memory complexity results (in Section 5.5). Some potential research
on data structure improvement could also be done to reduce the amount of memory required
by both programs.

92

Appendix A

Supplementary Material

In this project, we have studied the Edgebreaker mesh-coding method thoroughly. We found
some typographical errors in the original Edgebreaker paper [1]. All the error corrections
are included in this appendix.

Several subtraction signs are missing from the pseudocode of the decoding initialization
phase in [1] (on page 56). For the C and S-type triangles, the decoder needs to subtract
one from the counter e. For the E-type triangle, the decoder needs to subtract one from the
counter d. The accurate decoding initialization phase pseudocode is given in Algorithm 20.

For the M-type encoding, the operation sequence for link updates and halfedges traversal
is reversed in the pseudocode in [1] (on page 58). The algorithm needs to traverse the hole’s
boundary first, and then updates the link relationships on the active bounding loop. The
accurate pseudocode for M-type compression is given in Algorithm 21.

Algorithm 20 Pseudocode for simple meshes decoding initialization phase.
1: Case S: e -= 1; s += 1; push(e, s); d += 1;

2: Case E: e += 3; (e’,s’) = pop; O[s’] = e - e’- 2; d -= 1; if d ≤ 0 then
stop;

3: Case C: e -= 1; c += 1;

4: Case R: e += 1;

5: Case L: e += 1;

93

Algorithm 21 Pseudocode for M-type encoding operation.
1: O_seq = O_seq|M; {append M to op-code sequence.}
2: g.m = 0; g.p.o.m = 1; g.n.o.m = 1; {update marks.}
3: b = g.n; {initial candidate for the halfedge b.}
4: while b.m ̸= 2 do
5: b = b.o.p; {turn around the vertex g.v.}
6: end while
7: l = 0; {initial hole length count.}
8: while b.m ̸= 1 do
9: b.m = 1; b.e.m = 1; {mark hole.}

10: l++; {update the hole length count.}
11: P = P|b.e; {append new vertex reference to P.}
12: b = b.N {move to next edge around hole.}
13: end while
14: M = M|l; {add the hole length count to M table.}
15: g.P.N = g.p.o; g.p.o.P = g.P; {connect the halfedges g.P and g.p.o.}
16: g.p.o.N = b.N; b.N.P = g.p.o; {connect the halfedges g.p.o and b.N.}
17: b.N = g.n.o; g.n.o.P = b; {connect the halfedges b and g.n.o.}
18: g.n.o.N = g.N; g.N.P = g.n.o; {connect the halfedges g.n.o and g.N.}
19: g = g.n.o; {move the active gate g.}

94

Bibliography

[1] J. Rossignac, “Edgebreaker: Connectivity compression for triangle meshes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 5, pp. 47–61, Jan. 1999.

[2] M. Deering, “Geometry compression,” in Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp. 13–20, 1995.

[3] G. Taubin and J. Rossignac, “Geometric compression through topological surgery,” ACM
Trans. Graph., vol. 17, pp. 84–115, Apr. 1998.

[4] C. Touma and C. Gotsman, “Triangle mesh compression,” in Proceedings of the Graphics
Interface 1998 Conference, Vancouver, British Columbia, Canada, pp. 26–34, June 1998.

[5] M. M. Chow, “Optimized geometry compression for real-time rendering,” in Visualiza-
tion ’97., Proceedings, pp. 347–354, Oct. 1997.

[6] C. L. Bajaj, V. Pascucci, and G. Zhuang, “Single resolution compression of arbitrary
triangular meshes with properties,” in Data Compression Conference, DCC 1999, S-
nowbird, Utah, USA, Mar. 29-31, 1999., pp. 247–256, 1999.

[7] P. Alliez and M. Desbrun, “Valence-driven connectivity encoding for 3D meshes,” Com-
put. Graph. Forum, vol. 20, no. 3, pp. 480–489, 2001.

[8] P. Diaz-Gutierrez, M. Gopi, and R. Pajarola, “Hierarchyless simplification, stripification
and compression of triangulated two-manifolds,” Computer Graphics Forum, pp. 457–
467, 2005.

[9] S. Gumhold and W. Strasser, “Real time compression of triangle mesh connectivity,”
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Tech-
niques, pp. 133–140, 1998.

[10] H. Lopes, G. Tavares, J. Rossignac, A. Szymczak, and A. Safanova, “Edgebreaker:
a simple compression for surfaces with handles,” in Proceedings of the seventh ACM
symposium on Solid modeling and applications, pp. 289–296, ACM, 2002.

95

[11] J. Rossignac and A. Szymczak, “Wrap&zip decompression of the connectivity of trian-
gle meshes compressed with Edgebreaker,” Computational Geometry, vol. 14, no. 1-3,
pp. 119–135, 1999.

[12] G. Turán, “On the succinct representation of graphs,” Discrete Applied Mathematics,
vol. 8, no. 3, pp. 289–294, 1984.

[13] K. Keeler and J. Westbrook, “Short encodings of planar graphs and maps,” Discrete
Applied Mathematics, vol. 58, pp. 239–252, 1993.

[14] J. Peng, C.-S. Kim, and C. C. Jay Kuo, “Technologies for 3D mesh compression: A
survey,” Journal of Visual Communication and Image Representation, vol. 16, pp. 688–
733, Dec. 2005.

[15] “CGAL, Computational Geometry Algorithms Library.” http://www.cgal.org,
2016.

[16] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[17] M. D. Adams, “An efficient progressive coding method for arbitrarily-sampled image
data,” IEEE Signal Processing Letters, vol. 15, pp. 629–632, 2008.

[18] J. Zhu, “Lossless triangle mesh compression,” Master’s thesis, Queen’s University, July
2013.

[19] J. Rossignac, “Estimate function.” http://www.cc.gatech.edu/~jarek/

edgebreaker/eb/PredictionScheme.htm, 2016.

[20] M. D. Adams, “Signal Processing Library.” http://www.ece.uvic.ca/

~mdadams/SPL, 2016.

[21] “Make, make manual.” http://www.gnu.org/software/make/manual, 2016.

[22] D. King and J. Rossignac, “Guaranteed 3.67v bit encoding of planar triangle graphs,”
in Proceedings of the 11th Canadian Conference on Computational Geometry, UBC,
Vancouver, British Columbia, Canada, Aug. 1999.

[23] “Examples of Input and Output files in ASCII format.” http://www.cc.gatech.
edu/~jarek/edgebreaker/eb/Examples.html, 2016.

[24] M. Adams. Personal communication, 2015-12-15.

http://www.cgal.org
http://www.cc.gatech.edu/~jarek/edgebreaker/eb/PredictionScheme.htm
http://www.cc.gatech.edu/~jarek/edgebreaker/eb/PredictionScheme.htm
http://www.ece.uvic.ca/~mdadams/SPL
http://www.ece.uvic.ca/~mdadams/SPL
http://www.gnu.org/software/make/manual
http://www.cc.gatech.edu/~jarek/edgebreaker/eb/Examples.html
http://www.cc.gatech.edu/~jarek/edgebreaker/eb/Examples.html

96

[25] C. Gotsman. Personal communication, 2016-03-14.

[26] “A Benchmark for 3D Mesh Watermarking.” http://liris.cnrs.fr/

meshbenchmark/, 2016.

[27] “Lutz Kettner: Projects: Selected 3D Example Objects.” https://people.

mpi-inf.mpg.de/~kettner/proj/obj3d/, 2016.

[28] “NASA 3D Resources.” http://nasa3d.arc.nasa.gov/models, 2016.

[29] “Suggestive Contour Gallery.” http://gfx.cs.princeton.edu/proj/sugcon/
models/, 2016.

http://liris.cnrs.fr/meshbenchmark/
http://liris.cnrs.fr/meshbenchmark/
https://people.mpi-inf.mpg.de/~kettner/proj/obj3d/
https://people.mpi-inf.mpg.de/~kettner/proj/obj3d/
http://nasa3d.arc.nasa.gov/models
http://gfx.cs.princeton.edu/proj/sugcon/models/
http://gfx.cs.princeton.edu/proj/sugcon/models/

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acknowledgements
	Dedication
	Introduction
	3-D Triangle Mesh Compression
	Historical Perspective
	Overview and Organization of Report

	Background
	Introduction
	Polygon Mesh
	Halfedge Data Structure
	Object-File Format
	Data Compression for Meshes
	Arithmetic Coding
	Quantization

	The Edgebreaker Mesh-Coding Method
	Introduction
	Encoding Method
	C-type Triangle
	L-type Triangle
	R-type Triangle
	S-type Triangle
	E-type Triangle
	M-type Triangle
	M'-type Triangle
	Remarks on Handles
	Transmitted Data

	Examples of the Encoding Method
	Example 1: Mesh with One Bounding Loop and No Handles
	Example 2: Mesh with Zero Bounding Loops and No Handles
	Example 3: Mesh with Two Bounding Loops and No Handles
	Example 4: Mesh with Zero Bounding Loops and One Handle

	Parallelogram-Prediction Scheme
	Decoding Method
	Decompression Initialization Phase
	Decompression Generation Phase

	Examples of the Decoding Method
	Example 1: Mesh with One Bounding Loop and No Handles
	Example 2: Mesh with Zero Bounding Loops and No Handles
	Example 3: Mesh with Two Bounding Loops and No Handles
	Example 4: Mesh with Zero Bounding Loops and One Handle

	Software
	Introduction
	Building the Software
	The !encodemesh! Program
	The !decodemesh! Program
	EB File Format
	Software Usage Examples

	Results and Analysis
	Introduction
	Methodology
	Coding Efficiency
	Time Complexity
	Memory Complexity

	Conclusions
	Supplementary Material
	Bibliography

