
An Improved Lawson Local-Optimization Procedure and Its Application

by

Yue Fang

B.Sc., Nanjing University of Posts and Telecommunications, 2012

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

c© Yue Fang, 2018

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

An Improved Lawson Local-Optimization Procedure and Its Application

by

Yue Fang

B.Sc., Nanjing University of Posts and Telecommunications, 2012

Supervisory Committee

Dr. Michael D. Adams, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Alexandra Branzan Albu, Departmental Member

(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Michael D. Adams, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Alexandra Branzan Albu, Departmental Member

(Department of Electrical and Computer Engineering)

ABSTRACT

The problem of selecting the connectivity of a triangulation in order to minimize

a given cost function is studied. This problem is of great importance for applications,

such as generating triangle mesh models of images and other bivariate functions.

In early work, a well-known method named the local optimization procedure

(LOP) was proposed by Lawson for solving the triangulation optimization problem.

More recently, Yu et al. proposed a variant of the LOP called the LOP with lookahead

(LLOP), which has proven to be more effective than the LOP. Unfortunately, each

of the LOP and LLOP can only guarantee to yield triangulations that satisfy a weak

optimality condition for most cost functions. That is, the triangulation optimized by

the LOP or LLOP is only guaranteed to be such that no single edge flip can reduce the

triangulation cost. In this thesis, a new optimality criterion named n-flip optimality

is proposed, which has proven to be a useful tool for analyzing the optimality prop-

erty. We propose a more general framework called the modified LOP (MLOP), with

several free parameters, that can be used to solve the triangulation-cost optimization

problem. By carefully selecting the free parameters, two MLOP-based methods called

the MLOPB(L,M) and MLOPC(L) are derived from this framework. According to

the optimality property introduced in the thesis, we have proven our proposed meth-

ods can satisfy a stronger optimality condition than the LOP and LLOP. That is, the

triangulation produced by our MLOP-based methods cannot have their cost reduced

by any single edge flip or any two edge flips. Due to satisfying this stronger opti-

mality condition, our proposed methods tend to yield triangulations of significantly

lower cost than the LOP and LLOP methods.

iv

In order to evaluate the performance of our MLOP-based methods, they are com-

pared with two other competing approaches, namely the LOP and LLOP. Experi-

mental results show that the MLOPB and MLOPC methods consistently yield trian-

gulations of much lower cost than the LOP and LLOP. More specifically, our MLOPB

and MLOPC methods yield triangulations with an overall median cost reduction of

16.36% and 16.62%, respectively, relative to the LOP, while the LLOP can only yield

triangulations with an overall median cost reduction of 11.49% relative to the LOP.

Moreover, our proposed methods MLOPB(2, i) and MLOPA(i) are shown to produce

even better results if the parameter i is increased at the expense of increased compu-

tation time.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables vii

List of Figures viii

Acknowledgements ix

Dedication x

1 Introduction 1

1.1 Triangulation Connectivity Optimization 1

1.2 Historical Perspective . 3

1.3 Overview and Contribution of the Thesis 4

2 Preliminaries 7

2.1 Overview . 7

2.2 Notation and Terminology . 7

2.3 Concepts in Computational Geometry 8

2.4 Triangle Mesh Models . 10

2.5 Halfedge Data Structure . 11

2.6 Triangulation-Cost Optimization Problem 11

2.7 Local Optimization Procedure (LOP) and Look-ahead LOP (LLOP) . 15

2.8 Triangulation Cost Function . 15

3 Proposed Methods and Their Evaluation 18

vi

3.1 Overview . 18

3.2 n-Flip Optimality . 18

3.3 Proposed LOP Variant: The Modified LOP (MLOP) 19

3.3.1 Additional Notation . 23

3.3.2 Good Flip-Sequence Selection Policies 24

3.3.3 Permissible Flip-Sequence Policies 24

3.3.4 Determination of Suspect Edges 28

3.3.5 Proposed Methods for Using the MLOP 28

3.4 Optimality Properties of the MLOP, LOP and LLOP 30

3.5 Evaluation of Proposed LOP . 32

4 Conclusions and Future Research 41

4.1 Conclusions . 41

4.2 Future Research . 42

A Software User Manual 43

A.1 Introduction . 43

A.2 Installing the Software . 43

A.3 Detailed Program Descriptions . 44

A.3.1 The optimize_mesh Program 45

A.3.2 The generate_mesh Program 48

A.3.3 The two_flip_optimal Program 51

A.4 Examples of Software Usage . 51

Bibliography 54

vii

List of Tables

Table 3.1 Parameter selections for defining various permissible flip-sequence

policies using Algorithm 2. 27

Table 3.2 Triangulation costs obtained using the various optimization meth-

ods. (a) Results for a representative subset of the individual test

cases. (b) Average rankings taken across all test cases. 34

Table 3.3 Comparison of reduction in triangulation cost obtained with var-

ious methods relative to the LOP. 35

Table 3.4 Triangulation costs obtained using MLOPB(2,M) for various choices

of M . 38

Table 3.5 Triangulation costs obtained using MLOPC(L) for various choices

of L . 39

Table A.2 Choices of triangulation-cost function 47

Table A.3 Choices of good flip-sequence selection policies 47

Table A.4 Choices of history level . 47

Table A.5 Choices of permissible flip-Sequence policies 48

Table A.6 Choices of response mode when a potential cycles is detected . . 48

viii

List of Figures

Figure 1.1 Examples of (a) triangle mesh model and (b) triangulation of

image domain. 2

Figure 2.1 Examples of (a) convex and (b) non-convex sets 8

Figure 2.2 Convex hull example. (a) A set P of points. (b) The convex hull

of P . 9

Figure 2.3 Triangulation example (a) a set P of points, (b) a triangulation

of P , and (c) another triangulation of P 10

Figure 2.4 Mesh model of a bivariate function φ. (a) A bivariate function φ,

(b) the triangulation in the image domain, and (c) the resulting

triangle mesh model. 12

Figure 2.5 Pictorial view of the halfedge data structure. 13

Figure 2.6 An example of parts of a triangulation with flippable and unflip-

pable edges. (a) Flippable edge e, (b) unflippable edge e, and

(c) unflippable edge e. 14

Figure 2.7 An example of an edge flip in part of triangulation. (a) Before

and (b) after an edge flip is applied to the edge e. 14

Figure 2.8 an quadrilateral vivjvkvl with edge e = vivj as diagonal 16

Figure 3.1 Computation time versus mesh size for (a) MLOPB(2, 2) with

SE, (b) MLOPB(2, 2) with ABN, (c) MLOPB(2, 2) with JND,

(d) MLOPC(2) with SE, (e) MLOPC(2) with ABN, and (f) MLOPC(2)

with JND. 40

ix

ACKNOWLEDGEMENTS

This thesis would never been done without the help and support from numerous peo-

ple. I would like to take this opportunity to express my thanks to certain individuals

in particular:

To my supervisor Dr. Michael Adams. Thank you for your guidance, encour-

agement, and extreme patience to me. I would like to express my sincere grat-

itude and deep appreciate to you for all the things you have taught me. You

spent a lot of time and effort on teaching me C++, which is a precious asset

for my future career. Without your mentoring in my research project coding,

result analysis, and academic writing, this thesis would not have been written.

It has been such a pleasure working with you.

To my committe member Dr. Alexandra Branzan Albu. Thank you for be-

ing on my supervisory committee and spending time on reviewing my thesis.

To my course instructors. I would like to express my gratitudet to Dr. Alexandra

Branzan Albu, Dr. Frank Ruskey, Dr. T. Aaron Gulliver, and Dr. Wu-Sheng

Lu. Thank you for offering all the fantastic lectures.

To my friends. I wish to thank my friends, Dan Han, Yue Tang, Xiao Feng, and all

other friends, who have helped me during my study. I must also acknowledge

our research group members, Ali Mostafavian, Badr El Marzouki, Paul Guo,

Jay Luo, Xiao Ma, Zhenmai Hu, and others. I have learnt a lot in our group

meetings from your presentation. I am grateful for being in the same research

group with you.

To my dearest wife and family . I would like to thank my wife Zhu Tian. Your

support has been very important to me. I am so lucky to have you showing up

in my life. My dearest parents, Jianglin Fang and Zuanru Yuan, thank you for

your unconditional love and support. Your encouragement and support have

given me the strength to overcome the difficulty.

x

DEDICATION

To my family.

1

Chapter 1

Introduction

1.1 Triangulation Connectivity Optimization

Triangle meshes are used extensively to represent bivariate functions in a variety of

scientific applications, such as, for representing images in signal processing, digital

elevation maps in geographic information systems, and math functions in surface

modelling. With a triangle mesh model of a bivariate function, the image domain is

partitioned by a triangulation into a set of triangle faces and then over each face, an

approximating function is constructed. To better illustrate the triangle mesh and tri-

angulation, we provide an example in Figure 1.1. Figure 1.1(a) shows a triangle mesh

model for representing a bivariate function. A triangulation is formed by partitioning

the image domain of the bivariate function into a set of nonoverlapping triangles, as

illustrated in Figure 1.1(b). By constructing an approximation function over each

face of this triangulation, the model in Figure 1.1(a) is obtained.

In many geometric algorithms, it is necessary to compute a triangulation of a given

set of points. One commonly used triangulation is the Delaunay triangulation [17].

The connectivity (i.e., how the points in the triangulation are connected by edges)

chosen by Delaunay triangulation, however, is extremely limiting and almost never the

very best choice in practice [34]. Furthermore, in some contexts, it may be necessary

to choose the triangulation connectivity in such a way as to minimize, in some sense,

a given cost function. For example, such an optimization is often needed in mesh-

generation algorithms based on data-dependent triangulations [19, 31, 33, 18, 27, 28].

Although numerous approaches to solving the triangulation connectivity optimization

problem are possible, a very popular class of solution techniques is the class based on

2

(a)

(b)

Figure 1.1: Examples of (a) triangle mesh model and (b) triangulation of image
domain.

edge flips. The basic idea in these methods is to repeatedly apply simple transforma-

tions, called edge flips, to a triangulation in order to reduce the triangulation cost and

ultimately obtain an optimal solution. Finding good computationally-efficient meth-

ods for choosing the triangulation connectivity based on the edge flips, however, is

quite challenging. In this thesis, this particular connectivity-selection problem is the

main interest and typically solved by formulating problem in terms of optimization.

3

1.2 Historical Perspective

As stated earlier, because of the extensive use of triangulations, many triangulation-

connectivity optimization schemes have been developed over the years. One very

commonly used triangulation connectivity is that based on the Delaunay triangula-

tion [17]. The connectivity of a Delaunay triangulation is determined solely by the

geometry of the points being triangulated. One important feature of the Delaunay

triangulation is that a Delaunay triangulation is unique for a given set of sample

points if no four points are co-circular. Even if the degeneracy occurs (i.e., four sam-

ple points are co-circular), a unique Delaunay triangulation can be obtained easily

by applying an appropriate technique, such as the preferred directions scheme [13].

In addition to that, the Delaunay triangulation maximizes the minimum of all the

interior angles of the triangles in a triangulation. This tends to avoid long and thin

(i.e. sliver) triangles in the triangulation. Nevertheless, sliver triangles are not always

a bad choice if they are chosen carefully [34]. For example, sliver triangles are very

suitable for modelling functions that have regions with high second-order derivatives

in one direction as compared to others. In images, this kind of region often corre-

sponds to image edges. This finding led to the use of data-dependent triangulations.

Unlike the Delaunay triangulation, the connectivity of data-dependent triangulations

can be chosen arbitrarily based on the information associated with the sample points

to be triangulated.

For a data-dependent triangulation, one very popular class of triangulation-con-

nectivity optimization methods is the class based on edge flips. The best known

optimization method in this class is the local optimization procedure (LOP)

proposed by Lawson [25], which works by starting with a given triangulation and then

transforming the triangulation by applying a single edge flip in each step. Relatively

more recently, Yu, Morse, and Sederberg [44] proposed a variant of the LOP called the

LOP with lookahead, which we refer to hereafter as the lookahead LOP(LLOP).

The LLOP is similar to the LOP in that the LLOP also applies edge flips to a

triangulation until the triangulation is optimal. The LLOP, however, differs from

the LOP in that, in addition to allowing a single edge flip in each step, the LLOP

also allows a sequence of two edge flips, where the two edges share a common face.

In [44], the LLOP was shown to yield triangulations of significantly lower cost than

the LOP, but at the expense of increased computation time. Moreover, it was also

noted [44, p. 66] that the LLOP is able to produce triangulations of lower cost than

4

those obtained using the more computationally expensive method in [36], which is

based on simulated annealing.

Since the time of their proposal, the LOP and LLOP have been used in many

applications, especially those for generating data-dependent triangulations, and have

proven useful for constructing mesh models of images, elevation maps, and other

bivariate functions [27, 28, 19, 31, 33, 18, 21]. Such mesh models, which are par-

ticularly useful for handling content-adaptive sampling, have proven useful in many

applications, including: feature detection [14], pattern recognition [30], computer

vision [35], image restoration [11], tomographic reconstruction [12], filtering [20], in-

terpolation [37, 38], and image/video coding [7, 32, 26, 41, 15, 22, 6]. For example,

two highly-effective mesh-generation frameworks for constructing mesh models of im-

ages were proposed in [27, 28] based on the LOP and LLOP. Through the use of the

LOP and LLOP, triangulation connectivity can be chosen optimally so as to minimize

approximation error. Since the LOP and LLOP are useful in many contexts such as

those above, many applications could benefit from any further improvements to the

LOP and LLOP, leading to our interest in these methods herein.

1.3 Overview and Contribution of the Thesis

This thesis is concerned with addressing the problem of selecting the connectivity of a

triangulation in order to minimize, in some sense, a given cost function. In this thesis,

a new notion of optimality, known as n-flip optimality, is proposed, which has proven

to be a useful tool for analyzing methods that solve this particular type of optimization

problem. We propose a computational framework, called the modified LOP (MLOP)

that offers a number of key improvements over the LOP. The MLOP framework has a

number of degrees of freedom, which offer great flexibility and the ability to perform

much better than the LOP (or LLOP). By carefully selecting the free parameters in

our computational framework, we obtain two highly-effective MLOP-based methods

called the MLOPB and MLOPC methods, which make different trade offs between

triangulation costs and computation time. After that, we prove the conditions needed

for a strong optimality property, namely 2-flip optimality, and discuss when the LOP,

LLOP and the MLOP-based methods yield triangulations that are 2-flip optimal.

Our MLOP-based methods are shown to yield triangulations that, in most cases

of practical interest, satisfy a stronger optimality condition (in the sense of n-flip

optimality) than the LOP and LLOP methods. The performance of our methods are

5

also assessed by benchmarking them against the LOP and LLOP for triangulation

connectivity optimization. Through experimental results, our MLOPB and MLOPC

methods are shown to consistently yield triangulations of significantly lower cost than

the LOP and LLOP, while still maintaining a reasonable computational cost.

Structurally, the remainder of this thesis is organized into three chapters and one

appendix. An overview of each of the remaining chapters/appendix is provided in

what follows.

Chapter 2 provides some necessary background information for facilitating the

understanding of the work in this thesis. First, we introduce some basic notation

and terminology. Then, some fundamentals in computational geometry are presented

including convex hulls, triangulations, and triangle mesh models. Next, we introduce

the halfedge data structure used for describing our proposed algorithm later. After

that, we formally introduce the triangulation connectivity selection problem addressed

in this thesis, followed by the description of the LOP and LLOP. Lastly, we introduce

several well-known triangulation cost functions considered in our work.

Chapter 3 begins with the definition of the n-flip optimality, which can show the

advantages of our proposed method later. Then, we introduce the definition of permis-

sible flip sequence as the key free parameter in our algorithm. Next, a new triangula-

tion optimization framework with a number of free parameters is proposed. For each

of the free parameters, we provide a detailed description. By carefully selecting these

free parameters, three optimization methods, namely MLOPA(L), MLOPB(L,M),

and MLOPC(L), are derived from our framework, where L and M are used to control

the parameter permissible flip-sequence policy in the framework. After that, we anal-

ysis the optimality property of the MLOP-based methods and compare them with the

LOP and LLOP in term of n-flip optimality. In this discussion, we first provide the

conditions needed for 2-flip optimality and show when the LOP, LLOP and MLOP-

based yield 2-flip optimal triangulations. After that, we prove our MLOP-based

methods are able to satisfy 2-flip optimality, which is a stronger optimality condition

than the LOP and LLOP for most triangulation cost function. In later parts of this

chapter, we evaluate our proposed MLOPB and MLOPC methods by comparing them

to the LOP, LLOP and MLOPA methods in terms of triangulation cost computed by

various cost functions. It is shown that our proposed MLOPB and MLOPC methods

both yield triangulations of much lower cost than the other competing methods, at

a relatively modest computational cost. For example, MLOPB and MLOPC methods

yield a median cost reduction of 5.85% to 28.34%, and 5.96% to 30.50%, respectively,

6

relative to the LOP. These median cost reduction of MLOPB and MLOPC methods

are also shown to be greater than that of the LLOP by 1.28% to 7.64%, and 1.44% to

8.42% respectively. Moreover, our experiments show that the proposed MLOPB and

MLOPC methods can obtain even better results by increasing i in the MLOPB(2, i)

or in the MLOPC(i) at expense of increased computational cost.

Chapter 4 concludes the thesis with a brief summary of the work and results

presented herein. Finally, some recommendations for future research are made.

Appendix A provides a brief description of the software that is used to implement

the computational framework proposed in the thesis and to collect experimental re-

sults. Moreover, our software provides the ability to test a triangulation for the 2-flip

optimality condition. The software also implements a mesh-generation framework

based on [27] and the proposed MLOP. Some useful instructions and examples of

how to use this software are discussed in this appendix.

7

Chapter 2

Preliminaries

2.1 Overview

In this chapter, we present some essential background information in order to allow

the reader to better understand the work presented in this thesis. First, we introduce

the notation and terminology used herein. Then, some basic concepts in computa-

tional geometry are introduced, including convex hulls and triangulations. After that,

triangle meshes and halfedge data structures are discussed. Next, we formally intro-

duce the triangulation-cost optimization problem addressed in this thesis, followed by

the description of the LOP and LLOP. Finally, we discuss triangulation cost functions

and present the cost functions considered herein.

2.2 Notation and Terminology

Before processing further, it is necessary to introduce some additional basic notation

and terminology. The sets of real number and integers are denoted as R and Z,

respectively. For a, b ∈ R, we use following notation to denote various subsets of R:

(a, b) = {x ∈ R : a < x < b},

[a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}, and

[a, b] = {x ∈ R : a ≤ x ≤ b}.

8

(a) (b)

a

P

b

a

P

b

Figure 2.1: Examples of (a) convex and (b) non-convex sets

For a finite set S, the cardinality of S is denoted as |S|. For a vector v = (v1, v2, v3, ..., vn)

in Rn, the 2-norm of v is denoted ||v|| and defined as

||v|| =
√
v12 + v22 + v32 + ...+ vn−12 + vn2.

For two points a and b, the line segment joining a and b is denoted ab. For three

non-colinear points a, b and c, 4abc denotes the triangle whose vertices are these

three points.

2.3 Concepts in Computational Geometry

In this section, we introduce the concept of a triangulation. In order to define this

concept, the notion of a convex set and convex hull must first be introduced.

Definition 1. (Convex set). A set P of points in R2 is convex if and only if for every

pair of points a, b ∈ P , every point on the line segment which joins points a and b is

completely contained in P .

To better illustrate this definition, an example is given. Two different sets are shown

in Figure 2.1. The set P in Figure 2.1(a) is convex since each line segment that joins

a pair of points a, b in P is completely contained in P , such as ab. In contrast, the

set P shown in Figure 2.1(b) is not convex. For example, we can see that ab is not

completely contained in P . Having introduced the concept of a convex set, we can

now present the definition of the convex hull.

9

(a) (b)

Figure 2.2: Convex hull example. (a) A set P of points. (b) The convex hull of P .

Definition 2. (Convex hull). The convex hull of a set P of points in R2 is the

intersection of all convex sets that contain P .

In other words, the convex hull of a set P of points is the “smallest” convex set that

contains all the points in P . An example of a convex hull is shown in Figure 2.2.

Figure 2.2(a) shows a set P of points, and the shaded area in Figure 2.2(b) is the

convex hull of P . The convex hull of P can be viewed as a polygon with vertices in P .

A point in P is an extreme point (with respect to P) if it is a vertex of the convex

hull of P . One way to visualize a convex hull of P is to imagine stretching a rubber

band around all the points of P and let the rubber band pull itself taut against the

outer points. The resultant polygon formed by the rubber band corresponds to the

boundary of the convex hull of these points. With the definition of the convex hull

in place, we can now introduce the concept of a triangulation.

Definition 3. (Triangulation). A triangulation of a finite set P of points in R2 is a

set T of (non-degenerate) triangles satisfying the following conditions:

1. the union of all triangles in T is the convex hull of P ;

2. the union of vertices of all triangles in T is P ;

3. the interiors of any two triangles in T are disjoint; and

4. every edge of a triangle in T joins two and only two points from P .

For a specified set P of points, a triangulation of P is not usually unique. In fact,

the number of possible triangulations typically grows extremely fast with |P |. The

10

(a) (b) (c)

Figure 2.3: Triangulation example (a) a set P of points, (b) a triangulation of P , and
(c) another triangulation of P

nonuniqueness of a triangulation is demonstrated in Figure 2.3. The set P of points

in Figure 2.3(a) has possible triangulations that include those shown in Figures 2.3(b)

and (c).

2.4 Triangle Mesh Models

Before proceeding further, it is necessary to formally introduce the concept of a

triangle mesh model. Consider an integer-valued function φ defined on D = [0,W −
1] × [0, H − 1] and sampled on the truncated two-dimensional integer lattice Λ =

{0, 1, ...,W −1}×{0, 1, ..., H−1} (i.e., a rectangular grid of width W and height H).

In the context of our work, a (triangle) mesh model consists of:

1. a set P = {pi} of sample points, where P ⊂ Λ;

2. a triangulation T of P ; and

3. the function values {zi = φ(pi)} for pi ∈ P .

A mesh model is characterized by a triangulation T covering D (i.e., the domain of

function φ). Each vertex in T corresponds to a sample point pi with the function value

zi. In order to ensure that the triangulation T covers all points in Λ, the selected

sample points should include all of the extreme convex hull points of D. For example,

the extreme convex hull points in D are the four corner points (0, 0), (W − 1, 0),

(W − 1, H − 1), and (0, H − 1). As a matter of terminology, the size and sampling

density of the model are defined as |P | and |P |/|Λ|, respectively.

11

The mesh model is used to represent a function φ̂ that approximates φ. In our

work, we apply linear interpolation to generate φ̂ based on the function values {zi}.
In particular, for each face f in the triangulation T of the mesh model, we construct

a linear function φ̃ based on the three vertices of each face to interpolate φ. Since the

original function φ is integer-valued, the function φ̂, which is used to approximate φ,

should be integer-valued as well. Thus, φ̂ can be defined in terms of the function φ̃

as φ̂ = round(φ̃), where round denotes an operator that rounds to the nearest integer

value.

The above mesh modelling process is illustrated in Figure 2.4. Given a bivariate

function φ shown in Figure 2.4(a), we would like to represent φ with a mesh model.

A triangulation is first formed by partitioning the image domain of φ into a set of

triangles, as illustrated in Figure 2.4(b), with the vertices of the triangulation being

the sample points. Then, we construct a planar approximating function over each

triangle face via linear interpolation. Lastly, these planar approximating functions

are combined to form the triangle mesh shown in Figure 2.4(c).

2.5 Halfedge Data Structure

For convenience in specifying algorithms later, we introduce some notation related

to the halfedge data structure [16, p. 31] for triangulations. Each (undirected) edge

in a triangulation can be viewed as being comprised of a pair of oppositely-oriented

directed edges, with each such directed edge being called a halfedge. As a matter of

notation, for a halfedge h: h.edge denotes the (undirected) edge associated with the

halfedge h; h.left denotes the face on the left side of h; h.opp denotes the halfedge

associated with h.edge having the opposite orientation to h; h.next and h.prev re-

spectively denote the next and previous halfedge in counterclockwise (CCW) order

around h.left. The boolean predicate h.isBorder is defined to be true if h has no left

face (due to being on the triangulation boundary) and false otherwise. The meaning

of the various halfedge-related notation is further illustrated, by way of an example,

in Figure 2.5.

2.6 Triangulation-Cost Optimization Problem

At this point, we would like to formalize the triangulation-cost optimization problem

introduced earlier. Formally, a triangulation cost function is a function that maps

12

(a)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

(b)

0

50

0

100

150

200

250

200

300

400

600500400300200600 1000

(c)

Figure 2.4: Mesh model of a bivariate function φ. (a) A bivariate function φ, (b) the
triangulation in the image domain, and (c) the resulting triangle mesh model.

a triangulation (of some set of points) to a nonnegative real number. With this in

mind, the problem that we seek to solve is as follows.

Problem 1 (Triangulation-connectivity selection problem). Given a set P of points,

a triangulation cost function c, and a mapping S from a triangulation of P to a

(possibly improper) subset of all triangulations of P , find a triangulation T of P such

that

c(T) ≤ c(T ′) for all T ′ ∈ S(T). (2.1)

13

h.left

h.next

h.prev

h.opp

h

h.edge

Figure 2.5: Pictorial view of the halfedge data structure.

A triangulation T that satisfies (2.1) is said to be optimal. In effect, S(T) specifies

a neighbourhood of T in the space of all triangulations of P , and a triangulation T is

deemed to be optimal as long as no other triangulation in the neighbourhood S(T)

of T has a strictly lower cost than T . If S(T) is chosen as the set of all triangulations

of P , then any solution to Problem 1 would be optimal in the global sense (i.e.,

a global minimizer of the triangulation cost over all possible triangulations of P).

Unfortunately, for nearly all cost functions of practical interest, finding a globally

optimal solution is computationally intractable. In such cases, S(T) is restricted to

a (very small) subset of all possible triangulations of P . When S(T) is chosen as

a proper subset of all possible triangulations of P , a solution to Problem 1 is only

guaranteed to be locally optimal.

Before proceeding further, it is necessary to introduce some additional notation

and terminology relating to triangulations. For an edge e in a triangulation T , qeT (e)

is used to denote the set of all edges belonging to the (one or two) faces incident on

e, and qfT (e) is used to denote the set of all (i.e., one or two) faces in T that have e

as an edge. An edge e of a triangulation is said to be flippable if e has two incident

faces (i.e., is not on the triangulation boundary) and the union of these two faces

is a strictly convex quadrilateral q. Figure 2.6 presents three examples of flippable

and unflippable edges. As we can see in Figure 2.6(a), qfT (e) forms a strictly convex

quadrilateral, so the edge e is flippable. In each of Figures 2.6(b) and (c), qfT (e) does

not form a strictly convex quadrilateral, so e is unflippable. For a flippable edge e, an

edge flip is an operation that replaces the edge e in the triangulation by the other

diagonal e′ of q, as shown in Figure 2.7. As a matter of terminology, we refer to a

14

e

(a) (c)(b)

e
e

Figure 2.6: An example of parts of a triangulation with flippable and unflippable
edges. (a) Flippable edge e, (b) unflippable edge e, and (c) unflippable edge e.

e

e′

(b)(a)

Figure 2.7: An example of an edge flip in part of triangulation. (a) Before and
(b) after an edge flip is applied to the edge e.

sequence of edges to which edge flips are to be applied as a flip sequence. With

an appropriate choice of flip sequence s = (e0, e1, . . . , en−1), a given triangulation

T = T0 can be transformed to another triangulation T ′ = Tn by applying s to T .

Let Ti denote the triangulation obtained after applying the first i edge flips in the

sequence s to T . If, for each i ∈ {0, 1, . . . n− 1}, the edge ei is a flippable edge in Ti,

the flip sequence is said to be valid (with respect to triangulation T = T0). A flip

sequence can only be applied to a triangulation T if it is valid with respect to T . A

triangulation T ′ is said to be reachable from triangulation T by the flip sequence s

if applying s to T yields T ′.

It is a well-known fact [24, 29] that, for any two triangulations T and T ′ of a

set of points, there exists a finite-length flip sequence that will transform T to T ′.

In other words, every triangulation of a set of points is reachable from every other

triangulation of the same set of points by a finite number of edge flips. This fact

leads to a class of approaches to solving Problem 1 that is based on edge flips. In

15

our work, we consider this particular class of methods exclusively. The basic idea in

these approaches is to repeatedly apply edge flips to a triangulation until an optimal

triangulation is obtained.

2.7 Local Optimization Procedure (LOP) and Look-

ahead LOP (LLOP)

One very well known method for solving Problem 1 is the local optimization proce-

dure (LOP) proposed by Lawson [25]. Effectively, the LOP chooses S(T) = SLOP(T)

in (2.1), where SLOP(T) is the set of all triangulations of P that are reachable from

T by a single edge flip. Thus, the LOP is guaranteed to yield a triangulation T such

that no single edge flip applied to T can yield a new triangulation with a strictly

lower cost than T .

Yu, Morse, and Sederberg [44] proposed an interesting variant of the LOP, called

the LOP with lookahead, hereafter referred to as the lookahead LOP (LLOP). The

LLOP chooses S(T) = SLLOP(T), where SLLOP(T) = SLOP(T) ∪ Γ(T) and Γ(T) is the

set of all triangulations that are reachable from T by a valid length-2 flip sequence

of the form (e0, e1) where e1 ∈ qeT (e0) and qeT (e0) is defined as earlier. The LLOP

tends to produce optimal triangulations of much lower cost than the LOP, but at an

increased computational cost [44].

2.8 Triangulation Cost Function

In Problem 1, many choices are possible for the triangulation cost function c. In

practice, however, a triangulation cost function is typically defined as an accumulation

of costs for individual triangulation elements, such as edges or faces. This leads to

the two general forms for the triangulation cost function considered herein: 1) edge

based and 2) face based. An edge-based cost function c has the form

c(T) =
∑

e∈E(T)

edgeCost(e), (2.2)

where E(T) denotes the set of all edges in T and edgeCost(e) denotes the cost of the

edge e (i.e., the cost of a triangulation is defined as the sum of its edge costs). A

16

f2

vj

vi

f1
vk

e v`

Figure 2.8: an quadrilateral vivjvkvl with edge e = vivj as diagonal

face-based cost function c has the form

c(T) =
∑

f∈F(T)

faceCost(f), (2.3)

where F(T) denotes the set of all faces in T and faceCost(f) denotes the cost of the

face f (i.e., the cost of a triangulation is defined as the sum of its face costs). Of

these two forms of cost function, the edge-based form is the most common.

For the purposes of discussion herein, we consider the following seven well-known

cost functions:

1. angle between normals (ABN) [19, Equation 3];

2. absolute mean curvature (AMC) [10, Section 2.2] and [42, Section 2];

3. deviations from linear polynomials (DLP) [19, Section 3.1];

4. distances from planes (DP) [19, Section 3.1];

5. jump in normal derivatives (JND) [19, Section 3.1];

6. squared error (SE) [31, Equation 1] and [33, Section 2]; and

7. Yu-Morse-Sederberg (YMS) [44, Equation 3].

Of the cost functions listed above, SE is face based and all of the others are edge

based.

In order to provide the formal definitions of these cost functions, we must first

introduce some notation. In the case that edge e is not a boundary edge, the two

incident faces of e are denoted as f1 and f2. Each vertex in the triangulation is denoted

as vn = (xn, yn). We denote φ(xn, yn) as zn. The faces f1 and f2 are represented by

4vivkvj and 4vivjv` respectively. This notation is illustrated in Figure 2.8. Let

P1 and P2 denote the linear interpolant over the faces f1 and f2, respectively. The

17

functions P1 and P2 are given by

P1(x, y) = a1x+ b1y + c1 and

P2(x, y) = a2x+ b2y + c2.

At this point, we would like to provide the definition of edgeCost for each of the

triangulation costs considered herein in (2.2). For a non-boundary edge e (which

must have two incident faces) in the triangulation T , the edgeCost function in the

cost of the ABN, AMC, DLP, DP, JND, and YMS triangulation costs is respectively

given by

edgeCostABN(e) = arccos

[
(a1, b1,−1) · (a2, b2,−1)

||(a1, b1,−1)|| ||(a2, b2,−1)||

]
, (2.4)

edgeCostAMC(e) = ||vi − vj|| edgeCostABN(e), (2.5)

edgeCostDLP(e) = ||(|P1(x`, y`)− z`|, |P2(xk, yk)− zk|)||, (2.6)

edgeCostDP(e) = ||(dist(P1, (x`, y`, z`)), dist(P2, (xk, yk, zk)))||, (2.7)

edgeCostJND(e) = |(nx, ny) · [(a1, b1)− (a2, b2)]|, and (2.8)

edgeCostYMS(e) = ||(a1, b1)|| ||(a2, b2)|| − (a1, b1) · (a2, b2), (2.9)

where (nx, ny) is a unit vector normal to e, and dist(Pm, (x, y, z)) denotes the distance

between the plane Pm and the point (x, y, z). That is, dist(Pm, (x, y, z)) = |Pm(x,y)−z|
||(am,bm,−1)|| .

For a boundary edge e (which has only one incident face), we just simply define

the edgeCost(e) as 0.

Next, we provide the definition of faceCost used in (2.3). Of the cost functions

considered herein, only the cost function of SE is face-based. For a face f , faceCost(f)

for the SE triangulation cost is given by

faceCostSE(f) =
∑

p∈P(f)

(φ̂(p)− φ(p))2. (2.10)

where φ is the function being modelled, φ̂ is a function that approximates φ (as

defined earlier in Section 2.4), and P(f) denotes the set of all points in Λ belonging

to the face f in the triangulation T .

18

Chapter 3

Proposed Methods and Their

Evaluation

3.1 Overview

In this chapter, we first refine the definition of optimality for the triangulation-

connectivity optimization problem by introducing the notion of n-flip optimality.

Then, we introduce the proposed computational framework MLOP with a number of

free parameters. Some particularly effective choices are recommended for these pa-

rameters, leading to the two MLOP-based methods proposed herein, MLOPB(M,L)

and MLOPC(L). After that, we prove the conditions needed for a strong optimal-

ity property, namely 2-flip optimality. Then, we discuss when the LOP, LLOP and

the MLOP-based methods yield 2-flip optimal triangulations. According to the dis-

cussion, our MLOP-based methods are shown to yield triangulations that satisfy a

stronger optimality condition than the LOP and LLOP for most triangulation cost

functions. Next, the performance of our proposed methods are evaluated by com-

paring to the other competing schemes, with our proposed methods proving to be

superior. Moreover, the MLOPB and MLOPC methods are shown to yield even bet-

ter results by increasing the parameter i in the MLOPB(2, i) or in the MLOPC(i).

3.2 n-Flip Optimality

The optimization in Problem 1 can be viewed in terms of a topological space whose

underlying set is the set of all triangulations of P . The distance between two triangu-

19

lations T and T ′ in this metric space is defined as length of the shortest flip sequence

that transforms T to T ′. A good way to visualize this space is as a graph, where

each node in the graph corresponds to a distinct triangulation, and two nodes are

connected by an edge if their corresponding triangulations are reachable from one an-

other by a single edge flip. We suggest that the goodness of an optimal triangulation

T can be measured by how far one must move away from T in the solution space in

order to obtain a triangulation with a strictly lower cost than T . This view leads to

a very natural way to define a notion of optimality, as follows.

Definition 4 (n-flip optimality). A triangulation T is said to be n-flip optimal with

respect to the triangulation cost function c if the following condition holds:

c(T) ≤ c(T ′) for all T ′ ∈ SNFO(T, n), (3.1)

where SNFO(T, n) is the set of all triangulations that are reachable from T by a (valid)

flip sequence of length ` ≤ n.

As n increases, any given n-flip optimal triangulation will tend to more closely ap-

proach the globally optimal solution in terms of cost. Moreover, for some finite (but

typically very large) n, an n-flip optimal triangulation will be a global minimizer of

c.

For any triangulation cost function, the LOP and LLOP are both trivially guar-

anteed to yield a triangulation that is 1-flip optimal. As we will show later (in

Section 3.4), however, for most cost functions of practical interest, the LOP and

LLOP are unable to guarantee n-flip optimality for any n > 1. The desire to improve

upon the 1-flip optimality of the LOP and LLOP served as a partial motivation for

the development of our improved version of the LOP (namely, the MLOP) which we

introduce next.

3.3 Proposed LOP Variant: The Modified LOP

(MLOP)

Before presenting our proposed MLOP approach, we must first introduce the key

concept of a permissible flip sequence as well as some other notation and terminol-

ogy. In the optimization for Problem 1, rather than define S by directly specifying

the triangulations in S(T), we elect to instead specify S(T) indirectly in terms of flip

20

sequences as follows. For any flippable edge e0 in T , we can define a rule that specifies

the set of flip sequences starting with e0 that are permitted to be applied to T in an

attempt to reduce the triangulation cost during optimization. We denote this set of

flip sequences as permFlipSeqsT (e0). The rule embodied by permFlipSeqs is known as

a permissible flip-sequence policy. A flip sequence s to be applied to T is said to

be permissible if s ∈ permFlipSeqsT (e0) for some flippable edge e0 in T . The quan-

tity S(T) is then defined as the set of all triangulations that are reachable by applying

a permissible flip sequence to T (according to rule embodied by permFlipSeqs). Thus,

an optimal triangulation effectively becomes a triangulation for which no permissible

flip sequence exists that can transform the triangulation to a triangulation of strictly

lower cost. As for the particular manner in which permFlipSeqs might be defined,

we will consider this later. For now, all we will say in this regard is that the set

permFlipSeqsT (e0) must be such that, for every flippable edge e0 in a triangulation

T ,

(e0) ∈ permFlipSeqsT (e0). (3.2)

(i.e., permFlipSeqsT (e0) always includes the length-1 flip sequence (e0)). As a matter

of terminology, an edge e0 in a triangulation T is said to be optimal if no permissible

flip sequence starting with e0 exists that maps T to T ′ for which c(T ′) < c(T). Since

every permissible flip sequence must start with a flippable edge, an unflippable edge is,

by definition, optimal. Thus, an optimal triangulation simply becomes a triangulation

for which all of its flippable edges are optimal.

Next, we introduce the concept of a suspect edge and some related notation. As a

matter of terminology, an edge whose optimality is uncertain is said to be suspect.

Consider a flip sequence s to be applied to the triangulation T to yield the new

triangulation T ′. When s is applied, the optimality of some edges will potentially

be affected, resulting in some edges in T ′ being suspect (i.e., their optimality is

uncertain). The set of all edges in T ′ whose optimality is potentially affected if the

flip sequence s were applied to T is denoted suspects(T, s). Generally, suspects(T, s)

can potentially include new edges (i.e., edges that are in T ′ but not T) as well as old

edges (i.e., edges that are in both T ′ and T).

With the above background in place, we are now ready to present the general

algorithmic framework of our proposed MLOP. Given a triangulation and triangula-

tion cost function as input, the MLOP produces an optimal triangulation as output

21

by performing that following processing. Initially, each edge in the triangulation is

marked as suspect if flippable, and not suspect otherwise. Then, the algorithm iter-

ates performing the following steps until no suspect edges remain: Select a suspect

edge e0 and mark it as not suspect. Test if there exists a permissible flip sequence

starting with e0 that, if applied to the current triangulation T , would strictly reduce

the triangulation cost. If such a flip sequence exists, apply it, and then determine

which edges become suspect due to the application of this flip sequence and mark

these edges as such. The MLOP is given in more detail in pseudocode form in Algo-

rithm 1.

Algorithm 1 Modified LOP (MLOP)

1: Set the current triangulation T to the input triangulation.
2: For each edge e in T , mark e as suspect if it is flippable; otherwise, mark e as not

suspect.
3: while suspect edges remain in T do
4: Select a suspect edge e0 in T and mark e0 as not suspect.
5: Clear the list ` of good flip sequences.
6: if e0 is flippable then
7: Let p denote the set of all permissible flip sequences starting with

e0, as determined by the permissible flip-sequence policy (i.e., p =
permFlipSeqsT (e0)).

8: for each flip sequence s in p do
9: if applying s to T would strictly reduce the triangulation cost then
10: Add s to `.
11: endif
12: endfor
13: if ` is not empty then
14: Select a sequence s from `, using the good flip-sequence selection policy

(i.e., s = selGood(`)).
15: Update T by applying s to T .
16: Determine the set σ of all edges in T that become suspect as a result

of s being applied to T (i.e., σ = suspects(T, s)).

17: Mark each edge s in σ as suspect (if not already so marked).
18: endif
19: endif
20: endwhile
21: Output T as the final triangulation.

As can be seen from Algorithm 1, the MLOP has two free parameters that control

the behavior of the algorithm: 1) the permissible flip-sequence policy and 2) the good

22

flip-sequence selection policy. The permissible flip-sequence policy permFlipSeqs is

used in step 7 of the algorithm to determine which flip sequences must be considered

when testing an edge for optimality. The good flip-sequence selection policy selGood is

employed in step 14. When an edge is tested for optimality, more than one permissible

flip sequence may be found that can be used to reduce the triangulation cost. The

good-flip-sequence selection policy determines how this sequence is to be chosen when

more than one choice is available. Before presenting all of the particular choices

for permFlipSeqs and selGood considered in our work, we need to introduce some

additional background and notation. So, we will defer the discussion of these policies

until later.

At this point, it is worthwhile to note that the MLOP is essentially a generalization

of the LOP and LLOP, as the MLOP includes the LOP and LLOP as special cases.

In particular, the LOP and LLOP are equivalent to the MLOP with the permissible

flip-sequence policy permFlipSeqsT (e0) chosen as PFSLOP and PFSLLOP, respectively,

where

PFSLOP(e0) = {(e0)} and (3.3)

PFSLLOP(e0) = PFSLOP(e0) ∪ Γ(e0), (3.4)

and Γ(e0) is set of all valid flip sequences of the form (e0, e1) where e1 ∈ qeT (e0). As

we will see later, however, much better choices for permFlipSeqs are possible than

PFSLOP and PFSLLOP.

In practice, MLOP-like algorithms (i.e., the MLOP, LOP and LLOP) are only

guaranteed to yield a triangulation that is locally optimal. Furthermore, for trian-

gulation cost functions of practical interest, the optimal triangulation obtained will

typically depend quite heavily on the triangulation used as the starting point for

optimization. Moreover, some cost functions (such as SE) are such that MLOP-like

algorithms are very likely to converge to a very poor local minimum unless some care

is exercised in the choice of initial triangulation to be used for optimization. For this

reason, it can sometimes be advantageous to apply the MLOP in multiple stages. For

example, the MLOP could be applied twice, with different parameters each time (e.g.,

different triangulation costs and/or permissible flip sequence policies), where the op-

timal triangulation obtained from the first optimization is then used as the initial

triangulation for the second optimization. In such a scenario, the second invocation

of the MLOP performs the true optimization of interest, while the first invocation is

23

simply intended as a preconditioning step that allows the second optimization to be

seeded with an initial triangulation that is in a more desirable region of the solution

space (i.e., in a region containing lower-cost optimal triangulations). In our work, we

found this type of two-stage processing to be quite advantageous, sometimes leading

to methods that are both faster and yield lower-cost triangulations. As it turns out,

one of the methods that we recommend later in this thesis is based on this type of

two-stage processing.

3.3.1 Additional Notation

Before proceeding further, we need to introduce some additional notation and termi-

nology related to the MLOP that is used in various places throughout the remainder of

this thesis. For an edge e in a triangulation T and a nonnegative integer i, layersT (e, i)

denotes the set of edges in T given by

layersT (e, i) =

e i = 0

∪e∈layersT (i−1) qeT (e) i ≥ 1,
(3.5)

where qeT (e) is as defined earlier (on page 13). The distance between the edges e0

and e1 in the triangulation T , denoted dT (e0, e1), is defined as the smallest nonneg-

ative integer k for which e1 ∈ layersT (e0, k). (Note that dT (e0, e1) = dT (e1, e0) and

dT (e0, e0) = 0.) Loosely speaking, the distance between edges is the number of edges

that must be crossed to move from one edge to the other in the triangulation, subject

to the constraint that edges must be crossed in their interiors, not at their endpoints.

We now define the influence distance of a cost function c, denoted inflDist(c).

Let S be set of edges (excluding e0) whose optimality might change as a result of

the edge e0 being flipped if permissible flip sequences were restricted to only single

edge flips. Then, inflDist(c) is the smallest nonnegative integer k for which it is

always guaranteed that S ⊂ layersT (e0, k). Essentially, inflDist(c) measures the size

of the region of influence of an edge. That is, the larger inflDist(c) is, the more edges

can have their optimality affected by the flip of a single edge. For the case of the

triangulation cost functions considered herein, it can be shown [27, 28] that

inflDist(c) =

1 if c is SE

2 if c is ABN, AMC, DLP, DP, JND, YMS.
(3.6)

24

(Generally speaking, any reasonable cost function c will be such that inflDist(c) ≥ 1.)

3.3.2 Good Flip-Sequence Selection Policies

One of the free parameters of the MLOP, as introduced earlier in Algorithm 1, is the

good flip-sequence selection policy (i.e., selGood). When the MLOP tests an edge for

optimality, more than one permissible flip sequence may be found that can strictly

reduce the triangulation cost. When more than one sequence is found, the MLOP

must select one of them (in step 14 of the algorithm). In our work, we considered

numerous good flip-sequence selection policies, including the following (as well as

others):

1. first found, which chooses the first good flip sequence that was found;

2. least cost, which chooses the good flip sequence that results in a triangulation

with the least cost; and

3. random, which randomly selects one of the good flip sequences.

Our experiments showed, however, that there was no clear benefit to one of the

policies over another. That is, no one policy consistently outperformed all of others.

Since, all other things being equal, the first-found policy is the least computationally

expensive, we advocate its use in the MLOP and only consider this particular choice

(for the good flip-sequence selection policy) in the remainder of this thesis.

3.3.3 Permissible Flip-Sequence Policies

Another one of the free parameters of the MLOP, as introduced earlier in Algorithm 1,

is the permissible flip-sequence policy (i.e., permFlipSeqs). This policy determines

the particular set of flip sequences that are considered when testing an edge for

optimality. In effect, this policy determines the specific sense in which the final

triangulation produced by the MLOP is optimal. Since permFlipSeqs is required to

satisfy (3.2), the final triangulation is always 1-flip optimal. If this policy is chosen

appropriately, however, the MLOP can be guaranteed to produce triangulations that

are n-flip optimal for some n > 1.

Clearly, even with the (relatively minor) constraint imposed by (3.2), very many

choices are possible for the permissible flip-sequence policy permFlipSeqs. In our

work, we considered many different policies, and through extensive experimentation,

we were able to find three policies that were particularly effective, which we present

herein. As it turns out, all three of these policies can be most easily described in terms

25

of a recursive algorithm that generates permFlipSeqsT (e0). So, in what follows, we

first introduce this algorithm and its parameters, and then use this algorithm to define

the three policies proposed herein.

The recursive algorithm for generating the set permFlipSeqsT (e0) is best described

by viewing the triangulation in terms of halfedges, as introduced earlier in Section 2.5

(on page 11). To determine permFlipSeqsT (e0) for the edge e0, the algorithm starts

by visiting one of the halfedges h of e0. For each halfedge h visited, a new flip se-

quence is potentially generated (depending on whether the edge h.edge is flippable and

other parameters of the flip sequence generating process). Then, the algorithm recur-

sively visits zero or more of the neighbouring halfedges of h (in particular, halfedges

associated with edges in qe(h.edge)). The recursion stops if it would cause the al-

gorithm to attempt to move outside the triangulation or some maximum recursion

depth is reached. In more precise terms, the process for generating the set of flip

sequences in permFlipSeqsT (e0) is given by Algorithm 2. This pseudocode utilizes

the functions flip, unflip, and append, which are defined as follows. The function

append(seq, e) returns the flip sequence formed by appending the edge e to the flip

sequence seq. The functions flip and unflip each perform an edge flip. Suppose

that h.edge has two incident faces whose union forms a strictly convex quadrilateral

Q. The function flip(h) flips the edge h.edge by rotating h by one vertex around

Q in the CCW direction and returns the new rotated halfedge. The unflip function

is identical to flip except that the rotation is in the opposite (i.e., CW) direction.

That is, unflip(h) undoes the effect of flip(h).

The above algorithm (i.e., Algorithm 2) has four input parameters (which are

not passed as explicit function parameters in the pseudocode) that control the flip-

sequence generation process: 1) maxLevel, 2) inward, 3) skip, and 4) maxLength.

The parameter maxLevel (which is a nonnegative integer) determines the size of

the region in which edge flips can take place and imposes a maximum flip-sequence

length of maxLevel + 1, while the parameters inward, skip, and maxLength control

the precise patterns of edge flips that can occur within this region. In particular, the

maxLength parameter can be used to restrict the maximum length of the flip sequences

generated to a value less than maxLevel+1. That is, the longest possible flip sequence

that can be generated by the above algorithm is min{maxLevel+1, maxLength}. The

flip sequences generated are placed in the global variable seqSet. For a given edge e0,

permFlipSeqsT (e0) is generated by invoking makeSeqs(h) where h is chosen as one of

the halfedges of e0. The generated set is placed by the algorithm in seqSet.

26

Algorithm 2 Algorithm for generating set of permissible flip sequences.

1: // h: halfedge
2: procedure makeSeqs(h)

3: Clear seqSet (i.e., the set of permissible flip sequences).
4: makeSeqs2(0, h, {}, true)

5: endprocedure//
6: // level: current level in recursion
7: // h: current halfedge
8: // seq: current flip sequence
9: // doFlip: edge flip should be performed in current state
10: procedure makeSeqs2(level, h, seq, doFlip)

11: if level > maxLevel then return endif
12: if doFlip then
13: seq = append(seq, h.edge)

14: if length of seq <= maxLength and seq is not in seqSet then add to
seqSet endif

15: h = flip(h)

16: endif
17: if not h.opp.isBorder then
18: if h.opp.next is flippable then makeSeqs2(level + 1, h.opp.next,

seq, true) endif
19: if h.opp.prev is flippable then makeSeqs2(level + 1, h.opp.prev,

seq, true) endif
20: if skip then
21: makeSeqs2(level + 1, h.opp.next, seq, false)

22: makeSeqs2(level + 1, h.opp.prev, seq, false)

23: endif
24: endif
25: if not h.isBorder and (inward or level == 0) then
26: if h.next is flippable then makeSeqs2(level + 1, h.next, seq, true)

endif
27: if h.prev is flippable then makeSeqs2(level + 1, h.prev, seq, true)

endif
28: if skip then
29: makeSeqs2(level + 1, h.next, seq, false)

30: makeSeqs2(level + 1, h.prev, seq, false)

31: endif
32: endif
33: if doFlip then h = unflip(h) endif
34: endprocedure

27

Table 3.1: Parameter selections for defining various permissible flip-sequence policies
using Algorithm 2.

Parameter
Policy maxLevel inward skip maxLength

PFSIO(L) L true false ∞†
PFSIOS(L) L true true ∞†
PFSMLT(L) L false true 2
PFSLOP 0 false false 1
PFSLLOP 1 false false 2

†Any value greater than or equal to L+ 1 is equivalent to ∞.

With the above algorithm for generating permFlipSeqsT (e0) in place, we can now

introduce the three permissible flip-sequence policies proposed herein. These three

policies are known as: 1) inward and outward (PFSIO), 2) inward and outward

with skip (PFSIOS), and 3) maximum length two (PFSMLT). Each of these

policies has a single control parameter. To denote the policy with a particular choice

of parameter, we append a parameter list to the name of the policy. For example,

PFSIO(L) denotes the PFSIO with its single control parameter chosen as L. The pre-

ceding three policies are obtained by using Algorithm 2 with the particular parameter

choices specified in Table 3.1. These three policies were chosen to allow for a wide

range of trade offs between result quality (i.e., triangulation cost) and computation

time. As it turns out, the policies used by the LOP and LLOP (namely, PFSLOP

and PFSLLOP) can also be expressed in terms of Algorithm 2, where the necessary

parameter choices are also included in Table 3.1.

In step 8 of the MLOP algorithm introduced earlier (i.e., Algorithm 1), the or-

der in which elements of permFlipSeqsT (e0) are processed will influence the optimal

triangulation produced. In our implementation of the MLOP, we chose to process

the elements of permFlipSeqsT (e0) in an order that corresponds to a breadth-first

traversal of the recursion tree associated with the makeSeqs function. We made this

choice of ordering as it had some efficiency advantages in our implementation and

experiments suggest that quality of results obtained from the MLOP do not clearly

favor a particular ordering.

28

3.3.4 Determination of Suspect Edges

As this point, our description of the MLOP is almost complete. What remains is an

explanation of how the set of suspect edges is determined in step 16 of Algorithm 1

after a flip sequence is applied to a triangulation. We will now consider this issue.

Let propagateT (F, n) denote an n-level recursive process for augmenting a set of

faces F in a triangulation T to yield a new set of faces given by

propagateT (F, n) =

F n = 0

propagateT (F, n− 1) ∪
(
∪f∈propagateT (F,n−1) neighFaces(f)

)
n ≥ 1,

where neighFacesT (f) denotes the set of all faces in T sharing a common edge with

the face f . Essentially, the propagate operator computes n iterations of an outward

propagating wavefront of faces in the triangulation T .

Let us consider the application of the flip sequence s to the triangulation T to

obtain the new triangulation T ′. Let newEdges(T, s) denote the set of new edges in

T ′ generated by applying s to T (to yield T ′). Note that, for the purposes of this

definition, an edge in T that is deleted by a flip in s and then reintroduced by a later

flip in s is deemed to be new. We define the flip-affected region resulting from the

application of s to T , denoted flipAffReg(T, s), as the set of faces in T ′ given by

flipAffReg(T, s) = ∪e∈newEdges(T,s) qfT ′(e),

where qf is as defined earlier (on page 13). With the above definitions in place, the

set of edges that are suspect in the triangulation T ′ obtained from applying s to T ,

denoted suspects(T, s), is given by

suspects(T, s) = edges (propagateT ′(flipAffReg(T, s), L+ inflDist(c)− 1)) , (3.7)

where edges(F) denotes the set of all edges belonging to faces in the set F of faces

and L is the value of the maxLevel parameter for the permissible flip sequence policy

being used (as given earlier in Table 3.1).

3.3.5 Proposed Methods for Using the MLOP

Having fully specified the MLOP and defined the various choices for the free param-

eters of the algorithm, we are now ready to introduce the specific approaches that we

29

have developed for using the MLOP to solve Problem 1. In our work, we considered

numerous combinations of single-stage and multi-stage MLOP approaches with vari-

ous choices of MLOP free parameters. Extensive experimentation ultimately led us to

three particular methods of interest, which we present herein. These three methods

are known by the names MLOPA, MLOPB, and MLOPC. All three of these methods

use first found as the good flip-sequence selection policy for the MLOP. The differ-

ence between these methods is in whether they employ one or multiple stages of the

MLOP and which permissible flip-sequence policy is employed for the MLOP. The first

method, MLOPA, is a single stage method (i.e., applies the MLOP only once) and has

a single control parameter. To denote this method used with the control parameter

chosen as L, we write MLOPA(L). In the case of MLOPA(L), the MLOP is simply

applied with the permissible flip-sequence policy PFSMLT(L). The second method,

MLOPB, is a two-stage method (i.e., applies the MLOP twice) and has two control

parameters, one for each stage. To denote this method used with the first and second

control parameters chosen as L and M , respectively, we write MLOPB(L,M). In the

case of MLOPB(L,M), the MLOP is first applied with the permissible flip-sequence

policy PFSIO(M); and then the MLOP is applied to the resulting triangulation with

the permissible flip-sequence policy PFSMLT(L). The third method, MLOPC, is a

single-stage method and has a single control parameter. To denote this method used

with the control parameter set to L, we write MLOPC(L). In the case of MLOPC(L),

the MLOP is simply applied with the permissible flip-sequence policy PFSIOS(L).

As will be shown later in Section 3.4, for L ≥ 2, each of our MLOPA(L), MLOPB(L,M),

and MLOPC(L) methods is guaranteed to produce 2-flip optimal triangulations for

all of the triangulation cost functions considered herein (as well as others with a sim-

ilar mathematical structure). The methods MLOPB and MLOPC were both chosen

due to their effectiveness at producing good (i.e., low cost) optimal triangulations,

but make different trade offs between triangulation quality and computational cost.

The method MLOPA was chosen solely for comparison purposes, as it is the simplest

MLOP-based scheme that is guaranteed to yield 2-flip optimal triangulations for all

cost functions considered herein.

30

3.4 Optimality Properties of the MLOP, LOP and

LLOP

Having introduced the MLOP and explained its relationship to the LOP and LLOP,

we would now like to study the optimality properties of the MLOP, LOP, and LLOP.

Earlier, we claimed that, for most cost functions of practical interest, the LOP and

LLOP are only guaranteed to yield triangulations that are 1-flip optimal. Further-

more, we claimed that, for L ≥ 2, each of our MLOP-based methods MLOPA(L),

MLOPB(L,M), and MLOPC(L) is guaranteed to yield 2-flip optimal triangulations

for all of the cost functions considered herein. In what follows, we will now prove

each of these claims to be true.

To begin, we introduce the following condition on the permissible flip sequence

policy that is both necessary and sufficient to guarantee that the MLOP will always

yield a 2-flip optimal triangulation:

Theorem 1 (Condition for 2-flip optimality of the MLOP). The MLOP with tri-

angulation cost function c is guaranteed to yield a 2-flip optimal triangulation if

and only if the permissible flip-sequence policy permFlipSeqsT satisfies (3.2) and

permFlipSeqsT (e0) includes the flip sequence (e0, e1) for each e1 satisfying dT (e0, e1) ≤
inflDist(c).

Proof. To begin, we consider the sufficiency of condition stated in the theorem. For

2-flip optimality, we must show that the application of any flip sequence of exactly

length one or exactly length two cannot strictly reduce the triangulation cost.

First, we consider the case of flip sequences of exactly length one. When the

MLOP terminates, it is guaranteed that no permissible flip sequence can strictly

reduce the triangulation cost. Since permFlipSeqsT (e0) is required to satisfy (3.2),

the set of permissible flip sequences always contains all valid length-1 flip sequences

for the triangulation. Thus, no single edge flip could strictly reduce the triangulation

cost.

Next, we consider the case of length-2 flip sequences (e0, e1). There are three cases

to consider:

1. e0 and e1 are both edges in the triangulation T to which (e0, e1) is being applied;

and dT (e0, e1) > inflDist(c);

2. e0 and e1 are both edges in the triangulation T to which (e0, e1) is being applied;

and dT (e0, e1) ≤ inflDist(c);

31

3. e1 is the new edge obtained by flipping e0.

Trivially, case 3 cannot reduce the cost since flipping e0 and then e1 yields the original

triangulation T (i.e., the two edge flips cancel). Now, we consider case 1. Since

dT (e0, e1) > inflDist(c), the edges e0 and e1 can be considered independently as two

length-1 flip sequences. Since the triangulation is 1-flip optimal, any such length-1

flip sequence cannot strictly reduce the triangulation cost. Lastly, we consider case 2.

In this case, the edges e0 and e1 are sufficiently close together that the optimality of

one can depend on the other. Consequently, the MLOP must ensure that both edges

are considered jointly as a single length-2 flip sequence. This is guaranteed by the

MLOP if the set permFlipSeqsT (e0) includes all length-2 flip sequences (e0, e1) for

which dT (e0, e1) ≤ inflDist(c).

Now, we consider the necessity of the condition stated in the theorem. The neces-

sity follows from the fact that, if the stated condition is violated, at least one length-1

or length-2 flip sequence must exist for which it is not known whether the triangu-

lation cost would be reduced if that flip sequence were applied to the triangulation.

For example, if (3.2) is violated, there must exist at least one flippable edge in the

triangulation for which it is not known whether flipping that edge would reduce the

triangulation cost.

Since, as explained earlier, the MLOP includes the LOP and LLOP as special

cases, the above theorem also covers the LOP and LLOP. Consequently, from this

theorem, we can infer the following result regarding if and when each of the MLOP,

LOP, and LLOP approaches are guaranteed to yield 2-flip optimal triangulations:

Corollary 1.1 (2-flip optimality properties of the LOP, LLOP, and MLOP). The

LOP cannot be guaranteed to produce a 2-flip optimal triangulation. The LLOP can

only be guaranteed to produce a 2-flip optimal triangulation in the case that the tri-

angulation cost function c satisfies inflDist(c) ≤ 1. Of the cost functions considered

herein only the SE cost function satisfies this condition. Lastly, the MLOP is guar-

anteed to produce a 2-flip optimal triangulation if the permissible flip sequence policy

is chosen as either PFSMLT(L) or PFSIOS(L) and L ≥ inflDist(c). If the permissible

flip sequence policy is chosen as PFSIO(L), the MLOP is only guaranteed to produce

a 2-flip optimal triangulation if L ≥ 1 and inflDist(c) ≤ 1.

Proof. First, we consider the LOP. The proof of the statement for the LOP follows

immediately from (3.3). Since, in the case of the LOP, all permissible flip sequences

32

are of length 1 (i.e., no length-2 flip sequences are considered), the condition that

guarantees 2-flip optimality cannot be met.

Next, we consider the LLOP. The LLOP only considers the length-2 flip se-

quences in Γ in (3.4). This set only includes all length-2 flip sequences (e0, e1), where

d(e0, e1) ≤ 1. Thus, the LLOP can only be guaranteed to produce 2-flip-optimal

triangulations if inflDist(c) ≤ 1.

Finally, we consider the MLOP. The proof of the statement for the MLOP follows

immediately from the definition of the permissible flip-sequence policies PFSMLT(L),

PFSIOS(L), and PFSIO(L). For the PFSMLT(L), PFSIOS(L) policies, as long as L ≥
inflDist(c), the set permFlipSeqsT (e0) will always include all of the flip sequences

necessary to ensure 2-flip optimality as specified in Theorem 1. For the PFSIO(L)

policy, the set permFlipSeqsT (e0) can only include all of the flip sequences necessary

for 2-flip optimality if inflDist(c) ≤ 1 and L ≥ 1.

From Corollary 1.1, it immediately follows that as long as L is chosen sufficiently

large, each of the MLOPA(L), MLOPB(L,M), and MLOPC(L) methods is guaranteed

to yield triangulations that are 2-flip optimal. For all of the cost functions considered

herein, L = 2 is sufficiently large to ensure this. Consequently, we focus primarily on

the specific variants MLOPA(2), MLOPB(2, 2), and MLOPC(2) in the remainder of

this thesis.

From above, we can see that our three proposed MLOP-based methods (i.e.,

MLOPA(L), MLOPB(L,M), and MLOPC(L)) are superior to the LOP and LLOP

in terms of the n-flip optimality criterion. Thus, all other things being equal, we

would expect the MLOP to yield lower cost triangulations (on average) than the

LOP and LLOP. As we shall see later, this suspicion is confirmed by experimental

results.

3.5 Evaluation of Proposed LOP

Having introduced our proposed MLOP-based methods (i.e., MLOPA, MLOPB, and

MLOPC), we now evaluate their performance by comparing them to the LOP and

LLOP schemes for the task of solving Problem 1 (i.e., the triangulation-connectivity

optimization problem). In this comparison, the seven cost functions introduced earlier

are considered. The specific variants of our proposed MLOP-based methods used in

this evaluation are MLOPA(L), MLOPB(L,M), and MLOPC(L) with the L and M

33

parameters chosen as L = M = 2. This choice of L and M was made as it is sufficient

to ensure that each of our methods will yield 2-flip optimal triangulations for all of

the cost functions under consideration. All of the experimental results presented

herein for the LOP, LLOP, and our proposed MLOP-based schemes were obtained

from a software implementation written in C++ that was developed by the author

of this thesis. Although some effort was made to ensure that this implementation

was reasonably efficient, it could certainly be optimized further (e.g., some extra

work performed by the code to facilitate more thorough testing and a more general

computational framework than what is considered herein could be eliminated). So,

any execution times given herein (especially ones for our proposed methods) should

be viewed as upper bounds on what could be achieved with a reasonably efficient

implementation.

For evaluation purposes, we employed 29 meshes for test data, which were pro-

duced using several highly-effective mesh generators, including the error-diffusion [43],

ID1 [9], and GPRFS-ED [8] methods. The meshes were generated from a variety of

grid-sampled functions (e.g., images and elevation maps) taken mostly from standard

data sets such as [40, 23, 39] as well some test functions in [19]. The sizes of these

meshes vary from approximately 900 to 16000 vertices.

For each of our 29 test meshes and each of the seven cost functions considered

herein (for a total of 29 · 7 = 203 test cases), each of the five methods under consid-

eration was used to optimize the mesh’s triangulation connectivity and the resulting

triangulation cost was measured. For each of the 203 test cases, the triangulation

costs resulting from the five methods were ranked from 1 to 5, with a rank of 1 cor-

responding to the best (i.e., lowest) triangulation cost and a rank of 5 corresponding

to the worst. Then, the average and standard deviation of the ranks for each method

were computed for each cost function as well as overall, with the results shown in

Table 3.2(b). (The standard deviations are the numbers shown in parentheses in

the table.) Individual results obtained for a representative subset of the test cases

are given in Table 3.2(a). In particular, for each of the seven cost functions, results

are given for three meshes. Lastly, the median reduction in the triangulation cost

relative to the LOP is given in Table 3.3 for each of the LLOP, MLOPA, MLOPB,

and MLOPC methods. To assist with the interpretation of the data, in each of Ta-

bles 3.2(a), 3.2(b), and 3.3, the best result for each table entry is highlighted in bold

font.

Proposed methods vs. LOP. First, we compare our proposed MLOP-based methods

34

Table 3.2: Triangulation costs obtained using the various optimization methods.
(a) Results for a representative subset of the individual test cases. (b) Average
rankings taken across all test cases.

(a)
Cost Triangulation Cost
Func. Mesh LOP LLOP MLOPA(2) MLOPB(2, 2) MLOPC(2)
ABN lena@ED@2 11916.60 10271.55 10089.16 9539.82 9417.04
ABN ct@ID@2 8185.67 6957.90 6858.16 6466.56 6389.13
ABN n36-w113@0.5 7349.00 7002.41 6972.81 6905.48 6897.76
AMC lena@ED@2 106401.89 101248.28 100792.96 99810.94 99481.09
AMC ct@ID@2 71694.69 68165.35 67972.92 67091.76 66883.94
AMC n36-w113@0.5 6918326.24 6868876.57 6857626.68 6853149.95 6851738.72
DLP lena@ED@2 973861.70 749538.76 751934.44 693624.80 693765.19
DLP ct@ID@2 9241106.72 7316894.76 6996901.67 6491381.83 5819313.77
DLP n36-w113@0.5 7673511.72 7065988.61 7008287.94 6890063.14 6838935.10
DP lena@ED@2 99480.75 77684.29 78242.12 67863.62 70426.29
DP ct@ID@2 125744.00 95138.91 88144.27 77252.90 74717.28
DP n36-w113@0.5 5909169.34 5312215.54 5262803.93 5122322.64 5082415.04
JND lena@ED@2 203874.69 190001.90 188589.17 187041.87 186462.70
JND ct@ID@2 1641991.36 1507048.46 1506550.02 1485052.35 1495526.76
JND n36-w113@0.5 9831.93 9519.02 9479.73 9431.13 9422.08
SE lena@ED@2 22684438 19285947 19134957 18297542 18333058
SE ct@ID@2 82791830 78502285 78196476 77696882 77625618
SE n36-w113@0.5 899889559 874421792 873570760 869878114 869931291
YMS lena@ED@2 3056206.81 2792159.74 2781951.65 2727975.11 2724628.16
YMS ct@ID@2 159766983.95 54517395.48 54128494.76 56343039.01 51937420.49
YMS n36-w113@0.5 2049.38 1791.59 1748.12 1685.08 1680.91

(b)
Cost Average Rank (with Standard Deviation†)
Func. LOP LLOP MLOPA(2) MLOPB(2, 2) MLOPC(2)
ABN 5.00 (0.00) 3.86 (0.34) 3.14 (0.34) 1.79 (0.41) 1.21 (0.41)
AMC 5.00 (0.00) 3.97 (0.18) 3.03 (0.18) 1.72 (0.45) 1.28 (0.45)
DLP 5.00 (0.00) 3.93 (0.25) 3.07 (0.25) 1.62 (0.49) 1.38 (0.49)
DP 5.00 (0.00) 3.76 (0.43) 3.21 (0.48) 1.62 (0.55) 1.41 (0.49)
JND 5.00 (0.00) 3.97 (0.18) 3.03 (0.18) 1.83 (0.38) 1.17 (0.38)
SE 5.00 (0.00) 3.72 (0.45) 3.24 (0.50) 1.55 (0.50) 1.48 (0.56)
YMS 5.00 (0.00) 3.45 (0.72) 3.07 (0.83) 2.14 (0.90) 1.34 (0.54)
Overall 5.00 (0.00) 3.81 (0.44) 3.11 (0.46) 1.75 (0.58) 1.33 (0.49)

†The standard deviation is given in parentheses.

to the LOP. From the overall statistical results in Table 3.2(b), each of our MLOPA(2),

MLOPB(2, 2), and MLOPC(2) methods outperforms the LOP in all 203 test cases.

This can be seen from the fact that the LOP consistently has an overall rank of last

(i.e., 5th) place with a standard deviation of exactly 0 (i.e., for every test case, the

35

Table 3.3: Comparison of reduction in triangulation cost obtained with various meth-
ods relative to the LOP.

Median Reduction in Triangulation Cost
Cost Relative to LOP (%)
Func. LLOP MLOPA(2) MLOPB(2, 2) MLOPC(2)
ABN 13.80 14.76 19.72 19.77
AMC 4.30 4.64 5.85 5.96
DLP 13.53 14.57 18.21 17.89
DP 20.70 21.35 28.34 28.25
JND 6.14 6.63 7.42 7.59
SE 5.63 5.72 7.11 7.07
YMS 22.08 24.10 27.58 30.50
Overall 11.49 12.18 16.36 16.62

LOP has a rank equal to its average rank of 5). The poor performance of the LOP is

also evident from the individual results shown in Table 3.2(a). Examining Table 3.3,

we can see that, depending on the cost function used, our MLOPA, MLOPB, and

MLOPC methods yield a median cost reduction of 5.72% to 24.10%, 5.85% to 28.34%,

and 5.96% to 30.50%, respectively, relative to the LOP. Note that these values are

medians. So, in many cases, the actual improvement is greater than these median

values, and sometimes much greater (e.g., as high as about 74%). So, clearly, our

proposed MLOP-based methods offer very substantially better results than the LOP.

Proposed methods vs. LLOP. Next, we compare our proposed MLOP-based meth-

ods to the LLOP. From the overall statistical results given in Table 3.2(b), we can see

that each of our MLOPA, MLOPB, and MLOPC methods achieves a better average

rank than the LLOP. This is consistent with individual results shown in Table 3.2(a).

As it turns out, a more detailed analysis of the data shows that our MLOPB and

MLOPC methods always outperform the LLOP in every test case for all of the cost

functions, except YMS. In the case of the YMS cost function, the MLOPB and MLOPC

methods outperform the LLOP in 24/29 (83%) and 27/29 (93%) of the test cases,

respectively. Again, a more detailed analysis of the data shows that, except for the

DP, SE, and YMS, cost functions, MLOPA outperforms the LLOP in 86% to 96% of

the test cases, while in the case of the DP, SE, and YMS cost functions, MLOPA out-

performs the LLOP in 69% to 76% of the test cases. Examining Table 3.3, we can see

that, depending on the cost function, our MLOPA, MLOPB, MLOPC methods offer

a median cost reduction that is greater than that of the LLOP by 0.09% to 2.02%,

1.28% to 7.64%, and 1.44% to 8.42%, respectively. Again, note that these values

36

are medians. So, in many cases, our proposed methods (especially MLOPB and

MLOPC) beat the LLOP by a larger margin than these values. In particular, the

MLOPA, MLOPB, and MLOPC methods beat the LLOP by up to 14.35%, 19.06%,

and 19.57%, respectively, in our 203 test cases. Clearly, our proposed MLOP-based

methods offer a considerable benefit over the LLOP.

Proposed methods relative to each other. Next, we compare our proposed MLOP

methods (i.e., MLOPA, MLOPB, and MLOPC) to each other in terms of performance.

From Table 3.2(b), we can see that, in terms of overall average rank, the MLOPC

method performs best followed by the MLOPB and MLOPA schemes in that order.

Furthermore, this relative ordering can be seen to be consistent across each of the

seven cost functions. For the most part, the standard deviations are sufficiently

small that the average ranks alone give an accurate picture of the results. The only

exception to this is in the case of the MLOPB and MLOPC methods for the DLP, DP,

and SE cost functions. In the case of these three cost functions, although the MLOPC

method has a better average rank than the MLOPB scheme, the MLOPB and MLOPC

methods are actually fairly close in terms of performance. As it turns out, in the case

of these three cost functions, although the MLOPC method beats the MLOPB scheme

in more cases, the MLOPB scheme has a tendency to perform better in cases where

the improvement relative to LOP is greater. This leads to the fact that, for these

three cost functions, the MLOPB is able to achieve a higher median cost reduction

(relative to the LOP) than the MLOPC method. This can be seen by examining the

results of Table 3.3, where the MLOPB method has higher values for the DLP, DP,

and SE cost functions than the MLOPC scheme. A more detailed analysis of the data

shows that, in the cases of these three cost functions, the MLOPC method beats the

MLOPB scheme in a much smaller fraction of the test cases, compared to the other

cost functions. In particular, for the DLP, DP, and SE cost functions, the MLOPC

method beats the MLOPB scheme in only 62%, 58%, and 55% of the test cases,

respectively. In the case of the other cost functions, this percentage is significantly

higher, namely, above 72% in all cases. The individual results given in Table 3.2(a)

can be seen to be consistent with the overall statistical results, with the MLOPC

method most frequently yielding the best result followed by the MLOPB and MLOPA

schemes in that order. Clearly, the MLOPC and MLOPB methods perform better

than the MLOPA scheme. Again, the MLOPA scheme was only introduced herein as

an additional point of comparison (due to its relative conceptual simplicity). Thus,

we conclude that the MLOPC method is best, except for the cases of the DLP, DP,

37

and SE cost functions, where the MLOPB scheme yields better results.

Comments on computation time. At this point, a few comments are worthwhile

regarding the computation times of the various methods under consideration. On

very modest hardware, namely a six-year-old notebook with a 1.90 GHz Intel Core i7

CPU and 6 GB RAM, the time required for the LOP, LLOP, MLOPA, MLOPB, and

MLOPC for each of the test cases in Table 3.2(a) lies in the ranges 0.46 to 1.14 s,

1.55 to 4.50 s, 4.72 to 20.74 s, 4.15 to 14.01 s, and 11.39 to 38.19 s, respectively.

In this regard, the first observation that we can make is that all of the methods are

reasonably fast, with all of them requiring less than 40 seconds of computation time.

Generally, the LOP is fastest, followed by the LLOP, and then the MLOPB, MLOPA,

and MLOPC schemes in that order. Although the LOP and LLOP are usually faster

than our proposed MLOP-based methods, the better results produced by our methods

can easily justify this extra computational cost (which is not too exorbitant) for many

applications. Interestingly, in the vast majority of test cases, the MLOPB method

is faster than the MLOPA scheme. Although the second stage of processing in the

MLOPB method uses the same parameters as the single stage of processing in the

MLOPA scheme, the second stage converges very quickly due to the preconditioning

achieved by the first stage. This, combined with fast convergence of the first stage of

processing, allows the MLOPB method to require less time than the MLOPA scheme.

Recommendations. Considering all of the above results, we recommend the use of

MLOPB(2, 2) for cost functions other than ABN, AMC, JND, and YMS as well as

in situations where the lesser computation time for MLOPB (relative to MLOPC) is

desired. Otherwise, we recommend the use of MLOPC(2).

Other remarks. Of the cost functions considered herein excluding SE, the MLOPA(2)

scheme performs the minimal amount of extra work beyond that done by the LLOP

to ensure 2-flip optimality. This makes the MLOPA scheme an interesting one to

use for comparison purposes (hence, our reason for considering the MLOPA scheme

herein). The fact that MLOPA(2) is able to outperform the LLOP in the preceding

cases demonstrates that 2-flip optimality by itself is quite beneficial to have. More-

over, the fact that the MLOPB and MLOPC methods beat the LLOP by even larger

margins (than the MLOPA scheme) shows that the more sophisticated permissible-

flip-sequence policies they employ are also highly effective.

In passing, it is worth mentioning that, at expense of increased computational cost,

even better results can be obtained with our MLOP-based methods. In particular, one

can use MLOPB(2, i) and MLOPC(i) for values of i greater than 2. Table 3.4 shows

38

Table 3.4: Triangulation costs obtained using MLOPB(2,M) for various choices of M

Cost Triangulation Cost
Func. Mesh M = 2 M = 3 M = 4 M = 5
ABN lena@ED@2 9539.82 9235.90 8950.96 8881.31
ABN ct@ID@2 6466.56 6181.52 6073.77 5969.44
ABN n36-w113@0.5 6905.48 6877.19 6862.76 6840.55
AMC lena@ED@2 99810.94 98830.81 98579.41 98540.33
AMC ct@ID@2 67091.76 66734.55 66521.99 66348.92
AMC n36-w113@0.5 6853149.95 6852002.26 6851130.46 6848777.86
DLP lena@ED@2 693624.80 689832.86 678211.34 631582.68
DLP ct@ID@2 6491381.83 6171134.41 6119682.15 5713933.08
DLP n36-w113@0.5 6890063.14 6817818.32 6718116.16 6721997.02
DP lena@ED@2 67863.62 66484.86 64318.27 62851.59
DP ct@ID@2 77252.90 73002.61 72021.63 72374.42
DP n36-w113@0.5 5122322.64 5001998.30 4962355.40 4933473.46
JND lena@ED@2 187041.87 185816.54 185728.60 185482.90
JND ct@ID@2 1485052.35 1479519.63 1476350.99 1475829.41
JND n36-w113@0.5 9431.13 9408.14 9392.62 9376.06
SE lena@ED@2 18297542 17832396 17735184 17431940
SE ct@ID@2 77696882 77301345 77196481 77179921
SE n36-w113@0.5 869878114 868600878 867165140 866664396
YMS lena@ED@2 2727975.11 2691297.40 2657434.01 2661270.97
YMS ct@ID@2 56343039.01 53622523.01 46175699.34 53861453.89
YMS n36-w113@0.5 1685.08 1651.44 1634.73 1623.68

the triangulation costs obtained with MLOPB(2, i) for the test cases from Table 3.2(a)

with i ranging from 2 to 5. Similar results are also given for MLOPC(i) in Table 3.5.

Examining the results of both of these tables, we can see that, for both MLOPB(2, i)

and MLOPC(i), the trend is for the triangulation cost to decrease as i increases.

This demonstrates that even better results can be obtained using our MLOP-based

approaches if one is willing to incur the expense of more computation.

Computation time vs. mesh size. During the evaluation of the MLOPB(2, 2) and

MLOPC(2) methods, we also examined how the size of mesh affects computation

time. In this experiment, for a number of images, we generated meshes with Delau-

nay connectivity ranging in size from 500 to 10000 vertices. Then, we measured the

time required to optimize the mesh connectivity using MLOPB(2, 2) and MLOPC(2)

with the various cost functions. Graphs showing a representative subset of the re-

sults are given in Figure 3.1. The graphs in Figures 3.1(a), (b) and (c) show the

computation time plotted against mesh size for MLOPB(2, 2) with cost function SE,

39

Table 3.5: Triangulation costs obtained using MLOPC(L) for various choices of L

Cost Triangulation Cost
Func. Mesh L = 2 L = 3 L = 4 L = 5
ABN lena@ED@2 9417.04 9190.62 8946.22 8781.89
ABN ct@ID@2 6389.13 6165.62 5999.04 5962.38
ABN n36-w113@0.5 6897.76 6831.35 6814.38 6783.87
AMC lena@ED@2 99481.09 98694.11 98497.80 98420.13
AMC ct@ID@2 66883.94 66562.35 66378.11 66298.59
AMC n36-w113@0.5 6851738.72 6848643.96 6846949.52 6846406.06
DLP lena@ED@2 693765.19 677303.21 665675.13 664895.44
DLP ct@ID@2 5819313.77 6449558.64 5312767.51 4998525.22
DLP n36-w113@0.5 6838935.10 6755761.23 6676171.30 6630737.61
DP lena@ED@2 70426.29 65600.47 62485.53 61098.12
DP ct@ID@2 74717.28 72560.62 63390.78 68631.84
DP n36-w113@0.5 5082415.04 4953480.91 4918212.10 4842517.34
JND lena@ED@2 186462.69 185334.12 184809.10 184459.31
JND ct@ID@2 1495526.76 1475114.75 1472661.70 1471682.01
JND n36-w113@0.5 9422.07 9375.31 9362.66 9346.87
SE lena@ED@2 18333058 17895627 17648332 17337996
SE ct@ID@2 77625618 77211125 77096945 77007871
SE n36-w113@0.5 869931291 867594566 866558588 866244494
YMS lena@ED@2 2724628.16 2666925.87 2657377.21 2650449.03
YMS ct@ID@2 51937420.49 50633138.21 48262464.43 46035990.21
YMS n36-w113@0.5 1680.91 1621.14 1586.29 1566.21

ABN and JND, respectively. Similar graphs are also given in Figures 3.1(d), (e) and

(f) for MLOPC(2). From Figure 3.1, it is clear that the computation time grows

approximately linearly as the size of mesh increases for all six cases. We also found

a similar growth rate for computation time for the other cost functions considered

in our work. This demonstrates that the computation times of MLOPB(2, 2) and

MLOPC(2) grow approximately linearly with mesh size (at least when starting from

meshes with Delaunay connectivity).

40

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPB(2,2) with SE

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPB(2,2) with ABN

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPB(2,2) with JND

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPC(2) with SE

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPC(2) with ABN

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Mesh size

MLOPC(2) with JND

(f)

Figure 3.1: Computation time versus mesh size for (a) MLOPB(2, 2) with SE,
(b) MLOPB(2, 2) with ABN, (c) MLOPB(2, 2) with JND, (d) MLOPC(2) with SE,
(e) MLOPC(2) with ABN, and (f) MLOPC(2) with JND.

41

Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we have considered the problem of selecting the connectivity of a

triangulation to minimize a given cost function. The notion of n-flip optimality was

introduced and then used to guide the development of an improved solution technique

for this problem. In particular, a computational framework for an improved version

of the LOP, called the MLOP, was proposed. The MLOP framework has a number of

degrees of freedom (e.g., the choice of permissible-flip-sequence policy), which were

explored, leading to the proposal of two highly-effective MLOP-based methods known

as MLOPB(L,M) and MLOPC(L). We showed that each of the MLOPB(L,M) and

MLOPC(L) methods is guaranteed to yield 2-flip optimal triangulations for arbitrary

cost functions if L is chosen sufficiently large. Furthermore, we also showed that, for

most cost functions, the LOP and LLOP cannot make such a guarantee.

The triangulation-connectivity selection problem was considered in detail for the

case of seven well-known cost functions. In this context, we focused our attention

on the specific variants of our MLOP-based methods MLOPB(L,M) and MLOPC(L)

obtained when L = M = 2 (i.e., MLOPB(2, 2) and MLOPC(2)). Unlike the LOP and

LLOP, our MLOPB(2, 2) and MLOPC(2) schemes are guaranteed to yield 2-flip opti-

mal triangulations for all seven of the cost functions under consideration. Through

experimental results, we demonstrated that our MLOPB(2, 2) and MLOPC(2) meth-

ods are able to produce triangulations of significantly lower cost than the LOP and

LLOP schemes, while still maintaining a reasonable computational cost (e.g., from

a few seconds to a few tens of seconds for problems of practical interest). Of our

42

MLOP-based methods, we found MLOPB(2, 2) to be the best choice if the cost func-

tion is DP, DLP, or SE, or if computational cost is more of a concern; otherwise,

MLOPC(2) is recommended. Lastly, we demonstrated that by using MLOPB(2, i)

and MLOPC(i) with i ≥ 2, one can achieve even better results than with i = 2 at the

expense of increased computational cost.

Since the triangulation-connectivity selection problem can arise in numerous con-

texts, effective solution techniques for this problem are of great practical interest.

In particular, methods for the generation of meshes based on data-dependent trian-

gulations can benefit substantially from improvements in such solution techniques.

Thus, the MLOP framework and MLOP-based schemes proposed herein have great

potential as a tool for developing improved mesh-generation and other methods.

4.2 Future Research

Although this thesis has made significant contributions to the solution of the triangulation-

connectivity selection problem, further work in this area could still be done. In what

follows, some potential areas for future work are discussed.

As we introduced in Corollary 1.1, the MLOP is guaranteed to produce a 2-

flip optimal triangulation if the permissible flip sequence policy is chosen as either

PFSMLT(L) or PFSIOS(L) and L ≥ inflDist(c). Since any given n-flip optimal trian-

gulation will tend to more closely approach the globally optimal solution in terms of

cost as n increases, the MLOP could be further improved by applying some other

permissible flip sequence policy to yield n-flip optimality triangulation, where n > 2.

We suspect that such a permissible flip sequence policy can be achieved by carefully

selecting the free parameter in Algorithm 2 with respect to the influence distance of

the triangulation cost function. Proving the n-flip optimality, where n > 2, however,

is more challenging. A permissible flip sequence policy yields n-flip optimal triangu-

lation, where n > 2, would be potentially valuable if the computational cost is not

too high.

Another potential improvement is the computational cost of the MLOP. During

the optimization procedure, we noticed applying different flip sequences might re-

sult in the triangulations with the same connectivity. Therefore, the algorithm could

compute the cost of a triangulation, whose cost has been computed before. If some ef-

ficient scheme is employed to avoid these redundant computations, the computational

efficiency could be improved.

43

Appendix A

Software User Manual

A.1 Introduction

As a part of this research project, software that implements the proposed triangulation-

connectivity optimization methods was developed by the author with the guidance

from his supervisor. The software also implements a mesh generation method like the

one in [27] based on the MLOP. The software was written in C++ under the Linux

OS, and consists of more than 6000 lines of code.

Our software project contains three executable programs as follows.

1. optimize_mesh performs the triangulation-connectivity optimization for a tri-

angulation based on the MLOP.

2. generate_mesh produces a triangle mesh model for the input image based on

the MLOP.

3. two_flip_optimal performs the explicit 2-flip optimality test on a triangulation

for a triangulation cost function specified by the user.

In the remainder of this appendix, we will introduce how to install and use the

above software in detail. Several examples are also provided for illustrating software

usage.

A.2 Installing the Software

Since our program utilize many features of C++11/14, the compiler should be com-

patible with C++11/14. We recommend to use the GCC 6.1.0 or higher version as

44

compiler. Our software makes heavy use of some C++ libraries, including the Compu-

tational Geometry Algorithm Library (CGAL) [3], Boost Library [1], Signal Process-

ing Library (SPL) [5], and SPL Extensions Library (SPLEL). These libraries should

be correctly installed before building the software. The versions of these libraries that

have been verified to work correctly with our programs are:

• Boost 1.59.0

• CGAL 3.8.2

• SPL 2.0.4

• SPLEL 2.0.5

In order to install our software, user should first install the CMake[2] tool with

version 3.2.2 or later. To build and install our software, the following steps are

required (in order):

1. Choose an installation directory. Let $INSTALL_DIR denotes this directory.

2. Change the current working directory to the top level of the source tree (i.e.,

the directory that the contains the CMakeLists.txt)

3. Generate native build files by executing the command:

cmake -H. -Btmp -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR

4. To build and install the software, run the command:

cmake --build tmp --clean-first --target install

Note that this step may require special administrator privileges depending on

the target directory for installation.

Once the software has been installed successfully, the directory tmp under the current

working directory can be deleted by executing the command rm -r tmp.

A.3 Detailed Program Descriptions

As mentioned earlier, the software consists of three programs: optimize_mesh,

generate_mesh, and two_flip_optimal. In what follows, we provide a detailed

description for each of these programs.

45

A.3.1 The optimize_mesh Program

SYNOPSIS

optimize_mesh [OPTIONS]

DESCRIPTION

The optimize_mesh program reads a triangle mesh in OFF format [4] from standard

input, and optimizes the triangulation connectivity of this mesh based on the method

specified by the user. Then, the program writes the optimized mesh model to standard

output in OFF format.

OPTIONS

The following options are supported by the optimize_mesh program:

-b $selPolicy Set the good flip-sequence selection policy to

$selPolicy. This option must be provided. The

valid values for $selPolicy are listed in Table A.3.

-C $maxFlips Set the maximum flip count of an edge to

$maxFlips. When an edge has been flipped more

than $maxFlips times, a cycle is assumed to have

been encountered.

-c $triCostFun Set the triangulation-cost function to

$triCostFun. This option must be provided.

The valid values for $triCostFun are listed in

Table A.2.

-f $originalFunc Set $originalFunc as the original function φ be-

ing modeled. This option is only valid when the

triangulation-cost function is SE.

46

-H $historyLevel Set the level of history output to $historyLevel.

If $historyLevel is not specified, no history

data will be output. The valid values for

$historyLevel are listed in Table A.4.

-h $historyFile Write the history output to the file $historyFile.

The history output records all of the operations

applied to the mesh in a particular format useful

for testing.

-l $lookahead Set the number of lookahead levels to $lookahead

(where $lookahead is nonegative integer). This

option must be provided.

-O $cacheEnabled Set the enabling of the cost cache to

$cacheEnabled. If $cacheEnabled is 0, the

cache is disabled; otherwise, the cache is enabled.

The default value is 0.

-r $resultFile Write some information about the results of mesh-

optimization process to the file $resultFile. This

information includes the triangulation cost func-

tion, the value of maxLevel, the good flip-sequence

selection policy, the triangulation cost before and

after the optimization procedure, and the mesh-

optimization time in seconds.

-s $cycleAlert Set the response mode to $cycleAlert when a po-

tential cycle is detected. The two available choices

for $cycleAlter are listed in Table A.6. The de-

fault mode is always fail.

-t $triFile Write the optimized triangulation of the image

plane in OFF format to the file $triFile.

47

Table A.2: Choices of triangulation-cost function

Policy Description Reference
abn angle between normals (ABN) Section 2.8
amc absolute mean curvature (AMC) Section 2.8
dlp deviations from linear polynomials (DLP) Section 2.8
dp distances from planes (DP) Section 2.8
jnd jump in normal derivatives (JND) Section 2.8
se squared error (SE) Section 2.8
yms Yu-Morse-Sederberg (YMS) Section 2.8

Table A.3: Choices of good flip-sequence selection policies

Policy Description
ff first found: choose the first good flip sequence that was

found
lc least cost: choose the good flip sequence that results in

a triangulation with the least cost
rd random: randomly select one of the good flip sequences

Table A.4: Choices of history level

Number Type of information output
0 Point insertion, edge optimality test result and edge flip

operation.
1 Level 0 information plus cost invalidation information if

option -O is specified and triangulation cost before and
after applying each flip sequence.

2 Level 1 information plus cycle detection infomation and
infomation of each flip sequence applied to the triangu-
lation.

-z $permFlipSeq Set the permissible flip-sequence policy to

$permFlipSeq. This option must be provided.

The valid values for $permFlipSeq are listed in

Table A.5.

48

Table A.5: Choices of permissible flip-Sequence policies

Policy Description Reference
out noskip outward without skip Section 3.3.3
inout noskip inward and outward without skip Section 3.3.3
out skip outward with skip Section 3.3.3
inout skip inward and outward with skip Section 3.3.3
stop at length two maximum length two Section 3.3.3

Table A.6: Choices of response mode when a potential cycles is detected

Mode Description
always fail Print the iteration number and the two end points of

the edge that causes the cycle, and exit the program.
never fail Continue the program and skip the edge that causes the

cycle in the reminder of the optimization procedure.

A.3.2 The generate_mesh Program

SYNOPSIS

generate_mesh [OPTIONS]

DESCRIPTION

The generate_mesh program reads an image in PNM format from the standard input

stream, and generates a mesh with a specified sampling density with the specified

mesh-optimization method. Then, the program writes the optimized mesh in OFF

format to standard output.

OPTIONS

The following options are supported by the optimize_mesh program:

-b $selPolicy Set the good flip-sequence selection policy to

$selPolicy. This option must be provided. The

valid values for $selPolicy are listed in Table A.3.

49

-C $maxFlips Set the maximum flip count of an edge to

$maxFlips. When an edge has been flipped more

than $maxFlips times, a cycle is assumed to have

been encountered.

-c $triCostFun Set the triangulation-cost function to

$triCostFun. This option must be provided.

The valid values for $triCostFun are listed in

Table A.2.

-d $sampDensity Set the sampling density for the mesh to be gen-

erated to $sampDensity. The value should be in

[0,1]. Either this option or the -n option must be

provided.

-H $historyLevel Set the level of history output to $historyLevel.

If $historyLevel is not specified, no history

data will be output. The valid values for

$historyLevel are listed in Table A.4.

-h $historyFile Write the history output to the file $historyFile.

The history output records all of the operations

applied to the mesh in a particular format useful

for testing.

-l $lookahead Set the number of lookahead levels to $lookahead

(where $lookahead is nonegative integer). This

option must be provided.

-m Specify that any subsequent -b, -c, and -l options

apply to main processing.

-n $numSamples Set the number of samples in the mesh to be gen-

erated to $numSamples. Either this option or the

-d option must be provided.

50

-O $cacheEnabled Set the enabling of the cost cache to

$cacheEnabled. If $cacheEnabled is 0, the

cache is disabled; otherwise, the cache is enabled.

The default value is 0.

-p Specify that any subsequent -b, -c, and -l options

apply to post processing.

-r $resultFile Write some information about the results of the

mesh-generation process to the file $resultFile.

This information includes the triangulation cost in

terms of the main triangulation-cost policy, trian-

gulation cost in terms of the postprocessing tri-

angulation cost policy, the total mesh-generation

time, the main part of mesh-generation time in

seconds, and the postprocessing part of mesh-

generation time in seconds.

-s $cycleAlert Set the response mode to $cycleAlert when a po-

tential cycle is detected. The two available choices

for $cycleAlter are listed in Table A.6. The de-

fault mode is always fail.

-t $triFile Write the optimized triangulation of the image

plane in OFF format to the file $triFile.

-z $permFlipSeq Set the permissible flip-sequence policy to

$permFlipSeq. This option must be provided.

The valid values for $permFlipSeq are listed in

Table A.5.

51

A.3.3 The two_flip_optimal Program

SYNOPSIS

two_flip_optimal [OPTIONS]

DESCRIPTION

The two_flip_optimal program reads a triangualtion mesh in OFF format from the

standard input stream, and tests if the triangulation is 2-flip optimal in terms of the

specified cost function. If the triangulation is 2-flip optimal, the program outputs the

the message “True” as the test result. Otherwise, the program outputs the message

“False” and some additional details. These details include all of the length-two flip

sequences that can reduce the triangulation cost and the triangulation cost before

and after applying such a flip sequence.

OPTIONS

The following options are supported in two_flip_optimal program:

-c $triCostFun Set the triangulation-cost function to

$triCostFun. This option must be provided.

The valid value for $triCostFun are listed in

Table A.2.

-i $originalFunc Set the $originalFunc as the original function φ

being modeled. This option is only valid when the

triangulation-cost function is SE.

A.4 Examples of Software Usage

We provide some examples in what follows to illustrate how to use the software with

different options.

52

Example A

Suppose that we want to optimize a triangle mesh in the file mesh.off and write

the optimized mesh to the file optMesh.off. During the optimization procedure, the

cycle response mode is desired to be never fail with the maximum flip count of an

edge to be 200 while the cost cache is enabled. Once the optimization procedure finish,

the result information is to be written in the file results.txt and the triangulation

in image planes is to be written in the file tri.off. The MLOP is desired to meet

the following requirements:

• set the triangulation-cost function to be JND;

• set the number of lookahead level to be 2;

• set the good flip-sequence selection policy to be first found(ff);

• set the permissible flip-sequence policy to be inward and outward without skip.

The above objective can be achieved by running the command optimize mesh as

follows:

optimize_mesh -c jnd -l 2 -b ff -O 1 -t tri.off -r results.txt \

-z inout_noskip -C 200 -s never_fail < mesh.off >optMesh.off

Example B

Suppose we want to generate a mesh from the image lena.pnm with sampling density

of 1% and output the mesh to the standard output stream to the file lenaMesh.off.

Besides the mesh, we also want to output the results information to the file results.txt

and output the triangulation in image plane to the file tri.off. During the mesh-

generation procedure, the good flip-sequence selection policy is to be ff and the

cycle response mode is to be always fail while the cost cache is enabled. The

mesh-generation method is desired to use the parameters as follows:

• set the triangulation-cost function to be JND for the main processing;

• set the number of lookahead level to be 0 for the main processing;

• set the triangulation-cost function to be SE for the post processing;

53

• set the number of lookahead level to be 3 for the post processing;

• set the permissible flip-sequence policy to be inward and outward with skip.

The above task can be accomplished by invoking the command generate mesh as

follows:

generate_mesh -d 0.01 -m -c jnd -l 0 -b ff -p -c se -l 3 -b ff -O 1 \

-t tri.off -r results.txt -z inout_skip -s always_fail \

< lena.pnm >lenaMesh.off

Example C

Suppose that we want to test if a triangulation T is 2-flip optimal based on a specified

triangulation-cost function. The triangulation-cost function is to be ABN and the file

mesh.off represents the triangle mesh model generated by T . Such a test can be

accomplished with the following command:

two_flip_optimal -c abn <mesh.off

If the triangulation-cost function is defined as SE, the user should also specify the

original bivariate function φ, such as oriImage.pnm, from which the input mesh is

generated. This test can be accomplished with the following command:

two_flip_optimal -c se -i oriImage.pnm <mesh.off

Once the program executes successfully, the program will output the test results

and detailed information to the standard output.

54

Bibliography

[1] Boost C++ library. http://www.boost.org. Accessed: 2018-01-10.

[2] CMake tool. https://camke.org. Accessed: 2018-01-10.

[3] Computational geometry algorithms library. http://www.cgal.org. Accessed:

2018-01-10.

[4] Object file format OFF. http://shape.cs.princeton.edu/benchmark/

documentation/off_format.html. Accessed: 2018-01-10.

[5] Signal processing library. https://github.com/mdadams/SPL. Accessed: 2018-

04-24.

[6] M. D. Adams. An efficient progressive coding method for arbitrarily-sampled

image data. IEEE Signal Processing Letters, 15:629–632, 2008.

[7] M. D. Adams. Progressive lossy-to-lossless coding of arbitrarily-sampled image

data using the modified scattered data coding method. In Proc. of IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, pages 1017–1020,

Taipei, Taiwan, April 2009.

[8] M. D. Adams. A flexible content-adaptive mesh-generation strategy for image

representation. IEEE Trans. on Image Processing, 20(9):2414–2427, September

2011.

[9] M. D. Adams. A highly-effective incremental/decremental Delaunay mesh-

generation strategy for image representation. Signal Processing, 93(4):749–764,

April 2013.

[10] L. Alboul, G. Kloosterman, C. Traas, and R van Damme. Best data-dependent

triangulations. Journal of Computational and Applied Mathematics, 119:1–12,

2000.

55

[11] J. G. Brankov, Y. Yang, and N. P. Galatsanos. Image restoration using content-

adaptive mesh modeling. In Proc. of IEEE International Conference on Image

Processing, volume 2, pages 997–1000, 2003.

[12] J. G. Brankov, Y. Yang, and M. N. Wernick. Tomographic image reconstruction

based on a content-adaptive mesh model. IEEE Trans. on Medical Imaging,

23(2):202–212, February 2004.

[13] C.Dyken and M. S. Floater. Preferred directions for resolving the non-uniqueness

of delaunay triangulations. Computational Geometry—Theory and Applications,

34:96–101, 2006.

[14] S. A. Coleman, B. W. Scotney, and M. G. Herron. Image feature detection on

content-based meshes. In Proc. of IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 1, pages 844–847, 2002.

[15] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud. Fractal image com-

pression based on Delaunay triangulation and vector quantization. IEEE Trans.

on Image Processing, 5(2):338–346, February 1996.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer, New York, NY, USA, 2nd

edition, 2000.

[17] B. Delaunay. Sur la sphere vide. Bulletin of the Academy of Sciences of the

USSR, Classes des Sciences Mathematiques et Naturelle, 7(6):793–800, 1934.

[18] N. Dyn. Data-dependent triangulations for scattered data interpolation and finite

element approximation. Applied Numerical Mathematics, 12:89–105, 1993.

[19] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise

linear interpolation. IMA Journal of Numerical Analysis, 10:137–154, 1990.

[20] M. A. Garcia and B. X. Vintimilla. Acceleration of filtering and enhancement

operations through geometric processing of gray-level images. In Proc. of IEEE

International Conference on Image Processing, volume 1, pages 97–100, Vancou-

ver, BC, Canada, 2000.

56

[21] M. Garland and P.S.Heckbert. Fast polygonal approximation of terrains and

height field. Technical report, School of Computer Science, Carnegie Mellon

University, pittsburgh, PA, USA, September 1995.

[22] K.-L. Hung and C.-C. Chang. New irregular sampling coding method for trans-

mitting images progressively. IEE Proceedings Vision, Image and Signal Pro-

cessing, 150(1):44–50, February 2003.

[23] Kodak lossless true color image suite. http://r0k.us/graphics/kodak, 2011.

[24] C. L. Lawson. Transforming triangulations. Discrete Mathematics, 3:365–372,

1972.

[25] C. L. Lawson. Software for C1 surface interpolation. In J. R. Rice, editor,

Mathematical Software III, pages 161–194. Academic Press, New York, NY, USA,

1977.

[26] P. Lechat, H. Sanson, and L. Labelle. Image approximation by minimization of

a geometric distance applied to a 3D finite elements based model. In Proc. of

IEEE International Conference on Image Processing, volume 2, pages 724–727,

1997.

[27] P. Li and M. D. Adams. A tuned mesh-generation strategy for image representa-

tion based on data-dependent triangulation. IEEE Trans. on Image Processing,

22(5):2004–2018, May 2013.

[28] X. Ma and M. D. Adams. An improved error-diffusion approach for generating

mesh models of images. Signal Processing, 117:17–32, December 2015.

[29] E. Osherovich and A. M. Bruckstein. All triangulations are reachable via se-

quences of edge-flips: an elementary proof. Computer Aided Geometric Design,

25:157–161, 2008.

[30] M. Petrou, R. Piroddi, and A. Talebpour. Texture recognition from sparsely and

irregularly sampled data. Computer Vision and Image Understanding, 102:95–

104, 2006.

[31] E. Quak and L. L. Schumaker. Least squares fitting by linear splines on data

dependent triangulations. In P. J. Laurent, A. Le Mehaute, and L. L. Schumaker,

57

editors, Curves and Surfaces, pages 387–390. Academic Press, Boston, MA, USA,

1991.

[32] G. Ramponi and S. Carrato. An adaptive irregular sampling algorithm and its

application to image coding. Image and Vision Computing, 19:451–460, 2001.

[33] S. Rippa. Adaptive approximation by piecewise linear polynomials on triangu-

lations of subsets of scattered data. SIAM Journal on Scientific and Statistical

Computing, 13(5):1123–1141, 1992.

[34] S. Rippa. Long and thin triangles can be good for linear interpolation. SIAM

Journal on Numerical Analysis, 29(1):257–270, 1992.

[35] M. Sarkis and K. Diepold. A fast solution to the approximation of 3-D scattered

point data from stereo images using triangular meshes. In Proc. of IEEE-RAS

International Conference on Humanoid Robots, pages 235–241, Pittsburgh, PA,

USA, November 2007.

[36] L. L. Schumaker. Computing optimal triangulations using simulated annealing.

Computer Aided Geometric Design, 10:329–345, 1993.

[37] D. Su and P. Willis. Demosaicing of colour images using pixel level data-

dependent triangulation. In Proc. of the Theory and Practice of Computer

Graphics, pages 16–23, 2003.

[38] D. Su and P. Willis. Image interpolation by pixel-level data-dependent triangu-

lation. Computer Graphics Forum, 23(2):189–201, 2004.

[39] United States Geological Survey. Shuttle radar topography mission void-filled

dataset. http://lta.cr.usgs.gov/SRTMVF, 2017.

[40] University of Southern California. USC-SIPI image database. http://sipi.

usc.edu/database, 2011.

[41] Y. Wang, O. Lee, and A. Vetro. Use of two-dimensional deformable mesh struc-

tures for video coding, part II–the analysis problem and a region-based coder

employing an active mesh representation. IEEE Trans. on Circuits and Systems

for Video Technology, 6(6):647–659, December 1996.

58

[42] J. Weisz and R. Bodnar. A refined “angle between normals” criterion for scat-

tered data interpolation. Computers and Mathematics with Applications, 41:531–

534, 2001.

[43] Y. Yang, M. N. Wernick, and J. G. Brankov. A fast approach for accurate

content-adaptive mesh generation. IEEE Trans. on Image Processing, 12(8):866–

881, August 2003.

[44] X. Yu, B. S. Morse, and T. W. Sederberg. Image reconstruction using data-

dependent triangulation. IEEE Computer Graphics and Applications, 21(3):62–

68, May 2001.

