
Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Yue Tang

B.Sc., Beijing University of Posts and Telecommunications, 2013
B.Sc., Queen Mary University of London, 2013

July 08, 2016

1 / 44

Edgebreaker Based Mesh-Coding Method

Outline

1 Introduction
Triangle Mesh
Introduce to Mesh Coding
Halfedge Data Structure

2 Edgebreaker Based Mesh-Coding Method
Encoding Method
Parallelogram-Prediction Scheme
Decoding Method

3 Software Implementation
Software Implementation
EB File Format

4 Results and Analysis
Dataset
Coding Efficiency
Time Complexity
Memory Complexity

5 Conclusion
2 / 44

Edgebreaker Based Mesh-Coding Method

Introduction

Triangle Mesh

Triangle Mesh

Triangle Mesh

Triangle mesh: A polygon mesh with all its facets being triangles

Two types of information in the mesh:

Connectivity (topological relationship)
Geometry (vertex positions)

Figure 1: Examples of triangle meshes.

3 / 44

Edgebreaker Based Mesh-Coding Method

Introduction

Introduce to Mesh Coding

Introduce to Mesh Coding

Motivation

Precise representation of the models

High-speed data transmission

Remote access of the datasets

The Edgebreaker Method [1]

Developed by Rossignac in 1999

Connectivity-driven mesh-coding method

Main idea: triangle traversal

4 / 44

Edgebreaker Based Mesh-Coding Method

Introduction

Halfedge Data Structure

Halfedge Data Structure I

Halfedge Data Structure

Each edge is represented as a pair of directed edges (halfedges)

Each halfedge stores five pointers

Figure 2: Pictorial view of the halfedge data structure.

5 / 44

Edgebreaker Based Mesh-Coding Method

Introduction

Halfedge Data Structure

Halfedge Data Structure II

Extended Halfedge Data Structure

Used in the Edgebreaker method

Two extra pointers for the adjacent halfedges around the border

Figure 3: Pictorial view of the extended halfedge data structure.

6 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Mesh-Coding Method

Connectivity Coding: The Edgebreaker connectivity method

Geometry coding: The parallelogram-prediction scheme

Main Idea

Encoder (Triangle traversal):

Generate op-code sequence, encode vertices

Decoder (Op-codes sequence traversal):

Reconstruct the triangle mesh

7 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Encoding Method

Encoding Method

Algorithm 1 Mesh encoding method

Input: Uncompressed triangle mesh
Output: Coded triangle mesh

1: Quantize all mesh vertices to produce integer quantization indices
2: while Not all the triangles are processed by the encoding method do
3: Find the current triangle’s type and add it to the op-code sequence
4: Predict the position of newly encountered vertex in the triangle
5: Encode the prediction residual
6: Move to a particular adjacent triangle
7: end while

8 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Encoding Method

Terminology

Terminology

Active gate g

Opposite-gate vertex g.v

Bounding loop

Active bounding loop B
Inactive bounding loop

Figure 4: Pictorial view of g, g.v and B.

9 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Encoding Method

Triangle Types I

Triangle Type (Op-code)

Describe the topological relationship between the current triangle
and the remaining mesh’s boundary

Seven triangle types: C, L, R, S, E, M, and M’

Figure 5: Triangle type distinction.

10 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Encoding Method

Triangle Types II

C-type L-type R-type E-type

S-type M-type M’-type

Figure 6: Pictorial view of seven triangle types.

11 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Parallelogram-Prediction Scheme

Parallelogram-Prediction Scheme

Parallelogram-Prediction Scheme

Predict vertex from zero or more vertices in the parallelogram

The prediction residual ∆ is obtained as

∆ = r − r̂ (1)

r

? ?

?

r

u ?

?

r

u v

?

r

u v

w

(a) (b) (c) (d)

Figure 7: Pictorial view of the parallelogram-prediction scheme.

12 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Decoding Method

Decoding Method

Two Traversals of The Op-code Sequence

Initialization phase:

Calculate quantities for the mesh reconstruction

Generation phase:

Create triangles and reconstruct the vertex positions
The created triangle is represented by the indices of its three vertices
Data structure: circular doubly-linked list

13 / 44

Edgebreaker Based Mesh-Coding Method

Edgebreaker Based Mesh-Coding Method

Decoding Method

Decoding Method

Algorithm 2 Mesh decoding method

Input: Coded triangle mesh
Output: Decompressed triangle mesh

1: Initialization phase: Compute required quantities
2: {Generation phase}
3: while Not all the op-codes are processed by the decoding method do
4: Read the op-code and compute the three indices of the triangle
5: Decode the prediction residual of newly encountered vertex
6: Reconstruct the vertex position
7: Move to the next op-code in the op-code sequence
8: end while

14 / 44

Edgebreaker Based Mesh-Coding Method

Software Implementation

Software Implementation

Software Implementation

Software Overview

Programs: encode_mesh and decode_mesh

Input mesh: OFF format, coded mesh: EB format

Libraries: C++ standard library, CGAL, and SPL

Input

Mesh
Encoder

Coded

Mesh
Decoder

Output

Mesh

encode_mesh program decode_mesh program

Figure 8: The overall structure of the Edgebreaker mesh-coding software.

15 / 44

Edgebreaker Based Mesh-Coding Method

Software Implementation

EB File Format

EB File Format

EB File Format

For the coded mesh data

Contain six main parts

Header

Op-code Sequence

M Table

Handle-related S-type Offset Table

M’ Table

Geometry Data

Figure 9: Structure of the EB file format.

16 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Dataset

Dataset I

Figure 10: Dataset I.

17 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Dataset

Dataset II

Figure 11: Dataset II.

18 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Coding Efficiency

Coding Efficiency I

Average Coding Rate

Original OFF file: 489.22 bits per vertex (bpv)

The Edgebreaker method: 38.58 bpv

Compression ratio: 12.68

The gzip compression technique: 161.71 bpv

Compression ratio: 3.03

Edgebreaker method is roughly 4.19 times better than gzip

19 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Coding Efficiency

Coding Efficiency II

Coding Rate Comparison

Compare to the Touma and Gotsman (TG) method in [2] and the
topological-surgery (TS) method in [4]

Table 1: Coding efficiency comparison

Name Vertices
Size: bits/vertex

Edgebreaker TS method TG method
Geometry Connectivity Geometry Connectivity Geometry Connectivity

beethoven 2258 10.4 3.4 15.0 4.8 10.8 2.4
blob 8036 7.7 3.3 10.3 3.4 7.9 1.7
eight 766 9.2 3.7 12.0 3.8 7.1 0.6
shape 2562 9.1 3.1 14.3 2.2 9.3 0.2
triceratops 2832 9.8 3.4 10.3 4.3 8.3 2.2

20 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Time Complexity

Time Complexity

Time Complexity

Measured by execution time

If two meshes contain the similar number of vertices, the mesh with
more handles or holes takes a longer encoding time (20% to 30%)

Code profiling:

Boundary traversal is the most time consuming operation

21 / 44

Edgebreaker Based Mesh-Coding Method

Results and Analysis

Memory Complexity

Memory Complexity

Memory Complexity

Memory analysis based on data structures. For N vertices mesh:

Encoder:

28 · (V + E + F) + 12 · F + (12 + 32) · 3.2% · F ≈ 195N (2)

Decoder:

(12 + 8) · V + 12 · (V + 2 · F) + (12 + 32) · 3.2% · F ≈ 83N (3)

Actual peak memory usage:

encoder: 0.78 MB to 154.35 MB bytes, decoder: 0.69 MB to
22.06 MB bytes

22 / 44

Edgebreaker Based Mesh-Coding Method

Conclusion

Conclusion

Summary

The Edgebreaker mesh-coding method produces reasonable results

The software has implemented the Edgebreaker method effectively

Future Work

Reduce the time required for the mesh’s boundary traversal

Potential research on the data structure improvement

23 / 44

Edgebreaker Based Mesh-Coding Method

Thank You

References

[1] J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE
Transactions on Visualization and Computer Graphics, Vol. 5, No. 1, Jan. 1999.

[2] C. Touma and C. Gotsman, Triangle Mesh Compression, Proceedings Graphics
Interface 98, pp. 26-34, 1998

[3] J. Rossignac, “Estimate function”, http://www.cc.gatech.edu/˜jarek/
edgebreaker/eb/PredictionScheme.htm, 2016

[4] G. Taubin and J. Rossignac, Geometric compression through topological surgery,
ACM Trans. Graph., vol. 17, pp. 84-15, Apr. 1998.

[5] M. D. Adams, “Signal Processing Library”,
http://www.ece.uvic.ca/˜mdadams/SPL, 2015.

[6] “CGAL, Computational Geometry Algorithms Library”,
http://www.cgal.org, 2015.

24 / 44

http://www.cc.gatech.edu/~jarek/edgebreaker/eb/PredictionScheme.htm
http://www.cc.gatech.edu/~jarek/edgebreaker/eb/PredictionScheme.htm
http://www.ece.uvic.ca/~mdadams/SPL
http://www.cgal.org

Edgebreaker Based Mesh-Coding Method

Thank You

THANK YOU!

Q&A

25 / 44

Edgebreaker Based Mesh-Coding Method

Quantization

Quantization

Midtread Uniform Scalar Quantizer

The classification rule maps a real number x to the integer
quantization index k

k = (sgnx)

⌊
|x|
∆

+
1

2

⌋
(4)

where ∆ denotes the quantization step size

The reconstruction rule for this quantizer is simply

y = Q(x) = k ·∆ (5)

26 / 44

Edgebreaker Based Mesh-Coding Method

Euler’s Formula

Euler’s Formula

Euler’s Formula for Triangle Meshes

V − E + F = 2− 2g − b (6)

V,E, F , g, and b are the numbers of vertices, edges, facets, genus, and
bounding loops of the mesh, respectively.

27 / 44

Edgebreaker Based Mesh-Coding Method

Genus

Genus

Genus

Number of handles in the mesh

g = 1− 1

2
b− 1

2
(V − E + F), (7)

where V,E, F , and b are the numbers of vertices, edges, facets, and
bounding loops of the mesh, respectively.

Figure 12: Triangle meshes with different genus.

28 / 44

Edgebreaker Based Mesh-Coding Method

OFF File Format

OFF File Format

OFF File Format

Header

Vertices information

Facets information

Edges information
(optional)

OFF
7 6 0
0 0 0
2 0 0
1 1 0

-1 1 0
-2 0 0
-1 -1 0
1 -1 0

3 0 1 2
3 0 2 3
3 0 3 4
3 0 4 5
3 0 5 6
3 0 6 1

Figure 13: The OFF data for a hexagon mesh.

29 / 44

Edgebreaker Based Mesh-Coding Method

Handle

Handle

Remark on Handle

Find the split point for the S-type triangle

OV = RV − 2, (8)

RV is the No. of vertices located on the right submesh’s boundary.

g

1

2

3

V1

V2

V3

V4

V5

V6

V7

V8

V0

V5

V6

V7

V8

V0 V1

V2

V3

V4

V5

(a) (b) (c)

Figure 14: An example illustrating the split operation. 30 / 44

Edgebreaker Based Mesh-Coding Method

Coding Example

Coding Example I

S

E

E

R

RR

R

V0

V1

V2
V3

V4V5

V6

V7V8

V9

V10

V11 V12 V13

1415

16

17
V14V15

V16

V17

(a) (b)

Figure 15: Coding example. (a) The triangle mesh with one boundary and no handles.
(b) The Edgebreaker encoding sequence.

31 / 44

Edgebreaker Based Mesh-Coding Method

Coding Example

Coding Example II

Offset Value

First S-type triangle (i.e., S[1])

S[1] = 5− 0− 2 = 3 (9)

Second S-type triangle (i.e., S[2])

S[2] = 11− 7− 2 = 2 (10)

Table 2: Calculation of the e, s, and S parameters in the initialization phase

C R R S L L E C C R R R C R R R S R E E
e -1 0 1 0 1 2 5 4 3 4 5 6 5 6 7 8 7 8 11 14
s 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
S[s] 3 2

32 / 44

Edgebreaker Based Mesh-Coding Method

Coding Example

Coding Example III

V1
V2

V3

V4

V5

V6

V7
V8

V0

(a)

V10

V9

V11

V12

V13

V1
V2

V3

V4

V5

V6

V7
V8

V0

(b)

V10

V9

V11

V12

V13

V14

V1
V2

V3

V4

V5

V6

V7
V8

(c)

V10

V9

V11

V12

V13

V14

(d)

V6

V7
V8

(e)

V10

V9

V11

V12

V13

V14

V2

V3

V4

V5

V6

(f)

V2

V3

V4

V5

V6

V7
V8

V10

V9

V11

V12

V13

V14

V2

V3

V4

V5

(g)

V2

V3

V4

(h)

Figure 16: The internal steps of the Edgebreaker decoding process.

33 / 44

Edgebreaker Based Mesh-Coding Method

Parallelogram-Prediction Scheme

Parallelogram-Prediction Scheme I

Parallelogram-Prediction Scheme

Case 1: r̂ = (0, 0, 0), Case 2: r̂ = u

Case 3: r̂ = 1
2 (u + v), Case 4: r̂ = u + v − w

r

? ?

?

r

u ?

?

r

u v

?

r

u v

w

(a) (b) (c) (d)

Figure 17: Pictorial view of the parallelogram-prediction scheme.

34 / 44

Edgebreaker Based Mesh-Coding Method

Parallelogram-Prediction Scheme

Parallelogram-Prediction Scheme II

Encode and Decode Vertex

Predicted vertex r̂:

r̂ = u + v − w (11)

Prediction residual ∆:

∆ = r − r̂ (12)

Vertex reconstruction r′:

r′ = ∆ + r̂ (13)

r

u v

w

Figure 18: Geometry coding.

35 / 44

Edgebreaker Based Mesh-Coding Method

Parallelogram-Prediction Scheme Example

Parallelogram-Prediction Scheme Example

An Example

Four vertices:

u = (6, 5, 0), v = (8, 1, 0), w = (4, 1, 0), and r = (10, 5, 0) (14)

Vertex r̂:

r̂ = u + v − w = (6, 5, 0) + (8, 1, 0)− (4, 1, 0) = (10, 5, 0) (15)

Prediction residual ∆:

∆ = r − r̂ = (10, 5, 0)− (10, 5, 0) = (0, 0, 0) (16)

36 / 44

Edgebreaker Based Mesh-Coding Method

Hausdorff Distance

Hausdorff Distance

Methodology

Quantize the bunny_hole mesh vertex by different bits

Measure the Hausdorff distance for each reconstructed mesh

Table 3: Hausdorff distance and coding rate for bunny_hole mesh

Quantization Minimum Maximum Mean Total Geometry Connectivity
(bit/coordinate) (meter) (meter) (meter) (bits/vertex) (bits/vertex) (bits/vertex)

10 0.000000 0.000057 0.000017 14.33 11.07 3.24
12 0.000000 0.000014 0.000004 18.91 15.66 3.24
14 0.000000 0.000004 0.000001 24.38 21.13 3.24
16 0.000000 0.000001 0.000000 30.19 26.93 3.24

37 / 44

Edgebreaker Based Mesh-Coding Method

Memory Complexity for Different Quantization Size

Memory Complexity for Different Quantization Size

Methodology

Quantize the bunny_hole mesh vertex by different bits

Measure the memory complexity for each program

Table 4: Memory complexity for bunny_hole mesh with different quantization size

Quantization Encode peak Encode peak
(bit/coordinate) memory (bytes) memory (bytes)

10 7389696 1671168
12 7389696 1671168
14 7389696 1671168
16 7389696 1671168

38 / 44

Edgebreaker Based Mesh-Coding Method

Test Dataset

Test Dataset

Table 5: Basic information of the test meshes

Name Vertices Edges Facets Boundaries Genus
9handle_torus 9392 28224 18816 0 9
animal 44382 132971 88590 1 0
bethoven 2258 6686 4429 1 0
blob 8036 24102 16068 0 0
bunny_hole 34835 104310 69473 4 0
casting 5096 15336 10224 0 9
dragon 50000 150000 100000 0 1
eight 766 2304 1536 0 2
fandisk 6475 19419 12946 0 0
globe_west 199065 597189 398126 0 0
hand 36616 109554 72937 3 0
heart 1280 3782 2494 8 1
heptoroid 286678 860160 573440 0 22
horse 112642 337920 225280 0 0
hypersheet 487 1407 917 3 1
lena 7864 23432 15569 1 0
ramesses 826266 2478792 1652528 0 0
shape 2562 7680 5120 0 0
tre_twist 800 2400 1600 0 1
triceratops 2832 8490 5660 0 0

39 / 44

Edgebreaker Based Mesh-Coding Method

Coding Efficiency

Coding Efficiency

Table 6: Individual coding efficiency results

Name Vertices
Geometry Connectivity Total Gzipped Gzipped/Edgebreaker

(bits/vertex) (bits/vertex) (bits/vertex) (bits/vertex) Ratio
9handle_torus 9392 39.20 3.81 43.06 141.60 3.29
animal 44382 35.25 3.52 38.78 163.04 4.20
beethoven 2258 39.10 3.36 42.69 145.80 3.42
blob 8036 35.28 3.33 38.68 142.34 3.68
bunny_hole 34835 26.93 3.24 30.19 199.70 6.61
casting 5096 30.63 3.58 34.31 178.43 5.20
dragon 50000 33.38 3.52 36.91 220.12 5.96
eight 766 36.22 3.69 40.57 128.60 3.17
fandisk 6475 26.64 3.23 29.95 153.27 5.12
globe_west 199065 29.58 3.40 32.98 191.06 5.79
hand 36616 29.54 3.17 32.72 162.83 4.98
heart 1280 35.11 3.95 39.46 118.01 2.99
heptoroid 286678 20.41 3.06 23.47 158.59 6.76
horse 112642 20.39 3.02 23.41 169.80 7.25
hypersheet 487 41.68 4.16 46.88 169.28 3.61
lena 7864 40.94 3.51 44.51 149.78 3.37
ramesses 826266 27.18 3.43 30.61 188.96 6.17
shape 2562 38.53 3.08 41.81 115.18 2.75
tre_twist 800 43.89 3.70 48.23 157.67 3.27
triceratops 2832 34.92 3.38 38.49 174.22 4.53

median value — — — 38.58 161.71 4.19
40 / 44

Edgebreaker Based Mesh-Coding Method

Time Complexity

Time Complexity

Table 7: ramesses mesh encoding time complexity analysis with profiling. Results
showing in table are the accumulated time from eleven runs.

Percentage time Cumulative time Self time
Function description

(%) (seconds) (seconds)
37.59 79.34 79.34 Process S-type triangle
7.23 94.59 15.25 Find halfedge’s incident vertex
6.09† 107.45 12.86 Encode coordinates in regular mode∗

5.47 118.99 11.54 Find number of connected components in the mesh
5.00† 129.55 10.56 Entropy coding∗

4.26 138.54 8.99 Updates adjacent halfedges information
3.87† 146.70 8.16 Arithmetic encoding function∗

2.83 152.68 5.98 Output encoded bits∗

2.76 158.50 5.82 Lookup halfedges in the mesh
2.48 163.74 5.24 Predict the vertex position

∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

41 / 44

Edgebreaker Based Mesh-Coding Method

Time Complexity

Time Complexity

Table 8: heptoroid mesh encoding time complexity analysis with profiling. Results
showing in table are the accumulated time from eleven runs.

Percentage time Cumulative time Self time
Function description

(%) (seconds) (seconds)
14.51† 5.84 5.84 Encode coordinates in regular mode∗

8.84† 9.40 3.56 Entropy coding∗

8.49 12.82 3.42 Find halfedge’s incident vertex
7.45† 15.82 3.00 Arithmetic encoding function∗

7.10 18.68 2.86 Updates adjacent halfedges information
5.14 20.75 2.07 Find number of connected components in the mesh
4.07 22.39 1.64 Output encoded bits∗

3.97 23.99 1.60 Lookup halfedges in the mesh
2.86 25.14 1.15 Read mesh from OFF file
2.86 26.29 1.15 Update the probability distribution for the arithmetic coder∗

∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

42 / 44

Edgebreaker Based Mesh-Coding Method

Time Complexity

Time Complexity

Table 9: ramesses mesh decoding time complexity analysis with profiling. Results
showing in table are the accumulated time from eleven runs.

Percentage time Cumulative time Self time
Function description

(%) (seconds) (seconds)
28.93† 15.81 15.81 Decode coordinates in regular mode∗

18.99† 26.19 10.38 Entropy coding∗

13.98 33.83 7.64 Arithmetic coder probability adjustment∗

7.73 38.06 4.23 Update the probability distribution for the arithmetic coder∗

7.17† 41.98 3.92 Arithmetic decoding function∗

5.10 44.77 2.79 Read encoded bits∗

4.61 47.29 2.52 Arithmetic coder interval check∗

3.93 49.44 2.15 Read EB file from input stream
2.56 50.84 1.40 Decode vertex coordinates in bypass mode∗

1.57 51.70 0.86 Predict the vertex position
∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

43 / 44

Edgebreaker Based Mesh-Coding Method

Time Complexity

Time Complexity

Table 10: heptoroid mesh decoding time complexity analysis with profiling.
Results showing in table are the accumulated time from eleven runs.

Percentage time Cumulative time Self time
Function description

(%) (seconds) (seconds)
32.32† 6.46 6.46 Decode coordinates in regular mode∗

17.08† 9.88 3.42 Entropy coding∗

14.21 12.72 2.84 Arithmetic coder probability adjustment∗

9.08 14.53 1.82 Update the probability distribution for the arithmetic coder∗

7.15† 15.96 1.43 Arithmetic decoding function∗

5.50 17.06 1.10 Arithmetic coder interval check∗

3.85 17.83 0.77 Read EB file from input stream
3.20 18.47 0.64 Read encoded bits∗

2.10 18.89 0.42 Predict the vertex position
1.25 19.14 0.25 Decode vertex coordinates in bypass mode∗

∗Arithmetic coding related function from SPL library.
†Items used to calculate the time consumption in the arithmetic coder.

44 / 44

	Introduction
	Triangle Mesh
	Introduce to Mesh Coding
	Halfedge Data Structure

	Edgebreaker Based Mesh-Coding Method
	Encoding Method
	Parallelogram-Prediction Scheme
	Decoding Method

	Software Implementation
	Software Implementation
	EB File Format

	Results and Analysis
	Dataset
	Coding Efficiency
	Time Complexity
	Memory Complexity

	Conclusion

