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Two new optimization-based methods are proposed for the design of high-performance quincunx filter banks for
the application of image coding. These new techniques are used to build linear-phase finite-length-impulse-response
(FIR) perfect-reconstruction (PR) systems with high coding gain, good frequency selectivity, and certain prescribed
vanishing moment properties. A parametrization of quincunx filter banks based on the lifting framework is employed
to structurally impose the PR and linear-phase conditions. Then, the coding gain is maximized subject to a set of
constraints on vanishing moments and frequency selectivity. Examples of filter banks designed using the newly
proposed methods are presented and shown to be highly effective for image coding. In particular, our new optimal
designs are shown to outperform three previously-proposed quincunx filter banks in 72% to 95% of our experimental
test cases. Moreover, in some limited cases, our optimal designs are even able to outperform the well-known
(separable) 9/7 filter bank (from the JPEG-2000 standard).
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1. Introduction

Filter banks have proven to be a highly effective tool for
image coding applications [1]. In such applications, one
typically desires filter banks to have perfect reconstruc-
tion (PR), linear phase, high coding gain, good frequency
selectivity, and satisfactory vanishing moment properties.
The PR property facilitates the construction of a lossless
compression system. The linear phase property is crucial
to avoiding phase distortion. High coding gain leads to
filter banks with good energy compaction capabilities. The
presence of vanishing moments helps to reduce the num-
ber of nonzero coefficients in the highpass subbands and
tends to lead to smoother synthesis basis functions. Good
frequency selectivity serves to minimize aliasing in the
subband signals. Designing nonseparable two-dimensional
(2D) filter banks with all of the preceding properties is an
extremely challenging task.

In the one-dimensional (1D) case, various filter-bank
design techniques have been successfully developed. In the
nonseparable 2D case, however, far fewer effective methods
have been proposed. Variable transformation methods are

commonly used for the design of 2D filter banks. With such
methods, a 1D prototype filter bank is first designed, and
then mapped into a 2D filter bank through a transformation
of variables [2]–[6]. For example, the McClellan transfor-
mation [7] has been used in numerous design approaches.
Other design techniques have also been proposed where
a transformation is applied to the polyphase components
of the filters instead of the original filter transfer func-
tions [8]–[11]. These transformation-based designs have
the restriction that one cannot explicitly control the shape
of the 2D filter frequency responses. Moreover, in some
cases, the transformed 2D filter banks can only achieve
approximate PR. Direct optimization of the filter coeffi-
cients has also been proposed [12]–[14], but because of the
involvement of large numbers of variables and nonlinear,
nonconvex constraints, such optimization typically leads
to a very complicated system, which is often difficult to
solve. Designs utilizing the lifting framework [15], [16]
have been proposed in [17], [18] for two-channel 2D filter
banks with an arbitrary number of vanishing moments. With
these methods, however, only interpolating filter banks are
considered (i.e., filter banks with two lifting steps).
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The Cayley transform has been used in the character-
ization and design of multidimensional orthogonal filter
banks [19], [20]. In [21], B-spline filters and the McClellan
transformation are used to construct orthogonal quincunx
wavelets with fractional order of approximation. A tech-
nique utilizing polyharmonic B-splines is proposed in [22]
for designing multidimensional/quincunx wavelet bases. Al-
though the preceding design methods are interesting and
certainly worthy of mention, they are not useful for the
particular design problem considered in our work. This is
due to the fact that we consider the design of nontrivial
linear-phase finite-length-impulse-response (FIR) PR filter
banks. In the quincunx case, such filter banks cannot be
orthogonal [23]. Furthermore, since we are interested in FIR
filter banks, methods that yield filter banks with infinite-
length-impulse-response (IIR) filters are not helpful either.

Uniform and nonuniform 2D directional filter banks are
proposed in [24] to process images with better directional
selectivity than conventional wavelets. Although we men-
tion this development here for completeness, it addresses
a different problem from that considered herein. In our
work, we seek to design filter banks that can be used in
a standard wavelet configuration. For this reason, methods
for the design of directional filter banks, while interesting,
are not applicable to the problem at hand.

In this paper, we propose two new optimization-based
methods for constructing FIR quincunx filter banks with all
of the aforementioned desirable properties (i.e., PR, linear
phase, high coding gain, good frequency selectivity, and
certain vanishing moments properties).

The remainder of this paper is structured as follows.
Section 2 briefly presents the notational conventions used
herein. Then, Section 3 introduces quincunx filter banks,
and Section 4 presents a parametrization of linear-phase
PR quincunx filter banks based on the lifting framework.
Optimal design algorithms for quincunx filter banks with
two and more-than-two lifting steps are proposed in Sec-
tions 5 and 6, respectively. Several design examples are then
presented in Section 7 and their effectiveness for image
coding is demonstrated in Section 8. Finally, Section 9
concludes with a summary of our work and some closing
remarks.

2. Notation and Terminology

Before proceeding further, a few comments are in order
concerning the notation used herein. In this paper, the sets
of integers and real numbers are denoted as Z and R,
respectively. The symbols Z

∗, Z
+, Z

−, Zo, and Ze denote
the sets of nonnegative, positive, negative, odd, and even
integers, respectively. For a ∈ R, �a� denotes the largest
integer no greater than a, and �a� denotes the smallest
integer no less than a. For m,n ∈ Z, we define the mod
function as mod(m,n) = m−n�m/n�.

Matrices and vectors are denoted by upper and lower case
boldface letters, respectively. The symbols 000, 111 and III are

used to denote a vector/matrix of all zeros, a vector/matrix
of all ones, and an identity matrix, respectively, the dimen-
sions of which should be clear from the context. For matrix
multiplication, we define the product notation as ∏N

k=M AAAk �
AAANAAAN−1 · · ·AAAM+1AAAM for N ≥ M. For convenience, a linear
(or polynomial) function of the elements of a vector xxx is
simply referred to as a linear (or polynomial) function in xxx.

An element of a sequence x defined on Z
2 is denoted

either as x[nnn] or x[n0,n1] (whichever is more convenient),
where nnn = [n0 n1]T and n0,n1 ∈ Z. Let nnn = [n0 n1]T and
zzz = [z0 z1]T . Then, we define |nnn| = n0 +n1 and zzznnn = zn0

0 zn1
1 .

Furthermore, for a matrix MMM = [mmm0 mmm1] with mmmk being
the kth column of MMM, we define zzzMMM = [zzzmmm0 zzzmmm1 ]T . In the
remainder of this paper, unless otherwise noted, we will use
MMM to denote the generating matrix

[
1 1
1 −1

]
of the quincunx

lattice. For convenience, we denote the partial derivative
operator with respect to ωωω = [ω0 ω1]T as

	nnn =
∂ |nnn|

∂ωn0
0 ∂ωn1

1
,

where nnn = [n0 n1]T ∈ (Z∗)2.
The Fourier transform of a sequence h is denoted as ĥ.

A (2D) filter H with impulse response h is said to be linear
phase with group delay ccc if, for some ccc∈ 1

2Z
2, h[nnn] = h[2ccc−

nnn] for all nnn ∈ Z
2. In passing, we note that the frequency

response ĥ(ωωω) of a linear-phase filter with impulse response
h and group delay ccc can be expressed as

ĥ(ωωω) = e− jωωωTccc ∑
nnn∈Z2

h[nnn]cos
[
ωωωT (nnn−ccc)

]
. (1)

For convenience, in what follows, we define the signed
amplitude response ĥa(ωωω) of H as

ĥa(ωωω) = ∑
nnn∈Z2

h[nnn]cos
[
ωωωT (nnn−ccc)

]
(2)

(i.e., the quantity ĥa(ωωω) is ĥ(ωωω) without the exponential
factor e− jωωωTccc). Thus, the magnitude response of H is
trivially given by

∣∣ĥa(ωωω)
∣∣.

In image coding, the peak-signal-to-noise ratio (PSNR)
is a commonly used measure for distortion. For an original
image x and its reconstructed version xr, the PSNR is
defined as

PSNR = 20log10

(
2P −1√

MSE

)
,

where

MSE =
1

N0N1

N0−1

∑
n0=0

N1−1

∑
n1=0

(
xr[n0,n1]− x[n0,n1]

)2
,

and each image has dimension N0 ×N1 and P bits/sample.

3. Quincunx Filter Banks

A quincunx filter bank has the canonical form shown in
Figure 1. The filter bank consists of lowpass and highpass
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H0(zzz)

H1(zzz)

↓ MMM

↓ MMM

x[nnn] y0[nnn]

y1[nnn]

↑ MMM

↑ MMM

G0(zzz)

G1(zzz)

+
xr[nnn]y0[nnn]

y1[nnn]

(a) (b)

FIGURE 1: The canonical form of a quincunx filter bank. (a) Analysis
side and (b) synthesis side.

H0(zzz)

H1(zzz)

↓ MMM

↓ MMM

H0(zzz)

H1(zzz)

↓ MMM

↓ MMM

H0(zzz)

H1(zzz)

↓ MMM

↓ MMM

x[nnn] · · · y0[nnn]

y1[nnn]

yL−1[nnn]

yL[nnn]

...

(a)
G0(zzz)

G1(zzz)

↑ MMM

↑ MMM

G0(zzz)

G1(zzz)

↑ MMM

↑ MMM

G0(zzz)

G1(zzz)

↑ MMM

↑ MMM

+++ xr[nnn]· · ·y0[nnn]

y1[nnn]

yL−1[nnn]

yL[nnn]

...

(b)

FIGURE 2: The structure of an L-level octave-band filter bank. (a) Anal-
ysis side and (b) synthesis side.

analysis filters H0 and H1, lowpass and highpass synthesis
filters G0 and G1, and MMM-fold downsamplers and upsam-
plers.

In image coding applications, a quincunx filter bank is
typically applied in a recursive manner, resulting in an
octave-band filter bank structure as shown in Figure 2. For
an L-level octave-band filter bank generated from a quin-
cunx filter bank with analysis filters {Hk}, the equivalent
nonuniform filter bank has L + 1 channels with analysis
filters {H′

i} and synthesis filters {G′
i} as shown in Figure 3.

The transfer functions {H ′
i (zzz)} of {H′

i} are given by

H ′
i (zzz) =

⎧⎪⎪⎨
⎪⎪⎩
∏L−1

k=0 H0

(
zzzMMM

k
)

i = 0

H1

(
zzzMMM

L−i
)
∏L−i−1

k=0 H0

(
zzzMMM

k
)

1 ≤ i ≤ L−1

H1 (zzz) i = L.

(3)

The transfer functions {G′
i(zzz)} of the equivalent synthesis

filters {G′
i} can be derived in a similar fashion.

4. Lifting Parametrization of Quincunx Filter Banks

Rather than parameterizing a quincunx filter bank in terms
of its canonical form, shown earlier in Figure 1, we in-
stead employ the lifting framework [15], [16]. The lifting
realization of a quincunx filter bank has the form shown in
Figure 4. Essentially, the filter bank is realized in polyphase
form, with the analysis and synthesis polyphase filtering
each being performed by a ladder network consisting of
2λ lifting filters {Ak}. Without loss of generality, we may

H ′
L(zzz) ↓ MMM G′

L(zzz)↑ MMM

H ′
L−1(zzz) ↓ MMM2 G′

L−1(zzz)↑ MMM2 +

H ′
1(zzz) ↓ MMML G′

1(zzz)↑ MMML +

H ′
0(zzz) ↓ MMML G′

0(zzz)↑ MMML +

...

x[nnn] y0[nnn]

y1[nnn]

yL−1[nnn]

yL[nnn]

xr[nnn]

...
...

...
...

...
...

FIGURE 3: The equivalent nonuniform filter bank associated with the
L-level octave-band filter bank.

A1(zzz) A2(zzz) A2λ−1(zzz) A2λ(zzz)z0

↓ MMM

↓ MMM +

+

+

+

· · ·

· · ·

· · ·
x[nnn]

y0[nnn]

y1[nnn]

(a)

−

−

−

−

A1(zzz)A2(zzz)A2λ−1(zzz)A2λ(zzz) z−1
0

↑ MMM

↑ MMM+

+

+

+ +

· · ·

· · ·

· · ·
xr[nnn]

y0[nnn]

y1[nnn]

(b)

FIGURE 4: Lifting realization of a quincunx filter bank. (a) Analysis side
and (b) synthesis side.

assume that none of the {Ak(zzz)} are identically zero, except
possibly A1(zzz) and A2λ (zzz).

Given the lifting filters {Ak}, the corresponding analysis
filter transfer functions H0(zzz) and H1(zzz) can be calculated
as [

H0(zzz)
H1(zzz)

]
=
[
H0,0
(
zzzMMM
)

H0,1
(
zzzMMM
)

H1,0
(
zzzMMM
)

H1,1
(
zzzMMM
)][ 1

z0

]
, (4)

where[
H0,0(zzz) H0,1(zzz)
H1,0(zzz) H1,1(zzz)

]
=

λ

∏
k=1

([
1 A2k(zzz)
0 1

][
1 0

A2k−1(zzz) 1

])
.

(5)

The synthesis filter transfer functions G0(zzz) and
G1(zzz) can then be trivially computed as Gk(zzz) =
(−1)1−kz−1

0 H1−k(−zzz). Since the synthesis filters are com-
pletely determined by the analysis filters, we need only
consider the analysis side of the filter bank in what follows.

The use of the above lifting-based parametrization is
helpful in several respects. First, the PR condition is au-
tomatically satisfied by such a parametrization. Second, the
linear-phase condition can be imposed with relative ease,
as we shall see momentarily. Thus, the need for additional
cumbersome constraints during optimization for PR and
linear phase is eliminated. Lastly, the lifting realization
trivially allows for the construction of reversible integer-
to-integer mappings [25], which are often useful for image
coding and are employed later in this work.
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Now we further consider the linear-phase condition. As
it turns out, the linear-phase condition can be satisfied with
a prudent choice of lifting filters {Ak}. In particular, we
have shown the below result.

Theorem 1 (Sufficient condition for linear phase)
Consider a quincunx filter bank constructed from the lifting
framework with 2λ lifting filters as shown in Figure 4(a).
If each lifting filter Ak is symmetric with its group delay ccck

satisfying

ccck = (−1)k [ 1
2

1
2

]T
,

then the analysis filters H0 and H1 are symmetric with group
delays [0 0]T and [−1 0]T , respectively.

A proof of the preceding theorem is provided in the first
author’s thesis [26] but is omitted here in the interest of
brevity. The significance of Theorem 1 is that the linear-
phase condition can be trivially satisfied by choosing the
lifting filters to have certain symmetry properties.

Now, we examine the relationship between the analysis
filter frequency responses and the lifting filter coefficients.
Since the lifting filter Ak has linear phase with group delay
ccck = (−1)k [ 1

2
1
2 ]T , the support region of Ak is a rectangle of

size 2lk,0×2lk,1 for some lk,0, lk,1 ∈ Z
+, and the number of

independent coefficients of Ak is 2lk,0lk,1. Let aaak be a vector
containing the independent coefficients of Ak. Then, there
are 2lk,0lk,1 elements in aaak indexed from 0 to 2lk,0lk,1 −1.

Consider an odd-indexed lifting filter A2k−1. Its sup-
port region can be expressed as {−l2k−1,0,−l2k−1,0 +
1, . . . , l2k−1,0 −1}×{−l2k−1,1,−l2k−1,1 +1, . . . , l2k−1,1 −1}.
The nth element of the coefficient vector aaa2k−1 is defined
as a2k−1[n0,n1] with n0 and n1 given by

n0 =
⌊
n/(2l2k−1,1)

⌋ ∈ {0,1, . . . , l2k−1,0 −1} and

n1 = mod(n,2l2k−1,1)− l2k−1,1

∈ {−l12k−1,1,−l2k−1,1 +1, . . . , l2k−1,1 −1}.
(6)

Since A2k−1 has linear phase, the frequency response of
A2k−1 can be written from (1) as

â2k−1(ωωω) = e− jωωωTccc2k−1 ∑
nnn∈Z2

a2k−1[nnn]cos
[
ωωωT (nnn−ccc2k−1)

]

= 2e j 1
2 (ω0+ω1)

l2k−1,0−1

∑
n0=0

l2k−1,1−1

∑
n1=−l2k−1,1

a2k−1[n0,n1]

cos
[
ω0(n0 + 1

2 )+ω1(n1 + 1
2 )
]
.

In the upsampled domain, â2k−1(MMMTωωω) can then be ex-
pressed as

â2k−1(MMMTωωω) = 2e jω0

l2k−1,0−1

∑
n0=0

l2k−1,1−1

∑
n1=−l2k−1,1

a2k−1[n0,n1]

cos
[
ω0(n0 +n1 +1)+ω1(n0 −n1)

]
.

Thus, â2k−1(MMMTωωω) can be compactly written as

â2k−1(MMMTωωω) = e jω0aaaT
2k−1vvv2k−1, (7)

where vvv2k−1 is a vector of 2l2k−1,0l2k−1,1 elements indexed
from 0 to 2l2k−1,0l2k−1,1 −1, and the nth element of vvv2k−1

is given by

vvv2k−1[n] = 2cos
[
ω0(n0 +n1 +1)+ω1(n0 −n1)

]
with n0 and n1 given by (6).

Now, consider an even-indexed lifting filter A2k. Its sup-
port region is {−l2k,0 + 1,−l2k,0 + 2, . . . , l2k,0}× {−l2k,1 +
1,−l2k,1 + 2, . . . , l2k,1}. The nth element of the coefficient
vector aaa2k is defined as a2k[n0,n1] with n0 and n1 given by

n0 =
⌊
n/(2l2k,1)

⌋
+1 ∈ {1,2, . . . , l2k,0} and

n1 = mod(n,2l2k,1)− l2k,1 +1

∈ {−l2k,1 +1,−l2k,1 +2, . . . , l2k,1},
(8)

respectively. The frequency response â2k(ωωω) of A2k is
computed as

â2k(ωωω) = 2e− j 1
2 (ω0+ω1)

l2k,0

∑
n0=1

l2k,1

∑
n1=1−l2k,1

a2k[n0,n1]

cos
[
ω0(n0 − 1

2 )+ω1(n1 − 1
2 )
]
.

In the upsampled domain, â2k(MMMTωωω) can be expressed as

â2k(MMMTωωω) = e− jω0aaaT
2kvvv2k, (9)

where vvv2k is a vector of 2l2k,0l2k,1 elements indexed from 0
to 2l2k,0l2k,1 −1, and the nth element of vvv2k is defined as

vvv2k[n] = 2cos
[
ω0(n0 +n1 −1)+ω1(n0 −n1)

]
with n0 and n1 given by (8).

Rewriting (4) and (5) in the Fourier domain, we have[
ĥ0(ωωω)
ĥ1(ωωω)

]
=
[
ĥ0,0
(
MMMTωωω

)
ĥ0,1
(
MMMTωωω

)
ĥ1,0
(
MMMTωωω

)
ĥ1,1
(
MMMTωωω

)][ 1
e jω0

]
and

(10)[
ĥ0,0(ωωω) ĥ0,1(ωωω)
ĥ1,0(ωωω) ĥ1,1(ωωω)

]
=

λ

∏
k=1

([
1 â2k(ωωω)
0 1

][
1 0

â2k−1(ωωω) 1

])
,

(11)

respectively. Substituting (11), (7), and (9) into (10), we
obtain the frequency responses of the analysis filters as[

ĥ0(ωωω)
ĥ1(ωωω)

]
=

(
λ

∏
k=1

([
1 e− jω0aaaT

2kvvv2k

0 1

]
[

1 0
e jω0aaaT

2k−1vvv2k−1 1

]))[
1

e jω0

]
.

(12)

We further define a vector xxx containing all of the inde-
pendent coefficients {aaak} of the lifting filters {Ak} as

xxx =
[
aaaT

1 aaaT
2 · · · aaaT

2λ
]T

. (13)

Thus, xxx has lx = 2∑2λ
i=1 li,0li,1 elements. Clearly, each vector

aaak can be expressed in terms of xxx as

aaak =
[
0002lk,0lk,1×α0 III2lk,0lk,1 0002lk,0lk,1×β0

]︸ ︷︷ ︸
EEEk

xxx = EEEkxxx, (14)
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where α0 = 2∑k−1
i=1 li,0li,1 and β0 = 2∑2λ

i=k+1 li,0li,1. Substi-
tuting (14) into (12), we have[

ĥ0(ωωω)
ĥ1(ωωω)

]
=

(
λ

∏
k=1

([
1 e− jω0xxxTEEET

2kvvv2k

0 1

]
[

1 0
e jω0xxxTEEET

2k−1vvv2k−1 1

]))[
1

e jω0

]
.

(15)

By expanding the preceding equation, each of the analysis
filter frequency responses can be viewed as a polynomial
in xxx, the order of which depends on the number of lifting
steps.

5. Design of Filter Banks with Two Lifting Steps

Consider a quincunx filter bank as shown in Figure 4(a)
with two lifting steps (i.e., λ = 1). As explained earlier, for
image coding applications, we seek a filter bank with PR,
linear phase, high coding gain, good frequency selectivity,
and certain vanishing moment properties. To satisfy both
the PR and linear-phase conditions, we use the lifting-based
parametrization from Theorem 1. Having elected to use a
lifting-based parametrization for optimization purposes, we
must now determine the relationships between the lifting
filter coefficients and the other desirable properties (such
as high coding gain, good frequency selectivity, and certain
vanishing moment properties). In the sections that follow,
these relationships are examined in more detail.

5.1. Coding Gain

We begin by considering the relationship between the lifting
filter coefficients and coding gain. Coding gain is a measure
of the energy compaction ability of a filter bank, and is de-
fined as the ratio between the reconstruction error variance
obtained by quantizing a signal directly to that obtained by
quantizing the corresponding subband coefficients using an
optimal bit allocation strategy. For an L-level octave-band
quincunx filter bank, the coding gain GSBC [27] is computed
as

GSBC =
L

∏
k=0

(AkBk/αk)−αk , (16)

where

Ak = ∑
mmm∈Z2

∑
nnn∈Z2

h′k[mmm]h′k[nnn]r[mmm−nnn],

Bk = αk ∑
nnn∈Z2

g
′2
k [nnn],

αk =

{
2−L for k = 0

2−(L+1−k) for k = 1,2, . . . ,L,

h′k[nnn] and g′k[nnn] are the impulse responses of the equivalent
analysis and synthesis filters H′

k and G′
k (given by (3)),

respectively, and r is the normalized autocorrelation of the
input. Depending on the source image model, r is given by

r[n0,n1] =

{
ρ |n0|+|n1| for separable model

ρ
√

n2
0+n2

1 for isotropic model,

where ρ is the correlation coefficient (typically, 0.90≤ ρ ≤
0.95). Due to the relationship between {h′k[nnn]}, {g′k[nnn]}, and
the lifting filter coefficient vector xxx, the coding gain is a
nonlinear function of xxx.

5.2. Vanishing Moments

Now, let us consider the relationship between the lifting
filter coefficients and vanishing moments. For a quincunx
filter bank, the number of vanishing moments is equivalent
to the order of zero at [0 0]T or [π π]T in the highpass
or lowpass filter frequency response, respectively. For a
linear-phase filter H with group delay ddd ∈ Z

2, its frequency
response ĥ(ωωω) can be computed by (1). The mmmth-order
partial derivative of its signed amplitude response ĥa(ωωω)
defined in (2) is then given by

	mmmĥa(ωωω)

=

⎧⎪⎪⎨
⎪⎪⎩

(−1)
|mmm|
2 ∑

nnn∈Z2

h[nnn] (nnn−ddd)mmm cos
[
ωωωT (nnn−ddd)

]
for |mmm|∈Ze

(−1)
|mmm|+1

2 ∑
nnn∈Z2

h[nnn] (nnn−ddd)mmm sin
[
ωωωT (nnn−ddd)

]
otherwise,

where mmm = [m0 m1]T . From the above equation, it follows
that when |mmm| ∈Zo, the mmmth-order partial derivative of ĥa(ωωω)
is automatically zero at [0 0]T and [π π]T . Therefore, in
order to have an Nth order zero at ωωω = [0 0]T , the filter
coefficients need only satisfy

∑
nnn∈Z2

h[nnn] (nnn−ddd)mmm = 0 for all |mmm| ∈ Ze such that |mmm| < N.

(17)
Similarly, in order to have an Nth order zero at ωωω = [π π ]T ,
the filter coefficients need only satisfy

∑
nnn∈Z2

(−1)|nnn−ddd|h[nnn] (nnn−ddd)mmm = 0

for all |mmm| ∈ Ze such that |mmm| < N.
(18)

Since we only need to consider the case with |mmm| ∈ Ze

in (17) and (18), the number of linear equations is �N/2�2.
Thus, for a filter bank to have Ñ dual and N primal vanish-
ing moments, the analysis filter coefficients are required to
satisfy equations like those shown in (17) and (18). Since
we use a lifting-based parametrization, the relationships
need to be expressed in terms of the lifting filter coefficients.

For a quincunx filter bank constructed with two lifting
filters A1 and A2 as shown in Figure 4(a) with λ = 1, the
constraints on vanishing moments form a linear system of
equations in the lifting filter coefficients. In order for this
filter bank to have Ñ dual and N primal vanishing moments,
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the impulse responses a1[nnn] and a2[nnn] of the lifting filters
A1 and A2, respectively, should satisfy

∑
nnn∈Z2

a1[nnn](−nnn)mmm =−τττmmm
1 , for all mmm∈(Z∗)2 with |mmm|< Ñ and

(19)

∑
nnn∈Z2

a2[nnn](−nnn)mmm =
1
2
τττmmm

2 , for all mmm ∈ (Z∗)2 with |mmm| < N,

(20)

where τττ1 = [ 1
2

1
2 ]T and τττ2 = −τττ1 = [− 1

2 − 1
2 ]T [18]. The

total number of equations in (19) and (20) combined is(
Ñ+1

2

)
+
(

N+1
2

)
= (Ñ+1)Ñ+(N+1)N

2 .
The above results on vanishing moments can be applied

to the filter banks from Theorem 1, where the lifting
filters have linear phase. The support region of A1 is
{−l1,0,−l1,0 + 1, . . . , l1,0 − 1} × {−l1,1,−l1,1 + 1, . . . , l1,1 −
1} for some l1,0, l1,1 ∈ Z. Then, (19) can be rewritten as

∑
nnn∈{0,...,l1,0−1}

×{−l1,1,...,l1,1−1}

a1[nnn]
[
(nnn+111)mmm +(−nnn)mmm

]
= −2−|mmm|, (21)

for mmm ∈ (Z∗)2 and |mmm| < Ñ. As previously discussed, we
only need to consider the case with |mmm| ∈ Ze. Therefore,
the number of equations in (21) can be reduced to

⌈
Ñ/2
⌉2

.
If we use aaa1 to denote the independent coefficients of A1,
the set of linear equations in (21) can be expressed in a
more compact form as

AAA1aaa1 = bbb1, (22)

where AAA1 is an M0 ×M1 matrix with M0 =
⌈
Ñ/2
⌉2

and

M1 = 2l1,0l1,1, and bbb1 is a vector with
⌈
Ñ/2
⌉2

elements.
Each element of AAA1 assumes the form (nnn+111)mmm + (−nnn)mmm,
and each element of bbb1 assumes the form −2−|mmm|.

Similarly, because of the linear-phase property of the
second lifting filter A2, (20) becomes

∑
nnn∈{1,...,l2,0}

×{−l2,1+1,...,l2,1}

a2[nnn]
[
(nnn−111)mmm +(−nnn)mmm

]
= −(−2)−|mmm|−1,

(23)
for mmm ∈ (Z∗)2, |mmm| ∈ Ze, and |mmm| < N. With aaa2 denoting
the 2l2,0l2,1 independent coefficients of A2, (23) can be
rewritten as

AAA2aaa2 = bbb2, (24)

where AAA2 is an M0×M1 matrix with M0 = �N/2�2 and M1 =
2l2,0l2,1, and bbb2 is a vector with �N/2�2 elements. Elements
of AAA2 and bbb2 assume the forms of (nnn−111)mmm + (−nnn)mmm and
−(−2)−|mmm|−1, respectively.

Combining (22) and (24), we have the linear system
of equations involving the lifting filter coefficient vector
xxx given by

AAAxxx = bbb, (25)

where AAA =
[

AAA1 000
000 AAA2

]
, xxx =

[aaa1
aaa2

]
, and bbb =

[
bbb1
bbb2

]
. The number of

equations in (25) is
⌈
Ñ/2
⌉2 + �N/2�2.

It is worth noting that for a linear-phase filter bank with
two lifting steps, the analysis filter frequency responses have
some special properties if this filter bank has at least one
dual vanishing moment. In particular, we have the result
below.

Theorem 2 (Filter banks with two lifting steps)
Consider a filter bank with two lifting steps satisfying
Theorem 1. Let ĥ0(ωωω) and ĥ1(ωωω) be the frequency
responses of the lowpass and highpass analysis filters H0

and H1, respectively. If this filter bank has at least one
dual vanishing moment, then

ĥ0(0,0) = 1 and (26a)

ĥ1(π,π) = −2 (26b)

(i.e., the DC gain of the lowpass analysis filter H0 is one
and the Nyquist gain of the highpass analysis filter H1 is
two).

A proof of the above theorem is omitted here, but again can
be found in the first author’s thesis [26].

In the preceding discussion for filter banks with two
lifting steps, it is assumed that the number of dual vanishing
moments is no less than that of the primal ones (i.e., Ñ ≥N).
This is desirable in the case of image coding, as the dual
vanishing moments are more important than the primal ones
for reducing the number of nonzero coefficients in the high-
pass subbands by annihilating polynomials. Furthermore,
the presence of dual vanishing moments usually leads to
smoother synthesis scaling and wavelet functions, which
help to improve the subjective quality of the reconstructed
images.

5.3. Frequency Response

For image coding, we desire analysis filters with good
frequency selectivity. Since a lifting-based parametrization
of quincunx filter banks is employed, we consider the
relationship between analysis filter frequency selectivity and
the lifting filter coefficients.

To quantify the frequency selectivity of the filter bank,
we measure the deviation in frequency response between
an analysis filter H and an ideal filter Hd . In particular, we
define the weighted frequency response error function eh of
H as

eh =
∫

[−π, π)2
W (ωωω)

∣∣ĥa(ωωω)−Dĥd(ωωω)
∣∣2 dωωω , (27)

where W (ωωω) is a weighting function defined on [−π, π)2,
ĥa(ωωω) is the signed amplitude response of H as defined
by (2), ĥd(ωωω) is the frequency response of the ideal filter
Hd , and D is a scaling factor. In order for the filter H to
approximate the ideal filter, the frequency response error
function eh is required to satisfy

eh ≤ δh, (28)

where δh is a prescribed upper bound on the error.
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ω0−π π

π

−π
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π
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0

(a) (b)

FIGURE 5: Ideal frequency responses of quincunx filter banks for the
(a) lowpass filters and (b) highpass filters, where the shaded and unshaded
areas represent the passband and stopband, respectively.

For a quincunx filter bank with sampling matrix MMM =[
1 1
1 −1

]
, the shape of filter passband is not unique [3], [17].

Herein, in order to match the human visual system, we use
diamond-shaped ideal passband/stopband for the analysis
and synthesis filters [28]. Figure 5(a) illustrates the ideal
lowpass filter frequency response given by

ĥ0d(ωωω) =

{
1 for |ω0 ±ω1| ≤ π
0 otherwise,

and Figure 5(b) depicts the ideal highpass filter frequency
response given by

ĥ1d(ωωω) =

{
1 for |ω0 ±ω1| ≥ π , and ω0,ω1 ∈ [−π,π)
0 otherwise.

(29)
The weighting function W (ωωω) is used to control the

relative importance of the passband and stopband. For a
quincunx highpass filter with a diamond-shaped stopband,
W (ωωω) is defined as

W (ωωω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for passband |ω0 ±ω1| ≥ π +ωp,

and ω0,ω1 ∈ [−π,π)
γ for stopband |ω0 ±ω1| ≤ ωs

0 otherwise (i.e., transition band),

(30)

where γ ≥ 0. By adjusting the value of γ , we can control the
filter’s performance in the stopband relative to the passband.
In the case of highpass filters, for example, the weighting
function is as depicted in Figure 6. The weighting function
for a quincunx lowpass filter is defined in a similar way (i.e.,
with the roles of passband and stopband reversed in (30)).

Consider a filter bank as shown in Figure 4 with two
lifting filters A1 and A2 satisfying Theorem 1. From (15),
we obtain the frequency responses of the analysis filters as[

ĥ0(ωωω)
ĥ1(ωωω)

]
=
[
1 e− jω0xxxTEEET

2 vvv2

0 1

][
1 0

e jω0xxxTEEET
1 vvv1 1

][
1

e jω0

]

=
[
1+xxxTEEET

2 vvv2 +xxxTEEET
2 vvv2vvvT

1EEE1xxx
e jω0
(
1+xxxTEEET

1 vvv1
) ]

.

Then, the signed amplitude response ĥ1a(ωωω) of H1 is

ĥ1a(ωωω) = 1+xxxTEEET
1 vvv1.

ω1

ω0−π π

π

−π

0

passband
stopband

transition band
ωp

ωp

ωs

ωs

FIGURE 6: Weighting function for a highpass filter with diamond-shaped
stopband.

The frequency response error function of the highpass
analysis filter H1 is computed as

eh1 =
∫

[−π, π)2
W (ωωω)

∣∣ĥ1a(ωωω)−Dĥ1d(ωωω)
∣∣2 dωωω, (31)

where W (ωωω) is the weighting function defined in (30),
ĥ1d(ωωω) is the ideal frequency response of a quincunx
highpass filter defined in (29), and the scaling factor D is
chosen to be D = 2 in accordance with (26b). The frequency
response error function in (31) can be expressed as the
quadratic in the lifting-filter coefficient vector xxx given by

eh1 = xxxTHHHxxxx+xxxTsssx + cx, (32)

where

HHHx =
∫

[−π, π)2
W (ωωω)EEET

1 vvv1vvv
T
1EEE1dωωω ,

sssx =
∫

[−π, π)2
2W (ωωω)EEET

1 vvv1
[
1−2ĥ1d(ωωω)

]
dωωω,

cx =
∫

[−π, π)2
W (ωωω)

[
1−2ĥ1d(ωωω)

]2
dωωω,

and HHHx is a positive semidefinite matrix. Substituting (32)
into the constraint on the frequency response (28), we obtain
a quadratic inequality involving xxx as

xxxTHHHxxxx+xxxTsssx + cx −δh ≤ 0.

5.4. Design Problem Formulation

Consider a filter bank as shown in Figure 4(a) with two
lifting steps. The design of such a filter bank with all of the
desirable properties (i.e., PR, linear phase, high coding gain,
good frequency selectivity, and certain vanishing moment
properties) can be formulated as a constrained optimization
problem. We employ the lifting-based parametrization intro-
duced in Theorem 1. In this way, the PR and linear-phase
conditions are automatically satisfied. We then maximize
the coding gain subject to a set of constraints, which are
chosen to ensure that the desired vanishing moment and
frequency selectivity conditions are met. In what follows,
we will show more precisely how this design problem can
be formulated as a second-order cone programming (SOCP)
problem.
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In an SOCP problem, a linear function is minimized
subject to a set of second-order cone constraints [29]. In
other words, we have a problem of the form:

minimize fff Txxx

subject to:
∥∥FFFT

i xxx+ccci
∥∥≤ fff T

i xxx+di for i = 1, . . . ,q,

where xxx ∈ R
n is the design vector containing n free vari-

ables, and fff ∈R
n, FFFi ∈R

n×mi , ccci ∈R
mi , fff i ∈R

n, and di ∈R.
The constraint

∥∥FFFT
i xxx+ccci

∥∥ ≤ fff T
i xxx + di is called a second-

order cone constraint.
Consider a filter bank satisfying Theorem 1 with two

lifting filters A1 and A2, having support sizes of 2l1,0×2l1,1

and 2l2,0×2l2,1, respectively. We use xxx to denote the vector
consisting of the 2l1,0l1,1 +2l2,0l2,1 independent lifting-filter
coefficients defined in (13). As explained previously, in
terms of the lifting-filter coefficient vector xxx, the constraint
on vanishing moments is linear and the constraint on
the frequency response of the highpass analysis filter is
quadratic.

From Section 5.2, we know that in order for a filter bank
to have N primal and Ñ dual vanishing moments, xxx needs
to be the solution of a system of

⌈
Ñ/2
⌉2 + �N/2�2 linear

equations given by
AAAxxx = bbb. (33)

In (33), AAA ∈ R
m×n with rank r and bbb ∈ R

m×1, where
m =

⌈
Ñ/2
⌉2 + �N/2�2, n = 2l1,0l1,1 + 2l2,0l2,1, and r ≤

min{m,n}. The system is underdetermined when there are
enough lifting filter coefficients such that m < n. In what
follows, we assume that the system is underdetermined so
that our eventual optimization problem will have a feasible
region containing more than one point. Let the singular
value decomposition (SVD) of AAA be AAA =UUUSSSVVVT . All of the
solutions to (33) can be parameterized as

xxx = AAA+bbb︸︷︷︸
xxxs

+VVVrφφφ = xxxs +VVVrφφφ , (34)

where AAA+ is the Moore-Penrose pseudoinverse of AAA, VVVr =
[vvvr+1 vvvr+2 · · · vvvn] is a matrix composed of the last n−r
columns of VVV , and φφφ is an arbitrary (n− r)-dimensional
vector. Henceforth, we shall use φφφ as the design vector
instead of xxx. Thus, the vanishing moment condition is
automatically satisfied for any choice of φφφ and the number
of free variables involved is reduced from n to n− r.

The design objective is to maximize the coding gain GSBC

of an L-level octave-band quincunx filter bank, which is
computed by (16) and can be expressed as a nonlinear
function of the design vector φφφ . Let G = −10log10 GSBC.
Then, the problem of maximizing GSBC is equivalent to
minimizing G. Although taking the logarithm helps improve
the numerical stability of the optimization algorithm and
reduce the nonlinearity in G, the direct minimization of
G remains a very difficult task. Our design strategy is
that, for a given parameter vector φφφ , we seek a small
perturbation δδδφφφ such that G(φφφ +δδδφφφ ) is reduced relative to

G(φφφ). Because
∥∥δδδφφφ∥∥ is small, we can write the quadratic

and linear approximations of G(φφφ +δδδφφφ ), respectively, as

G(φφφ +δδδφφφ ) ≈ G(φφφ)+gggTδδδφφφ +
1
2
δδδT
φφφQQQδδδφφφ and (35)

G(φφφ +δδδφφφ ) ≈ G(φφφ)+gggTδδδφφφ , (36)

where ggg and QQQ are, respectively, the gradient and the
Hessian of G(φφφ) at the point φφφ . Having obtained such a
δδδφφφ (subject to some additional constraints to be described
shortly), the parameter vector φφφ is updated to φφφ + δδδφφφ .
This iterative process continues until the reduction in G
(i.e.,

∣∣G(φφφ +δδδφφφ )−G(φφφ)
∣∣) becomes less than a prescribed

tolerance ε .
Now, consider the constraint on the frequency response.

In Section 5.3, we showed that for filter banks constructed
with two lifting steps, the frequency response error function
eh1 of the highpass analysis filter H1 is a quadratic polyno-
mial in xxx as given by (32). Substituting (34) into (32), we
have

eh1 = φφφTHHHφφφφφφ +φφφTsssφφφ + cφφφ , (37)

where

HHHφφφ =VVVT
r HHHxVVVr, sssφφφ =VVVT

r

(
HHHx +HHHT

x

)
xxxs +VVVT

r sssx,

cφφφ = xxxT
s HHHxxxxs +xxxT

s sssx + cx,

and HHHx, sssx, and cx are given in (32). Moreover, it follows
from the fact HHHx is positive semidefinite that HHHφφφ is also
positive semidefinite. Now, let us replace φφφ by φφφ k +δδδφφφ and
let the SVD of HHHφφφ be given by

HHHφφφ =UUUHΣΣΣVVVT
H .

Then, (37) can also be written as

eh1 =
∥∥H̃HHkδδδφφφ + s̃ssk

∥∥2 + c̃k,

and the constraint (28) becomes the second-order cone
constraint ∥∥H̃HHkδδδφφφ + s̃ssk

∥∥2 ≤ δh1 − c̃k, (38)

where

H̃HHk =ΣΣΣ
1
2UUUT

H , s̃ssk =
1
2
H̃HH

−T (
2HHHφφφφφφ k +sssφφφ

)
, and

c̃k = φφφT
k HHHφφφφφφ k +φφφT

k sssφφφ + cφφφ −‖s̃ssk‖2 .

Based on the preceding discussions, we now show how to
employ the SOCP technique to solve the problem of max-
imizing the coding gain GSBC, or equivalently minimizing
G, with the vanishing moment constraint AAAxxx = bbb as in (33)
and the frequency response constraint eh1 ≤ δh1 as in (28).
This problem can be solved via the algorithm below.

Algorithm 1 (Two-lifting-step case) This iterative algo-
rithm consists of the following steps (where k denotes the
iteration number indexed from zero):

Step 1. Compute AAA and bbb in (25) for the desired numbers
of vanishing moments, and calculate HHHφφφ , sssφφφ , and cφφφ in (37).
Then, select an initial point φφφ 0. This point can be chosen
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randomly, or chosen to be a quincunx filter bank proposed
in [18]. The vanishing moment condition is satisfied, and
because of the way in which we choose the upper bound δh1

for the frequency response error function (to be discussed
later), φφφ 0 will not violate the frequency response constraint.
In this way, the initial point is in the feasible region.

Step 2. For the kth iteration, at the point φφφ k, compute
the gradient ggg of G(φφφ) in (36), and calculate H̃HHk, s̃ssk, and
c̃k in (38). Then, solve the SOCP problem given by:

minimize gggTδδδφφφ

subject to:
∥∥H̃HHkδδδφφφ + s̃ssk

∥∥≤√δh1 − c̃k and∥∥δδδφφφ∥∥≤ β ,

(39)

where β is a given small value used to ensure that the
solution is within the vicinity of φφφ k. Then, update φφφ k

by φφφ k+1 = φφφ k + γδδδφφφ , where γ is either chosen as one
or determined by a line search explained in more detail
later. A number of software packages are available for
solving SOCP problems. In our work, for example, we use
SeDuMi [30].

Step 3. If |G(φφφ k+1)−G(φφφ k)| < ε , output φφφ ∗ = φφφ k+1,
compute xxx∗ = xxxs +VVVrφφφ ∗, and stop. Otherwise, go to step 2.

The vector xxx∗ output by the above algorithm is then the
optimal solution to this problem. The filter bank constructed
from the lifting-filter coefficient vector xxx∗ has high coding
gain, good frequency selectivity, and the desired vanishing
moment properties (as well as PR and linear phase).

Two additional comments are now in order concerning
the SOCP problem (39) in the second step of the above
iterative algorithm. In particular, the choice of β is critical
to the success of the algorithm. It should be chosen such
that

gggTδδδ ≈ G(φφφ +δδδ )−G(φφφ) for ‖δδδ‖ = β .

If β is too large, the linear approximation (36) is less
accurate, resulting in the linear term gggTδδδφφφ not correctly
reflecting the actual reduction in G. If β is too small, in the
kth iteration, the solution is restricted to an unnecessarily
small region around φφφ k, causing points outside this region
which may provide a greater reduction in G to be excluded.
For this reason, we incorporate a line search in step 2 to find
a better solution along the direction of δδδφφφ . We first evaluate
G at N0 equally spaced points between φφφ k and φφφ k +αδδδφφφ
along the direction of δδδφφφ for some α ≥ 1, including the
point φφφ k +δδδφφφ . Then, we use the point φφφ ∗

k corresponding to
the minimal G to select γ . By including a line search, in
each iteration the reduction in G is as large as the reduction
obtained without the line search. This makes the algorithm
converge with less iterations. The choice of α depends on
the choice of β . When β is large, we can choose α = 1.
When β is small, we can choose α ≥ 1. Note that a greater
value of α may imply more evaluations of the coding gain
function G in each iteration.

The second comment about step 2 concerns the choice
of the upper bound δh1 of the frequency response error
function in the SOCP problem (39). If δh1 is too small,
the feasible region of the SOCP problem may be an empty
set, especially for designs starting from a random initial
point. Therefore, for the kth iteration, we choose δh1 to be
a scaled version of the error function eh1 evaluated at φφφ k.
That is, we select

δh1 = d
(
φφφT

k HHHφφφφφφ k +φφφT
k sssφφφ + cφφφ

)
, (40)

where 0 < d ≤ 1 is a scaling factor. In this way, the error eh1

is reduced after each iteration, and the frequency response
of the highpass analysis filter H1 improves gradually with
each iteration.

5.5. Design Algorithm with Hessian

In Algorithm 1 of the preceding section, a linear approx-
imation (36) of the coding gain function G is employed.
This necessitates that the perturbation δδδφφφ be located in
a small region. For this design problem, we can instead
use the quadratic approximation in (35). In this way, the
approximation accuracy can be improved, and the solution
can be sought in a larger region. Algorithm 1 can be adapted
to utilize the quadratic approximation with some minor
changes to the SOCP problem in each iteration. In step 2,
we minimize gggTδδδφφφ + 1

2δδδ
T
φφφQQQδδδφφφ instead of gggTδδδφφφ in (39). That

is, we seek a solution to the problem

minimize gggTδδδφφφ +
1
2
δδδT
φφφQQQδδδφφφ

subject to:
∥∥H̃HHδδδφφφ + s̃ss

∥∥≤√δh1 − c̃ and∥∥δδδφφφ∥∥≤ β .

(41)

Let the SVD of 1
2QQQ be 1

2QQQ =UUUQQQΣΣΣQQQVVVT
QQQ. When QQQ is positive

semidefinite, we can rewrite the objective function as

gggTδδδφφφ +
1
2
δδδT
φφφQQQδδδφφφ =

∥∥Q̃QQδδδφφφ + s̃ssQQQ
∥∥2 + c̃Q, (42)

where

Q̃QQ =ΣΣΣ
1
2
QQQUUUT

QQQ, s̃ssQQQ =
1
2
Q̃QQ

−T
ggg, and

c̃Q = −s̃ssT
QQQs̃ssQQQ.

If we further define δ̃δδφφφ =
[
η δδδφφφ

]T
and fff = [1 0 · · · 0]T ,

then (41) becomes the SOCP problem

minimize fff T δ̃δδφφφ
subject to:

∥∥∥ ˜̃QQQδ̃δδφφφ + s̃ssQQQ
∥∥∥≤ fff T δ̃δδφφφ ,∥∥∥ ˜̃HHHδ̃δδφφφ + s̃ss
∥∥∥≤√δh1 − c̃, and∥∥∥ĨIIδ̃δδφφφ∥∥∥≤ β ,

where ˜̃QQQ =
[
000 Q̃QQ

]
, ˜̃HHH =

[
000 H̃HH

]
, and ĨII =

[
000 III
]
.

Note that (42) holds only when QQQ is positive semidefinite
and QQQ need not always be positive semidefinite. When QQQ is
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TABLE 1: Comparison of algorithms with linear and quadratic

approximations

Filter bank EX1 EX2
Approximation linear quadratic
One-level isotropic coding gain (dB) 6.86 6.86
Number of evaluations of G per iteration 10 65
Average time per iteration 0.4 1.0
Number of iterations 41 5
Total time (seconds) 20.1 5.1

not positive semidefinite, however, we can simply revert to
using a linear approximation.

When a quadratic approximation is employed, the algo-
rithm reaches an optimal solution with fewer iterations than
in the linear case, but takes longer for each iteration as the
coding gain is evaluated many more times when computing
the Hessian. To demonstrate this difference in behavior, we
designed two filter banks, EX1 and EX2, using the original
Algorithm 1 and the revised algorithm with the Hessian,
respectively. Each optimization used the same initial point.
This led to the results shown in Table 1. Clearly, very
similar optimization results are obtained for these two
designs in terms of the coding gain. For the design with the
quadratic approximation, the time used for each iteration is
increased compared to the linear-approximation case, but
the number of iterations is reduced greatly, resulting in a
much shorter overall time.

6. Design of Filter Banks with More Than Two Lift-
ing Steps

Although Algorithm 1 only works for the two-lifting-step
case, this algorithm can be generalized to design filter banks
with more than two lifting steps. When more lifting filters
are involved, however, the relationships between the filter
bank characteristics (i.e., coding gain, vanishing moment
properties and frequency selectivity) and the lifting filter
coefficients become more complicated. In this section, we
consider how to formulate the design as an SOCP problem
based on these relationships.

The computation of the coding gain in this case is
basically the same as the two-lifting-step case discussed
in Section 5.1. For an L-level octave-band quincunx filter
bank, the coding gain GSBC is computed by (16), and GSBC

is a nonlinear function of the lifting filter coefficients.

6.1. Vanishing Moments

Compared to the two-lifting-step case, the vanishing mo-
ments condition changes considerably for a filter bank as
shown in Figure 4(a) with at least three lifting steps (i.e.,
λ ≥ 2). The condition is no longer linear with respect
to the lifting-filter coefficient vector xxx. With the notations
aaak, vvvk, xxx, and EEEk introduced in Section 4, the frequency
responses {ĥk(ωωω)} of the analysis filters are given by (15),
and {ĥk(ωωω)} can each be expressed as a polynomial in xxx.

In order for this filter bank to have Ñ dual vanishing
moments, the frequency response ĥ1(ωωω) of the highpass
analysis filter should have a Ñth-order zero at [0 0]T .
Therefore, 	mmmĥ1a(0,0) = 0 for all mmm ∈ (Z∗)2 such that
|mmm| ∈Ze and |mmm|< Ñ, where ĥ1a(ωωω) is the signed amplitude
response of H1 as defined in (2). As H1 has linear phase and
ĥ1(ωωω) can be viewed as a polynomial in xxx, ĥ1a(ωωω) and thus
ĥ(mmm)

1a (0,0) can also be viewed as polynomials in xxx. In this
way, in order to have Ñ dual vanishing moments, the lifting-
filter coefficients in xxx need to satisfy

⌈
Ñ/2
⌉2

polynomial
equations. Similarly, in order to have N primal vanishing
moments, the frequency response ĥ(mmm)

0 (ωωω) of the lowpass
analysis filter H0 should satisfy 	mmmĥ0a(π,π) = 0 for all
mmm ∈ (Z∗)2 such that |mmm| ∈ Ze and |mmm|< N. It follows that xxx
needs to satisfy �N/2�2 polynomial equations.

6.2. Frequency Responses

Recall that in the two-lifting-step case, the frequency re-
sponse constraint is defined in (27) and (28), and the
constraint on the highpass analysis filter is a second-order
cone. For filter banks with more than two lifting steps, we
define the frequency response constraint in a similar way.
The frequency response error functions of the lowpass and
highpass analysis filters, however, are at least fourth-order
polynomials in the lifting filter coefficients. This is because
the frequency responses of the analysis filters H0 and H1 are
at least quadratic polynomials in the lifting-filter coefficient
vector xxx when more than two lifting filters are involved.

6.3. Design Problem Formulation

In the two-lifting-step case, we saw that in terms of the
lifting filter coefficients, the vanishing moment condition is
a linear system of equations and the frequency response
constraint is a second-order cone. For filter banks with
more than two lifting steps, the design problem becomes
increasingly complicated as the constraints on vanishing
moments and frequency responses become higher-order
polynomials in the lifting filter coefficients. In order to use
the SOCP technique, the constraints on vanishing moments
and the frequency response must be approximated by linear
and quadratic constraints, respectively.

We deal with the coding gain GSBC(xxx) with the same
strategy as in the two-lifting-step case. The linear approxi-
mation of G with G(xxx) = −10log10 GSBC(xxx) is given by

G(xxx+δδδxxx) = G(xxx)+gggTδδδxxx, (43)

where ggg is the gradient of G at point xxx. We iteratively seek
a small perturbation δδδxxx in xxx such that G(xxx+δδδxxx) is reduced
relative to G(xxx) until the difference between G(xxx+δδδxxx) and
G(xxx) is less than a prescribed tolerance.

As discussed in Section 6.1, the constraint on vanishing
moments is a set of polynomial equations in xxx. We substitute
xxx with xxxk +δδδxxx. Provided that ‖δδδxxx‖ is small, the quadratic
and higher-order terms in δδδxxx can be neglected, and these
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polynomial equations can be approximated by the linear
system

AAAkδδδxxx = bbbk. (44)

In this way, the filter bank constructed with lifting filter
coefficients xxxk + δδδxxx has the desired vanishing moment
properties. Due to the problem formulation, the moments
of interest are only guaranteed to be small, but not exactly
zero. In practice, however, the moments are typically very
close to zero, as will be illustrated later via our design
examples.

Now we consider the frequency response of the highpass
analysis filter H1. The weighted error function eh1 is defined
in (27). In order to have good frequency selectivity, the
function eh1 must satisfy the constraint (28). From (5),
ĥ1a(ωωω) has at least a second-order term in xxx. Therefore, eh1

is at least a fourth-order polynomial in xxx. Using a similar
approach as above, we replace xxx by xxxk + δδδxxx in ĥ1a(ωωω)
with ‖δδδxxx‖ being small, and neglect the second- and higher-
order terms in δδδxxx. Now, ĥ1a(ωωω) is approximated by a linear
function of δδδxxx. Using (27), a quadratic approximation of
eh1 is obtained as

eh1 = δδδT
xxx HHHkδδδxxx +δδδT

xxx sssk + ck,

where HHHk is a symmetric positive semidefinite matrix, and
HHHk, sssk, and ck are dependent on xxxk. Therefore, the constraint
eh1 ≤ δh1 can be expressed in the form of a second-order
cone constraint as∥∥H̃HHkδδδxxx + s̃ssk

∥∥2 ≤ δh1 − c̃k. (45)

Note that the approximation is not applied to eh1 , but
ĥ1a(ωωω). In this way, the matrix HHHk is guaranteed to be
positive semidefinite, which allows for the form of a second-
order cone as in (45).

Based on the preceding approximation methods of the
vanishing moment condition and frequency response con-
straint, the design of filter banks with more than two lifting
steps can be formulated as an iterative SOCP problem. To
solve this design problem, we use a scheme similar to
Algorithm 1. Let K be the number of lifting steps. The
modified algorithm is given below.

Algorithm 2 (More-than-two lifting-step case) This
iterative algorithm consists of the following steps (where k
denotes the iteration number indexed from zero):

Step 1. Select an initial point xxx0 such that the resulting
filter bank has the desired number of vanishing moments.
We can choose the first two lifting filters using the method
proposed for the two-lifting-step case, and then set the
coefficients of the other K−2 lifting filters to be all zeros.
Alternatively, we can randomly select the coefficients of the
first K−2 filters, and then use the last two lifting filters to
provide dual and primal vanishing moments. In this way,
the filter bank constructed with the initial point xxx0 has the
desired number of vanishing moments. Moreover, since the
upper bound δh1 for the frequency response error function

is chosen in the same way as in Algorithm 1, the frequency
response constraint will not be violated. Therefore, xxx0 is
inside the feasible region.

Step 2. For the kth iteration, at the point xxxk, compute
the gradient ggg of G(xxx), AAAk and bbbk in (44), and H̃HHk, s̃ssk, and
c̃k in (45). Then, solve the SOCP problem:

minimize gggTδδδxxx

subject to: AAAkδδδxxx = bbbk,∥∥H̃HHkδδδxxx + s̃ssk
∥∥≤√δh1 − c̃k, and

‖δδδxxx‖ ≤ β .

(46)

The linear constraint AAAkδδδxxx =bbbk can be parameterized as in
Algorithm 1 to reduce the number of design variables, or be
approximated by the second-order cone ‖AAAkδδδxxx −bbbk‖ ≤ εδ
with εδ being a prescribed tolerance. Then, we can use the
optimal solution δδδxxx to update xxxk by xxxk+1 = xxxk +δδδxxx. We can
also optionally incorporate a line search into this process
to improve the efficiency of the algorithm.

Step 3. If |G(xxxk+1)−G(xxxk)|< ε , then output xxx∗ = xxxk+1

and stop. Otherwise, go to step 2.

Upon termination of the above algorithm, the output xxx∗
will correspond to a filter bank with all of the desired
properties. In step 2, we deal with the constant δh1 in the
same way as in Algorithm 1 (i.e., δh1 is chosen to be a
scaled version of the error function evaluated at the point
xxxk). We use a variable scaling factor D in the frequency
response error function (27) since the Nyquist gain of H1

is dependent on the lifting filter coefficients in this case. For
the kth iteration, we choose D to be the Nyquist gain of the
highpass analysis filter obtained from the previous iteration
(i.e., D = ĥ1a(π,π) with ĥ1a(ωωω) being the signed amplitude
response of H1 obtained from the (k−1)th iteration).

Due to the linear approximation (44), the moments as-
sociated with the desired vanishing moment conditions are
only guaranteed to be small but not necessarily zero. An
adjustment step can be applied after step 3 to further reduce
the moments in question at the expense of a slight decrease
in the coding gain. This step is formulated as follows. Let
{Γi(xxx)} = 0 be the set of polynomial equations that the
lifting-filter coefficient vector xxx needs to satisfy to achieve
N primal and Ñ dual vanishing moments. When ‖δδδxxx‖ is
small, the linear approximation of Γi(xxx∗ +δδδxxx) is obtained
by

Γi(xxx∗ +δδδxxx) = Γi(xxx∗)+gggT
i δδδxxx,

where gggi is the gradient of Γi at the point xxx∗. This ad-
justment process can then be formulated as the following
optimization problem:

minimize ∑
i

[
Γi(xxx∗)+gggT

i δδδxxx
]2

subject to: ‖δδδxxx‖ ≤ βa,

(47)

where βa is a prescribed small value. The objective function
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of (47) can be rewritten as

∑
i

(
Γi(xxx∗)+gggT

i δδδxxx
)2

= δδδT
xxx

(
∑
i

gggiggg
T
i

)
δδδxxx +δδδT

xxx

[
2∑

i
Γi(xxx∗)gggi

]
+∑

i
Γ2

i (xxx
∗).

Since ∑i gggigggT
i is positive semidefinite, the objective function

can be expressed in the form
∥∥H̃̃H̃Hδδδδδδxxx + s̃ssδδδ

∥∥2 + c̃δδδ . If we
introduce another variable η to be the upper bound of the
term

∥∥H̃̃H̃Hδδδδδδxxx + s̃ssδδδ
∥∥, the problem in (47) becomes

minimize η
subject to:

∥∥H̃̃H̃Hδδδδδδxxx + s̃ssδδδ
∥∥≤ η and

‖δδδxxx‖ ≤ βa.

The above problem is equivalent to the SOCP problem

minimize fff T δ̃̃δ̃δxxx

subject to:
∥∥∥ ˜̃H̃̃H̃̃Hδδδδδδxxx + s̃ssδδδ

∥∥∥≤ fff T δ̃̃δ̃δxxx and∥∥Ĩ̃ĨIδδδxxx
∥∥≤ βa,

where δ̃δδφφφ =
[
η δδδφφφ

]T
, fff = [1 0 · · · 0]T , ˜̃HHHδδδ =

[
000 H̃HHδδδ

]
,

and ĨII =
[
000 III
]
.

In Algorithm 2, instead of using the linear approxima-
tion (43) of the coding gain function G, we can also employ
the quadratic approximation of G given by

G(xxx+δδδxxx) ≈ G(xxx)+gggTδδδxxx +
1
2
δδδT

xxx QQQδδδxxx,

where ggg and QQQ are the gradient and the Hessian of G(xxx)
at the point xxx, respectively. A change similar to that used
in Section 5.5 can be made to the SOCP problem (46) in
step 2 of Algorithm 2.

The approximation method for the frequency response
constraint explained previously in this section can also
be used to control the frequency response of the lowpass
analysis filter H0 for filter banks with two or more lifting
steps. For example, in the two-lifting-step case, the analysis
lowpass filter frequency response ĥ0(ωωω) is a quadratic
polynomial in the design vector φφφ . We can replace φφφ by
φφφ k + δδδφφφ in ĥ0(ωωω) and keep only the constant and first-
order terms. Then, the error function eh0 computed with this
linear approximation of ĥ0(ωωω) becomes a quadratic function
of δδδφφφ , and the constraint eh0 ≤ δh0 can be expressed as a
second-order cone in δδδφφφ .

7. Design Examples

In order to demonstrate the effectiveness of our proposed
design methods, we now present several examples of filter
banks constructed using Algorithms 1 and 2. In passing, we
note that our software implementation of these algorithms
(written in MATLAB) is available on the Internet [31]. For
all of the design examples in this section, the optimization is
carried out for maximal coding gain assuming an isotropic

TABLE 2: Lifting-filter coefficients for the (a) OPT1, (b) OPT3,

and (c) OPT4 filter banks (where the coefficient vectors {aaai} are as

defined in (6) and (8))

(a)
aaa1 aaa2

-0.0159198316 0.0141419383
0.0570315087 -0.0475750610

-0.3319070666 0.1826552865
-0.3336501890 0.1839773572
0.0596966372 -0.0501021101

-0.0177016160 0.0165757568
0 0

-0.0002158944 0.0073072183
0.0584826734 -0.0487234955
0.0590711965 -0.0488388947

-0.0014144431 0.0082567802
0 0
0 0
0 0

-0.0171945340 0.0165064152
-0.0162784411 0.0158188087

0 0
0 0

(b)
aaa1 aaa2 aaa3

0.0121916538 -0.0412467652 0.0312090846
-0.2252324567 0.2230448713 -0.1065049947
-0.2244562781 0.2234323639 -0.1060172665
0.0131716139 -0.0423652185 0.0301113988

0 0 0
0.0123383222 -0.0429058837 0.0289842780
0.0125969226 -0.0419932594 0.0317300494

0 0 0

(c)
aaa1 aaa2

0.0634983772 -0.0451377582
-0.1474840240 0.0687594491
-0.2023765008 0.1518386544
0.0294352099 -0.0326419204

0 0
0.0622324334 -0.0460766038
0.0202133422 -0.0240443429

0 0
aaa3 aaa4

-0.2321916679 0.2012955400
-0.0651787971 0.0186944256

image model with correlation coefficient ρ = 0.95 and a
six-level wavelet decomposition.

Using our proposed methods, we designed three filter
banks, henceforth referred to by the names OPT1, OPT3,
and OPT4. The lifting-filter coefficient vectors {aaai} (as
defined in (6) and (8)) for these three filter banks are given
in Table 2. For comparison purposes, we also consider four
filter banks produced using methods previously proposed
by others, with three being quincunx and one being sep-
arable. The first two quincunx filter banks are constructed
using the technique of [18], and are henceforth referred
to by the names KS1 and KS2. The third quincunx filter
bank is the so called (6,2) filter bank proposed in [9],
which we henceforth refer to by the name G62. The one
separable filter bank considered herein is the well-known
9/7 filter bank employed in the JPEG-2000 standard [1].
Some important characteristics of the various filter banks
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FIGURE 7: Frequency responses of the (a) lowpass analysis and
(b) lowpass synthesis filters of OPT1.
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FIGURE 8: Frequency responses of the (a) lowpass analysis and
(b) lowpass synthesis filters of OPT3.
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FIGURE 9: Frequency responses of the (a) lowpass analysis and
(b) lowpass synthesis filters of OPT4.

are shown in Table 3. The OPT1 filter bank was designed
using Algorithm 1 with two lifting steps. The next two filter
banks, referred to as OPT3 and OPT4, were designed using
Algorithm 2 with three or more lifting steps, and thus, the
desired vanishing moment conditions are only guaranteed
to be met approximately (i.e., the moments in question are
only guaranteed to be close to zero). For each of these
two filter banks, the order of the largest nonzero moment
(of those in question) is shown in the rightmost column
of Table 3. The frequency responses of the analysis and
synthesis lowpass filters are shown in Figures 7, 8, and 9.
Since the highpass filter frequency responses are simply
modulated versions of the lowpass ones, the former have
been omitted here due to space constraints. The primal scal-
ing and wavelet functions are illustrated in Figures 10, 11,
and 12.

From Table 3, clearly, the optimal designs, OPT1, OPT3,
and OPT4, each have a higher isotropic coding gain than
the KS1, KS2, and G62 quincunx filter banks. Furthermore,
the designs with three and four lifting steps also have a
higher isotropic coding gain than the 9/7 filter bank, which

(a) (b)

FIGURE 10: The (a) primal wavelet and (b) primal scaling functions for
OPT1.

(a) (b)

FIGURE 11: The (a) primal wavelet and (b) primal scaling functions for
OPT3.

(a) (b)

FIGURE 12: The (a) primal wavelet and (b) primal scaling functions for
OPT4.

is very impressive considering that the 9/7 filter bank is well
known for its high coding gain. For OPT3 and OPT4, the
zeroth moments are nearly vanishing on the order of 10−10

to 10−12, which is small enough to be considered as zero
for all practical purposes. The first moments are automat-
ically zero due to the linear-phase property as previously
discussed in Section 6.1. Lastly, from Figures 7 to 12, we
see that the optimal filter banks have good diamond-shaped
passbands/stopbands and smooth primal scaling and wavelet
functions.

8. Image Coding Results and Analysis

In order to further demonstrate the utility of our new filter
banks, they were employed in an enhanced version of the
embedded lossy/lossless image codec of [32]. This codec
can be used with either nonseparable or separable filter
banks based on the lifting framework. Some additional
information about the codec is included in Appendix I.
For test data, all twenty-seven (reasonably-sized) grayscale
images from the JPEG-2000 test set [33] were used in our
experiments.
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TABLE 3: Comparison of filter bank characteristics.

Name Support of Support of analysis filters Coding gain (dB) Vanishing moments
lifting filters† Lowpass Highpass Isotropic Separable Ñ N Max.

OPT1 6×6, 6×6 13×13 7×7 12.06 13.59 2 2
OPT3 4×4, 4×4, 4×4 9×9 13×13 12.23 13.26 2 2 10−12

OPT4 4×4, 4×4, 2×2, 2×2 13×13 11×11 12.21 13.07 2 2 10−10

KS1 6×6, 6×6 13×13 7×7 11.95 13.64 6 6
KS2 8×8, 4×4 15×15 11×11 11.75 13.92 8 4
G62 6×6, 2×2 13×13 11×11 11.64 12.98 6 2
9/7 2, 2, 2, 2 9 7 12.09 14.88 4 4
†Support regions are diamond-shaped for OPT1, OPT3, OPT4, KS1, and KS2, and rectangular-shaped for G62.

TABLE 4: Statistical summary of the lossy compression results for

twenty-seven test images, each coded at compression ratios of 128, 64,

32, and 16. Percentage of cases where the OPT1, OPT3, and OPT4

optimal designs outperform the KS1, KS2, and G62 (quincunx) filter

banks.

Filter banks OPT1 OPT3 OPT4
KS1 78% 75% 72%
KS2 83% 82% 81%
G62 95% 94% 93%

Using each of the filter banks listed in Table 3, the test
images were coded in a lossy manner at four compression
ratios (i.e., 128, 64, 32, and 16), and then decoded. In
each case, the difference between original and reconstructed
images was measured in terms of PSNR. In the cases of
quincunx and separable filter banks, six and three levels of
decomposition were employed, respectively.

A statistical summary of all of the lossy compression
results (i.e., for the twenty-seven test images coded at four
compression ratios) obtained with the quincunx filter banks
is provided in Table 4. In particular, the table shows the
percentage of cases where the OPT1, OPT3, and OPT4
optimal designs outperform the KS1, KS2, and G62 filter
banks. We can see that our new filter banks outperform
KS1 in 70% to 80% of the cases, outperform KS2 in more
than 80% of the cases, and outperform G62 in more than
90% of the cases. It is worth noting that the KS1 filter
bank has the best performance among all of the quincunx
filter banks constructed using the method in [18] with filter
supports comparable to our design examples, and the G62
filter bank has the best performance among the three filter
banks in [9]. In other words, we are comparing our optimal
designs to the very best competing quincunx filter banks
produced by other methods.

For illustrative purposes, we now provide a subset of
the lossy coding results, namely those obtained for the
test images sar2 and gold. Information about these
two images is provided in Table 5. The sar2 image is
more isotropic (than separable) in nature, while the gold
image is more separable, as demonstrated by the contour
plots of their normalized autocorrelation functions shown
in Figure 13. The lossy coding results for the sar2 and
gold images are shown in Table 6. Obviously, our three
optimal designs (i.e., OPT1, OPT3, and OPT4) perform
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FIGURE 13: The contour plots of the autocorrelation functions of the
(a) sar2 and (b) gold images.

TABLE 5: Small subset of test images.

Image Size bpp Model Description
sar2 800×800 12 isotropic synthetic aperture radar
gold 720×576 8 separable houses

very well, consistently outperforming the KS1, KS2, and
G62 quincunx filter banks in all cases. For example, in
the case of the sar2 image at a compression ratio of 16,
our optimal designs outperform the KS1, KS2, and G62
filter banks by margins of 0.12 to 0.23, 0.29 to 0.4, and
0.42 to 0.53 dB, respectively. Moreover, for the isotropic
sar2 image, our optimal designs even achieve better results
than the 9/7 filter bank in most cases. For example, the
OPT3 design outperforms the 9/7 filter bank at all of the
four compression ratios considered (for the sar2 image).
This is quite an encouraging result, as the 9/7 filter bank is
generally held to be one of the very best in the literature1.

The reconstructed images associated with the optimal
filter banks also have subjective quality comparable to
that of the KS1, KS2, G62, and 9/7 filter banks. As an
example, the lossy reconstructed images for sar2 using
these filter banks are shown in Figure 14. It is apparent from
the figures that the reconstructed images corresponding to
OPT1, OPT3, and OPT4 have good subjective quality.

1Of course, the idea that nonseparable filter banks can offer improved
performance (over separable ones) for images with nonseparable (e.g.,
isotropic) statistics is not a new one. In fact, it is this very idea that
has inspired much research in the area of nonseparable filter banks. For
example, this idea has been expressed in [21] as well as many other works.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)
FIGURE 14: Part of the lossy reconstructions obtained for the sar2 image
at a compression ratio of 32 using the (a) OPT1, (b) OPT3, (c) OPT4,
(d) KS1, (e) KS2, (f) G62, and (g) 9/7 filter banks.

TABLE 6: Lossy compression results for the (a) sar2 and (b) gold

images.

(a)
CR† PSNR (dB)

OPT1 OPT3 OPT4 KS1 KS2 G62 9/7
128 22.73 22.77 22.75 22.66 22.56 22.39 22.75
64 23.54 23.60 23.61 23.45 23.34 23.13 23.56
32 24.73 24.82 24.79 24.62 24.49 24.29 24.70
16 26.67 26.78 26.75 26.55 26.38 26.25 26.62

(b)
CR† PSNR (dB)

OPT1 OPT3 OPT4 KS1 KS2 G62 9/7
128 27.14 27.19 27.12 26.98 26.92 26.72 27.16
64 28.90 28.95 28.95 28.82 28.71 28.47 29.06
32 30.90 30.97 30.95 30.81 30.70 30.50 31.28
16 33.36 33.41 33.35 33.28 33.17 32.97 33.82

†compression ratio

9. Conclusions

In this paper, we have proposed two new optimization-based
methods (and variations thereof) for the design of quin-
cunx filter banks for image coding. The proposed design
techniques (i.e., Algorithms 1 and 2) yield linear-phase PR
systems with high coding gain, good frequency selectivity,
and certain prescribed vanishing moment properties.

Using Algorithms 1 and 2, we designed several filter
banks with all of the desirable properties. These opti-
mal filter banks were employed in an image codec and
their coding performance was compared to that of four
previously-proposed filter banks (three quincunx and one
separable). The experimental results show that our new filter
banks outperform the three previously-proposed quincunx
filter banks in 72% to 95% of the test cases. Thus, our
design methods clearly yield superior filter banks compared
to other quincunx filter-bank design methods. Moreover,
in some cases, our optimal designs even outperform the
(separable) 9/7 filter bank, which is considered to be one of
the very best in the literature. These results demonstrate the
effectiveness of our new design techniques. Furthermore,
through the use of our design methods, it is possible to de-
velop higher-performance image codecs based on quincunx
filter banks.
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Appendix I
Image Codec

The image codec [32] used for collecting experimental re-
sults herein was written in C++ and supports both lossy and
lossless compression of grayscale images. The codec was
partly inspired by technologies contained in the JPEG-2000
Verification-Model 0.0 software [34]. Although originally
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developed in [32], the codec has undergone major changes
since that time in order to improve its coding performance.
The codec employs reversible integer-to-integer versions of
wavelet transforms [25] (which can be trivially constructed
from the lifting realization of a filter bank).

The general structure of the codec is as follows. In the
encoder, a wavelet transform is first applied to the input
data. Then, a bitplane coder is applied independently to
each of the resulting subband signals. The bitplane coder
employs three coding passes per bitplane (i.e., predicted
significant, refinement, and predicted insignificant passes),
similar in spirit to those found in the JPEG-2000 codec [1],
for example. The symbols generated by the bitplane coder
are then entropy coded using a context-based adaptive
arithmetic coder. The ordering of the data in the codestream
is optimized for rate-distortion performance, and rate con-
trol is achieved solely by the truncation of the embedded
codestream. The structure of the decoder essentially mirrors
that of the encoder.
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