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Abstract

In earlier work, Yang et al. proposed a highly-effective technique for generating triangle-mesh models of

images, known as the error diffusion (ED) method. Unfortunately, the ED method, which chooses triangu-

lation connectivity via a Delaunay triangulation, typically yields triangulations in which many triangulation

edges crosscut image edges, leading to increased approximation error.In this paper, we propose a compu-

tational framework for mesh generation that modifies the ED method to use data-dependent triangulations

(DDTs) in conjunction with the Lawson local optimization procedure (LOP) and has several free parame-

ters. Based on experimentation, we recommend two particular choices for these parameters, yielding two

specific mesh-generation methods, known as MED1 and MED2, which make different tradeoffs between

approximation quality and computational cost. Through the use of DDTs and the LOP, triangulation con-

nectivity can be chosen optimally so as to minimize approximation error. As part of our work, two novel

optimality criteria for the LOP are proposed, both of which are shown to outperform other well known

criteria from the literature. Through experimental results, our MED1 and MED2 methods are shown to

yield image approximations of substantially higher quality than those obtained with the ED method, at a

relatively modest computational cost.

Keywords: Image representations; nonuniform sampling; triangle meshes; data-dependent triangulations;

error diffusion.

1. Introduction

In real-world applications, images are typically nonstationary. Consequently, uniform sampling of im-

ages (such as with a truncated lattice) is usually far from optimal, with the samplingdensity inevitably being
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too high in some regions while too low in others. This has led to an interest in image representations based

on nonuniform (i.e., content-adaptive) sampling. By choosing the sample points in a manner dependent on

the image content, the number of samples can be greatly reduced. This smaller sample count can often be

exploited in applications in order to reduce computational cost. Moreover, the sample data can often better

capture the geometric structure inherent in images (such as image edges). In some applications, this can

be exploited in order to obtain better quality results. Some applications in which nonuniform sampling has

proven useful include: feature detection [1], pattern recognition [2],computer vision [3], restoration [4],

tomographic reconstruction [5], filtering [6], interpolation [7, 8], and image/video coding [9–15].

Many general approaches to nonuniform sampling have been proposed to date. Some of the more popu-

lar approaches include: inverse distance weighted methods [16, 17]; radial basis function methods [16, 17];

Voronoi and natural-neighbor interpolation methods [16]; and finite-element methods [16, 17], including

triangle meshes based on Delaunay triangulations [18–21], constrained Delaunay triangulations [22], data-

dependent triangulations [23–28, 18, 29, 30], and geodesic triangulations [31]. Two excellent survey papers

[16] and [17] present a good overview of the numerous general approaches to nonuniform sampling.

One particularly effective approach to nonuniform sampling is offered by triangle meshes. In this ap-

proach, the (nonuniformly chosen) sample points are triangulated, partitioning the image domain into tri-

angular faces, and then an approximating function is constructed over each face of the triangulation. One

key difference between the various triangle-mesh-based approaches is in how they select the triangulation

connectivity (i.e., how the vertices of the triangulation are connected by edges). The most common ap-

proach is to choose the connectivity by using a Delaunay triangulation [32]. In such a case, the connectivity

is determined solely by the set of sample points being triangulated. By choosingan appropriate technique

for handling degeneracies, such as preferred directions [33], a unique triangulation can be obtained. Ex-

amples of mesh-generation methods that are based on Delaunay triangulations are plentiful in literature, a

few examples of which are [18–21]. Another approach to choosing the triangulation connectivity is offered

by data-dependent triangulations (DDTs). With a DDT, the triangulation connectivity can be chosen in

an arbitrary manner, using information in the dataset from which the points to be triangulated were cho-

sen. Since, unlike the Delaunay case, the connectivity of a DDT may be chosen arbitrarily, DDTs offer

much greater flexibility than Delaunay triangulations. This said, however, connectivity selection is often a
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challenging task. Typically, optimization techniques are employed for this purpose, with the most common

such technique, by far, being thelocal optimization procedure (LOP) of Lawson [34]. Examples of mesh-

generation methods based on DDTs include [23–28, 18, 29, 30]. Theseapproaches make heavy use of the

LOP or variants thereof, such as thelook-ahead LOP (LLOP) [29].

In [19], Yang et al. proposed a simple technique for generating triangle-mesh models of images, known

as theerror-diffusion (ED) method. Although this method has proven highly effective, it has the weakness

that it often yields triangulations in which a significant number of (triangulation) edges crosscut image

edges (i.e., discontinuities in the image), leading to a degradation in approximationquality. This weakness

can be attributed to the fact that the ED method employs a Delaunay triangulation for choosing triangulation

connectivity. In this paper, we propose a computational framework for mesh generation that modifies the ED

method to use DDTs in conjunction with the LOP. By using DDTs instead of Delaunay triangulations, we

are able to better exploit triangulation connectivity in order to obtain higher quality approximations. Using

our framework, we derive two specific mesh-generation methods known as MED1 and MED2, which make

different tradeoffs between approximation quality and computational cost. As we will show later, our MED1

and MED2 methods yield image approximations of substantially higher quality than those obtained with

the ED method in terms of bothpeak-signal-to-noise ratio (PSNR) and subjective quality, at a relatively

modest computational cost. For example, in terms of PSNR, our MED1 and MED2 methods outperform

the ED method, on average, by 3.26 and 3.81 dB, respectively. As part of our work, we propose two

novel optimality criteria for use with the LOP. Both of these criteria are shown tooutperform numerous

other well known criteria from the literature. In passing, we note that the work described herein has been

partially presented in our conference paper [35]. The work herein, however, adds a number of new elements

beyond our conference paper, such as: considering the use of the LLOP, proposing two new highly-effective

optimality criteria for the LOP, and exploiting one of these criteria in order to obtain more effective mesh-

generation schemes. Furthermore, as will be demonstrated later, the mesh-generation method proposed in

our conference paper, henceforth referred to as the CCCG method, produces meshes of significantly lower

quality than those obtained with the MED1 and MED2 methods proposed herein.

The remainder of this paper is organized as follows. To begin, Section 2 provides some background

information on triangle meshes for image representation and introduces some key methods related to our
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work. In Section 3, we begin by introducing our computational framework for mesh generation. Then,

we consider how the free parameters of this framework should be chosenin order to achieve the best

performance, leading to the proposal of our mesh-generation methods MED1 and MED2. In Section 4,

the performance of our mesh-generation methods are evaluated. Finally, Section 5 concludes with a brief

summary of our work and some closing remarks.

2. Background

Before proceeding further, a brief digression is necessary in orderto introduce some basic notation and

terminology employed herein. The cardinality of a setS is denoted|S |, and the 2-norm of a vectorv is

denoted‖v‖. Thetriangulation of a setP of points is a setT of (nondegenerate) triangles such that: 1) the

union of the vertices of all triangles inT is P; 2) the interiors of any two triangles inT are disjoint; and

3) the union of the triangles inT is the convex hull ofP.

In the context of our work, an image is an integer-valued functionφ defined on the domainI = [0,W −

1] × [0,H − 1] and sampled on the truncated two-dimensional integer latticeΛ = {0,1, . . . ,W − 1} ×

{0,1, . . . ,H − 1} (i.e., a rectangular grid of widthW and heightH). A (triangle) mesh model ofφ consists

of: 1) a setP = {pi} of sample points, whereP ⊂ Λ; 2) a triangulationT of P; and 3) the function values

{zi = φ(pi)} for pi ∈ P. In order to ensure that the triangulationT covers all points inΛ, P must always

be chosen to include all of the extreme convex hull points ofI (i.e., the four corner points of the image

bounding box). As a matter of terminology, thesizeandsampling densityof the model are defined as|P|

and|P| / |Λ|, respectively.

The above mesh model is associated with a functionφ̂ that approximatesφ, whereφ̂ is determined as

follows. First, we construct a continuous piecewise linear functionφ̃ that interpolatesφ at each pointpi ∈ P.

More specifically, for each facef in the triangulationT , φ̃ is defined to be the unique linear function that

interpolatesφ at the three vertices off . Sinceφ is integer valued, we wish for its approximationφ̂ to be

integer valued as well. Thus, we define the approximationφ̂ in terms ofφ̃ as φ̂(p) = round(̃φ(p)), where

round denotes an operator that rounds to the nearest integer.

In our work, for a given model size (i.e., number of sample points), we want to find a model to minimize
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ǫ, the difference between̂φ andφ as measured by themean squared error (MSE), where

ǫ = |Λ|−1
∑

p∈Λ

(

φ̂(p) − φ(p)
)2
. (1)

For convenience, we will express the MSE in terms of the PSNR, which is defined asPSNR = 20 log10[(2
ρ−

1)/
√
ǫ], whereρ is the number of bits per sample used by the (integer-valued) imageφ. Finding compu-

tationally efficient methods to solve the above problem is extremely challenging, as problems like this are

known to be NP-hard [36].

ED Method. As mentioned earlier, one highly effective method for generating mesh models of images

is the ED method [19]. Since our work builds on the ED method, it is helpful to briefly introduce this

method here. Given an imageφ and a desired mesh sizeN, the ED method constructs a mesh model ofφ

with the setP of sample points, as follows:

1. Sample-point selection. SelectP, with |P| = N, using Floyd-Steinberg error diffusion [37]. This

is done in such a way as to ensure that the points inP are distributed with a density approximately

proportional to the maximum-magnitude second-order directional derivative ofφ.

2. Triangulation. TriangulateP using a Delaunay triangulation.

In step 1, the setP is always chosen to include all extreme convex-hull points of the image domain. This

ensures that the triangulation produced in step 2 covers the entire image domain. Since several variants

of the ED scheme are presented in [19], it is worth noting, for the sake of completeness, that we consider

the variant with the following characteristics herein: 1) a third-order binomial filter is used for smoothing;

2) non-leaky error diffusion is used with a serpentine scan order; 3) the sensitivity parameterγ is chosen as

1; and 4) the error diffusion algorithm is performed iteratively in order to achieve exactly the desired number

of sample points. Since, in our work herein, we require that the approximating function (i.e.,φ̂) interpolate

the original (i.e.,φ), we consider only the variant of the ED method that satisfies this interpolatingcondition.

(That is, the variant that employs a least-squares fit is not considered.)

LOP. Before proceeding further, it is necessary to interject some additional background related to trian-

gulations. An edgee of a triangulation is said to beflippable if e has two incident faces (i.e., is not on the

triangulation boundary) and the union of these two faces is a strictly convexquadrilateralq. For a flippable

edgee, anedge flipis an operation that replaces the edgee in the triangulation by the other diagonale′ of
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q, as shown in Figure 1.

[Figure 1 about here.]

The fact that every triangulation of a set of points is reachable from every other triangulation of the same

set of points via a finite sequence of edge flips [38] motivated Lawson to propose the so called LOP [34].

The LOP [34] is an optimization technique, based on edge flips, that is used toselect the connectivity

of a triangulation so as to be optimal in some sense. In practice, the LOP is frequently used to choose

triangulation connectivity in the case of DDTs. As a matter of terminology, a flippable edgee is said to

beoptimal if it satisfies some prescribed edge-optimality criterion. In turn, a triangulationT is said to be

optimal if every flippable edge inT is optimal. In order to produce an optimal triangulation, the LOP simply

applies edge flips to flippable edges that are not optimal, until the triangulation isoptimal (i.e., all flippable

edges are optimal).

Cost-Based Criteria. Most frequently, the edge-optimality criterion is specified indirectly through

some measure of triangulation cost. Let triCost(T ) denote the cost of the triangulationT . A flippable edge

e in the triangulationT is then said to beoptimal if

triCost(T ) ≤ triCost(T ′), (2)

whereT ′ is the new triangulation obtained by applying an edge flip toe (in the triangulationT ). That is, the

flippable edgee is deemed optimal if applying an edge flip toe would not result in a strict decrease in the

triangulation cost. In turn, the triangulation cost triCost is specified by defining a cost measure for all edges

in the triangulation. Let edgeCost(T, e) denote the cost of the edgee in the triangulationT . Then, triCost is

defined as

triCost(T ) =
∑

e∈E(T )

edgeCost(T, e), (3)

whereE(T ) denotes the set of edges inT . That is, the cost of a triangulation is simply the sum of its

corresponding edge costs. As a matter of terminology, we refer to a triangulation optimality criterion

employing (2) (where triCost is of the form of (3)) ascost based. By far, cost-based criteria are most

commonly used in conjunction with the LOP, several examples of which can be found in [23, 39, 25, 26]. A
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particularly important criterion of this type issquared error (SE) [25, 26]. With the SE criterion, the edge

e is deemed optimal if applying an edge flip toe would not cause a strict decrease in the MSE as defined

by (1).

Heuristic-Based Criteria. More recently, the work [30] introduced a type of triangulation optimality

criterion that is not associated with any underlying triangulation cost function (i.e., a function of the form

of (3)). With this type of criterion, a cost is assigned to each flippable edge. Let edgeCost(T, e) denote the

cost of the edgee in the triangulationT . The flippable edgee is said to beoptimal if

edgeCost(T, e) ≤ edgeCost(T ′, e′), (4)

wheree′ is the new edge produced by applying an edge flip toe andT ′ is the corresponding new trian-

gulation (withe′). As a matter of terminology, we refer to a triangulation optimality criterion using (4) as

heuristic based.

Additional Remarks on the LOP. At this point, it is worthwhile to make a few additional remarks

about the LOP. The first comment to be made is with respect to algorithm termination. If a cost-based

optimality criterion is employed, the LOP must terminate after a finite number of steps (assuming the

algorithm is implemented in a numerically robust manner). This is an indirect consequence of the fact that

the LOP only flips an edge if doing so would result in astrict decrease in the triangulation cost. In contrast,

if a heuristic-based optimality criterion is used (regardless of whether the implementation is numerically

robust), the LOP can potentially become trapped in a cycle, repeating the samesequence of edge flips

indefinitely. This is due to the fact that, in the absence of a well-defined triangulation cost function, it

is possible to make inconsistent decisions about the optimality of an edge. Suchinconsistent decisions

can result in cycles. From a practical standpoint, this potential cycling issue does not pose any significant

problems for two reasons. First, when performing the LOP, it is easy to avoid being trapped in a cycle by

simply tracking how many times each edge is tested for optimality and if the count foran edge exceeds a

particular threshold some special action can be taken, such as ignoring theedge for the remainder of the

LOP or terminating the LOP early. Second, the more effective heuristic-based criteria only rarely result in

cycles. Therefore, breaking cycles when they do occur has little impact on the result produced by the LOP.

In the implementation employed in our work, in the case of heuristic-based criteria, we limit the number of
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times an edge may be tested for optimality to 15. If this count is exceeded, the edge in question is simply

ignored for the remainder of the LOP.

The second remark to make about the LOP concerns the optimal triangulation that it produces. For any

optimality criterion of practical interest (other than the Delaunay criterion [32, 33]), the optimal solution

produced by the LOP is almost never uniquely determined. The nonuniqueness of the solution is important

because it implies that some optimal solutions may be (and, in practice, are) muchbetter than others. The

optimum produced will typically depend (often very heavily) on the initial triangulation to which the LOP

is applied.

LLOP. Suppose that the LOP is used in conjunction with a cost-based optimality criterion. In this

case, if a triangulationT is optimal, then no single edge flip can result in a new triangulation with strictly

lower cost thanT . If, however, more than one edge flip is allowed, it can no longer be guaranteed that

the triangulation cost will not strictly decrease. In this sense, the LOP only guarantees a locally (but not

necessarily globally) optimal triangulation. Since some local minima will, in practice,have a much lower

cost than others, it would be advantageous to have some means to reduce the likelihood of converging to

a poor local minimum. This observation motivated Yu et al. to propose the so called LLOP [29]. The

LLOP is similar to the LOP in that the LLOP applies edge-flip-based transformations to a triangulation

until the triangulation is optimal. The LLOP, however, differs from the LOP in two key respects. The first

difference is that, instead of only allowing the triangulation to be transformed by a single edge flip in each

step, the triangulation can be transformed by: 1) a single edge flip; or 2) a sequence of two edge flips, where

the two edges involved share a common face. The second difference is that the definition of triangulation

optimality is changed to the following: A triangulationT is said to beoptimal if the application of a single

transformation of one of the two above types cannot produce a new triangulation whose cost is strictly less

than that ofT . By being allowed to apply sequences of two edge flips (instead of just individual edge flips),

the LLOP is able to reduce the likelihood of converging to a very poor local minimum. In effect, when trying

to minimize the triangulation cost, the LLOP considers the effect of not just single edge flips (like the LOP)

but also sequences of two edge flips. In practice, the LLOP usually produces a better local optimum (i.e.,

a triangulation with lower cost) than the LOP. The disadvantage of the LLOP is that it typically requires

more computation time and can be quite difficult to implement in a numerically robust manner. Since the
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LLOP fundamentally relies on the existence of a triangulation cost function, the LLOP can only be used

in conjunction with optimality criteria that are cost based. In other words, the LLOP cannot be used with

heuristic-based optimality criteria.

3. Proposed Approach and Its Development

Having introduced the necessary background, we now turn our attentionto introducing the two mesh-

generation methods proposed in this paper. As explained earlier, the ED method chooses triangulation

connectivity using a Delaunay triangulation. Experimentally, however, we have observed that selecting

the connectivity in this way results in a mesh in which triangulation edges often crosscut image edges

(i.e., discontinuities in the image), leading to a degradation in approximation quality.This motivated us to

consider choosing triangulation connectivity in a more flexible manner, usinga DDT instead of a Delaunay

triangulation.

In what follows, we will first introduce our general computational framework for mesh generation,

which has several free parameters. Then, by advocating two particularchoices for these parameters, we will

arrive at the two specific mesh-generation methods proposed herein, namely MED1 and MED2. Since it is

helpful for the reader to see how we arrived at these choices, we provide significant detail in this regard,

including some experimental results.

3.1. Computational Framework for Mesh Generation

Given an imageφ and a desired mesh sizeN as input, our general computational framework for mesh

generation produces a mesh model ofφ having the setP of sample points, with|P| = N, and the associated

triangulationT . To accomplish this objective, our framework performs the following (in order):

1. Sample-point selection. SelectP using the same sample-point selection strategy in step 1 of the ED

method (as introduced earlier in Section 2).

2. Initial mesh construction. For each pointp ∈ P using the order specified by insOrder, where insOrder

is a free parameter of the framework:

(a) Insertp in the triangulationT . This is accomplished by deleting any faces containingp and

retriangulating the resulting hole. This point-insertion process is illustrated in Figure 2.
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(b) Adjust the connectivity ofT by applying the LOP (as described in Section 2) with the triangu-

lation optimality criterion chosen as insOptCriterion, where insOptCriterion is a free parameter

of our framework.

3. Final connectivity adjustment. Adjust the connectivity ofT by applying either the LOP or LLOP, as

specified by the parameter fcaMethod, with the optimality criterion chosen as SE(i.e., squared error).

If fcaMethod is LOP, the LOP is employed in this step; otherwise (i.e., if fcaMethod is LLOP), the

LLOP is used.

[Figure 2 about here.]

In step 2b of the above framework, the choice of the triangulation optimality criterion insOptCriterion

is critical, as different choices of insOptCriterion will typically lead to vastly differing meshes. One of the

optimality criteria considered in our work is the SE criterion introduced in Section2. We also considered

numerous other criteria, which we will introduce shortly. Before proceeding further, however, there is a

very important comment that we must make regarding our above framework.Since our objective is to

produce a mesh that minimizes the MSE (as given by (1)), this suggests the “obvious” solution of choos-

ing the optimality criterion insOptCriterion as SE and simply skipping final connectivity adjustment (i.e.,

step 3) altogether. In other words, the obvious solution would be to simply optimize for squared error

using the LOP after the insertion of each point in step 2. As it turns out, this obvious solution performs

extremely poorly. This poor performance is due to an interplay between point insertion and the SE criterion

in step 2b, which leads to triangulations with many poorly-chosen sliver (i.e., long thin) triangles, severely

degrading approximation quality. In effect, this interplay causes the mesh-generation optimization process

to converge to an extremely poor local optimum. To combat this problem, our framework allows the param-

eter insOptCriterion to be chosen differently from SE, and then adds a final-connectivity-adjustment step

employing the SE criterion in order to reduce the squared error for the final mesh.

Insertion Order. Recall that step 2 of our framework (i.e., initial mesh construction) utilizes the pa-

rameter insOrder, which specifies the order in which points are to be inserted in the triangulation. In our

work, we considered numerous possible choices for the insertion orderinsOrder, including:

1. randomized order: the extreme convex-hull points followed by the remaining points in randomized

order;
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2. xy-lexicographic order: the extreme convex-hull points followed by the remaining points in xy-

lexicographic order;

3. farthest-point first order: the extreme convex-hull points followed by the remaining points prioritized

such that the point most distant from the vertices in the triangulation is insertedfirst; and

4. closest-point first order: the extreme convex-hull points followed bythe remaining points prioritized

such that the point nearest another vertex in the triangulation is inserted first.

Detailed experiments showed randomized order (i.e., item 1 above) to be most effective. In particular,

we found that, relative to randomized order, no one of the other insertion orders considered was able to

consistently produce higher quality meshes at lower or comparable computational cost. Consequently, we

advocate that insOrder always be chosen as randomized order, and we assume that this choice is always

made for the remainder of this paper.

Optimality Criteria. Recall that step 2b of our framework (i.e., connectivity adjustment after point

insertion) utilizes the parameter insOptCriterion, which determines the particulartriangulation optimality

criterion used for connectivity adjustment. In our work, we considered the following twelve possibilities

for the choice of the optimality criterion insOptCriterion:

1. squared error (SE), as given by Equation 1 in [25] and Section 2 in [26];

2. (preferred-direction) Delaunay, as specified in Section 2 in [33] and Section 11.2 in [34];

3. angle between normals (ABN), as defined by Equation 3 in [23];

4. jump in normal derivatives (JND), as specified in Section 3.1 in [23];

5. deviations from linear polynomials (DLP), as given in Section 3.1 in [23];

6. distances from planes (DP), as defined in Section 3.1 in [23];

7. absolute mean curvature (AMC), as specified in Section 2.2 in [39];

8. Garland-Heckbert hybrid (GHH), as described in Algorithm IV and Section 4.5.1 in [18] and

Section III.B in [30];

9. shape-quality-weighted SE (SQSE), as defined in Section III.B in [30];

10. JND-weighted SE (JNDSE), as specified in Section III.B in [30];

11. edge-length-weighted SE (ELSE), which is newly proposed herein; and

12. minimum-angle-weighted SE (MASE), which is newly proposed herein.
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The first ten of the above criteria are well known criteria taken from the literature, while the remaining

two (namely, ELSE and MASE) are newly proposed in this paper. In the interest of brevity, we will only

present herein the formal mathematical definitions of the two new criteria. Thedefinitions of the other

optimality criteria can be found in the references provided above. Of the oldcriteria (i.e., the first ten) the

SE, Delaunay, ABN, JND, DLP, DP, and AMC criteria are all cost based(i.e., employ (2)), the SQSE and

JNDSE criteria are heuristic based (i.e., employ (4)), and the GHH criterion isa hybrid of two cost-based

criteria.

Before formally defining the ELSE and MASE criteria, we must first introduce some additional notation.

For a triangulationT , let Γ(T ) denote the set of all integer lattice points falling inside or on the boundary

of T . For a given triangulationT , let faceT denote a function that maps each pointp ∈ Γ(T ) to exactly one

face inT , where this function is defined as follows. Ifp is strictly inside a facef in T , faceT (p) = f (i.e., p

is mapped tof ). Otherwise (i.e., ifp is on an edge or a vertex inT ), the method of [40] is used to uniquely

mapp to exactly one face inT . The set of all pointsp ∈ Γ(T ) satisfying faceT (p) = f is denoted pointsT ( f ).

With this notation in place, we can now proceed to present the ELSE and MASEcriteria.

The ELSE and MASE criteria are both heuristic based (i.e., employ (4)). Therefore, each of these

criteria is completely specified in terms of an edge-cost function. For a flippable edgee in the triangulation

T , the edge-cost functions for the ELSE and MASE criteria are given, respectively, by

edgeCostELSE(T, e) = ‖e‖ [β(T, fi) + β(T, f j)] and (5a)

edgeCostMASE(T, e) =
β(T, fi) + β(T, f j)

min
{

θ( fi), θ( f j)
} , (5b)

where

β(T, f ) =
∑

p∈pointsT ( f )

(

φ̂(p) − φ(p)
)2
,

fi and f j denote the two faces incident toe, θ( f ) denotes the minimum interior angle of the facef , and

pointsT is as defined earlier.

Final Connectivity Adjustment. In step 3 of our framework, the fcaMethod parameter is used to

select whether the LOP or LLOP is used for final connectivity adjustment. Having the ability to choose
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between the LOP and LLOP provides us with more flexibility to trade off between mesh quality and com-

putational cost. In case the reader might be wondering why we did not allowsimilar flexibility to choose

between the LOP and LLOP for connectivity adjustment after point insertion(i.e., in step 2b), we explain

our rationale for this decision in what follows. The overriding reason forthis decision was that, as we shall

see later, all of the most effective triangulation optimality criteria during point insertion (i.e., in step 2b)

are heuristic based, and such criteria cannot be used with the LLOP. Consequently, allowing the use of the

LLOP during point insertion would not facilitate the development of a better mesh-generation method. To

a much lesser extent, our decision was also influenced by computational cost considerations. In particular,

much more time is typically spent performing connectivity adjustment in step 2b (in total) than in step 3.

Thus, the increase in computational cost resulting from replacing the LOP with the LLOP in step 2b is much

higher than that of replacing the LOP with the LLOP in step 3. Due to these (as well as other) factors, our

framework only accommodates the use of the LOP in step 2b.

3.2. Selection of Free Parameters

As seen above, our computational framework for mesh generation has three free parameters, namely,

1) the insertion order insOrder, 2) the triangulation optimality criterion insOptCriterion, and 3) the method

fcaMethod used for final connectivity adjustment. For the reasons presented earlier, we advocate choosing

insOrder as randomized order. In what follows, we study the effects of making various choices for the

two remaining parameters (namely, insOptCriterion and fcaMethod). Based on this analysis, we ultimately

recommend two particular choices for these parameters, leading to our two proposed mesh-generation meth-

ods.

Test Data. Shortly, we will have the need to present some experimental results obtainedwith various

test images. So, before proceeding further, a brief digression is necessary in order to introduce the test

images that we employed. In our work, we have used 40 images, taken mostly from standard test sets such

as [41], [42], and [43]. For the most part, the results that we presentherein focus on the representative

subset of these images listed in Table 1. This particular subset was chosento contain a variety of image

types (i.e., photographic, medical, and computer-generated imagery).

[Table 1 about here.]
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Triangulation Optimality Criterion During Point Insertion. To begin, we study how the choice

of triangulation optimality criterion insOptCriterion in step 2b of our framework affects mesh quality.

Since the best choice of optimality criterion might possibly be dependent on whether the final-connectivity-

adjustment method fcaMethod is chosen as LOP or LLOP, we treat these two cases separately. For fcaMethod

being chosen as each of LOP and LLOP, we proceeded as follows. Foreach of the 40 images in our test

set and five sampling densities per image (for a total of 40· 5 = 200 test cases), we generated a mesh using

each of the twelve choices for insOptCriterion under consideration, and measured the resulting approxima-

tion error in terms of PSNR. In each of the test cases, the results obtained with the twelve methods were

ranked from 1 (best) to 12 (worst). Then, the average and standard deviation of these ranks were computed

across each sampling density as well as overall. These ranking results are given in Tables 2(b) and 3(b) for

the cases of fcaMethod being chosen as LOP and LLOP, respectively.Individual results for three specific

images (namely, the ones listed in Table 1) are provided in Tables 2(a) and 3(a) for fcaMethod being chosen

as LOP and LLOP, respectively. In each of these tables, the best result in each row is shown in bold font.

First, let us examine the results for the case that fcaMethod is chosen as LOP. From the ranking results

in Table 2(b), we can make several observations: 1) the ELSE criterion isthe clear winner (with an overall

rank of 1.16), followed by the MASE and JNDSE criteria (with overall ranks of 2.50 and 2.85, respectively);

2) the MASE criterion yields better results than the JNDSE criterion, except at high sampling densities

where the two criteria are comparable; and 3) the worst performers are the SE and DP criteria (with overall

ranks of 10.88 and 11.74, respectively). Observation 3 supports ourearlier claim that the SE criterion leads

to extremely poor results (when used during point insertion). To add to observation 1, it is worth noting

that a more detailed examination of the results shows that the ELSE criterion performs best and second best

in 187/200 (94%) and 4/200 (2%) of the test cases, respectively. This observation is in agreement with the

fact that the standard deviations for the rankings for the ELSE criterion are quite small (e.g., 0.89 or less).

For that matter, most of the standard deviations in the table are relatively small, indicating that the actual

ranking results tend to be reasonably close to the average rank. The results for the individual test cases,

shown in Table 2(a), are consistent with the ranking results. For example,the ELSE criterion is the best,

outperforming the second and third best criteria, MASE and JNDSE, in all 15 test cases by 0.01 to 1.77 dB

and 0.04 to 4.15 dB, respectively. Moreover, the MASE criterion outperforms the JNDSE criterion in 12/15

14



of the test cases by 0.01 to 2.38 dB. In the preceding results, PSNR was found to correlate reasonably well

with subjective quality. It is worthwhile to note that the two best performing criteria ELSE and MASE

are newly proposed herein. This shows that our ELSE and MASE criteria, especially the former, make an

important contribution beyond well-known criteria from the existing literature.

[Table 2 about here.]

Now, let us consider the results for the case that fcaMethod is chosen asLLOP. As we will see momen-

tarily, the trends in this case are, for the most part, similar to those for the casejust studied above. Examining

Table 3(b), we observe that: 1) the ELSE criteria is the clear winner (with anoverall rank of 1.44) followed

by the MASE and JNDSE criteria (with overall ranks of 2.41 and 3.46, respectively); and 2) the SE and

DP criteria are the worst performers (with overall ranks of 11.31 and 11.47, respectively). To add to obser-

vation 1, a more detailed analysis of the results shows the ELSE criterion to perform best and second best

166/200 (83%) and 12/200 (6%) of the test cases, respectively. This observation is in agreement with the

fact that the standard deviations for the rankings for the ELSE criterion are quite small (e.g., 1.19 in the

overall case). For that matter, most of the standard deviations in the table are relatively small, indicating

that the actual ranking results tend to be reasonably close to the average rank. Compared to the case when

fcaMethod is chosen as LOP, we observe that the MASE criterion outperforms the JNDSE criterion even

more consistently (i.e., the two criteria differ more in terms of their overall rankings). The results for in-

dividual test cases shown in Table 3(a) are consistent with the preceding ranking results. For example, the

ELSE criterion is the best, outperforming the second and third best criteria,MASE and JNDSE, in 13/15 of

the test cases by 0.01 to 2.22 dB and 0.01 to 2.61 dB, respectively, and the MASE criterion outperforms the

JNDSE criterion in 12/15 of the test cases by 0.01 to 0.84 dB. Again, in the preceding results, PSNR was

found to correlate reasonably well with subjective quality.

[Table 3 about here.]

As the above experimental results demonstrate, regardless of whether thefinal-connectivity-adjustment

method fcaMethod is chosen as LOP or LLOP, the best performance in termsof approximation quality is ob-

tained by choosing the triangulation optimality criterion insOptCriterion as ELSE. Therefore, we advocate

this particular choice for insOptCriterion in our framework.
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In the experimental results above, we also saw that, regardless of whether the final-connectivity-adjustment

method fcaMethod is chosen as LOP or LLOP, selecting the triangulation optimalitycriterion insOptCriterion

as SE leads to meshes of extremely poor quality. Earlier, we indicated that this behavior is due to an inter-

play between point insertion and the SE criterion, which leads to triangulationswith many poorly-chosen

sliver triangles. To illustrate this phenomenon, we present two examples, one for the parameter fcaMethod

being chosen as each of LOP and LLOP. For consistency, the examples are taken from the results presented

earlier in Tables 2 and 3, and correspond to the lena image at a sampling density of 2%. For the parame-

ter fcaMethod being chosen as each of LOP and LLOP, the results obtained are shown in Figures 3 and 4,

respectively. Each figure shows part of the image approximation and the corresponding image-domain trian-

gulation obtained when insOptCriterion is chosen as SE. For comparison purposes, the result obtained with

the ELSE criterion (which performs very well) is also shown. First, let us consider the example in Figure 3.

Examining Figure 3(b), we can see that the image-domain triangulation obtainedwith the SE criterion has

a large number of poorly-chosen sliver triangles, which leads to very high error in the corresponding image

approximation in Figure 3(a). In contrast, viewing Figures 3(c) and (d),we observe that the ELSE criterion

does not suffer from this problem. Now, moving our attention to the second example in Figure 4, we can

see that a similar pattern of behavior is obtained as in the first example. Again,the SE criterion yields a

triangulation with many poorly-chosen sliver triangles, which severely degrades approximation quality.

[Figure 3 about here.]

[Figure 4 about here.]

As for why the SE criterion typically yields triangulations with many poorly-chosen sliver triangles,

this can be attributed to the combination of two factors. First, the SE criterion does not explicitly consider

triangle shape and, therefore, does not have any direct mechanism for preventing the creation of bad sliver

triangles or eliminating such triangles once they are present. Second, the SEcriterion is also unable to

account for triangle shape in an indirect manner, due to the shortsightedness of the LOP and LLOP. (The

shortsightedness of the LOP and LLOP follows from the fact that a decision made at any given step in

each of these algorithms considers the impact of that decision only in the current step, not inall subsequent

steps.) In practice, the above two factors conspire to produce a pattern of behavior with the SE criterion that
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resembles the following. When a new point is inserted in the triangulation, a sliver triangle will sometimes

result. In such a case, since the SE criterion does not directly consider triangle shape, the SE criterion will

often be unable to eliminate the sliver triangle. Thus, as more points are inserted in the triangulation, the

number of sliver triangles tends to grow significantly. In turn, as the numberof sliver triangles grows, the

number of unflippable edges also tends to increase. This leads to sliver triangles tending to have fewer

flippable edges (on average). This, in turn, makes it more difficult to eliminate sliver triangles, once present.

In this manner, a very large number of sliver triangles are obtained. Because the number of sliver triangles

produced is so abnormally large, it is not surprising that the number of such triangles that are poorly chosen

is also high.

In the experimental results above, we saw that the ELSE and MASE criteria perform best in terms of

mesh quality. This excellent performance is made possible by the fact that each of these two criteria has

a direct dependence onboth triangle shape and squared error. The dependence on squared error is critical

for achieving high mesh quality, while the dependence on triangle shape is important for avoiding large

numbers of poorly-chosen sliver triangles. In the case of the ELSE criterion, triangle shape is implicitly

considered by the criterion’s dependence on edge length, which penalizes longer edges. In the case of the

MASE criterion, triangle shape is considered by the criterion’s dependence on minimum interior angle,

which penalizes smaller interior angles. By accounting for triangle shape, the ELSE and MASE criteria are

able to avoid the bad-sliver problem that plagues the SE criterion.

Method for Final Connectivity Adjustment. Next, we study how the choice of the final-connectivity-

adjustment method fcaMethod in step 3 of our framework (which can be eitherLOP or LLOP) affects mesh

quality. To do this, we fix the insOptCriterion parameter to be ELSE and proceed as follows. For each of

the 40 images in our test set and five sampling densities per image (for a total of40 · 5 = 200 test cases),

we generated a mesh using each of the two choices for fcaMethod under consideration (namely, LOP and

LLOP), and measured the resulting approximation error in terms of PSNR. Inall of these 200 test cases,

the LLOP outperformed the LOP by a margin of 0.09 to 2.30 dB, with the averagemargin being 0.56 dB.

Individual results for three images (namely, the images listed in Table 1) are given in Table 4. Examining

this table, we see that the LLOP outperforms the LOP in all cases by a margin of0.30 to 0.93 dB. Although

we have only shown results for one choice of the fixed parameter insOptCriterion (i.e., ELSE), we found
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similar results with other choices. Thus, from above, we conclude that choosing the parameter fcaMethod

as LLOP (as opposed to LOP) yields higher mesh quality. This said, however, we must point out that this

choice entails a tradeoff in terms of computational cost. As noted earlier (in Section 2), the LLOP has a

higher computational cost than the LOP. For example, for the test case of the lena image at a sampling

density of 2%, we found the LOP and LLOP to have computation times of about 1.40 seconds and 2.30

seconds, respectively. More generally, we have found the LLOP to typically require a computation time

that is about 1.4 to 1.7 times that of the LOP. Thus, the best choice for the parameter fcaMethod depends on

the most appropriate tradeoff between mesh quality and computational cost for the application at hand.

[Table 4 about here.]

3.3. Proposed Methods

Above, we have considered how various choices for the free parameters in our computational framework

for mesh generation (namely, the insertion order, triangulation optimality criterion, and final-connectivity-

adjustment method) affect mesh quality. This led us to conclude that the triangulation optimality criterion

insOptCriterion and the insertion order insOrder are best chosen as ELSE and randomized order, respec-

tively. Whether the final-connectivity-adjustment method fcaMethod shouldbe chosen as LOP or LLOP

is less clear cut, due to a tradeoff between mesh quality and computational cost. As a result, we chose to

propose two methods, known as MED1 and MED2, where the first method has a lower computational cost

relative to the second. The MED1 and MED2 methods both employ the best choices for insOptCriterion

and insOrder as identified above (i.e., ELSE and randomized order, respectively). For the final-connectivity-

adjustment method fcaMethod, however, the MED1 method uses the LOP (which has lower computational

cost), while the MED2 method uses the LLOP (which has higher computational cost). In passing, we

note that the CCCG method (from our conference paper [35] discussedearlier in Section 1) is equivalent

to using our framework with the insOptCriterion, insOrder, and fcaMethod parameters chosen as JNDSE,

randomized order, and LOP, respectively. As we will see later, due to its use of the less effective JNDSE

triangulation optimality criterion, our CCCG method produces poorer quality meshes than our MED1 and

MED2 methods proposed herein.
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4. Evaluation of Proposed Methods

Having introduced our MED1 and MED2 mesh-generation methods, we now compare their perfor-

mance to that of the ED scheme in terms of mesh quality. To demonstrate the our MED1 and MED2

methods make a significant contribution beyond the CCCG scheme from our conference paper [35] (dis-

cussed in Section 1), we also consider the CCCG method in this evaluation. In addition, we make a few

comments regarding the computational cost of our proposed methods. The software implementations of the

methods used in this evaluation were developed by the authors of this paper and written in C++. For test

data, we employ the same set of 40 images described earlier in Section 3.2 (under the heading “Test Data”).

Mesh Quality. For all 40 images in our test set and five sampling densities per image (for a total of

40 · 5 = 200 test cases), we used each of the various methods under consideration to generate a mesh,

and then measured the resulting approximation error in terms of PSNR. Individual results for three specific

images (namely, the images listed in Table 1) are given in Table 5.

To begin, we compare the MED1 and MED2 methods to the CCCG scheme. Examining the results

for the individual test cases in Table 5, we see that the MED1 and MED2 methods both outperform the

CCCG scheme in all 15 test cases by margins of 0.04 to 4.15 dB and 0.36 to 4.83 dB, respectively. Next,

we comment on the full set of results for all 200 test cases (i.e., 40 images withfive sampling densities

per image). In the full set of results, we found that the MED1 and MED2 methods outperform the CCCG

scheme in 191/200 (i.e., 96%) and 198/200 (i.e., 99%) of the test cases, respectively. Thus, our MED1

and MED2 methods are clearly superior to the CCCG scheme. This demonstratesthat the MED1 and

MED2 methods proposed herein represent a substantial contribution beyond the CCCG scheme from our

conference paper [35]. Since the MED1 and MED2 methods are clearly superior to the CCCG scheme, we

will not consider the CCCG scheme further in our evaluation.

Now, we compare the MED1 and MED2 methods to the ED scheme. Examining the results for the

individual test cases in Table 5, we see that the MED1 and MED2 methods both outperform that ED scheme

in all 15 test cases, by margins of 1.94 to 8.46 dB and 2.24 to 9.14 dB, respectively. Next, we consider the

full set of results taken across all 200 test cases (i.e., 40 images with five sampling densities per image). In

the full set of results, we found that the MED1 and MED2 methods both yield higher quality meshes than

the ED scheme in all 200 test cases. More specifically, the MED1 method outperformed the ED scheme by
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a margin of 1.93 to 8.46 dB with an average margin of 3.26 dB, while the MED2 method outperformed the

ED scheme by a margin of 2.23 to 9.14 dB with an average margin of 3.81 dB. Thus, the MED1 and MED2

methods clearly yield meshes of very substantially higher quality, relative to theED method.

Next, we compare the performance of the MED1 and MED2 methods. Examiningthe results from the

individual test cases in Table 5, we can see that the MED2 method beats the MED1 method in all 15 test

cases by a margin of 0.30 to 0.93 dB. In the full set of results, we found that the MED2 method yields

higher quality meshes than the MED1 method in all 200 test cases, by a margin of0.09 to 2.30 dB with an

average margin of 0.56 dB. Therefore, the MED2 method consistently yieldsmeshes of higher quality than

the MED1 method. This behavior is due to the MED2 method using the more effective LLOP (instead of

the LOP) for final connectivity adjustment.

[Table 5 about here.]

In the above results, PSNR was found to correlate reasonably well with subjective image quality. For

the benefit of the reader, however, we include an illustrative example in what follows. For one of the test

cases in Table 5 (namely, the lena image at a sampling density of 2%), part of the image approximation

and the corresponding image-domain triangulation obtained for each of the various methods is shown in

Figure 5. Examining this figure, we can see that the image approximations produced by our MED1 and

MED2 methods (in Figures 5(a) and (b), respectively) are clearly of much higher quality than the one

produced by the ED scheme (in Figure 5(c)), with image details such as image edges/contours being much

better preserved in the MED1 and MED2 cases. In order to more clearly highlight some of the more subtle

differences between the results for our MED1 and MED2 methods, we show (for the same test case) the

results for a smaller region of interest under greater magnification in Figure6. By carefully comparing the

image approximations for our MED1 and MED2 methods in Figures 6(a) and (b), respectively, we can see

that there are a few places where image details (such as edges and contours) are slightly better preserved by

our MED2 method than our MED1 scheme, one example being the (image) edge along the top of the hat.

The improved performance in the MED2 case is largely due to triangulation edges being better aligned with

image edges/contours. So, in terms of subjective quality, our MED1 and MED2 methods are both vastly

superior to the ED scheme, with our MED2 method yielding slightly better quality thanour MED1 scheme.
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[Figure 5 about here.]

[Figure 6 about here.]

Computational Cost. Next, we briefly consider the computational costs of our MED1 and MED2

methods. For the purposes of making timing measurements, we employed very modest hardware, namely

an eight-year-old notebook computer with a 2.00 GHz Intel Core2 Duo T7250 CPU and 1.0 GB of RAM.

On this machine, our MED1 and MED2 methods typically require only a few seconds of computation time

for images like lena from Table 1. In particular, for the lena image and samplingdensities in the range

0.5 to 4% (as in Table 5), the MED1 and MED2 methods required 0.95 to 2.06 seconds and 1.38 to 3.30

seconds, respectively. For cases like this, our MED1 and MED2 methodstypically increase the computation

time relative to the ED scheme by only 0.3 to 1.1 seconds and 0.7 to 2.4 seconds, respectively. In absolute

terms, this incremental cost is very small when one considers the very substantial improvement in mesh

quality obtained with our methods. Furthermore, when viewed in the broader context of the many mesh-

generation techniques proposed to date in the literature, our MED1 and MED2 methods are quite low in

terms of computational cost. For example, some other methods, which are based on techniques such as

simulated annealing or simplification of very large meshes, can easily require computation times on the

order of minutes or more.

Typically, the computation time for our MED2 method was found to be about 1.4 to 1.7 times that

of our MED1 scheme. So, our MED2 method is more computationally expensive, with this higher cost

coming from the use of the LLOP (instead of the LOP) during final connectivity adjustment. As we saw

earlier, our MED2 method yields higher quality meshes than our MED1 scheme.So, whether our MED1

or MED2 method is more attractive for a particular application, depends on computational constraints. In

applications that are sensitive even to small increases in computational cost,our MED1 method would be

more appropriate, while our MED2 method would be preferred otherwise.

5. Conclusions

In this paper, we have proposed a computational framework for mesh generation that modifies the ED

method to use DDTs in conjunction with the LOP. By using DDTs in conjunction with the LOP (instead of
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Delaunay triangulations), triangulation connectivity can be chosen optimally so as to minimize approxima-

tion error. Using our computational framework, we derived two specific mesh-generation methods known as

MED1 and MED2. Through experimental results, our MED1 and MED2 methods were shown to produce

image approximations of much higher quality than the ED method, both in terms of PSNR and subjective

quality, at a relatively modest computational cost. In particular, our MED1 and MED2 methods were shown

to outperform the ED method by margins of 3.26 to 3.81 dB on average. Our twomethods allow differ-

ent tradeoffs to be made between computational cost and approximation quality, allowing ourproposed

mesh-generation approach to be useful over a broader range of applications with differing computational

constraints. As part of our work, we proposed two novel optimality criteriato be used in conjunction with

the LOP, namely the ELSE and MASE criteria. These two criteria were shown tooutperform other well

known criteria from the literature. Of our two newly proposed criteria, the ELSE criterion was found to

perform best and was used as a key component of our MED1 and MED2methods. Since the LOP is used

in many different applications and MSE (as in (1)) is a frequently employed error metric, the ELSE and

MASE criteria proposed herein have the potential to be useful in a much broader range of contexts than the

particular mesh-generation methods proposed herein. By allowing higher quality meshes to be generated at

relatively low computational cost, the MED1 and MED2 methods are of great utility to the many applica-

tions that employ mesh models of images. Furthermore, our new optimality criteria, ELSE and MASE, can

be exploited by future mesh-generation schemes that employ the LOP in orderto achieve improved results.

Lastly, we make one further comment regarding the applicability of our methods.In this manuscript, we

have focused our attention on the generation of mesh models of luminance images (i.e., images for which

the image function value corresponds to light intensity). It is worth noting, however, that our methods

can be used to generate mesh models of other types of bivariate functions.Some of these other types of

functions include: 1) digital elevation maps, which are employed in geographic information systems; and

2) range images, which are used in robotics, gaming, and other applications. Since our mesh-generation

methods produce high-quality meshes while not requiring excessive amounts of computation time (like the

minutes or tens of minutes needed by some schemes), our methods may have advantages over some of the

previously-proposed approaches for these other types of data sets.Thus, our proposed mesh-generation

methods are not only useful for traditional image-processing applications, but are of potential benefit in
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other areas as well.
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Figure 1: An edge flip. (a) Part of the triangulation containing a flippable edgee. (b) The same part of the triangulation aftere has
been flipped to yield the new edgee′.

27



vi

v j vk

p

(a)

p

vi

v j

vk

vl

(b)

Figure 2: Point insertion examples. Part of a triangulation showing how thenew vertexp is inserted (a) inside a triangleviv jvk and
(b) on an edgevivk.
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(a) (b)

(c) (d)

Figure 3: Comparison of the mesh quality obtained for the lena image at a sampling density of 2% in the case that the
final-connectivity-adjustment method fcaMethod is LOP. Part of the image approximation obtained when the optimality criteria
insOptCriterion is chosen as each of (a) SE (20.72 dB) and (c) ELSE (30.14 dB), and (b) and (d) the corresponding triangulations.
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(a) (b)

(c) (d)

Figure 4: Comparison of the mesh quality obtained for the lena image at a sampling density of 2% in the case that the final-
connectivity-adjustment method fcaMethod is LLOP. Part of the image approximation obtained when the optimality criteria
insOptCriterion is chosen as each of (a) SE (22.64 dB) and (c) ELSE (30.68 dB), and (b) and (d) the corresponding triangula-
tions.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Part of the image approximation obtained for the lena image at a sampling density of 2% with each of the (a) MED1
(30.14 dB), (b) MED2 (30.68 dB), and (c) ED (26.38 dB) methods,and (d), (e), and (f) the corresponding triangulations.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Part of the image approximation (under magnification) obtainedfor the lena image at a sampling density of 2% with
each of the (a) MED1 (30.14 dB), (b) MED2 (30.68 dB), and (c) ED (26.38 dB) methods, and (d), (e), and (f) the corresponding
triangulations.
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Table 1: Test images

Image Size, Bits/Sample Description

bull 1024× 768, 8 cartoon animal

cr 1744× 2048, 10 x-ray [41]

lena 512× 512, 8 woman [42]
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Table 2: Comparison of the mesh quality obtained with the various choices oftriangulation optimality criterion insOptCriterion in

the case that fcaMethod is LOP. (a) PSNRs for three specific images. (b) Rankings averaged across 40 images.

(a)
Samp.

Density PSNR (dB)

Image (%) SE Del. ABN JND DLP DP AMC GHH SQSE JNDSE MASE ELSE

bull 0.5 24.73 31.44 28.44 30.49 29.72 25.96 31.42 30.22 31.59 31.37 33.75 35.52
1.0 26.89 38.85 31.91 38.34 33.42 30.73 39.00 37.82 38.69 38.78 39.43 39.99
2.0 30.53 42.12 34.87 42.26 39.52 25.93 41.94 41.36 42.36 42.36 42.49 42.72
3.0 31.93 43.42 36.24 43.36 39.35 29.91 43.08 43.41 43.61 43.66 43.83 43.97
4.0 31.23 44.34 34.97 44.17 41.40 31.92 44.07 44.23 44.49 44.53 44.62 44.72

cr 0.5 31.19 34.40 30.38 34.45 32.42 30.23 34.22 34.30 34.81 34.84 34.92 35.11
1.0 32.41 36.33 33.01 36.35 34.42 31.16 36.37 36.48 37.13 37.16 37.22 37.31
2.0 33.33 38.68 34.34 38.36 36.33 32.52 38.24 38.75 38.95 39.01 39.00 39.10
3.0 34.12 39.57 34.95 39.32 36.96 33.78 39.17 39.62 39.76 39.82 39.80 39.87
4.0 35.63 40.10 39.29 39.89 37.56 33.54 39.70 40.19 40.31 40.36 40.33 40.42

lena 0.5 17.61 21.17 19.22 20.55 19.61 18.07 20.51 21.20 21.75 21.82 21.83 21.96
1.0 21.50 25.21 20.69 24.91 21.86 19.91 24.58 25.30 25.89 25.92 25.94 26.13
2.0 20.72 29.48 24.36 29.09 26.25 21.04 27.67 29.26 29.91 29.99 30.06 30.14
3.0 23.43 31.26 24.62 30.99 27.22 22.34 30.15 31.21 31.58 31.62 31.71 31.72
4.0 23.67 32.39 26.30 32.17 29.13 24.06 31.45 32.47 32.78 32.84 32.87 32.88

(b)
Samp.

Density Mean Ranka

(%) SE Del. ABN JND DLP DP AMC GHH SQSE JNDSE MASE ELSE

0.5 10.20 5.83 9.78 8.10 8.90 11.40 7.30 5.13 3.85 3.43 2.83 1.28
(1.42) (1.30) (1.47) (1.67) (1.62) (1.22) (1.68) (1.73) (1.22) (1.66) (1.53) (0.89)

1.0 10.95 6.05 10.03 7.60 9.10 11.75 6.95 5.35 3.80 2.98 2.28 1.18
(0.80) (1.18) (0.57) (0.80) (0.49) (0.49) (1.26) (0.79) (0.64) (0.79) (0.63) (0.67)

2.0 10.98 5.80 10.00 7.08 9.10 11.90 7.85 5.30 3.75 2.75 2.43 1.08
(0.47) (0.40) (0.50) (0.52) (0.37) (0.30) (0.42) (0.64) (0.54) (0.66) (0.70) (0.35)

3.0 11.18 5.90 10.00 6.95 9.03 11.80 8.00 5.13 3.88 2.58 2.43 1.15
(0.44) (0.37) (0.22) (0.22) (0.16) (0.40) (0.00) (0.46) (0.40) (0.67) (0.54) (0.69)

4.0 11.10 5.88 10.03 7.03 9.03 11.85 7.98 5.10 3.85 2.53 2.55 1.10
(0.44) (0.33) (0.27) (0.16) (0.16) (0.36) (0.16) (0.37) (0.53) (0.55) (0.59) (0.62)

All 10.88 5.89 9.97 7.35 9.03 11.74 7.62 5.20 3.83 2.85 2.50 1.16
(0.88) (0.84) (0.76) (0.97) (0.79) (0.67) (1.05) (0.94) (0.72) (1.01) (0.90) (0.67)

aThe standard deviation is given in parentheses.
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Table 3: Comparison of the mesh quality obtained with the various choices oftriangulation optimality criterion insOptCriterion in

the case that fcaMethod is LLOP. (a) PSNRs for three specific images. (b) Rankings averaged across 40 images.

(a)
Samp.

Density PSNR (dB)

Image (%) SE Del. ABN JND DLP DP AMC GHH SQSE JNDSE MASE ELSE

bull 0.5 26.68 34.31 31.70 35.24 31.83 29.98 34.72 33.10 33.75 33.88 34.72 36.20
1.0 30.67 40.41 36.93 40.12 37.30 35.76 40.30 40.01 40.15 40.17 40.56 42.78
2.0 33.73 43.27 39.05 43.37 41.25 31.54 43.39 42.69 43.23 43.23 43.38 43.51
3.0 34.91 44.43 39.85 44.43 42.30 34.84 44.51 44.32 44.39 44.40 44.52 44.58
4.0 33.76 45.20 40.25 45.15 44.34 36.72 45.22 45.05 45.19 45.21 45.29 45.33

cr 0.5 32.73 35.88 32.68 35.65 34.05 32.50 35.65 35.76 35.95 35.91 35.92 36.04
1.0 34.13 37.71 35.10 37.18 35.92 33.19 37.55 37.72 37.77 37.78 37.78 37.82
2.0 34.83 39.36 36.51 39.19 37.92 34.76 39.19 39.35 39.40 39.41 39.42 39.43
3.0 35.68 40.14 37.16 40.01 38.59 35.99 39.99 40.12 40.17 40.18 40.18 40.19
4.0 37.10 40.65 38.33 40.53 38.96 35.63 40.52 40.63 40.69 40.70 40.70 40.72

lena 0.5 18.80 22.51 20.68 21.76 20.86 22.03 22.03 22.47 22.28 22.43 22.45 22.53
1.0 23.18 26.41 23.22 26.33 23.97 26.17 26.17 26.39 26.48 26.51 26.57 26.63
2.0 22.64 30.55 27.23 30.30 28.77 30.24 30.24 30.08 30.57 30.58 30.60 30.68
3.0 26.44 32.18 27.89 32.13 29.35 31.79 31.79 32.10 32.27 32.26 32.29 32.26

4.0 25.94 33.38 29.82 33.23 31.03 33.09 33.09 33.30 33.39 33.42 33.44 33.42

(b)
Samp.

Density Mean Ranka

(%) SE Del. ABN JND DLP DP AMC GHH SQSE JNDSE MASE ELSE

0.5 10.98 4.40 9.68 7.65 8.95 11.00 6.15 5.60 4.60 4.33 2.98 1.70
(1.33) (1.69) (1.13) (1.75) (1.75) (1.76) (2.34) (2.07) (2.00) (1.89) (1.37) (1.36)

1.0 11.48 4.55 9.88 7.78 9.00 11.43 6.60 5.78 3.90 3.60 2.33 1.70
(0.59) (1.18) (0.60) (0.79) (0.89) (0.54) (1.61) (1.25) (1.04) (1.43) (0.96) (1.65)

2.0 11.33 5.05 9.83 7.25 9.18 11.68 7.28 6.05 3.58 3.18 2.48 1.15
(0.47) (0.77) (0.38) (0.83) (0.38) (0.47) (1.07) (0.77) (1.20) (0.77) (0.77) (0.65)

3.0 11.38 5.05 9.93 7.05 9.08 11.63 7.68 5.98 3.70 3.15 2.10 1.30
(0.48) (0.38) (0.26) (0.67) (0.26) (0.48) (0.85) (0.57) (0.81) (0.91) (0.54) (1.03)

4.0 11.38 5.00 9.98 7.03 9.03 11.63 7.78 5.95 3.68 3.05 2.18 1.35
(0.48) (0.55) (0.16) (0.47) (0.16) (0.48) (0.82) (0.63) (0.88) (0.74) (0.83) (0.91)

All 11.31 4.81 9.86 7.35 9.05 11.47 7.10 5.87 3.89 3.46 2.41 1.44
(0.77) (1.06) (0.62) (1.05) (0.91) (0.94) (1.59) (1.21) (1.31) (1.32) (0.99) (1.19)

aThe standard deviation is given in parentheses.
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Table 4: Comparison of the mesh quality obtained with each of the two choicesfor the fcaMethod parameter

Samp.

Density PSNR (dB)

Image (%) LOP LLOP

bull 0.5 35.52 36.20

1.0 29.99 42.78

2.0 42.72 43.51

3.0 43.97 44.58

4.0 44.72 45.33

cr 0.5 35.11 36.04

1.0 37.31 37.82

2.0 39.10 39.43

3.0 39.87 40.19

4.0 40.42 40.72

lena 0.5 21.96 22.53

1.0 26.13 26.63

2.0 30.14 30.68

3.0 31.72 32.26

4.0 32.88 33.42
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Table 5: Comparison of the mesh quality obtained with the various methods

Samp.

Density PSNR (dB)

Image (%) MED1 MED2 ED CCCG

bull 0.5 35.52 36.20 27.06 31.37

1.0 39.99 40.78 34.46 38.78

2.0 42.72 43.51 38.59 42.36

3.0 43.97 44.58 40.47 43.66

4.0 44.72 45.33 41.60 44.53

cr 0.5 35.11 36.04 31.96 34.84

1.0 37.31 37.82 33.84 37.16

2.0 39.10 39.43 35.72 39.01

3.0 39.87 40.19 37.63 39.82

4.0 40.42 40.72 38.48 40.36

lena 0.5 21.96 22.53 17.76 21.82

1.0 26.13 26.63 21.50 25.92

2.0 30.14 30.68 26.38 29.99

3.0 31.72 32.26 28.50 31.62

4.0 32.88 33.42 29.83 32.84
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