
A Novel Progressive Lossy-to-Lossless Coding
Method for Mesh Models of Images

Xiao (Joyce) Feng and Michael D. Adams
Dept. of Electrical and Computer Engineering, University of Victoria

Victoria, BC, V8W 2Y2, Canada
xiaofeng@uvic.ca and mdadams@ece.uvic.ca

Abstract—A novel progressive lossy-to-lossless coding method
is proposed for mesh models of images whose underlying trian-
gulations have arbitrary connectivity. For a triangulation T of a
set P of points, our proposed method represents the connectivity
of T as a sequence of edge flips that maps a uniquely-determined
Delaunay triangulation of P to T . The coding efficiency of our
method is highest when the underlying triangulation connectivity
is close to Delaunay, and slowly degrades as connectivity moves
away from being Delaunay. Experimental results show our
method to significantly outperform a simple baseline coding
scheme and suggest our method to be superior to more traditional
coding approaches for meshes whose connectivity does not deviate
too far from being Delaunay.

I. INTRODUCTION

In recent years, there has been a growing interest in image
representations that utilize nonuniform sampling. By using
nonuniform sampling, the position of sample points can be
made adaptive to image content, allowing more accurate image
representations to be obtained with fewer sample points. One
popular class of image representations facilitating nonuniform
sampling is that based on triangle meshes [1]. With a triangle
mesh model of an image, the image domain is partitioned into
triangular regions using a triangulation and then an approxi-
mating function is constructed over each such region. In order
to be able to efficiently store and communicate (triangle) mesh
models of images, effective coding schemes for such models
are needed.

One highly effective approach for encoding mesh models
of images is the image tree (IT) method, proposed in [2].
Unfortunately, the IT method only encodes the geometry of the
mesh and not the connectivity, as the connectivity is assumed
to be Delaunay. This renders the IT scheme useless in the
many applications that employ mesh models with arbitrary
connectivity. In this paper, we extend the IT method by
adding to it a means for coding mesh connectivity. This allows
mesh models with arbitrary connectivity to be coded, such
as those produced in [1]. Through experimental results, we
show that our proposed coding method is able to significantly
outperform a simple baseline coding scheme. Furthermore,
for meshes whose connectivity does not deviate too far from
being Delaunay, our method is able to code mesh connectivity
using less than the 3.67 bits/vertex [3] attained by traditional
approaches. This result is of practical significance, since, in
many applications, mesh connectivity is often not so far from
being Delaunay, due to the good approximation properties of
Delaunay triangulations.

The remainder of this paper is organized as follows.
To begin, Section II provides some background information
related to mesh models of images. In Section III, we propose
our general framework for mesh coding, which has two free pa-
rameters. In Section IV, we consider how to best select the two
free parameters of our framework, leading us to recommend a
particular choice for these parameters and propose a specific
coding method that employs this choice in our framework. The
mesh models used for testing purposes in our work are also
briefly introduced in Section IV. Through experimental results,
the coding efficiency of our proposed method is evaluated
in Section V. Finally, Section VI concludes the paper by
summarizing the key aspects of our work.

II. BACKGROUND

Before proceeding further, we first introduce some of
the basic notation and terminology used herein. The sets of
integers and real numbers are denoted Z and R, respectively.
The cardinality of a set S is denoted jSj. Similarly, the
length of a (finite-length) sequence S is denoted jSj. For
two line segments a0a1 and b0b1, we say that a0a1 < b0b1
in lexicographic order if and only if either 1) a00 < b00,
or 2) a00 = b00 and a01 < b01, where a00 = min(a0; a1),
a01 = max(a0; a1), b00 = min(b0; b1), and b01 = max(b0; b1),
and min(a; b) and max(a; b) denote the least and greatest of
the points a and b in xy-lexicographic order, respectively. A
triangulation T of the set P of points in R

2 is a set T
of (nondegenerate) triangles such that: 1) the union of the
triangles in T is the convex hull of P ; 2) the union of the
vertices of all triangles in T is P ; and 3) the interiors of
any two triangles in T are disjoint. The sets of all vertices
and edges in a triangulation T are denoted vertices(T ) and
edges(T ), respectively.

Delaunay triangulations. One of the most common types
of triangulations is the Delaunay triangulation [4]. Formally, a
triangulation T of a set P of points is said to be Delaunay if
the circumcircle of each face in T contains no points from P .
The Delaunay triangulation of a set of points is not necessarily
unique, due to certain degeneracies that can arise. In some
applications (such as in our work), it may be desirable to be
able to obtain a unique triangulation of a given set of points.
Fortunately, numerous methods exist for uniquely choosing
one of all possible Delaunay triangulations of a point set. In our
work, we employ the preferred-directions method [4], which
yields a unique (Delaunay) triangulation of a point set, known
as the preferred-directions Delaunay triangulation (PDDT).978-1-4673-7788-1/15/$31.00 c2015 IEEE



e

vi

vk

vl
vj

(a)

e
0

vi

vl

vk

vj

(b)
Fig. 1. An edge flip. The part of the triangulation associated with quadrilateral
vivjvkv` (a) before and (b) after applying an edge flip to e.

Mesh models. Consider an image function � defined on
� = [0;W � 1] � [0; H � 1] and sampled at points in
� = f0; 1; :::;W � 1g � f0; 1; :::;H � 1g (i.e., a rectangular
grid of width W and height H). In the context of our work,
a mesh model of � is characterized by: 1) a set P = fpig of
sample points (where P 2 �); 2) a triangulation of P ; and
3) a set Z = fzig of function values for � at each point in P
(i.e., zi = �(pi)). The set P must include all of the extreme
convex hull points of � (i.e., the four corners of the image
bounding box) so that the triangulation of P covers all of
�. The mesh model is associated with a continuous piecewise
linear interpolant �̂ that approximates �. Typically, subject to a
constraint on maximum model size, the mesh model is chosen
to minimize the mean-squared error (MSE) �. For convenience
herein, MSE is expressed in terms of peak-signal-to-noise
ratio (PSNR) as given by PSNR = 20 log10 (2

� � 1)=
p
�,

where � is the sample precision in bits/sample. The quantities
P and Z together comprise the geometry of the mesh, while
the connectivity of T constitutes the connectivity of the mesh.
The work described herein addresses the problem of how to
efficiently code a mesh model of the above form, with a focus
on the connectivity coding.

Local optimization procedure (LOP). One method of
particular relevance to our work is the so called Lawson local
optimization procedure (LOP) [5], a technique for finding
an optimal triangulation of a given point set. In what follows,
we provide a brief introduction to the LOP.

As a matter of terminology, an edge e in a triangulation
is said to be flippable if e has two incident faces (i.e., is
not on the triangulation boundary) and the union of its two
incident faces forms a strictly convex quadrilateral Q. For a
flippable edge e, an edge flip is an operation that replaces e
with the other diagonal e0 of Q, as shown in Fig. 1. As it turns
out, every triangulation of a set of points can be transformed
into every other triangulation (of the same set of points) by a
finite sequence of edge flips [6]. This fact motivated Lawson
to propose the LOP, an optimization scheme based on edge
flips.

With the LOP, one must define an optimality criterion
for edges. An edge e being optimal means that the flipped
counterpart of e is not preferred over e (i.e., the triangulation
obtained by flipping e is not more desirable than the original
triangulation with e). The LOP deems a triangulation optimal if
every flippable edge in the triangulation is optimal. Essentially,
the LOP is an algorithm that simply keeps applying edge
flips to flippable edges that are not optimal until all flippable
edges are optimal (i.e., the triangulation is optimal). In more
detail, the LOP works as follows. A priority queue, called
the suspect-edge queue, is used to record all edges whose
optimality is suspect (i.e., uncertain). Initially, all flippable

edges in the triangulation are placed in the suspect-edge queue.
Then, the following steps are performed until the suspect-edge
queue is empty: 1) remove the edge e from the front of the
suspect-edge queue; 2) test e for optimality; 3) if e is not
optimal, apply an edge flip to e and place any newly suspect
edges (resulting from the edge flip) on the suspect-edge queue.
When the iteration terminates, the resulting triangulation is
optimal. The LOP can be used to compute the PDDT of a
point set by providing any valid triangulation as input to the
LOP and specifying the PDDT criterion [4] as the optimality
criterion for the LOP. In this case, the LOP will yield the
PDDT as output. Although the PDDT produced is unique, the
sequence of edge flips performed by the LOP is not and will
depend on the particular priority function used for the suspect-
edge queue.

III. PROPOSED MESH-CODING FRAMEWORK

With the necessary background in place, we can now in-
troduce the general framework from which our proposed mesh
coding method is derived. As mentioned earlier, our approach
is based on the IT scheme [2]. The IT method, although
highly effective for coding mesh geometry, has no means for
coding connectivity. Our proposed coding framework extends
the IT coding scheme by adding to it a mechanism for coding
connectivity. By providing the ability to code connectivity, our
framework can be used to encode mesh models with arbitrary
connectivity (unlike the IT scheme).

Our approach to connectivity coding is based on the idea
of expressing the connectivity of a triangulation relative to the
connectivity of a uniquely determined reference triangulation
via a sequence of edge flips. More specifically, for a trian-
gulation T of a set P of points, our approach represents the
connectivity of T as a sequence S of edge flips that transforms
the PDDT of P to T . Since the PDDT of P is unique, P
and S completely characterize the connectivity of T . Given
P and S, we can always recover T by first computing the
PDDT of P and then applying the sequence S of edge flips
to this PDDT. If T is close to having PDDT connectivity, the
sequence S will be very short and the connectivity coding cost
(in bits) will be very small. As T deviates further from having
PDDT connectivity, the sequence S will grow in length and
the connectivity coding cost will increase. In what follows, we
describe the encoding and decoding processes in more detail.

Encoding. First, we consider the encoding process. As
input, this process takes a mesh model, consisting of a set
P of sample points, a triangulation T (of P ), and the set Z of
function values (at the sample points). Given such a model,
the encoding process outputs a coded bit stream, using an
algorithm comprised of the following steps:

1) Geometry coding. Encode the mesh geometry (i.e., P and
Z) using the IT scheme.

2) Sequence generation. Generate a sequence S of edge flips
that transforms the PDDT of P to the triangulation T .

3) Sequence optimization. Optionally, optimize the edge-flip
sequence S to facilitate more efficient coding.

4) Sequence encoding. Initialize the triangulation � to the
PDDT of P . Encode the edge-flip sequence S, updating
the triangulation � in the process.



In what follows, we explain each of steps 2 to 4 (from above)
in more detail.

Sequence generation (step 2). In step 2 of our encoding
framework, an edge-flip sequence is generated. We now ex-
plain in more detail how this is accomplished. To begin, we as-
sign a unique integer label to each edge in the triangulation T ,
by numbering edges starting from zero using the lexicographic
order for line segments defined in Section II. Next, we apply
the LOP to the triangulation with the edge-optimality criterion
chosen as the PDDT criterion, which will yield the PDDT of
P . As the LOP is performed, each edge flip is recorded in the
sequence S0 = fs0igL�1i=0 , where s0i is the label of the ith edge
flipped. (Note that flipping an edge does not change its label.)
After the LOP terminates (yielding the PDDT of P ), each
edge in the triangulation is assigned a new unique label using
a similar process as above (i.e., by numbering edges starting
from zero using the lexicographic order for line segments).
Let � denote the function that maps the original edge labels
to the new ones. The edge-flip sequence S = fsigL�1i=0 that
maps the PDDT of P to T is then given by s0i = �(sL�1�i).
In other words, S is obtained by reversing the sequence S0

and relabelling the elements of the sequence so that they
are labelled with respect to the PDDT of P . The particular
sequence S obtained from the above process will depend on
the specific priority scheme employed by the suspect-edge
queue. In our work, the following three priority schemes were
considered: first-in first-out (FIFO), last-in first-out (LIFO),
and lexicographic (i.e., edges are removed from the queue in
lexicographic order). As for which choice of priority scheme
might be best, we shall consider this later in Section IV.

Sequence encoding (step 4). The sequence encoding pro-
cess in step 4 of our encoding framework employs a scheme
that numbers a subset of edges in a triangulation relative to a
particular edge. So, before discussing the sequence encoding
process further, we must first present this relative indexing
scheme for edges. To begin, we first introduce some necessary
terminology and notation. For an edge e in a triangulation,
dirEdge(e) denotes the directed edge oriented from the smaller
vertex to the larger vertex of e in xy-lexicographic order. For a
directed (triangulation) edge h: 1) opp(h) denotes the directed
edge with the opposite orientation (and same vertices) as h;
2) next(h) and prev(h) denote the directed edges with the
same left face as h that, respectively, follow and precede h
in counterclockwise order around their common left face; and
3) edge(h) denotes the (undirected) edge associated with h.
The preceding definitions are illustrated in Fig. 2. With the
preceding notation in place, we can now specify our relative
indexing scheme for edges. Given a triangulation � and a
subset � of its edges and two distinct edges e1; e0 2 �,
the index of the edge e1 relative to the edge e0, denoted
relIndex(e1; e0; �;�), is determined as specified in Algo-
rithm 1. (Note that relIndex(e1; e0; �;�) is not necessarily
equal to relIndex(e0; e1; �;�).)

With the relative indexing scheme for edges having been
introduced, we can now describe the edge-flip sequence en-
coding process in detail. Our coding scheme employs context-
based adaptive binary arithmetic coding [7]. In our approach,
the need to code nonbinary symbols arises, which requires the
use of a binarization scheme to convert nonbinary symbols
to sequences of binary symbols. For this purpose, the UI

opp(h)prev(h)

nex
t(h

)

h

edge(h)
prev(opp(h))

nex
t(op

p(h
))

Fig. 2. Illustration of various definitions related to directed edges. An edge
e in a triangulation with two incident faces and the associated directed edges
h and opp(h).

Algorithm 1 Calculating relIndex(e1; e0; �;�) (i.e., the index
of the edge e1 relative to the edge e0 in the set � of edges in
the triangulation � .)

1: fq is FIFO queue of directed edgesg
2: fh is directed edge and c is integer counterg
3: mark all edges in � as not visited and h := dirEdge(e0)
4: clear q, and insert opp(h) and then h in q
5: c := 0
6: while q not empty do
7: remove element from front of q and set h to removed

element
8: if edge(h) 2 � and not visited then
9: mark edge(h) as visited

10: if edge(h) = e1 then
11: output c as index of edge e1 relative to edge e0;

and stop
12: endif
13: c := c+ 1
14: endif
15: if opp(e) has left face then
16: if edge(next(opp(h))) not visited then
17: insert next(opp(h)) in q
18: endif
19: if edge(prev(opp(h))) not visited then
20: insert prev(opp(h)) in q
21: endif
22: endif
23: endwhile
24: abort with error indicating e1 62 �

binarization scheme described in [2] is employed. Given the
set P of vertices of the triangulation T to be coded and the
edge-flip sequence S = fsigjSj�1i=0 that transforms the PDDT
of P to T , the encoding process proceeds as follows:

1) Initialize the triangulation � to the PDDT of P .
2) Encode jSj as a 30-bit integer. If jSj = 0, stop.
3) Flip the edge s0 in � .
4) Encode s0 as an m-bit integer, where m =

dlog2(jedges(�)j)e (i.e., m is the number of bits needed
for an integer representing edge labels); if jSj < 2, stop.

5) For i 2 f1; 2; : : : ; jSj � 1g:
a) Let ri = relIndex(si; si�1; �; ippableEdges(�)) � 1,

where ippableEdges(�) denotes the set of all flip-
pable edges in � .

b) Flip the edge si in � .
6) Encode n =

�
log2

�
1 + maxfr1; r2; : : : ; rjSj�1g

��
as a

30-bit integer (i.e., n is the number of bits needed for an
integer representing relative indexes).

7) Initialize the arithmetic coding engine, and start a new



arithmetic codeword.
8) For i 2 f1; 2; : : : ; jSj � 1g, encode ri using UI(n; 4)

binarization (where n and ri are as calculated above).
9) Terminate the arithmetic codeword.

In step 8 above, each element in the edge-flip sequence S is
coded relative to the previous element in the sequence. Such
an approach is effective since the edge-flip sequence tends to
exhibit locality (i.e., neighbouring elements in the sequence
tend to be associated with edges that are close to one another
in the triangulation).

Sequence optimization (step 3). As mentioned above, our
coding scheme relies on the fact that the edge-flip sequence
tends to exhibit some degree of locality. The purpose of
the (optional) sequence-optimization step (i.e., step 3) in
our encoding process is to attempt to improve the locality
properties of the edge-flip sequence (prior to encoding) through
optimization. In what follows, we describe this optimization
process in more detail.

Before proceeding further, we must first introduce some
notation and terminology related to the optimization process.
Let triT;S(i) denote the triangulation obtained by applying
the first i edge flips in the sequence S to the triangulation T ;
and let triT;S denote the triangulation obtained by applying
all of the edge flips in the sequence S to the triangulation T .
Two edge-flip sequences S and S0 are said to be equivalent
if triT;S = triT;S0 (i.e., the application of each edge-flip
sequence to the triangulation T produces the same final trian-
gulation). Let swap(S; i; j) denote the new sequence formed
by swapping the ith and jth elements in the sequence S. Let
erase(S; i; j) denote the new sequence formed by removing
elements si; si+1; : : : ; sj from the sequence S (where elements
in S with index greater than j are shifted downwards by
j � i + 1 positions to form the new sequence). Two adjacent
elements of an edge-flip sequence S with indices i and i+ 1
are said to be swappable if they correspond to edges that are
not incident on the same face of the triangulation triT;S(i).

For a given edge-flip sequence, it is possible to find
many (distinct) sequences that are equivalent (in the sense
of “equivalent” as defined above). Some of these equivalent
sequences, however, have better locality properties than others,
and therefore lend themselves to more efficient coding. The
optimization process attempts to produce an edge-flip sequence
with better locality by applying a series of transformations to
the sequence that results in an equivalent sequence. Two types
of transformations are of interest. First, if the ith and (i+1)th
elements in the sequence S are swappable (as defined above),
swapping these elements will yield an equivalent sequence
(i.e., triT;S = triT;swap(S;i;i+1)). Second, if the ith and (i+1)th
elements in S are equal, the deletion of these two elements will
yield an equivalent sequence (i.e., triT;S = triT;erase(S;i;i+1)).
With the above in mind, the optimization process works as
follows. The optimization algorithm makes repeated passes
over the elements of the sequence S, until a full pass completes
without any change being made to S. Each pass performs the
following for i 2 f0; 1; : : : ; jSj � 2g:

1) If si = si+1, S := erase(S; i; i + 1) (i.e., delete ith and
(i+ 1)th elements from S).

2) Otherwise, if si and si+1 are swappable and the binary
decision function dS(i) 6= 0, S := swap(S; i; i+ 1) (i.e.,

swap the ith and (i + 1)th elements in S) and i := i +
1. The binary decision function dS(i), which is used to
determine if the ith and (i + 1)th elements in S should
be swapped, is a free parameter of our method and will
be described in more detail shortly.

In our work, we considered three choices for the
decision function dS . To assist in specifying these choices,
we introduce some additional notation in what follows. For
x; y 2 R, lt(x; y) is 1 if x < y and 0 otherwise; and lte(x; y) is
1 if x � y and 0 otherwise (i.e., lt and lte are boolean-valued
functions for testing the less-than and less-than-or-equal
conditions). Let cS(i) denote the approximate cost of
coding the ith edge flip in the sequence S, where cS(i) =
relIndex(si; si�1; triT;S(i); ippableEdges(triT;S(i))) for
i 2 f1; 2; : : : ; jSj � 1g and cS(i) = 0 for i 2 f0; jSjg, and
ippableEdges(T ) denotes the set of all flippable edges in
the triangulation T . For convenience, let c(i) and c0(i) denote
cS(i) and cswap(S;i;i+1)(i), respectively (i.e., c(i) and c0(i)
represent the cost without and with the ith and (i+1)th edges
swapped, respectively). With this notation in place, the three
choices for the decision function dS considered in our work
are given by the following:

rule 1: dS(i) = lt

 
i+2X
k=i

c0(k);

i+2X
k=i

c(k)

!

(i.e., elements are swapped if this would strictly reduce the
overall sum of the relative indexes to be coded);

rule 2: dS(i) =

"Y
k2I

lte (c0(k); c(k))

#�
max
k2I

lt(c0(k); c(k))

�
;

where I = fmaxf1; ig; : : : ;minfjSj�2; i+2gg (i.e., elements
are swapped if this would not increase the cost of any of the
three relative indexes to be coded that are affected by the swap
and at least one cost would be strictly reduced); and

rule 3: dS(i) =

�
lt (c0(i); c(i)) i � 1

0 i = 0

(i.e., elements are swapped if this would strictly reduce the ith
relative index to be coded). As for which choice of dS might
be best, we will explore this later in Section IV.

Decoding. Now, we consider the decoding process. Given
a coded bit stream as input, this process outputs the corre-
sponding mesh model, characterized by a set P of sample
points and their corresponding set Z of function values, and
a triangulation T of P . The decoding process consists of the
following steps:

1) Geometry decoding. Decode the mesh geometry using the
IT scheme, yielding P (and Z).

2) Sequence decoding. Initialize the triangulation � to the
PDDT of P . Label the edges in the triangulation in
an identical manner as the encoder (i.e., lexicographic
order starting from zero). Decode the edge-flip sequence,
updating � in the process. After each edge flip is decoded,
the edge flip is applied to the (current) triangulation
� . The final value of � corresponds to the decoded
triangulation T .

In step 2 of the decoding process above, the steps involved in
the decoding of an edge-flip sequence simply mirror those for
encoding (described earlier).



TABLE I. SEVERAL OF THE MESH MODELS USED IN OUR WORK

Relative
Vertex Edge Sequence Sequence

Name Category Count Count Lengthy Length (%)y

A1 A 15728 47080 1070 2.3
A2 A 6881 20632 1421 6.9
A3 A 5242 15374 2298 14.9
B1 B 7864 23536 7326 31.1
B2 B 7864 23514 6720 28.6
B3 B 2621 7797 3235 41.5

ySequence generated with lexicographic priority scheme.

IV. PROPOSED MESH-CODING METHOD

In the previous section, we introduced our proposed frame-
work for mesh coding. This framework has two free param-
eters, namely, the choice of priority scheme (used by the
LOP) and the choice of decision function (used by sequence
optimization). In this section, we study how different choices
for these parameters affect coding efficiency. Based on these
results, we recommend a particular choice for these parame-
ters, which corresponds to the specific coding method proposed
herein.

Test data. Before proceeding further, a brief digression is
necessary in order to introduce the test data used in our work.
Herein, we employed a set of 50 mesh models of images (with
arbitrary connectivity) that were produced by the state-of-the-
art mesh-generation scheme proposed in [1]. Since the effi-
ciency of our proposed coding approach depends on the extent
to which mesh connectivity deviates from being Delaunay, we
have grouped our meshes into two categories, A and B, based
on the extent of this deviation. To quantify the extent to which
the connectivity of a mesh deviates from being Delaunay, we
used the length of the edge-flip sequence required to transform
the mesh connectivity to PDDT connectivity, measured as a
percentage of the total number of edges in the mesh. The
25 meshes in category A have connectivity relatively close
to being Delaunay (i.e., the relative length of the edge-flip
sequence is less than or equal to 15%), while the 25 meshes
in category B have connectivity that deviates relatively more
from being Delaunay (i.e., the relative length of the edge-flip
sequence is greater than 15%). Herein, we present statistical
results taken across all of our meshes as well as results for
individual meshes. For consistency, when presenting results for
individual meshes, we focus on the six representative meshes
listed in Table I, where the meshes A1, A2, and A3 are
from category A and the meshes B1, B2, and B3 are from
category B.

Choice of priority scheme. To begin, we consider how
different choices of priority scheme used by the LOP (in step 2
of the encoding process) affect coding efficiency. For each
of the 50 models in our test set, we coded the mesh using
each of the three priority schemes (namely, LIFO, FIFO, and
lexicographic, as introduced earlier) and measured the resulting
bit rate. The results obtained are shown in Table II. In each
case, the best result is highlighted in bold font. From both
the results for individual meshes in Table II(a) and the overall
statistical results in Table II(b), it is clear that the lexicographic
priority scheme is most effective, consistently leading to the
lowest bit rate in the individual cases as well as overall. In
fact, a more detailed examination of the results shows that the
lexicographic scheme performs best in all 50/50 of the test
cases. A careful analysis shows that the superior performance

TABLE II. COMPARISON OF THE CONNECTIVITY CODING
PERFORMANCE OBTAINED WITH THE VARIOUS PRIORITY SCHEMES.

(A) INDIVIDUAL RESULTS. (B) OVERALL RESULTS.

(a)
Coded Size (bits/vertex)

Dataset LIFO FIFO Lex.y

A1 1.02 1.02 0.86
A2 2.54 2.53 1.98
A3 4.01 3.95 2.74
B1 8.36 8.42 7.70
B2 7.63 7.87 7.24
B3 9.81 9.93 9.03

ylexicographic

(b)
Mean Coded Size

(bits/vertex)
Category LIFO FIFO Lex.y

A 1.41 1.41 1.16
B 8.60 8.80 8.02
Overall 5.00 5.10 4.59

ylexicographic

TABLE III. COMPARISON OF THE CONNECTIVITY CODING
PERFORMANCE OBTAINED WITH THE VARIOUS DECISION FUNCTIONS.

(A) INDIVIDUAL RESULTS. (B) OVERALL RESULTS.

(a)
Coded Size (bits/vertex)

Dataset Rule 1 Rule 2 Rule 3
A1 0.82 0.84 0.76
A2 1.92 1.93 1.78
A3 2.70 2.64 2.54
B1 7.86 7.66 7.44
B2 7.43 7.20 6.98
B3 9.21 8.98 8.67

(b)
Mean Coded Size

(bits/vertex)
Category Rule 1 Rule 2 Rule 3
A 1.12 1.13 1.06
B 8.11 7.95 7.64
Overall 4.62 4.54 4.35

of the lexicographic priority scheme is due to its ability to
produce edge-flip sequences with better locality properties.

Choice of decision function. Next, we consider how differ-
ent choices of decision function in the sequence-optimization
step (i.e., step 3) of the encoding process affect coding
efficiency. For each of the 50 models in our test set, we coded
the mesh using each of the three decision rules (namely, rules
1, 2, and 3, as introduced earlier) and measured the resulting
bit rate. The results obtained are given in Table III, with results
for six individual meshes in Table III(a) and overall statistical
results for all meshes in Table III(b). In each case, the best
result is highlighted in bold font. (In this experiment, the
lexicographic priority scheme was employed, although similar
results were obtained with other priority schemes as well.) By
examining the results of Tables III(a) and (b), it is clear that
rule 3 consistently performs best, leading consistently to the
lowest bit rate. As it turns out, rule 3 outperforms the other
two rules in all 50/50 of the test cases. A more careful analysis
of the results shows that rule 3 tends to perform more swap
operations, allowing locality to be improved more than with
rules 1 and 2.

Proposed method. As demonstrated by the above experi-
mental results, our proposed mesh-coding framework is most
effective when the priority scheme is chosen as lexicographic
and the decision function is chosen as rule 3. Therefore, we
recommend that these particular choices be employed in our
proposed framework. In the remainder of this paper, we will
refer to our framework with these recommended choices as
our proposed method for mesh coding.

V. EVALUATION OF PROPOSED MESH-CODING METHOD

Having introduced our proposed mesh-coding method, we
now evaluate its coding performance by comparing it to a
simple baseline approach. This baseline coding scheme is
identical to our proposed method, except that the edge-flip
sequence (which conveys connectivity information) is coded
using a very trivial approach. In particular, the baseline scheme
encodes the edge-flip sequence as follows. First, the length of



TABLE IV. CODING PERFORMANCE COMPARISON OF THE PROPOSED
AND BASELINE METHODS. (A) INDIVIDUAL RESULTS. (B) OVERALL

RESULTS.

(a)
Connectivity Size (bits/vertex) Total Size (bits/vertex)

Dataset Proposed Baseline Proposed Baseline
A1 0.76 1.09 15.07 15.40
A2 1.78 3.11 14.86 16.19
A3 2.54 6.15 11.38 14.99
B1 7.44 13.98 21.84 28.38
B2 6.98 12.83 22.59 28.44
B3 8.67 16.08 24.28 31.69

(b)
Mean Connectivity Size (bits/vertex) Mean Total Size (bits/vertex)

Category Proposed Baseline Proposed Baseline
A 1.06 1.72 14.87 15.54
B 7.64 13.92 24.83 31.11
Overall 4.35 7.82 19.85 23.32

the edge-flip sequence is output as a 30-bit integer. Then, each
element in the edge-flip sequence is output as an n-bit integer,
where n = dlog2 jedges(T )je and T is the triangulation
associated with the mesh.

Proposed vs. baseline. To compare the performance of
the proposed and baseline methods, we proceeded as follows.
For each of the 50 mesh models in our test set, we coded
the model using each of the proposed and baseline methods
and measured the number of bits required to encode the
connectivity information as well as the complete mesh. The
results obtained are shown in Table IV, with results for six
specific meshes in Table IV(a) and overall statistical results
for all 50 meshes in Table IV(b). Since the difference between
the two methods is in the connectivity coding alone, we
will focus our attention on comparing the connectivity coding
numbers from these tables in what follows. Examining the
individual results in Table IV(a), we can see that our proposed
method outperforms the baseline method in all 6/6 of the test
cases by margin of at least 0.33 bits/vertex (for connectivity
coding). The overall results in Table IV(b) are consistent with
the individual results, with our proposed method significantly
outperforming the baseline scheme for meshes from both
categories A and B. In fact, a more detailed analysis of the
results shows that the proposed method beats the baseline
scheme in all 50/50 of the test cases, by a margin of up to
11.56 bits/vertex (for connectivity coding).

Proposed vs. traditional methods. Perhaps, it is also worth
noting that in the case of all 25 meshes in category A, our
proposed method consistently requires less than the 3.67 bit-
s/vertex for connectivity coding often cited for more traditional
connectivity coding methods. Thus, it seems likely that our
method would also be competitive with these other approaches
for meshes with connectivity that does not deviate too far from
being Delaunay. Furthermore, our proposed method is progres-
sive, unlike many traditional connectivity coding methods.

Progressive performance. As indicated earlier, our pro-
posed coding method is progressive. To illustrate the pro-
gressive capability of our coding scheme, we provide a brief
example. For two of the meshes from Table I (namely, A1
and B3), we measured the reconstruction quality of the image
produced from the decoded mesh model as a function of bit
rate. The results obtained are shown in Figs. 3(a) and (b), with
the right side of each graph corresponding to lossless decoding
of the original mesh model. As we can see from the figures,

0 0.5 1 1.5 2

x 10
5

15

20

25

30

Rate (bits)

P
S

N
R

 (
d

B
)

(a)

0 1 2 3 4 5 6

x 10
4

15

20

25

30

Rate (bits)

P
S

N
R

 (
d

B
)

(b)
Fig. 3. Progressive coding results for the (a) A1 and (b) B3 meshes.

an incrementally better quality image reconstruction (i.e., with
higher PSNR) can be decoded as the bit rate increases. Such
functionality is desirable in many applications.

VI. CONCLUSIONS

In this paper, we have proposed a progressive coding
method for mesh models of images that can handle meshes
with arbitrary connectivity. Our method is such that its coding
efficiency is highest for meshes that have connectivity close
to being Delaunay, with performance degrading slowly as
connectivity moves further away from Delaunay connectivity.
Through experimental results, we showed that our method
is significantly better than a simple baseline coding scheme.
Furthermore, we showed that it is likely that our proposed
method can outperform traditional connectivity coding meth-
ods for meshes that do not deviate too far from Delaunay
connectivity (i.e., the relative length of the edge-flip sequence
that transforms the mesh connectivity to PDDT connectivity
is less than about 15%). Since Delaunay meshes have many
desirable properties for approximation, it is quite common
to encounter meshes that are close to being Delaunay in
practice. Therefore, the excellent performance of our method
for such meshes is of great practical value. Furthermore,
our coding method yields very substantially more compact
representations than a simple naive coding scheme like the
baseline method described earlier. Also, our coding method
is progressive, which can be beneficial in many applications.
Thus, our proposed coding method can benefit applications
that must efficiently store or transmit mesh models of images.

REFERENCES

[1] P. Li and M. D. Adams, “A tuned mesh-generation strategy for image
representation based on data-dependent triangulation,” IEEE Transac-
tions on Image Processing, vol. 22, pp. 2004–2018, May 2013.

[2] M. D. Adams, “An efficient progressive coding method for arbitrarily-
sampled image data,” IEEE Signal Processing Letters, vol. 15, pp. 629–
632, 2008.

[3] D. King and J. Rossignac, “Guaranteed 3.67v bit encoding of planar
triangle graphs,” in Canadian Conference on Computational Geometry,
Vancouver, BC, Canada, 1999.

[4] C. Dyken and M. S. Floater, “Preferred directions for resolving the
non-uniqueness of Delaunay triangulations,” Computational Geometry—
Theory and Applications, vol. 34, pp. 96–101, 2006.

[5] C. L. Lawson, “Software for C1 surface interpolation,” in Mathematical
Software III, J. R. Rice, Ed. New York, NY, USA: Academic Press,
1977, pp. 161–194.

[6] ——, “Transforming triangulations,” Discrete Mathematics, vol. 3, pp.
365–372, 1972.

[7] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.


