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SEMICONDUCTOR MATERIALS AND DEVICES 
 

by H.L. Kwok 

 

Objective:  The purpose of these notes is to familiarize students 
with semiconductors and devices including the P-N junction, and 
the transistors. 
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Part 1:  Semiconductor Materials 

 

What we need to learn in this chapter? 
  

a. Semiconductor structures    
b. Electronic properties  
c. Intrinsic and extrinsic semiconductors 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           2 2



 - 3 -3/4/02C:\lec320.doc                                         H.L.Kwok 

Part 1:  Semiconductor Materials 
 
 
A.    Properties       
 
     ●   Semiconductors occupy a small fraction of the Periodic 
Table 
 
The word semiconductor means a material having conduction 
properties half-way between a conductor and an insulator. 
 
Solids are often classified according to their conductivity and 
semiconductors have conductivities in the range of 104 - 10-6 S/m.  
 
Fig.1.1 shows the conductivity range of semiconductors. 
Semiconductors that are of interest to us include: silicon (Si), 
germanium (Ge) and gallium arsenide (GaAs).  
 
 
a)    Crystal structures 

 
     ●      Si and Ge have the diamond crystal structure 
 
The diamond crystal structure is formed by 2 interlaced fcc unit 
cells. The cells are displaced by 1/4 the distance along the body 
diagonal.  Fig.1.2 shows the diamond crystal structure.   
 
     ●    GaAs has the zinc-blende crystal structure (similar to the 
diamond structure except that the Ga atoms and the As atoms 
occupy different lattice sites) 
 
This is illustrated in Fig.1.3.    
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In these crystals, the bonding arrangement between the nearest 
neighbors is tetrahedral (i.e., each atom has 4 nearest neighbors).  
The bond angle is shown in Fig.1.4.    

Semiconductors have covalent bonds. For covalent bonds, the 
electrons are shared between the nearest neighboring atoms as 
shown in Fig.1.5. 

 

Example 1.1:  At 300K, the lattice constant for Si is 0.543 nm, calculate the 
number of Si atoms m-3. 

Solution:   

Each unit cell of the fcc structure has 4 atoms.  Therefore, the diamond 
structure has 8 atoms per unit cell.     

The volume of the unit cell V = (5.43 x 10-10)3 m3 = 1.6 x 10-28 m3.    

The number of atoms per unit volume N = 8/(1.6 x 10-28) m-3 = 5 x 1028 m-3.   
# 

 

     ●     Lattice direction is a vector represented by the symbol: [x 
y z], where x, y, and z are the values of the lattice coordinates (of 
the vector) measured from the origin (a chosen lattice point) 

Lattice directions parallel to one another belong to the same 
family and are represented by the same symbol (in angular 
brackets).   
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     ●    A lattice plane is represented by a set of numbers (h k l) 
known as the Miller indices (h, k, and l are the normalized values 
of the inverse of the interceptions of the plane on each of the 
coordinates) 

 

Example 1.2:  A lattice plane intercepts the principal axes at positions: a, 
2a, 2a.   Determine the Miller indices.  

Solution: 

The Miller indices are:  (211).   This is illustrated in Fig.1.6.   #     

 

B.     Electronic properties of semiconductors 

     ●   A semiconductor at low temperature is similar to an 
insulator and the energy bonds are intact 

There are very few free electrons at low temperature.     

 

As temperature increases, some energy bonds are broken and 
the density of electrons increases. The density of electrons is 
quite small (~ 1012-19 m-3) at room temperature.  

 

     ●    Creation of free electrons is accompanied by the creation 
of holes   

A hole is a broken energy bond with a missing electron.  Holes 
are positively charged and their motion also leads to current flow.  
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A hole moves when the hole is filled with an electron.  This is 
illustrated in Fig.1.7.   

 

     ●   For an intrinsic semiconductor, the electron density n 
equals to the hole density p, i.e., n = p. 

 

Example 1.3:  Intrinsic Si has 1.45 x 1016 m-3 of electrons and holes, 
respectively.  If µn = 0.15 m2/V.s and µp = 0.045 m2/V.s, determine the 
conductivity. 

Solution: 

The conductivity σ = nqµn + pqµp = 1.45 x 1016 m-3 x 1.6 x 10-19 C x (0.15 + 
0.045) m2/V.s = 0.45 x 10-3 S/m.       # 

(Remember we mentioned earlier on that σ for a semiconductor lies 
between 104 to 10-6 S/m.)    

 

a)    Energy bands 

     ●     Electrons and holes in a semiconductor are allowed to 
possess specific energy ranges 

These energy ranges are called energy bands.  

Traditionally, engineers are interested in electrons and energy 
bands are constructed with electrons in mind, i.e., they are plotted 
in terms of negative potential energy.  Thus, in a typical energy 
band diagram, electron energy (negative potential energy) 
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increases “upward”, while hole energy (positive potential energy) 
increases “downward”. 

Fig.1.8 shows the energy band diagram for Si. Crystal momenta 
along two different crystal directions are plotted along the 
horizontal axes.  

The symbol E stands for electron energy.    

 

Since electrons normally reside in the lowest energy states in a 
solid, electrons will first fill up the lower energy bands.  When 
these are filled, they start to fill the higher energy bands.  As a 
result, some higher energy bands will be partly filled. These 
energy bands are called conduction bands. They are illustrated in 
Fig.9.   

 

Partially emptied energy bands have holes and they are called 
valence bands. 

 

The energy difference between the conduction band edge and the 
valence band edge is the energy gap.  Electrons and holes are 
not allowed to have energies falling within the energy gap. 

Effectively, energy gap is the amount of energy needed to form an 
electron and a hole. 
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The shape of an energy band changes with temperature, 
pressure, etc.  

For instance: the energy gap Eg(T) of Si has the following 
temperature dependence: 

     Eg (T) = 1.17eV - 4.73 x 10-4 T2/(T + 636K) eV            

                                                                                 (1-1) 

where T is the absolute temperature.    

This dependence is shown in Fig.1-10. 

  

Example 1.4:  What is Eg for Si at 300K?  

Solution:  

From Eqn.(1-1):   Eg (T = 300K) = 1.17 eV - 4.73 x 10-4 eV/K x 300K2/(300 
K + 636 K) = 1.12 eV.      #  

 

b)    Electron motion 

     ●    Motion of electrons and holes is affected by the lattice 
potential   

This may be viewed as an interaction between the electron/hole 
and the lattice vibrations. 

The result is that electrons and holes appear to possess masses 
different from the electron rest mass, m0. These are called 
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effective masses, (me
* for electrons, and mh

* for the holes) and 
they are less than m0.  

The small masses imply that the lattice vibrations assist in the 
motion of the electrons and the holes.    

For Si at 300K:  me
* (electrons) = 0.33 m0, and mh

* (holes) = 0.55 
m0.                                                                  

 

c)      Density of states for the electrons and holes 

     ●    An energy band contains many energy levels (states) 

Electrons occupying energy levels (states) obey the Pauli 
exclusion principle - which states that there can be at most 2 
electrons per energy state. 

 

The density of states in an energy band is given by the density of 
states function S(E) given by: 

     S(E) = 4π [2mds
*/h2]3/2E1/2                                     (1-2) 

where mds
* is a “density of states mass” parameter and h (= 0.662 

x 1033 J.s) is the Planck’s constant.  

S(E) has the dimension of per unit volume per unit energy. 

 

To compute the electron density n, S(E) is multiplied to a 
probability function that characterizes the occupation of the 
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different energy states. This probability function is the Fermi-
Dirac function f(E).  

     f(E) = 1/[1 + exp((E - EF)/kT)]                              (1-3) 

where EF is the Fermi-level, E is the energy of the electron, k (= 
1.38 x 10-23 J/K) is the Boltzmann constant, and T is the absolute 
temperature. 

 

Based on the above, the electron density n in the conduction 
band is given by: 

     n = ∫∞Ec Se(E)/[1 + exp((E - EF)/kT)] dE               (1-4) 

where Se is the density of states in the conduction band, EF is the 
Fermi-level, and EC is the energy at the conduction band edge. 

A graphical plot of Se(E) and f(E) is shown in Fig.1-11.    

 

A similar expression for the hole density p in the valence band is 
given by:  

     p = ∫-∞Ev Sh(E)/[1 - exp((E - EF)/kT)] dE              (1-5) 

where Sh(E) is the density of states in the valence band, and EV is 
the energy at the valence band edge. 

 

If we assume that both |EC - EF| and |Ev - EF| >> kT,  

     n = NC exp[- (EC - EF)/kT] 
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     p = NV exp[- (EF - Ev)/kT]                                    (1-6) 

where NC (= 2 x (2π mCB
*kT/h2)3/2) is the effective density of states 

in the conduction band, and NV (= 2 x (2π mVB
*kT/h2)3/2) is the 

effective density of states in the valence band.  mCB
* is the density 

of states mass parameter for the conduction band, and mVB
* is the 

density of states mass parameter for the valence band. 

At 300K, NC = 2.8 x 1025 m-3 and NV = 1.04 x 1025 m-3 for Si. 

 

According to Eqn.(1-6), electron and hole densities are functions 
of the position of the Fermi-level.  This is illustrated in Fig.1-12.  

 

Example 1.5:  Compute the electron density in Si if the Fermi level is at 
0.55 eV below the conduction band edge.   Assume T = 300K (kT at 300K 
= 0.0259 eV). 

Solution:   

From Eqn.(1-6):  The electron density n = NC exp(- (EC - EF)/kT) = 2.8 x 
1025 m-3  x exp(- 0.55 eV /0.259 eV) = 1.67 x 1016 m-3.       # 

 

d)     Intrinsic semiconductor   

     ●     An intrinsic semiconductor is one with no impurities   

For an intrinsic semiconductor, n = p = ni, the intrinsic carrier 
density.   

Using Eqn.(1-6), the intrinsic carrier density is given by:   
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     ni = [NC NV exp(- Eg/kT)]1/2                                  (1-7) 

where we have substituted Eg = EC - EV.  

 

At 300K, ni = 1.45 x 1016 m-3 for Si.   

 

    ●      Note that: pn = ni
2 

This is a very important relationship and is a consequence of the 
law of mass action - which states that the product of the electron 
density and the hole density is a constant at a given temperature.    

 

For an intrinsic semiconductor, we have E = Ei, the Intrinsic 
Fermi- level.  

It can be shown that: 

     Ei = Eg/2 + (kT/2) ln(NV/NC)                                 (1-8) 
 
When NV = NC, Ei is at the middle of the energy gap. 

 

e)        Extrinsic semiconductor    

     ●   Semiconductor becomes extrinsic when impurities are 
added 
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This is achieved with the addition of donors or acceptors. 
Impurities are called donors/acceptors depending on whether 
electrons/holes are produced.   

 

Structurally, donors are similar to the semiconductor (host) atoms 
except that there are 5 electrons in the outermost orbits (versus 4 
electrons for the (host) semiconductor). Ionization of the donor 
atom generates an electron.   Acceptor atoms have 3 electrons in 
the outermost orbits and the capture of an electron from a 
neighboring atom will generate a hole in the neighboring atom.   

This is illustrated in Fig.1-13.   

 

     ●  Because of the low ionization energies, donors and 
acceptors are “fully” ionized at room temperature   

This results in:  n = ND or, p = NA, where ND is the donor density 
and NA is the acceptor density.    

A semiconductors is N-type when n >> p, and P-type when p >> 
n. 

 

     ●    In the presence of donors/acceptors, electron and hole 
densities will change 

Since the law of mass action dictates that: pn = ni
2, we have p = 

ni
2/ND for an N-type semiconductor, and n = ni

2/NA for a P-type 
semiconductor.     
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     ●      For an extrinsic semiconductor, the position of the Fermi- 
level moves away from the intrinsic position 

For an N-type semiconductor (n = ND),  

      EC - EF = kT ln(NC/ND)  

For a P-type semiconductor (p = NA),  

      EV - EF = - kT ln(NV/NA)                                      (1-9)  

 

Fig.1-14 shows the positions of the Fermi-levels in an N-type 
semiconductor and in a P-type semiconductor, respectively.  

 

If both donors and acceptors are present in a semiconductor, the 
dopant in greater concentration dominates, and the one in smaller 
concentration becomes negligible.   

     ●    Semiconductors are named after the dominant carrier type 

Thus, an N-type semiconductor has more electrons than holes, 
while a P-type semiconductor has more holes than electrons.    

     ●     The dominant carrier is called the majority carrier versus 
the term minority carrier for the carrier in lesser quantity  

 

It is sometimes more convenient to express n and p in terms of 
the intrinsic Fermi-level Ei, i.e.   
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     n = NC exp(- (EC - EF)/kT)  

        = NC exp(- (EC - Ei)/kT) exp((EF - Ei)/kT)  

        = ni exp((EF - Ei)/kT)                                         (1-10)  

 

Similarly, 

      p = ni exp((Ei - EF)/kT)                                        (1-11)   

Using this representation, one uses the intrinsic Fermi-level as the 
energy reference. This also reduces the number of unknown 
materials parameters for the equations of n and p from three (NC, 
NV, EC/EV) to two (Ei and ni).  

 

Example 1.6: Find EC - EF if ND = 1 x 1022 m-3 for Si at 300K.   

Solution:   

From Eqn.(1-9),  EC - EF = kT ln(NC/ND) = 0.0259 eV x ln(2.8 x 1025 m-3/(1 x 
1022 m-3)) = 0.2 eV.       # 

 

Example 1.7:  If Si is doped with 1 x 1020 donor m-3, compute the carrier 
densities at 300K. 

Solution: 

n = ND = 1 x 1020 m-3 and p = ni
2/ND = (1.45 x 1016 m-6)2/(1 x 1020 m-3) = 2.1 

x 1012 m-3.   # 
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f)      Dopant energy levels   

Table 1.1 shows the dopant energies in the common 
semiconductors at 300K: 
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                      Phosphorus               Arsenic                    Boron  

     Si               0.045                         0.049                       0.045   

     Ge             0.012                        0.0127                     0.0104 

   GaAs           0.026                              -                               -   

Table 1.1: Dopant energies in the common semiconductors (measured in 
eV from the energy band edges: i.e., measured from NC in the case of the 
donors and measured from NV in the case of the acceptors). 

 

The dopant energies may be compared to the thermal energy kT 
(≈ 0.0259 eV) at 300K.   

Fig.1-15 shows the position of dopant energy levels in a typical 
energy band diagram. 

     

g)      Temperature dependence of the carrier densities 

    ●    Electron and hole densities in an extrinsic semiconductor 
may vary with temperature   

At low temperature, not all of the dopant is ionized and the 
majority carrier density is small.  Nevertheless, its value is still 
larger than the value of ni.     

At high temperature, the intrinsic carrier density increases rapidly, 
while the dopant density (ND or NA) remains unchanged. At a 
sufficiently high temperature, the semiconductor becomes 
intrinsic.   
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The variation of the electron density n versus the inverse 
temperature in an N-type semiconductor is shown in Fig.1-16.  
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Part 2:  Carrier transport   

 

What we need to learn in this chapter? 
  

a. Electronic motion 
b. Conduction properties of electrons and holes 
c. Drift and diffusion 
d. Generation and recombination 
e. Continuity equations 
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Part 2:   Carrier transport   

     ●     Carrier transport refers to the movement of the electrons 
and holes in a semiconductor under an applied voltage or a 
concentration gradient    

The simplest types of carrier transport are drift and diffusion.    

Drift is charge flow as a consequence of the presence of an 
applied electric field, while diffusion is charge flow due to the 
presence of a carrier density gradient. 

 

A.      Random motion of the electrons 

     ●   At room temperature, electrons possess thermal energy 
and its value is 3kT/2 (3-dimensions)   

Equating this thermal energy to the kinetic energy of an electron 
give: 

     me
*vth

2/2 = 3kT/2                                                  (2-1) 

where me
* is the effective mass of the electron, and vth is the 

thermal velocity.   

 

It can be shown that at T = 300K, the thermal velocity vth ≈ 1 x 105 
m/s.  

This suggests that electrons in a semiconductor are moving at a 
very high speed. 
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B.     Electrons in an electric field 

An electric field E’ imposes a preferred direction of motion for the 
electrons inside a semiconductor.  This is superimposed on top of 
the random motion (vth). 

Because of the charge, electrons move in opposite direction to 
the applied electric field and holes move in the same direction.  

  

     ●   The motion of the electrons and the holes will stop when 
they encounter a collision  

This is illustrated in Fig.2.1.    

 

Assuming a mean free time τc between collisions for the 
electrons, Newton’s law gives an expression of the form: 

     - qE’ = me
*vd/τc                                                     (2-2)  

where vd is the drift velocity of the electrons. 

This leads to: 

     vd = - qτcE’/me
*                                                     (2-3) 

 

By definition:  the electron mobility µn = - vd/E’.  

We have: 

     µn = qτc/me
*                                                          (2-4) 
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Note that: µn is positive. 

 

Collision of a hole may be viewed as an interruption in the filling of 
the hole by an electron. The drift velocity vd’ is then given by:  

     vd’ = qτc
* E’/mh

*                                                    (2-5)  

where τc’ is the mean free time of the holes, and mh
* is the hole 

effective mass.  

This leads to:   

     µp = qτc
*/mh

*                                                         (2-6) 

According to Eqns.(2-5) and (2-6), the mean free times of the 
electrons and the holes determine their mobilities.   

 

Collision is also referred to as scattering.  Theoretically, it can be 
shown that: τc ~ T-3/2 for lattice scattering; and τc ~ T3/2 for ionized 
impurity scattering. 

When more than one type of scattering is present, the smallest 
mean free time dominates.  

This also applies to the carrier mobility since mobility is directly 
proportional to the mean free time.   

 

In general, the combined mobility µT in the presence of more than 
one type of scattering is given by:  
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     µT
-1 = ∑i µI

-1                                                          (2-7) 

where µi is the mobility of the ith scattering. 

The summation process is illustrated in Fig.2.2. From the carrier 
mobility, one can determine the drift velocity.   

 

Example 2.1:  At 300K, µn = 0.15 m2/V.s.  Determine its value at 200K if 
lattice scattering dominates. 

Solution: 

µn(T = 200K) =  µn(T = 300K) (300K/200K)3/2 = 0.15 m2/V.s x 1.84 = 0.275 
m2/V.s.    # 

 

        ●    Current density is the charge flow through a unit area 
cross-section in unit time    

Consider a unit volume in a semiconductor, the amount of 
electrons Q inside this unit volume is given by: Q = - nq, where n 
is the electron density, and q is the electron charge. 

If this quantity of charge Q moves through a distance ∆x in time 
∆t, the electron current density Jn (= Q ∆x/∆t = Q vd) is given by:  

     Jn = - qnvd                                                            (2-8)   

Similarly, hole current density Jp = qpvd’. 

 

The total current density JT is given by: 
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     JT = Jn + Jp = - qnvd + pqvd’                                 (2-9) 

Since µn = - vd /E’ and µp = vd’/E’,     

     JT = (nqµn + pqµp) E’ = σ E’                                 (2-10)  

where σ is the conductivity of the semiconductor.  

 

The inverse to conductivity is the resistivity. 

 

For a measurement of resistivity, a 4-point probe method is 
frequently used. The measurement setup is shown in Fig.2.3.   

In the measurement, a current is supplied to the semiconductor 
wafer through the outer probes and a voltage is measured across 
the inner probes.   

For a thin sample, resistivity is given by: 

     ρ = V/I x 4.54 t’ Ω.m                                           (2-11) 

where V is the measured voltage, I is the current through the 
outer probes, and t’ is the thickness of the wafer (see Fig.2.3).    

Note that in obtaining Eqn.(2-11), the probe separation has been 
assumed to be small compared to the other dimensions.   

 

Example 2.2:  If µp = 0.045 m2/V.s at 300K, compute the drift velocity when 
E’ = 100 V/m.    
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Solution: 

From Eqn.(2-5), vd
’ = µp E’ = 0.045 m2/V.s x 100 V/m = 4.5 m/s.    # 

 

Example 2.3: In a 4-point probe measurement, if V = 1 V and I = 1 mA, 
determine ρ if t’ = 200 µm.   

Solution: 

From Eqn.(2-11), ρ = V /I x 4.54 t’ Ω.m = 1 V/1 x 10-3 A x 4.54 x 200 x 10-6 
m = 0.91 Ω.m.      #     

    

C.    Diffusion current 

     ●   Diffusion of carriers occurs in the presence of a carrier 
density gradient 

For electrons, the flux (rate of electron flow per unit area) ϕn in 1-
dimension is given by: 

     ϕn = - Dn dn/dx                                                   (2-12) 

where Dn is the electron diffusivity. 

 

Electron diffusion current density is then given by: 

     Jn = - qϕn = qDn dn/dx                                        (2-13) 

Similarly, hole diffusion current density is given by: 

     Jp = - qDp dp/dx                                                 (2-14) 
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where Dp is the hole diffusivity. 

Fig.2.4 shows the relationship between the diffusion currents and 
the carrier density gradients. 

 

     ●    Sometimes, diffusivity is expressed in terms of a mean free 
path λ for the carrier   

For electrons, we can write: Dn = vthλ, where vth is the thermal 
velocity. The mean free path may be expressed in terms of the 
collision time, i.e., λ = vthτc.      

 

a)    Einstein relation 

In 1-dimension, for a collection of electrons we have: me
* vth

2 /2 = 
kT/2, and Dn = vthλ = vth

2τc = kTτc/me
*.    

Since µn = qτc/me
*, 

     Dn = µnkT/q                                                        (2-15) 

This equation is known as Einstein relation.  Einstein relation 
allows one to relate Dn to µn.  A similar expression exists for the 
holes.  

 

Example 2.4: If µn = 0.15 m2/V.s at 300K for a semiconductor, compute Dn.  

Solution: 
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From Eqn.(2-15):  Dn = µnkT/q = 0.15 m2/V.s x 0.0259 V = 3.89 x 10-3 m2/s.    
#   

 

b)      Drift and diffusion current densities 

     ●   Currents for electrons and holes are due to drift and 
diffusion  

In 1-dimension, the electron and hole current densities are given 
by: 

     Jn = qnµn E’ + qDn dn/dx   

     Jp = qpµp E’ - qDp dp/dx                                     (2-16)   

 

The total current density JT is given by: 

     JT = Jn + Jp
                                                         (2-17) 

 

D.     Carrier injection 

In thermal equilibrium, we have pn = ni
2.    

     ●      Carrier injection in a semiconductor results in:  pn > ni
2     

Assuming that the equilibrium carrier densities are given by: n0 
and p0, we can define the excess carrier densities as: ∆n = n - n0, 
and ∆p = p - p0.    
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     ●     The extent of charge injection depends on the amount of 
excess carriers 

High-injection implies that: ∆n >> n0 and ∆p >> p0, while low- 
injection implies either ∆n >> n0 and ∆p << p0 (in a P-type 
semiconductor), or ∆n << n0 and ∆p >> p0 (in an N-type 
semiconductor).       

 

Example 2.5:  If n0 = ND = 1 x 1022 m-3 for a N-type Si sample, and ∆n = ∆p 
= 1 x 1015 m-3, what type of injection occurs.  

Solution: 

This will be low-injection as: p0 = ni
2/ND = (1.45 x 1016 m-3)2/1 x 1022 m-3 (p0 

<< ∆p).   #      

 

E.      Generation and recombination in semiconductors 

In addition to diffusion, other processes affecting the carrier 
densities are also present.  

These are: generation and recombination.   

     ●   Generation may be due to: i) thermal generation; ii) optical 
generation; or iii) other types of carrier generation such as 
ionization, multiplication, etc   

     ●   Recombination includes: i) direct recombination from band-
to-band; or ii) indirect recombination via impurities 

In steady state, generation rate G equals to recombination rate R.  
This is illustrated in Fig.2.5. 
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a)       Band-to-band recombination 

     ●  Recombination depends on the densities of the 
recombinants    

In equilibrium, band-to-band recombination rate R is given by: 

     R = β*np                                                             (2-18) 

where β* is a constant.   

Since at thermal equilibrium n = n0 and p = p0, this leads to: Rth = 
β*n0 p0. 

 

      ● In equilibrium, thermal generation rate equals the 
recombination rate, i.e., Gth = Rth 

 

Deviation from equilibrium results in net recombination or 
generation.    

For low-injection where n = n0 and p = ∆p + p0, the net 
recombination rate U is:  

     U = R - Rth = β*n0 (∆p + p0) - β*n0p0 = β*n0 ∆p     (2-19) 

If one defines U as ∆p/τp, where τp is the hole lifetime, then we 
have: τp = 1/(β*n0).    
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Similarly, for a p-type semiconductor, we have: τn = 1/(β*p0), 
where τn is the electron lifetime.    

 

Example 2.6:  In a semiconductor if the excess hole density is 1 x 1015 m-3 
and its lifetime is 100 µs, determine the net recombination rate.  

Solution: 

From Eqn.(2-19): U = ∆p/τp = 1 x 1015 m-3/1 x 10-4 s = 1 x 1019 m-3.s-1.   #       

 

     ●    In the steady state, the net recombination rate U is 
balanced by the generation rate G (assume G >> Gth)  

Since G = ∆p/τp, this leads to (for the case of low-injection):  

     p = p0 + Gτp                                                       (2-20) 

 

b)   Dynamic response (recombination) 

The dynamic change of hole density in a semiconductor is given 
by: 

     dp/dt = G - R = - (R – G)                                   (2-21) 
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where we have assumed that the initial hole density is: p0 + Gτp. 

The hole density (= p0 + Gτp) at t = 0 relaxes exponentially with 
time towards it equilibrium value p0.  This is illustrated in Fig.2.6. 

 

Example 2.7:  At t = 0-, G = 1 x 1024 m-3.s-1.   Determine the hole density in 
a semiconductor at t = 1 ms if G = 0 when t > 0.  Neglect the value of p0 
and assume τp = 0.1 ms.  

Solution:   

Based on Eqn.(2-22):  p = p0 + Gτp exp(- t/τp ) = 1 x 10-4 s x 1 x 1024 m-3.s-1 
exp(- 1 x 10-3 s/1 x 10-4 s) = 4.54 x 1015 /m3.       #   
 
 
 
c)    Indirect recombination 
 
      ●   Indirect recombination occurs at impurity centers with 
energy level(s) in the energy gap   
 
 
When compared with band-to-band recombination, such as a 
process is favored because it involves smaller energy transitions.    
 
Fig.2.7 shows a schematic of the recombination of an electron 
and a hole via an impurity center. The lifetime of electrons/holes 
varies with the density of the impurity center.   
 
     ●    To first order, the lifetime of carriers is inversely 
proportional to the impurity density NI   
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d)       Continuity equation 
 
The 1-dimensional continuity equations for electrons and holes 
include drift, diffusion, generation and recombination.  They are 
given by: 
 
     dn/dt = (1/q) dJn/dx + (Gn - Rn)                                                         
 
     dp/dt = - (1/q) dJp/dx + (Gp - Rp)                       (2-23) 
 
The subscripts p and n denote the electron and hole 
contributions. 
 
 
In full, these equations can be written as (for the minority carriers 
only): 
 
dnp/dt = npµn dE’/dx + µnE’ dnp/dx + Dnd2np/dx2 + Gn - (np - np0)/τn  
 
dpn/dt = - pnµpdE’/dx - µpE’ dpn/dx + Dpd2pn/dx2 + Gp - (pn - pn0)/τp                      
  
                                                                              (2-24) 
 
The product (Dpτp)1/2 = Lp is called the hole diffusion length.  
 
Similarly, the electron diffusion length is given by: Ln = (Dnτn)1/2. 
 
 
 
Example 2.8:  Write down the steady-state continuity equation for hole 
minority carriers when E’ = 0 and Gp = 0.   Assume pn = pno when x = ∞. 
 
Solution: 
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From Eqn.(24):  in the steady state:  dpn/dt = - pnµp dE’/dx -  µpE’ dpn/dx + 
Dp d2 pn/dx2 + Gp - (pn - pn0)/τp = 0.    
 
Since E’ = 0 and Gp = 0, only the last term is non-zero, i.e., Dp d2pn/dx2 = 
(pn - pn0)/τp.  The solution to this equation is:  pn = pn0 + (pn(0) - pn0) exp(- 
x/(Dpτp)1/2),  where pn(0) is the hole density when x = 0.     
 
 
Example 2.9: Light is allowed to fall on 1 side of a semiconductor sample 
and pn(0) = 1 x 1022 m-3.  If τp = 100 µs and Dp = 1 x 10-3 m2/s, determine pn 
when x = 1 mm.  Assume pn0 = 1 x 1011 m-3. 
 
Solution: 
 
From the previous example:  pn = pn0 + (pn (0) - pn0) exp(- x/(Dpτp)1/2) = 1 x 
1011 /m3 + (1 x 1022 /m3 - 1 x 1011 /m3) x exp( - 1 x 10-3 /m/(1 x 10-4 m2/s  x 1 
x 10-3 s)1/2) = 4.2 x 1020 /m3.       # 
 
 
Example 2.10: Assume pn = pn0 at x = w, determine the hole current density 
based on the conditions specified in Example 2.9.   Assume w << Lp.  
Given: sinh(u) = (exp(u) - exp(-u))/2. 
 
Solution: 
 
In this case:  pn = pn0 + (pn(0) - pn0) sinh((w - x)/Lp)/sinh(w/Lp).   
 
Since Jp = - qDp dpn/dx and w >> Lp, it can be shown that: Jp = qDp (pn (0) - 
pn0)/w. 
 
Note in this example that the approximation w << Lp will lead to a linearly-
graded carrier density profile.   
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Part 3:  P-N junctions 

 

What we need to learn in this chapter? 

 
a. Physical structure of a PN junction 
b. I-V characteristics 
c. Ideal and non-ideal currents 
d. Capacitances 
e. Breakdown 
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Part 3:     P-N junctions 

     ●   P-N junctions are formed when a P-type semiconductor 
and an N-type semiconductor are fused together 

A typical P-N junction is depicted in Fig.3.1.  

 

Because of the differences in the electrical properties on the two 
sides of the P-N junction, physical changes will take place.  One 
of the results is rectification in the current-voltage 
characteristics. 

     ●   Rectification is represented by asymmetrical current flow 
when the polarity of the bias voltage is altered   

Fig.3.2 shows the rectification properties of a P-N junction. 

 

A.    Physical properties of the P-N junction 

When a P-type semiconductor is connected to an N-type 
semiconductor, the following results: 

     ●    Inter-diffusion of the majority carriers (see Fig.3.3) 

     ●    Creation of a region depleted of carriers (with the exposure 
of donor and acceptor charges) (see Fig.3.4) 

     ●   Creation of a high-field junction region (consequence of the 
exposed charges) 

     ●  Creation of minority carrier density gradients beyond the 
edges of the depletion region     
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P-N junctions are best studied using an energy band diagram.  

Fig.3.5 shows the energy band diagram of a typical P-N junction. 

 

At equilibrium, the hole current density in 1-dimension (in the 
absence of generation and recombination) is given by:  

     Jp = qpµpE’ - qDpdp/dx                                        (3-1)   

If one replaces E’ by (1/q)dEi/dx, and Dp by µpkT/q (Einstein 
relation), this leads to:   

     Jp = qpµp (1/q)dEi/dx - µpkTdp/dx                        (3-2)   

 

Furthermore, since p = ni exp((Ei - EF)/kT), dp/dx = (p/kT).(dEi/dx - 
dEF/dx), Eqn.(3-2) becomes:  

     Jp = pµp dEF/dx                                                    (3-3) 

There is no current flowing at equilibrium and we have dEF/dx = 0.   

This implies that the Fermi-level should be flat across the entire 
P-N junction.  This is illustrated in Fig.3.6. 

 

a)     The built-in potential   

From the energy band diagram (see Fig.3.6), one can see that 
physically there exists a “barrier” across the P-N junction. 
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This potential barrier is given by: 

     qVbi = (Ei - EF)|p-side + (EF - Ei)|n-side                      (3.4)  

where Vbi  the built-in voltage. 

Since (Ei - EF)|p-side = kT ln(NA/ni), and (EF - Ei)|n-side = kT ln(ND/ni),   

     qVbi = kT ln(NDNA/ni
2)                                          (3.5) 

This equation shows that the built-in potential energy is 
dependent on the dopant densities.    

 

     ●    Origin of the built-in potential is linked to the charges in the 
depletion region 

The exposed charges generate an electric field, which opposes 
electrons moving from the N-side into the P-side and holes from 
the P-side into the N-side. 

 

Example 3.1: Compute Vbi  (the built-in voltage) for a Si P-N junction if NA = 
1 x 1024 m-3 and ND = 1 x 1021 m-3 at 300K. 

Solution:   

From Eqn.(3-5),  the built-in voltage Vbi = (kT/q) ln(NDNA/ni
2) = 0.0259 V x 

ln((1 x 1024 m-3 x 1 x 1021 m-3/(1.45 x 1016 m-3)2) = 0.755 V.     #    

 

b)   The depletion region 
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     ●   The region at/near the interface of the P-N junction where 
carriers are depleted is the depletion region    

 

In this section, we examine the depletion layer width, the built-in 
electric field, and the potential profile.   

The simplest dopant profile for a P-N junction is when the dopant 
densities are uniform. This is called an abrupt junction.  

Within the depletion region of an abrupt junction, there exists a 
“dipolar” charge layer due to the exposed donors and acceptors.  

Using Poisson equation, one gets: 

     d2ψ/dx2 = qNA/εs               for the P-side 

     d2ψ/dx2 = - qND/εs             for the N-side             (3-6) 

where ψ is the electrostatic potential (in units of volts), and εs is 
the semiconductor permittivity. 

Fig. 3.7 shows the potential profile in the depletion region of an 
abrupt junction.   

 

In the depletion region, charge conservation requires that:   

     NAxp =NDxn                                                          (3-7) 

where xp and xn are the widths of the depletion region on the 2 
sides of the P-N junction.    

The depletion layer width W is given by:   
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     W = xp + xn.                                                         (3-8) 

Integrating the Poisson equation (Eqn.(3-6)) gives: 

      E’ = - dψ/dx = - qNA(x - xp)/εs       for the P-side  

      E’ = - dψ/dx = qND(x + xn)/εs      for the N-side   (3-9) 

where E’ is the electric field. 

It is obvious that the maximum electric field Em’ occurs at x = 0 
(i.e., at the junction interface). 

 

Further integration of the electric field (Eqn.(3-9)) gives the 
electrostatic potential ψ.    

Assuming ψ = 0 at x = xp; ψ = Vbi at x = - xn, we have:   

     ψp = qNA/εs(x2/2 - xxp) + K1 

      ψn = - qND/εs(x2/2 + xxn) + K2                             (3-10)  

where ψp and  ψn are the electrostatic potentials on the P-side 
and the N-side, respectively.     

It can be shown that: K1 = K2 since ψp(x) = ψn(x) at x = 0. 

This gives: K1 = qNAxp
2/2εs and K2 = Vbi - qNDxn

2/2εs. 

 

The built-in potential is the integral of the electric field E’ over the 
entire depletion region - xn < x < xp.  It is given by: 
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     Vbi = qNAxp
2/(2εs) + qNDxn

2/(2εs) = Em’ W/2        (3-11)  

Rearranging this equation gives: 

     W = [(2εs(NA + ND)Vbi/(qNA ND))]1/2                     (3-12) 

Fig.3.8 shows the electric field distribution and the potential profile 
across the entire P-N junction. 

  

     ●   In the presence of an applied voltage Va, Vbi (Eqn.(3-12)) is 
replaced by: Vbi - Va   

Our notation is such that Va is positive when the positive potential 
is connected to the P-side and is negative when the positive 
potential is connected to the N-side.    

The former is called forward bias, while the latter reverse bias.   

 

     ●   Depletion layer widens with increasing reverse bias and 
narrows with increasing forward bias  

 

In some instances, the dopant densities across the P-N junction 
are not uniform and depletion is primarily onto 1 side.  This is a 1-
sided step junction and is illustrated in Fig.3.9.    

 

In the case when NA >> ND, we have:      

     W ≈ xn = [2εsVbi/(qND)]1/2 
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     E’ = - qNDW(1 + x/W)/εs 

     ψ = Vbi(- 2x – x2/W)/W                                        (3-13) 

 

Example 3.2:  For a 1-sided step junction with NA = 1 x 1025 m-3 and ND = 1 
x 1021 m-3, compute the value of W and Em’ at T = 300K. 

Solution:     

From Eqn.(3-5),    Vbi = (kT/q) ln(NAND/ni
2) = 0.0259 V x ln(1025 m-3 x 1021 

m-3/(2.1 x 1032 m-6) = 0.874 V.   

From Eqn.(3-13),  W ≈ xn = (2εs Vbi/(qND))1/2 = 3.37 x 10-7 m.     # 

Em’ = - qNDW/εs = - 5.4 MV/m.      # 

 

c)        Depletion capacitance    

     ●     The donor and acceptor charge layers in the P-N junction 
give rise to the depletion/junction capacitance  

This is illustrated in Fig.3.11.   

 

The depletion capacitance per unit area Cj is given by: 

     Cj = dQ/dVa = εs/W                                             (3-14) 

where Q is the charge density per unit area. 
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For a 1-sided step junction: 

     Cj = [qεsNB/(2(Vbi - Va))]1/2                                   (3-15) 

where NB is the substrate dopant density. 

Fig.3.12 shows a typical plot of 1/C2 versus Va. 

 

Example 3.4:    An abrupt P-N junction has a doping concentration of 1021 
m-3 on the lightly doped N-side and of 1025 m-3 on the heavily doped P-side. 
From a plot of 1/C2 versus Va, comment on values of the slope and the 
intercept on the voltage axis. 

Solution: 

NB = ND = 1021 m-3.  The governing equation (Eqn.(3-15)) is 1/C2 = 2(Vbi - 
Va)/(qεsNB).  Such a plot will give a straight line with a negative slope and 
the interception on the voltage axis is Vbi.       # 

 

B.      I-V characteristics 

     ●    I-V characteristics of a P-N junction behave differently 
under forward bias versus reverse bias     

 

Ideal I-V characteristics are obtained under the following 
assumptions: 

     ●     Abrupt junction  

     ●   Carrier densities at the junction boundaries are directly 
related to the electrostatic potential       
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     ●       Low-injection  

     ●     No generation and recombination current in the depletion 
region 

 

Without bias, the electron density in the N-side at equilibrium is 
given by (see Eqn.(1-10)): 

     nn0 = ni exp((EF - Ein)/kT)                                    (3-16) 

where Ein is the intrinsic Fermi-level on the N-side. 

 

On the P-side, one has: 

     np0 = ni exp((EF - Eip)/kT)                                    (3-17) 

where Eip is the intrinsic Fermi-level on the P-side.  

The subscript “0” stands for the case of equilibrium. 

 

Since Eip - Ein = qVbi, we have: 

     nn0 = np0 exp(qVbi/kT)                                         (3-18) 

      ●   Electron density at the edge of the depletion region 
depends exponentially on the built-in voltage    

For an applied voltage equal to Va, the Fermi-level will split up as 
shown in Fig.3.13.   

                           43 43



c:\book3.doc 

 

Under bias, we can replace Vbi by Vbi - Va; nn0 by nn; and np0 by np 
to Eqn.(3-18).   

This leads to: 

     nn = np exp(q(Vbi - Va)/kT)                                  (3-19) 

 

At low-injection, nn = nn0 and we can equate Eqns.(3-18) and (3-
19).  This leads to:  

     np = np0 exp(qVa/kT)                                           (3-20) 

From Eqn.(3-20), we see that across the P-N junction, the 
minority carrier density is increased by exp(qVa/kT).    

 

A similar situation exists in the N-side and we have:   

     pn = pn0 exp(qVa/kT)                                           (3-21) 

 

To determine the diffusion currents, we combine Eqns.(3-20), (3-
21) and the continuity equation (Eqn.(2-24)).  This gives (after 
simplification): 

     Dn d2np/dx2 - (np - np0)/τn = 0   

     Dp d2pn/dy2 - (pn - pn0)/τp = 0                              (3.22) 

Note that we have used the coordinate transformation: y = – x. 
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The boundary conditions are:   

      x = y = 0:   pn = pn0 exp(qVa/kT);  and  np = np0 exp(qVa/kT). 

      x = y = ∞:   pn = pn0; and np = np0.  

The solutions are:  

     np - np0 = np0 [exp(qVa/kT) - 1] exp(- x/Ln)                  

     pn - pn0 = pn0 [exp(qVa/kT) - 1] exp(- y/Lp)          (3-23) 

Note that Ln = (Dnτn)1/2 and Lp = (Dpτp)1/2.  The excess carrier 
densities are plotted in Fig.3.14. 

 

The above equations also lead to: 

     Jn = qDn dnp/dx = - (qDnnpo/Ln) [exp(qVa/kT) - 1]           

     Jp = - qDp dpn/dy = - (qDppno/Lp) [exp(qVa/kT) - 1]      

                                                                               (3-24)  

where Jn and Jp are the electron and hole current densities, 
respectively. 

The total current density JT is:  

     JT = |Jn + Jp| = Js [exp(qVa/kT) - 1]                    (3-25) 

where Js = qDppno/Lp + qDnnpo/Ln.    

This is called the ideal diode equation and the I-V characteristics 
are shown in Fig.3.15. 
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Example 3.5: An ideal P-N junction has ND = 1024 m-3 and NA = 10 22 m-3, τp 
= τn = 1 µs and a device area of 1.2 x 10-9 m2, calculate the ideal saturation 
current at 300K.  (It can be shown that:  Dp = 0.00116 m2/s and Dn = 
0.00388 m2/s.) 

Solution:   

For an ideal device, the recombination current is assumed to be zero.   
From Eqn.(3-25),  we can write: Is = Js x Acs = (qDpni

2/(LpND) + 
qDnni

2/(LnNA)) x Acs = (q x ni
2 x Acs) x ((Dp/τp)1/2

 ND + (Dn/τn)1/2 NA) = (1.6 x 
10-19 C x 2.1 x 1032 m-6 x 1.2 x 10-9 m2) x ((0.00116 m2/s/10-6 s)1/2/1024 m-3) 
+ ((0.00388 m2/s/10-6 s)0.5/1022 m-3) = 2.49 x 10-16 A.   # 

 

Example 3.6:  For the device in Example 3.5, compute the forward current 
at Va = + 0.7 V.  

Solution:   

From Eqn.(3-25),  IT = Is x exp(qVa/kT) = 2.49 x 10-16 A x exp(0.7 V/0.0259 
V) = 1.36 x 10-4 A.     # 

 

a)      Other current contributions  

Other than the diffusion currents (which occur outside the 
depletion region), there are also generation current and 
recombination current within the depletion region.    

     ●    Generation current is due to thermal generation of 
electrons and holes in the depletion region 
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The process is illustrated in Fig.3.16.  It is important during 
reverse bias when the depletion layer width is substantially 
widened.   

 

Assuming a thermal generation rate given by G and a generation 
lifetime τg, one can express G = ni/τg.   

This leads to a generation current density Jgen given by: 

     Jgen = ∫W0 qG dW = qniW/τg                               (3-26) 

 

The total reverse current density in the presence of generation is: 

     JR = Js + Jgen = qDppn0/Lp + qDnnp0/Ln + qniW/τg  

                                                                                                                         (3-27)  

 

      ●    Recombination current exists primarily in the depletion 
region 

A typical recombination process via an impurity center is shown in 
Fig.3.17.   It differs from the generation process in the sense that 
it is important under forward bias.    

 

Assuming a carrier recombination rate given by U = (∆(pn) - 
ni

2)/niτr, where (∆(pn) – ni
2) is the excess of the product of p and 

n, one can write: 
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     U = ni [exp(qVa/kT) - 1]/τr                                  (3-28) 

where τr = [nn + pn + 2ni cosh(Ei - Et)]/(ni σ0vthNt),  Et is the energy 
of the recombination center, Nt is the density of the recombination 
center, vth is thermal velocity, and σ0 is the capture cross-section 
of the recombination center.   

Note that we have assumed the carrier capture cross-sections for 
the electron and the hole are the same and are equal to σo.   

 

     ●    It can also be shown that the most effective recombination 
center is located when Et = Ei   

This statement together with the assumption pn = nn = ni 
exp(qVa/2kT) (a situation chosen for maximum recombination 
probability) gives: 

     Umax ≈ σ0vthNt ni exp(qVa/2kT)/2                        (3-29)  

where we have assumed Va > 3kT/q.     

 

The recombination current density Jr is: 

     Jr = q ∫W0 Umax dW = q Umax W                          (3-30) 

 

The total forward current density now becomes: 

     JF = Js exp(qVa/kT) + qWσ0vthNt ni [exp(qVa/2kT)]/2    
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                                                                               (3-31) 

In general, JF is proportional to exp(qVa/ηkT), where η the ideality 
factor varies between 1 to 2.   This is illustrated in Fig.3.18. 

 

     ●     Within the P-N junction, high-injection results in current 
flow different from the normal currents 

During high-injection, we have pn = nn = ni exp(qVa/2kT) and the 
total current density JT is given by:   

     JT = J0 [exp(qVa/2kT) - 1]                                  (3-32) 

where J0 is a constant. 

Thus, the current density increases at a slower rate with 
increasing bias voltage at high-injection. A typical plot showing 
high-injection in a P-N junction is given in Fig.3.19. 

 

Example 3.7:   For an ideal P-N junction with NA = 1023 m-3 and ND = 1021 
m-3.  Assume that it contains 1021 m-3 generation and recombination 
centers located 0.02 eV above the intrinsic Fermi level with σn = σp = 10-19 
m2.  For vth = 1 x 105 m/s, calculate the generation current at Va = - 0.5 V.  
Acs = 10-8 m2, τg = 0.27 µs, and τp = 0.1 µs. 

Solution:   

From Eqn.(3-5),   Vbi = kT/q x ln(NAND/ni
2) = 0.0259 V x ln(1023 m-3 x 1021 m-

3/2.1 x 1032 m-6) = 0.695 V.    

From Eqn.(3-13),  W = (2εs(Vbi + VR)/(qND))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m 
x (0.695 V + 0.5 V)/(1.6 x 10-19 C x 1021 m-3))1/2 = 1.25 x 10-6 m.  
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From Eqn.(3-26),    Igen = Jgen x Acs = q niWAcs/τg =  1.6 x 10-19 C x 1.45 x 
10-16 m-3 x 1.25 x 10-6 m x 10-8 m2/0.27 x 10-6 s = 1.1 x 10-10 A.   # 

 

Example 3.8:  With Example 3.7, repeat the calculations for the 
recombination current when Va = 0.5 V.   Assume τr (= σ0vthNt/2) = 0.1 µs. 

Solution:    

From Eqn.(3-13),  W = (2εs(Vbi - Va)/(qND))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m 
x (0.695 V - 0.5 V)/(1.6 x 10-19 C x 1021 m-3))0.5 = 0.5 x 10-6 m.  

From Eqns.(29) and (30),  Irec = qW niAcs exp(qVa/2kT)/τg = 1.6 x 10-19 C x 
0.5 x 10-6 m x 1.45 x 1016 m-3  x 10-8 m2 x exp(0.5 V/(2 x 0.0259 V))/0.1 x 
10-6 s = 1.6 x 10-6 A.     #  

 

b)        Charge storage 

     ●    At forward bias, minority carriers are stored in the P-N 
junction 

Such charges will give rise to diffusion capacitance. 

 

In a forward bias P-N junction, the hole charge per unit area 
stored in the N-region is given by:  

     Qp = q ∫∞xn (pn - pn0) dx   

          = q ∫∞xn pn0 (exp(qVa/kT) - 1) exp(- (x - xn)/Lp) dx 

          = qLp pn0 (exp(qVa/kT) - 1)                           (3-33) 

                           50 50



 - 51 -3/4/02C:\lec320.doc                                         H.L.Kwok 

 

Since Jp = (qDp pno/Lp) [exp(qVa/kT) - 1],  one can write:     

     Qp = Lp
2Jp/Dp = τpJp                                          (3-34)  

This is illustrated in Fig.3.20. 

 

Similarly, Qn = τnJn.  Thus, 

      QT(= Qp + Qn) =  τpJp + τnJn                             (3-35)  

If τp = τn, QT ≈ JT.  

 

The diffusion capacitance per unit area Cd is given by: 

     Cd = ∆Qp/∆Va   

          = (q2Lp pn0/kT) exp(qVa/kT)                          (3-36) 

 

Note that diffusion capacitance increases with increasing forward 
bias.  This is illustrated in Fig.3.21.     

 

Fig.3.22 shows the equivalent circuit of a P-N junction including 
the capacitances. 
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d) Junction breakdown 

     ●    Breakdown occurs when there is excessive current flowing 
through the P-N junction 

Normally, breakdown is reversible provided there is a large 
external resistance that limits the current. 

 

In a P-N junction, breakdown is normally either due to tunneling or 
avalanche multiplication. These processes are shown in Figs.3.23 
and 3.24. 

Tunneling occurs in heavily doped P-N junctions.  At reverse bias, 
tunneling occurs when the filled states in the P-side is right 
opposite to the unfilled states in the N-side so that electrons can 
tunnel through without energy change.  This can result in a large 
current.   

 

Avalanche multiplication is due to impact ionization of the carriers.   
Under a strong reverse bias, the electrons and holes gain enough 
energy before suffering a collision and upon impact with a Si 
atom, additional electrons and holes will be generated. Such a 
multiplication process is called avalanche multiplication.    

 

Fig. 3.25 shows the (carrier) ionization rates during breakdown 
under different field intensities.  
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To estimate the breakdown voltage, one needs to define a critical 
field Ec’.   

The breakdown voltage VB is: 

      VB = EC’W/2                                                     (3-37) 

Assuming EC’ = Em’ = qNBW/εs as in the case of a 1-sided step 
junction (Eqn.(3-13)), Eqn.(3.37) becomes: 

     VB = EC
2 εs/(2qNB)                                            (3-38) 

where NB is the substrate dopant density. 

Note that the breakdown voltage is inversely proportional to the 
substrate dopant density.    

 

Fig.3.26 shows a plot of critical electric field versus the substrate 
dopant density. 

 

Example 3.9: For a 1-sided step junction, what is the critical breakdown 
voltage when tunneling becomes important? 

Solution: 

From Fig.3.26, tunneling becomes important when EC’ = 8 x 107 V/m for NB 
= 5 x 1023 m-3.  This leads to (Eqn.(3.28)):  VB = = EC’2 εs/(2qNB) = (8 x 107 
V/m)2 x 11.9 x 8.86 x 10-12 F/m /(2 x 1.6 X 10-19 C x 5 x 1023 m-3 ) V = 4.21 
V.      # 
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Part 4:   Bipolar transistor 

 

What we need to learn in this chapter? 

Current components in a bipolar transistor 
a. Gain parameters 
b. Modes of operation 
c. Frequency characteristics 
d. Switching characteristics 
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Part 4:   Bipolar transistor 

     ●    The word transistor refers to a transfer-resistance device 

This implies that the terminal resistances at the input and the 
output of the transistor are different. 

Structurally, a bipolar transistor is made up of 2 back-to-back P-N 
junctions.  It is therefore possible to have either a NPN or a PNP 
transistor. 

 

For simplicity we shall examine a 1-dimensional PNP transistor.  

This will be a 3 terminal device as shown in Fig.4.1. We label the 
terminals as emitter, base and collector. The dopant densities in 
each of the 3 regions will be different. 

 

The operation of the transistor depends on the voltage bias 
(which characterizes the different modes of operation):   

     ●   For normal active operation, the emitter-base is forward 
biased and the collector base reverse biased 

The band diagram is shown in Fig.4.2.    

Note that the splitting of the Fermi-levels is indicative of the 
different biases.   

 

A.    Current components in the active transistor    
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The following occurs during the formation of the PNP transistor: 

     ●     Hole current flowing from the emitter into the base 

A portion of this current reaches the base-collector junction and 
they are labeled as IEp and ICp. 

     ●    Recombination of the holes occurs in the base 

     ●    Electrons flow from the collector into the base due to the 
reverse bias and electrons flow into the emitter from the base due 
to the forward bias 

The currents are labeled as ICn, IEn, respectively and they are 
shown in Fig.4.3. 

 

The total emitter current IE is given by: 

     IE = IEp + IEn                                                         (4-1) 

The total collector current IC is given by: 

     IC = ICp + ICn                                                         (4-2) 

Since the transistor is a 3 terminal device, the base current IB is: 

     IB = IE - IC = IEp + IEn - ICp - ICn                              (4-3) 

These are illustrated in Fig.4.4. 

 

     ●     The efficiency of a PNP transistor is determined by the 
amount of hole current reaching the collector 
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This is expressed in terms of the common-base current gain α0 
which is given by: 

     α0 = ICp/IE = ICp/(IEp + IEn) 

          = IEp/(IEp + IEn) x ICp/IEp                                    (4-4) 

The first term appearing in Eqn.(4-4) is the emitter efficiency γ and 
the second term is the transport factor αT.   

We can write: αo = γ αT.   

Furthermore, we have: 

     IC ≈ α0IE + ICn                                                       (4-5) 

 

The collector current in the active mode consists of: 

     ●     A fraction of the emitter current 

     ●     Generation and diffusion currents in the reverse bias base 
collector junction  

Since α0 is always less than 1 and ICn is small, IC < IE.  

 

a)    Small-signal characteristics        

The small signal characteristics are obtained under the following 
assumptions: 

     ●     Dopant densities are uniform 
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     ●     Low-injection 

     ●   Absence of generation and recombination currents in the 
depletion regions 

     ●     Absence of series resistance 

 

Due to current injection from the emitter, the 1-dimension hole 
(minority carrier) density in the base is given by:   

     Dp d2pn/dx2 - (pn - pn0)/τp = 0                                (4-6) 

This equation is subject to the following boundary conditions: 

     pn(0) =  pn0 exp(qVEB/kT)   

     pn(WB) = 0                                                            (4-7) 

where x = 0 is at the edge of the emitter-base depletion region in 
the base, and WB is the base width. 

The general solution is: 

     pn = pn0 (exp(qVEB/kT) - 1) sinh((WB - x)/Lp)/sinh(WB/Lp) + pn0 
(1  

             - sinh(x/Lp)/sinh(WB/Lp))                               (4-8) 

where we have used the relationship:  Lp
2 = Dpτp. 

Eqn.(4-8) gives the profile of the excess minority carrier 
distribution in the base which is shown in Fig.4.5.  Note that 
sinh(z) = (exp(z) - exp(-z))/2.    
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For most P-N junctions, WB < Lp and we have:   

     pn
 ≈ pn0 (exp(qVEB/kT) - 1) (1 - x/WB)                  (4-9)  

This is the excess minority carrier density distribution in the base. 

 

The excess minority carriers stored in the base QB is given by: 

     QB ≈ qAcsWB pn0 [exp(qVEB/kT) - 1]/2                  (4-10) 

where Acs  is the area cross-section of the base.  

In a similar manner, we can obtain the minority carrier density 
distributions in the emitter and the collector.    

These are shown in Fig.4.6.    

 

The values are: 

     nE = nE0 + nE0 (exp(qVEB/kT) - 1) exp((x + xE)/LE)     x > - xE 

     nC = nC0 - nC0 exp(- (x - xC)/LC)      x’ > xC             (4-11) 

where nE is the electron density in the emitter, nE0 is the 
equilibrium value of nE, - xE is the edge of the depletion region in 
the emitter side, LE is the diffusion length for the electrons in the 
emitter, nC is the electron density in the collector, nC0 is the 
equilibrium value of nC, WB + xC is the edge of the depletion 
region in the collector side, and LC is the diffusion length for the 
electrons in the collector.  
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Note that x is negative in the emitter. 

 

We can now compute the diffusion currents in the different region: 

     IEp = Acs [- qDp dpn/dx]x=0   

          = (qAcsDppn0/Lp) coth(WB/Lp) [(exp(qVEB/kT) - 1) +  

             1/cosh(WB/Lp)]                                             (4-12)  

where we have the relationship: cosh(z) = (exp(z) + exp(-z))/2 and 
coth(z) = cosh(z)/sinh(z). 

For WB < Lp,  

     IEp ≈ (qAcs Dp pn0/WB) (exp(qVEB/kT) - 1) + qAcsDpni
2/(NBWB)     

                                                                                 (4-13) 

Similarly, at x = WB,  

     ICp = qAcs Dp pn0/{Lpsinh(WB/Lp)} [(exp(qVEB/kT) - 1) + 

             cosh(WB/Lp)]  

          ≈ (qAcs Dp pn0/WB) [exp(qVEB/kT) – 1]            (4-14)       

Thus, IEp ≈ ICp. 

 

For the electron current (assuming DE = DC = Dn), 

     IEn = Acs [- qDE dnE/dx]x = - xE                                                       
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          = qAcs DEnE0 (exp(qVEB/kT) - 1)/LE  

     ICn = Acs [- qDC dnC/dx]x = - xc 

          = qAcsDCnC0/LC                                              (4-15)  

where DE is the electron diffusivity in the emitter, and DC is the 
electron diffusivity in the collector. 

We can write: 

     IE = a11 (exp(qVEB/kT) - 1) + a12                          (4-16)  

 

When WB < Lp, we have:   

     a11 = qAcs [Dpni
2/(NBWB) + DEnE0/LE] 

     a21 = qAcs Dpni
2/(NBWB)                                      (4-17)  

where NB is the dopant density in the base. 

 

Note that IE = a12 when VEB = 0.    

This will be the diffusion current in the base when pn(0) = pn0 and 
pn(WB) = 0.      

Similarly, we can write: 

     IC = a (exp(qV21 EB/kT) - 1) + a22  

For wB > Lp, 
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     a21 = qAcs Dpni
2/(NBWB)    

     a22 = qAcs [Dpni
2/(NBWB) + DCnC0/LC]                  (4-18)  

In addition, 

     IB = IE - IC                                                            (4-19) 

 

Since QB = qAcsWBpn0 (exp(qVEB/kT) - 1)/2, it can be shown that 
both IE and IC are proportional to QB, the base charge. 

 

It should be emphasized out that the base current actually arises 
from carrier recombination as the carrier transit through the base. 
Based on Eqn.(4-6):  Dp d2pn/dx2 - (pn - pn0)/τp = 0, Jp = - 
qDpdpn/dx = constant if recombination is absent.  The base 
current is therefore suppressed when τp is large. 

 

Finally, we can evaluate the emitter efficiency and the transport 
factor.  They are given as: 

     γ = IEp/(IEp + IEn)  

       = (1 + IEn/IEp)-1  

        ˜ [1 + (qAcsDEnE0/LE) (exp(qVEB/kT) - 1)/{(qAcs Dppn0/WB) 

           (exp(qVEB/kT) – 1)}]-1  

        ≈ (1 + DEnE0WB/(Dppn0LE))-1                             (4-20) 
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Thus, 

       αT = ICp/IEp  

            ≈ {qAcsDppn0(exp(qVEB/kT) – 1)/(Lp sinh(WB/Lp)}/[(qAcs 

                      Dppn0/WB) (exp(qVEB/kT) - 1)]  

            ≈ 1 - WB
2/(2Lp

2)                                           (4-21)  

 

     ●     For an efficient device, it is desirable to have both γ and 
αT close to 1  

 

Example 4.1: A silicon P+-N-P transistor has impurity densities of 5 x 1024 
m-3, 1022 m-3, and 1021 m-3 in the emitter, base and collector respectively.  
The base width is 1 µm and the device cross-section is 3 mm x 3 mm.   
When the emitter-base junction is forward-biased to + 0.5 V and the base-
collector junction is reverse-biased to - 5 V, calculate the neutral base 
width (physical base width minus the depletion layer widths). 

Solution: 

From Eqn.(3-5):  Vbi = kT/q x ln(NCNV/ni
2) = 0.0259 V x ln(1022 m-3 x 1021 m-

3/2.1 x 1026 m-3) = 0.636 V.    

The depletion layer width in the base-collector junction = (2εs(Nbase + 
Ncollector)(Vbi + VCB)/(qNbaseNcollector))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m x (1022 
m-3 + 1021 m-3 x (0.636 V +  5 V)/(1.6 x10-19 C x 1022 m-3 x 1021 m-3))1/2 = 
2.85 µm.   
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The depletion region on the collector side that extends into the base = 
WBC/(1 + Nbase/Ncollector) = 2.85 µm/(1 + 1022 m-3/1021 m-3) = 0.26 µm.    

A similar calculation for the emitter-base junction gives a depletion region 
in the base of 0.217 µm.   

The neutral base width = (1 - 0.26 - 0.217) µm = 0.523 µm.     # 

 

Example 4.2: For the transistor in Example 4.1, assume that the 
diffusivities of the minority carriers are 0.0002, 0.001 and 0.0035 m2/s and 
the corresponding lifetimes are 0.01, 0.1 and 1 µs, respectively, determine 
the current components: IEp, ICp and IB.   

Solution:    

It can be shown that: LEn = 1.41 µm, LBp = 10 µm and LCn = 59.2 µm.  

From Eqn.(4-12): IEp =  (qAcsDppn0/Lp) coth(WB/Lp) [(exp(qVEB/kT) - 1) + 
1/cosh(WB/Lp)]    = 1.6 x 10-19 C x (3 x 10-3 m)2 x 0.0002 m2/s x 2.1 x 1026 
m-6/1022 m-3 x coth(0.523 µm/10 µm) x (exp(0.5 V/0.0259 V) - 1) + 
1/(cosh(0.523 µm/10 µm)) =  4.6714 mA.   #                        

Similarly, it can be shown that (see Eqn.(4-13)):  ICp = 4.6650 mA.      #   

IB = IEp - ICp = 6.38 µA.      #  

 

Example 4.3: If NA in the emitter is 1025 m-3, ND in the base is 1023 m-3 and 
NA in the collector is 5 x 1021 m-3, compute α0 for  DE = 10-4 m2/V.s, Dp

  = 10-

3 m2/V.s, LE = 10-6 m, Lp = 10-5 m, and WB = 0.5 x 10-6 m.    

Solution:   
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From Eqn.(4-20):  γ  ≈ 1/(1 + DEnE0WB/(Dppn0LE)) = 1/(1 + 10-4 m2/s x 1023 
/m3  x 0.5 x 10-6 m /(10-3 m2/s x 1025 /m3 x 10-6

 m)) = 0.9995.    αT ≈ 1 - 
WB

2/(2Lp
2) = 0.9987.  Therefore, α0 = γαT = 0.9982.     #  

 

B.    Modes of operation 

The following are the different modes of operation for the bipolar 
transistor: 

     ●     Active mode - VEB is at forward bias while VBC is at 
reverse bias  

     ●     Saturation mode - VEB is at forward bias while VBC is also 
at forward bias  

     ●     Cutoff mode - VEB is at reverse bias while VBC is also at 
reverse bias 

     ●     Inverted mode - VEB is at reverse bias while VBC is at 
forward bias  

   

Fig. 4.7 shows the output characteristics of a typical bipolar 
transistor showing the active region, saturation and cutoff.    

 

Active mode corresponds to the case when the output behaves as 
a current source dependent on the value of the input voltage.   

Saturation occurs when both the input junction and output P-N 
junction are at forward bias and there is very little resistance 
across the terminals of the transistor.   
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Cutoff implies that little or no current is allowed to pass through 
the terminals.  

 

D.     Equivalent circuit models for the bipolar transistor    

Eber-Moll model - This model is constructed using 2 back-to-back 
P-N junctions as shown in Fig.4.14.  

The governing equations are: 

    IE = IF0 (exp(qVEB/kT) - 1) - αRIR0 (exp(qVCB/kT) - 1) 

    IC = αF IF0 (exp(qVEB/kT) - 1) - IR0 (exp(qVCB/kT) - 1)        

                                                                               (4-24) 

where IF0 is the forward saturation current of the emitter-base 
junction, IR0  is the reverse saturation current of the base-collector 
junction, αF is the forward common-base current gain, and αR is 
the reverse common-base current gain.  

The above equations can apply to the different modes of 
operation including the use of large signals.  

 

E.   Frequency response of the bipolar transistor  

The response of the bipolar transistor can be separated into the 
dc and ac components.   

The frequency response is usually included in the small-signal 
analysis.  In general, the currents and the terminal voltages can 
be expressed as (total = dc + ac (small signal)):   
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     iE = IE + iE’ 

     vEB = VEB + vEB’      

     iC = IC + iC’ 

     vCB = VCB + vCB’      

     iB = IB + iB’                                                          (4-25) 

where iE, iB and iC are the total currents, IE, IB and IC are the dc 
components, and iE’, iB’ and iC’ are the ac components.   

 

The subscripts E, B and C stand for the emitter, base and 
collector, respectively.  Similar notations apply to the voltages. 

 

For the active mode of operation, we have:    

     iE = IF0 exp(qVEB/kT)   

     iC = αFIF0 exp(qVEB/kT)     

     iB = (1 - αF )IF0 exp(qVEB/kT)                              (4-26)  

Thus, for a small change in the emitter-base voltage vEB’, we 
have:   

     iC = IC + d(iC)/dVEB|VEC vEB’ = IC + iC’     

     iB = IB + d(iB)/dVEB|VEC vEB’ = IB + iB’                   (4-27) 
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This leads to:  iC’ = gmvEB’ and iB’ = gEBvEB’, where gm is the 
transconductance, and gEB is the conductance of the emitter-base 
junction.    

For convenience, we define βF = iC/iB = αF/(1 – αF) as the 
common-emitter current gain.  

In addition, 

     gm = d(iC)/dVEB|VEC = (q αF IF0/kT) exp(qVEB/kT) =  αF qIE/kT 

     gEB = d(iB)/dVEB|VEC = q (1 - αF) IE/kT =  qIB/kT   

                                                                               (4-28)  

From Eqn.(4-27),  iC’,  iB’ and vEB’ form the small-signal ac 
parameters of the device. Fig.4.15 shows the small-signal 
equivalent circuit for the bipolar transistor.  

 

The frequency response of the bipolar transistor can be linked to 
the gain parameters as shown in Fig.4.16.    

 

In general, the frequency-dependent common-base current gain α 
is given by:  

     α = α0/(1 + jf/fα)                                                 (4-29) 

where  α0 is the low frequency common-base current gain, and fα 
is the common-base cutoff frequency.    
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Similarly, the frequency-dependent common-emitter current gain 
β is given by:  

     β = β0/(1 + jf/fβ)                                                  (4-30) 

where β0 is the low frequency common-emitter current gain, and fβ 
is the common-emitter cutoff frequency. 

   

Since β = α/(1 - α), we have:   

     fβ = (1 - α0)fα and fβ < fα .                                   (4-31) 

 

Both fβ and fα are called the 3-dB frequencies meaning that at 
these frequencies, β and α both reduce to 0.707 of their initial 
values.    

Note that the 3 dB frequency points are the half-power points. 

 

The unity-gain cutoff frequency fT is often quoted in the 
specifications of transistors.   It occurs when β = 1.   

Thus,   

     β = β0/(1 + jfT/fβ)) = 1         

     fT = fβ ≈ (β0
2 - 1) ≈ β0fβ ≈ α0fα                              (4-32) 

This implies: fT ≈ fα.     
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The ultimate frequency limit for the operation of the bipolar 
transistor is given by the inverse of the time required for an 
injected carrier to cross the base as illustrated in Fig.4.17.  This is 
called the transit time τB.  

Transit time is given by:     

     τB = ∫WB
0 (1/v) dx =  ∫WB

0 (qpnAcs/Ip) dx           (4-33) 

By setting pn = pn0 (1 - x/WB) and Ip = qAcsDppn0/WB, we have: 

     τB = ∫WB
0 [WB(1 - x/WB)/Dp] dx  

         = WB
2/(2Dp)                                                 (4-34)  

The base width theoretically limits the frequency response of the 
bipolar transistor and fmax ~ 1/τB.   

 

F.    Switching transients in the bipolar transistor 

In digital circuits, transistors are often required to switch from 
active to cutoff.  The switching response depends on the charge 
storage in the base region. The simplest way to model the 
switching bipolar transistor is to assume the existence of an OFF-
resistance Roff and an ON-resistance Ron.    

The circuit schematic is shown in Fig.4-18.   

 

These resistances are given by:   
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     Roff = VC/IC(off) 

     Ron = VCE(on)/IC                                               (4-35) 

where VC is the bias voltage, VCE is the collector-emitter voltage 
and IC is the collector current.  

The switching time is given by the time required to switch 
between these 2 states. 

 

For a common-emitter transistor to switch from off to on, the base 
charge simply builds up from cutoff to saturation as shown in 
Fig.4-19.   

 

The base charge QB is given by: 

     QB = qAcs ∫WB
0 (pn - pn0) dx                             (4-36)  

 

The time evolution of the base charge can be obtained in the 
following manner: 

     dpn/dt = - 1/q dJp/dx - (pn - pn0)/τp                    (4-37)  

Integrating from x = 0 to x = WB gives: 

     Ip(0) - Ip(WB) = dQB/dt + QB/τp                          (4-38) 

where we have used the relationship Jp = IpAcs and QB = q(pn - 
pn0)Acs.  Acs is the area cross-section of the device. 
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Since Ip(0) - Ip(WB) = iB,   we have:  

     dQB/dt + QB/τp  = iB      

     QB = iBτp (1 - exp(- t/τp))                                   (4-39) 

Thus, QB changes from 0 (OFF) to iBτp (ON).  This is reflected in 
the lowering of the base voltage as shown in Fig.4.20. 

 

Assuming that the bipolar transistor is saturated (this corresponds 
to the situation when the base-collector junction also becomes 
forward bias) at t = t1 and QB = Qsat, then   

     Qsat = iBτp (1 - exp(- t1/τp))   

Or, 

         t1 = τp ln(1/(1 - Qsat/(IBτp)))                            (4-40) 

 

In general, Qsat = VCτp/RL.     

 

The turn-off transient should be the reverse of the turn-on 
transient.    

If t = t2 is the initial turn-off time, one gets: 

     QB = QB(t2) exp(- (t - t2)/ τp)                              (4-41) 
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     ●     Turn-off comes in 2 stages  

The first stage involves charge removal while the device remains 
in saturation and the second stage involves a progressive 
decrease in the output current.  The time tsat in the first stage is 
the storage time.   

Since Qsat = QB(t2) exp(- (t3 - t2)/ τp),  where QB = Qsat when t = t3,  
we have: 

     tsat = t3 - t2 =  τp ln((QB(t3)/Qsat)                         (4-42) 
 
 
The second stage involves the reduction in the charge gradient in 
the base and the collector current will decrease as: 
  
     iC = (QB(t3)/ τp) exp(- (t - t3)/ τp)                        (4-43) 
 
 
Example 4.7: A switching transistor has a base width of 0.5 µm and 
diffusivity = 0.001 m2/s.  The minority carrier lifetime in the base is 0.1 µs 
and VCC = 5 V and RL = 10 kΩ.  If the base current is a 1 µs pulse at 2 µA, 
find the stored charge in the base and the storage time delay. 
 
Solution:   
 
From Eqn.(4-39),  the base charge QB = IBτp (1 - exp(- t1 /τp)) = 2 x 10-6 A x 
10-7 s x (1 - exp(- 10-6 s/10-7 s)) = 2 x 10-13 C.   # 
 
At saturation,   Qsat = VCτB /RL = VC (W2/2DB)/RL = 5 V x (5 x 10-7 m)2/(2 x 
10-3 m2/s)/104 Ω = 6.25 x 10-14 C.    
 
From Eqn.(4-42), the storage time tsat =  τp ln(QB(t2)/Qsat) = 10-7 s x ln(2 x 
10-13 C/6.25 x 10-14 C) = 0.116 µs.    #      
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Part 5:   MIS diode and MOS transistor 

 

What we need to learn in this chapter? 

  Physical properties of the MIS diode 

  Capacitance characteristics 

  Physical structure of the MOS transistor   

  I-V characteristics 

  Other effects  
 

Current components in a bipolar transistor 
a.   Gain parameters 
b.   Modes of operation 
c.   Frequency characteristics 
d.   Switching characteristics 
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Part 5:     MIS diode and MOS transistor 

The electrical properties of the MOS transistor are primarily 
determined by the properties of the MIS diode.   We first consider 
the ideal MIS diode and its characteristics.  

A.    MIS diode  
 
     ●   The MIS diode is a two terminal device similar to a PN 
junction although structurally it is no different from a capacitor 
 
Since there is no dc current passing through a capacitor, the 
parameter of interest is its capacitance, which varies with the 
applied voltage.    
 
 
a)   Potential distribution in the MIS diode  
 
The MIS diode is in a way similar to the reverse bias P-N junction.  
Structurally, it consists of a metal gate, an oxide layer, and a 
substrate semiconductor, which we assume to be P-type.    
 
This is illustrated in Fig.5.1.   
 
Because of the different possible combination of MIS structures 
and the presence of non-idealities, we shall begin with the ideal 
initial condition that all of the energy bands are flat, i.e.  
 
     qΦms = qΦm - [qχ + Eg/2 + qψB] = 0                 (5-1) 
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where Φm is the metal work function, χ is the electron affinity, and 
ψB is the energy difference between the Fermi-level and the 
intrinsic Fermi-level.   
 
The above is the flat-band condition and it assumes the absence 
of space charge in the oxide.  
 
Fig.5.2 shows the energy band diagram for the MIS diode under 
flat-band condition. 
 
 
When a voltage is applied across the MIS diode, the following 
may result: 
 
     ●    When VG is small and positive, the substrate will be 
depleted; i.e., holes will be withdrawn from the interface and the 
acceptors are exposed 
 
     ●    When VG is large and positive, the substrate will be 
inverted near the interface but further into the substrate, there is a 
depletion region 
 
     ●     When VG is negative, holes will be attracted to the oxide-
semiconductor interface and a hole accumulation layer will exist 
 
These are known as depletion, inversion, and accumulation, 
respectively.  The conditions are shown in Fig.5.3.  
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Similar to a parallel-plate capacitor, charge conservation is 
observed in the MIS diode and we have:   
 
     QS = Qn + QSC = - Qm                                      (5-2) 
 
where QS is the semiconductor charge per unit area, Qn is the 
inverted charge per unit area, QSC is the depletion layer charge 
per unit area, and Qm is the electrode charge per unit area.   
 
These charge layers are shown in Fig.5.4.  
 
In the absence of Qn, the depletion charge density QSC = - qNAW, 
where W is the depletion layer width.      
 
 
Inside the MIS diode, the charge states in the semiconductor are 
best described by the potential ψ.  Since the energy bands are 
drawn for electrons, positive potential (and ψ) increases ownward.     
 
The value of ψ right at the oxide-semiconductor interface is the 
surface potential, ψs.   
 
With this notation, inversion occurs when ψs > ψB; depletion 
occurs when ψB > ψs > 0; and accumulation occurs when ψs < 0.  
 
ψB is the energy difference between the Fermi-level and the 
intrinsic Fermi-level.  
 
Note that ψ is zero in the bulk and this is shown in Fig.5.4.  
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The carrier densities in the P-type semiconductor can be written 
as: 
 
     pp = ni exp((Ei - EF)/kT) 
      
     np = ni exp(- (Ei - EF)/kT)                                 (5.3) 
 
For the P-type substrate, we have Ei = - qψ and EF = - qψB.   This 
leads to: 
 
     pp = ni exp(q(ψB - ψ)/kT)     
 
     np = ni exp(- q(ψB - ψ)/kT)                               (5-4)  
 
 
We can now use the above equations to determine the carrier 
densities.   
 
At the oxide-semiconductor interface, we have ψ = ψs.  If ψs < ψB, 
pp > ni, we have either depletion or accumulation.    
 
On the other hand, if ψs > ψB, pp < ni, and we have inversion.    
 
 
The electrostatic potential in the semiconductor can be computed 
using Poisson equation, i.e.,   
  
     d2ψ/dx2 = - ρ/εs = qNA/εs                                 (5-5)   
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Assuming a depletion layer width W and boundary conditions 
such that ψ = o and dψ/dx = 0 at x = W, we have: 
 
     ψ = ψs (1 - x/W)2                                             (5-6) 
 
where ψs = qNAW2/(2εs).     
 
Thus, the surface potential changes as W2.   
 
 
Normally, surface inversion is fully formed when ψs = 2ψB.   This 
corresponds to the situation when the surface electron density     
n| x = 0 ≈ NA.  
 
This is known as strong inversion. 
 
 
Once the inversion layer is fully formed, the depletion layer width 
reaches its maximum value and it is given by: 

 
     Wm = (2εsψB/(qNA))1/2                                      (5-7) 
 
 
Similarly,    
 
     QSC = - qNAWm                                               (5-8) 
 

                           80 80



 - 81 -3/4/02C:\lec320.doc                                         H.L.Kwok 

Example 5.1:  For an ideal Si-SiO2 MIS diode with d = 30 nm and NA = 5 x 
1021 m-3, find the applied voltage required to make the silicon surface:  i) 
intrinsic; and ii) in strong inversion.  

Solution: 

The oxide capacitance C0 = 3.9 x 8.86 x 10-12 F/m/(3 x 10-8 m) = 1.15 x 10-3 
F/m2.  
 
i) For the Si surface to be intrinsic:  ψ = ψB = kT/q x ln(NA/ni) = 0.0259 V x 
ln(5 x 1021 m-3/1.56 x 1016 m-3) = 0.33 V.   
Ideal diode implies VFB = 0 and Va = ψB + (2 εsqNAψB)1/2/Co = 0.33 V + (2 x 
11.9 x 8.86 x 10-12 F/m x 1.6 x 10-19 C x 5 x 1021 m-3 x 0.33 V)1/2/1.15 x 10-3 
F/m3 = 0.53 V.    #    
 
ii) For strong inversion: ψ = 2ψB.   This leads to:  Va = 0.95 V.   # 

 
 
b)    C-V characteristics of the MIS diode  
 
In the presence of an applied bias, the voltage drop across the 
MIS diode can be expressed as: 
 
     Va = V0 + ψs                                                    (5-9) 
 
where V0 is the voltage drop across the oxide and ψs is the 
surface potential. 
 
 
In general, we see that the applied voltage is dropped across two 
different regions.   
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One region is the oxide layer and there we have: V0= Qsd/εox, 
where d/εox = 1/C0, and C0 is the oxide capacitance per unit area.   
 
Another component of Va is dropped across the space charge 
region, and the associated capacitance per unit area CSC is given 
by: 
 
     CSC = εs /W = (qεsNA/(2ψs))1/2 = [qεsNA/(2(Va - V0 ))]1/2    
                                                                            (5-10) 
  
 
At strong inversion, Qs = qNAWm.   
 
This leads to:  
 
     Va = qNAWm/C0 + 2ψB                                    (5-11) 
 
This is the threshold voltage VT for the MIS diode.    
 
 
Fig.5.5 shows the C-V characteristics of the MIS diode under 
different bias conditions and at different frequencies. 
 
 
c)    Flat-band voltage 
 
The flat-band condition mentioned earlier is rarely observed in 
nature and in general qΦms is not zero.    
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Flat-band condition can be achieved by introducing a parameter 
called flat-band voltage VFB.  
 

In general, the flat-band voltage is given by: 

       VFB = Φms + (Qf + Qm + Qot + Qit)/C0            (5-12) 

where Φms is the metal-semiconductor work function, Qf
 is the 

oxide fixed charge density, Qm is the oxide mobile charge density,  
Qot is the oxide trap charge density, and Qit is the interface trap 
charge density. 

 

Example 5.2: For a Si-SiO2 MIS diode at 300K with d = 30 nm, NA = 5 x 
1021 m-3; the metal work function is 3 eV, qχ = 4.05 eV, Qf/q = 1015 m-2, 
Qm/q = 1014 m-2, Qot/q = 5 x 1014 m-2 and Qit

 = 0, determine the flat band 
voltage. 

Solution: 

As shown in Example 5.1: C0 = 1.15 x 10-3 F/m2.  

From Eqn.(5-12), VFB = φms + (Qf + Qm + Qot + Qit)/C0 = 3 V - 4.05 V + 1.6 x 
10-19 C x (1015 C + 1014 C + 5 x 1014 C)/(1.15 x 10-3 F/m2) = - 1.27 V.     # 
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B.    MOS transistor 

 

     ●  MOS transistor is also called MOSFET (metal-oxide-
semiconductor field-effect transistor)    

The device consists of a MIS diode with two PN junctions on 
either side.   A schematic of a MOSFET is shown in Fig.5.6.   

The input to the device is the gate (the top electrode of the MOS 
diode) and the output is the current passing (laterally) through the 
PN junctions.  

The output terminals are called the drain and the source (the 
source is the source of electrons, i.e., the terminal where current 
leaves). 
 
 
In the following, we shall examine the I-V characteristics of an N-
channel device, i.e., the substrate semiconductor is P-type.  A 
schematic of such a device is shown in Fig.5.7.   
 
For any appreciate current to pass through the device, an 
inversion layer or channel underneath the gate must exist.   This 
normally requires a positive gate voltage exceeding the threshold 
voltage of the MIS.    
 
In addition, we assume that the source and the substrate are 
grounded and a positive voltage is applied to the drain. 
 
a)    I-V characteristics of the MOS transistor     
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The I-V characteristics of the MOS transistor are derived with the 
following ideal conditions (see Fig.5.7): 
 
     ●     Flat-band condition     
   
     ●     Only drift currents are important 

     ●     Carrier mobilities are constant 

     ●     Doping in the channel is uniform 

     ●     Reverse leakage currents are small   
 
     ●   Transverse electric field in the channel is much smaller 
than the longitudinal electric field    
 
 
Semiconductor charge present in the MOS transistor can be 
expressed as: 
 
     Qs = Qn + QSC                                                (5-13) 
 
where Qs is the semiconductor charge density; Qn is the electron 
density in the channel, and QSC is the space charge density 
present in the depletion region.   
   
Since Qs = - (VG  -ψs )C0 and QSC = - (2εsqNA (Va + 2ψB))1/2,  one 
gets: 
 
     Qn = C0 (VG - Va - 2ψB ) +  (2εsqNA (Va + 2ψB))1/2           
                                                                           (5-14) 
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This equation gives the electron density in the inversion layer per 
unit area. 
 
 
The resistance associated with this inversion layer can be written 
as: 
 
     ∆R= ∆y/(ZµnQn)                                             (5-15) 
 
where Z is the width of the device, µn  is the electron mobility,  
and ∆y is incremental distance in the direction of current flow.     
 
 
Since ∆V = ID ∆R, and ID is the current in the inversion layer, one 
gets: 
 
     ∫L0 ID dy = ∫VD

0
  Zµn Qn dV                              (5-16) 

 
where L is the channel length, and VD is the drain voltage. 
 
 
Combining Eqn.(5-14) and (5-16) leads to: 
 
     ID = Zµn(C0/L) [(VG - 2ψB  - VD/2) VD – {(8εsqNA)1/2/3C0} ((VD + 
            2ψB)3/2 - (2ψB)3/2)]                                   (5-17) 
 
This equation gives the I-V characteristics of the MOS transistor.   
 

                           86 86



 - 87 -3/4/02C:\lec320.doc                                         H.L.Kwok 

A graphical plot is shown in Fig.5.8. 
 
 
I-V characteristics of the MOS transistor can be subdivided into 
the linear region and the saturation region.  
 
In the linear region, VD is small and we can write:  
 
     ID ≈ Zµn (C0/L) (VG - VT) VD                           (5-18) 
 
where VT = (4εsqNAψB)1/2/C0 + 2ψB. 
 
Thus, ID is proportional to VD and we can define a channel 
conductance gD given by: 
   
     gD = Zµn (Co/L) (VG - VT)                               (5-19) 
  
 
Saturation occurs when the channel pinches off and this happens 
when Qn = 0 as y = L.   
 
Eqn.(5-14) now has the form:   x2 + (2)1/2K2 x - VG = 0,  where x = 
(Va + 2ψB)1/2 and K2 =  (εsqNA)1/2/C0.    
 
Solving this leads to:  x = [- (2)1/2 K2 +/- (2K2

2 + 4 VG)1/2]/2.    
 
By setting Va = VDsat, one gets:       
 
     VDsat = VG - 2ψB + K2 [1 - (1 + 2VG/K2)1/2]      (5-20) 
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If we substitute Vdsat into the I-V characteristics of the MOSFET, 
this leads to:   
  
     IDsat ≈ Zµnεox (VG - VT)2/(2dL)                        (5-21) 
  
where d is the oxide thickness. 
 
 
In addition, we define transconductance gm given by: 
  
     gm = Zµn εox(VG - VT)/(dL)                             (5-22) 
   
 
Fig.5.9 shows the equivalent circuit for the MOSFET in saturation.    
 

 

Example 5.3: Consider a long channel MOSFET with L = 3 µm, Z = 21 µm, 
NA = 5 x 1021 m-3, C0 = 1.5 x 10-3 F/m2 and VT = 1.5 V.  Determine VDsat 
when VG = 4 V.   

Solution: 

The substrate potential ψB = kT/q x ln(NA/ni) = 0.0259 V x ln(5 x 1021 m-

3/1.56 x 1016 m-3) = 0.33 V. 

K = (εsqNA)1/2/C0 = (11.9 x 8.86 x 10-12 F/m x 1.6 x 10-19 C x 5 x 1021 
/m3)1/2/1.5 x 10-3 F/m2 = 1.93 x 10-2 V1/2. 
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From Eqn.(5-20),  VDsat = VG -  2ψB + K2[1 - (1 + 2VG/K2)1/2] =  4 V - 2 x 0.33 
V + 3.72 x 10-4 V x (1 - (1 + 2 x 4 V/3.72 x 10-4 V)1/2) = 3.40 V.       # 

 

 
b) Frequency response      
 
When the output of the MOS transistor is short-circuited, the input 
current is given by: 
   
     iin = jω(CGS + CGD) vG ≈ jωC0ZLvG.                (5-23) 
 
where vG is the ac gate voltage.   
 
 
Since the output current is iout = gmvG, unity gain occurs when 
ωC0ZL = gm. 
 
 
The cutoff frequency is given by:  
 
     fT = ω/2π = gm/(2π C0ZL) = µnVD/(2π L2)       (5-24) 
 
Note that fT is inversely proportional to L2 and we have used the 
relationship VD = VG - VT. 
 
 
c) Subthreshold conduction 
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Below threshold, the MOS channel is not fully formed and a 
horizontal PNP transistor is present as shown in Fig.5.10.    
 
The lateral current will be primarily due to diffusion and it is given 
by: 
 
     ID = - qAcsDn dn/dy = qAcsDn (n(0) - n(L))/L  (5-25) 
 
 
Since n(0) = nI exp(q(ψs - ψB)/kT),  and n(L) = nI exp(q(ψs - ψB - 
VD)/kT),  it can be shown that: 
 
     ID = qAcsDn ni exp(- qψB/kT) [1 - exp(- qVD/kT)] exp(qψs/kT)/L        
                  
                                                                         (5-26) 
 
Since  ψs = VG - VT’, we have for a small VD:   
 
     ID ≈ exp(- q(VG - VT’)/kT)                             (5-27) 
 
where VT’ is the threshold voltage of the MOS transistor. 
 
 
The threshold current is exponentially proportional to the gate 
voltage. This is similar to the case of the bipolar junction transistor 
where the output collector current is proportional to the emitter-
base voltage.  
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d)     Enhancement mode and depletion mode devices 
 
In addition to N-channel and P-channel MOS transistors, these 
devices can operate in the enhancement mode or the depletion 
mode.   
 
Enhancement mode transistors are normally OFF and a gate bias 
is required to form the channels (ON). The channel of a depletion 
mode device is formed in the absence of any bias.   
 
 
e)    Threshold voltage under non-ideal conditions 
 
Most MOS transistors do not exhibit flat-band condition in the 
absence of bias and a flat-band voltage is required to achieve flat-
band condition.   In general, 
 
     VT’ = VFB + 2ψB + (4εsqNAψB)1/2/C0              (5-28) 
 
Normally, in a P-channel device, a negative VT’ implies an 
enhancement mode device and a gate voltage more negative 
than VT’ is required to turn the device ON. 
 
For an N-channel device, a negative VT’ implies a depletion mode 
device and a gate voltage more positive than - VT’ is required to 
keep the device on. 
 
 
Example 5.4:   If the substrate dopant density of a MOS transistor is 1020 
m-3.    Compute the threshold voltage if the substrate is:  i) P-type; and ii) 
N-type.   Assume an oxide thickness of 65 nm. 
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Solution: 
 
i) For a P-type substrate: qΦms = - 0.96 eV (see Fig.E5.1). 
ψB = kT/q ln(NA/ni) = 0.0259 V x ln(1020 m-3/(1.45 x 1016 m-3) = 0.229 V.   
Cox = εox/d = 3.9 x 8.86 x 10-12 F/m/(650 x 10-10 m) = 5.3 x 10-4 F/m2.     # 
 
VTN’ = VFB + 2ψB + (4εsqNAψB)1/2/C0 = - 0.96 V + 2 x 0.229 V + (2 x 11.9 x 
8.86 x 10-12 F/m x 1020 m-3 x 0.458 V)1/2/(5.3 x 10-4 F) = - 0.42 V.       # 
 
ii) For an N-type substrate, qΦms = - 0.51 eV. 
 
VTP’ = VFB + 2ψB + (4εsqNDψB)1/2/C0 = - 0.52 - 2 x 0.229 - (2 x 11.9 x 8.86 x 
10-12 F/m x 1020 m-3 x 0.458 V)1/2/(5.3 x 10-4 F) = - 1.04 V.   #  
 
Note that as ψB increases, VTN’ increases while VTP’ decreases. 
 

 
f) Substrate bias 
 
A reverse bias in the substrate affects the space charge in the 
depletion layer.  Substrate bias is normally applied at the source 
and this increases the depletion layer width such that: 
 
     Wm’ = (2εs (2ψB + VBS)/qNA)1/2                     (5-29) 
 
Similarly,   
 
     VTN’ = VFB + 2ψB + [2εsqNA (2ψB + VBS)]1/2/C0    
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     ∆VTN’ = (2εsqNA/C0)1/2 [(2ψB + VBS)1/2 -  (2ψB)1/2]           
                                                                         (5-30) 
 
 
Substrate bias therefore increases the threshold voltage in a N-
channel device.   
 
 
g) Device scaling 
 
Device scaling is intended to increase the device density per unit 
area while not affecting substantially the transistor characteristics    
 
 
Disadvantages observed in scale-down device are: 
 
     ●     2-dimensional and high-field effects often limit the device 
performance.    
  
     ●    High field effects tend to cause breakdown between the 
drain and the source.  Mobility saturation can degrade the 
frequency performance.   
 
At very high electric field, velocity saturation occurs when vsat ≈ 1 
x 105 m/s.     
 
 
When vdrift = vsat, IDsat = Zqvsat ?0

xi n.dx, where xi is the thickness of 
the depletion layer.   
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Since Qn = ∫xi
0 n dx ˜ C0 (VG - VT), one gets: 

      IDsat = ZC0 vsat (VG - VT) 
  
       gm’ = ZC0vsat                                                           (5-31) 
 
Compare this with normal operation (when gm = Z C0µn (VG - 
VT)/L), gm’ is reduced considerably.      
 
 
For a scaling factor of k (k >1), we have: 
 
      L’ = L/k,   
      d’ = d/k,     
      Z’ = Z/k,    
     Va’ = Va/k                                                     (5-32) 
 
 
This leads to: 
 
     IDsat’  = (Z/k) kCovsat (VG - VT)/k  = IDsat /k  
 
     JDsat’  = JDsat k  
 
     Pac’ = Co’Acs’ Va’2/(2πRCo’Acs’)  = Pac/k2 
 
     Pdc’ = I’Va’ = Pdc/k2                                       (5-33) 
   
Note that in this case, only JDsat is increased. 
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To avoid short-channel effect (such as velocity saturation and 2 
dimensional effect), there is an empirical relationship for the 
minimum channel length.   
 
It is given by: 
 
     Lmin = 0.4 [rjd(Ws + WD)2]1/2                          (5-34) 
 
where rj is the junction curvature, and Ws and WD are the 
depletion layer widths in the source and the drain, respectively. 

 

Example 5.6:  Design a sub-micron MOSFET with a gate length of 0.75 
µm.  (The gate length is the channel length plus twice the junction depth.)   
If the junction depth is 0.2 µm, the gate oxide thickness is 20 nm, and the 
maximum drain voltage is limited to 2.5 V, find the required channel doping 
so that the MOSFET can maintain its long channel characteristics.   

Solution:   

The channel length L = 0.75 µm - 2 x 0.2 µm = 0.35 µm.   From Eqn.(5-34),  
Lmin  = 0.4 [rjd(Ws + WD)2]1/3.   

If Lmin = L, Ws + WD = (0.35 µm/0.4)3/(0.2 x 200) = 0.129 µm.  

Since WD ˜ Ws + WD and VR ˜ VR + Vbi, NB (min) = (2 εsVR/(qWD
2)) = 2 x 11.9 

x 8.86 x 10-12 F/m x 2.5 V/(1.6 x 10-19 C x 11.8 x (0.129 x 10-6 m)2) = 1.97 x 
1023 /m3.     #  

 

END 
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	Objective:  The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors.
	What we need to learn in this chapter?
	In these crystals, the bonding arrangement between the nearest neighbors is tetrahedral (i.e., each atom has 4 nearest neighbors).  The bond angle is shown in Fig.1.4.
	Semiconductors have covalent bonds. For covalent bonds, the electrons are shared between the nearest neighboring atoms as shown in Fig.1.5.
	Example 1.1:  At 300K, the lattice constant for Si is 0.543 nm, calculate the number of Si atoms m-3.
	Solution:
	Each unit cell of the fcc structure has 4 atoms.  Therefore, the diamond structure has 8 atoms per unit cell.
	The volume of the unit cell V = (5.43 x 10-10)3 m3 = 1.6 x 10-28 m3.
	The number of atoms per unit volume N = 8/(1.6 x 10-28) m-3 = 5 x 1028 m-3.   #
	?     Lattice direction is a vector represented by the symbol: [x y z], where x, y, and z are the values of the lattice coordinates (of the vector) measured from the origin (a chosen lattice point)
	Lattice directions parallel to one another belong to the same family and are represented by the same symbol (in angular brackets).
	?    A lattice plane is represented by a set of numbers (h k l) known as the Miller indices (h, k, and l are the normalized values of the inverse of the interceptions of the plane on each of the coordinates)
	Example 1.2:  A lattice plane intercepts the principal axes at positions: a, 2a, 2a.   Determine the Miller indices.
	Solution:
	The Miller indices are:  (211).   This is illustrated in Fig.1.6.   #
	B.     Electronic properties of semiconductors
	?   A semiconductor at low temperature is similar to an insulator and the energy bonds are intact
	There are very few free electrons at low temperature.
	As temperature increases, some energy bonds are broken and the density of electrons increases. The density of electrons is quite small (~ 1012-19 m-3) at room temperature.
	?    Creation of free electrons is accompanied by the creation of holes
	A hole is a broken energy bond with a missing electron.  Holes are positively charged and their motion also leads to current flow.
	A hole moves when the hole is filled with an electron.  This is illustrated in Fig.1.7.
	?   For an intrinsic semiconductor, the electron density n equals to the hole density p, i.e., n = p.
	Example 1.3:  Intrinsic Si has 1.45 x 1016 m-3 of electrons and holes, respectively.  If (n = 0.15 m2/V.s and (p = 0.045 m2/V.s, determine the conductivity.
	Solution:
	The conductivity ( = nq(n + pq(p = 1.45 x 1016 m-3 x 1.6 x 10-19 C x (0.15 + 0.045) m2/V.s = 0.45 x 10-3 S/m.       #
	(Remember we mentioned earlier on that ( for a semiconductor lies between 104 to 10-6 S/m.)
	a)    Energy bands
	?     Electrons and holes in a semiconductor are allowed to possess specific energy ranges
	These energy ranges are called energy bands.
	Traditionally, engineers are interested in electrons and energy bands are constructed with electrons in mind, i.e., they are plotted in terms of negative potential energy.  Thus, in a typical energy band diagram, electron energy (negative potential ener
	Fig.1.8 shows the energy band diagram for Si. Crystal momenta along two different crystal directions are plotted along the horizontal axes.
	The symbol E stands for electron energy.
	Since electrons normally reside in the lowest energy states in a solid, electrons will first fill up the lower energy bands.  When these are filled, they start to fill the higher energy bands.  As a result, some higher energy bands will be partly filled.
	Partially emptied energy bands have holes and they are called valence bands.
	The energy difference between the conduction band edge and the valence band edge is the energy gap.  Electrons and holes are not allowed to have energies falling within the energy gap.
	Effectively, energy gap is the amount of energy needed to form an electron and a hole.
	The shape of an energy band changes with temperature, pressure, etc.
	For instance: the energy gap Eg(T) of Si has the following temperature dependence:
	Eg (T) = 1.17eV - 4.73 x 10-4 T2/(T + 636K) eV
	(1-1)
	where T is the absolute temperature.
	This dependence is shown in Fig.1-10.
	Example 1.4:  What is Eg for Si at 300K?
	Solution:
	From Eqn.(1-1):   Eg (T = 300K) = 1.17 eV - 4.73 x 10-4 eV/K x 300K2/(300 K + 636 K) = 1.12 eV.      #
	b)    Electron motion
	?    Motion of electrons and holes is affected by the lattice potential
	This may be viewed as an interaction between the electron/hole and the lattice vibrations.
	The result is that electrons and holes appear to possess masses different from the electron rest mass, m0. These are called effective masses, (me* for electrons, and mh* for the holes) and they are less than m0.
	The small masses imply that the lattice vibrations assist in the motion of the electrons and the holes.
	For Si at 300K:  me* (electrons) = 0.33 m0, and mh* (holes) = 0.55 m0.
	c)      Density of states for the electrons and holes
	?    An energy band contains many energy levels (states)
	Electrons occupying energy levels (states) obey the Pauli exclusion principle - which states that there can be at most 2 electrons per energy state.
	The density of states in an energy band is given by the density of states function S(E) given by:
	S(E) = 4( [2mds*/h2]3/2E1/2                                     (1-2)
	where mds* is a “density of states mass” paramete
	S(E) has the dimension of per unit volume per unit energy.
	To compute the electron density n, S(E) is multiplied to a probability function that characterizes the occupation of the different energy states. This probability function is the Fermi-Dirac function f(E).
	f(E) = 1/[1 + exp((E - EF)/kT)]                              (1-3)
	where EF is the Fermi-level, E is the energy of the electron, k (= 1.38 x 10-23 J/K) is the Boltzmann constant, and T is the absolute temperature.
	Based on the above, the electron density n in the conduction band is given by:
	n = (8Ec Se(E)/[1 + exp((E - EF)/kT)] dE               (1-4)
	where Se is the density of states in the conduction band, EF is the Fermi-level, and EC is the energy at the conduction band edge.
	A graphical plot of Se(E) and f(E) is shown in Fig.1-11.
	A similar expression for the hole density p in the valence band is given by:
	p = (-8Ev Sh(E)/[1 - exp((E - EF)/kT)] dE              (1-5)
	where Sh(E) is the density of states in the valence band, and EV is the energy at the valence band edge.
	If we assume that both |EC - EF| and |Ev - EF| >> kT,
	n = NC exp[- (EC - EF)/kT]
	p = NV exp[- (EF - Ev)/kT]                                    (1-6)
	where NC (= 2 x (2( mCB*kT/h2)3/2) is the effective density of states in the conduction band, and NV (= 2 x (2( mVB*kT/h2)3/2) is the effective density of states in the valence band.  mCB* is the density of states mass parameter for the conduct
	At 300K, NC = 2.8 x 1025 m-3 and NV = 1.04 x 1025 m-3 for Si.
	According to Eqn.(1-6), electron and hole densities are functions of the position of the Fermi-level.  This is illustrated in Fig.1-12.
	Example 1.5:  Compute the electron density in Si if the Fermi level is at 0.55 eV below the conduction band edge.   Assume T = 300K (kT at 300K = 0.0259 eV).
	Solution:
	From Eqn.(1-6):  The electron density n = NC exp(- (EC - EF)/kT) = 2.8 x 1025 m-3  x exp(- 0.55 eV /0.259 eV) = 1.67 x 1016 m-3.       #
	d)     Intrinsic semiconductor
	?     An intrinsic semiconductor is one with no impurities
	For an intrinsic semiconductor, n = p = ni, the intrinsic carrier density.
	Using Eqn.(1-6), the intrinsic carrier density is given by:
	ni = [NC NV exp(- Eg/kT)]1/2                                  (1-7)
	where we have substituted Eg = EC - EV.
	At 300K, ni = 1.45 x 1016 m-3 for Si.
	?      Note that: pn = ni2
	This is a very important relationship and is a consequence of the law of mass action - which states that the product of the electron density and the hole density is a constant at a given temperature.
	For an intrinsic semiconductor, we have E = Ei, the Intrinsic Fermi- level.
	It can be shown that:
	Ei = Eg/2 + (kT/2) ln(NV/NC)                                 (1-8)
	When NV = NC, Ei is at the middle of the energy gap.
	e)        Extrinsic semiconductor
	?   Semiconductor becomes extrinsic when impurities are added
	This is achieved with the addition of donors or acceptors. Impurities are called donors/acceptors depending on whether electrons/holes are produced.
	Structurally, donors are similar to the semiconductor (host) atoms except that there are 5 electrons in the outermost orbits (versus 4 electrons for the (host) semiconductor). Ionization of the donor atom generates an electron.   Acceptor atoms hav
	This is illustrated in Fig.1-13.
	?  Because of the low ionization energies, donors
	This results in:  n = ND or, p = NA, where ND is the donor density and NA is the acceptor density.
	A semiconductors is N-type when n >> p, and P-type when p >> n.
	?    In the presence of donors/acceptors, electron and hole densities will change
	Since the law of mass action dictates that: pn = ni2, we have p = ni2/ND for an N-type semiconductor, and n = ni2/NA for a P-type semiconductor.
	?      For an extrinsic semiconductor, the position of the Fermi- level moves away from the intrinsic position
	For an N-type semiconductor (n = ND),
	EC - EF = kT ln(NC/ND)
	For a P-type semiconductor (p = NA),
	EV - EF = - kT ln(NV/NA)                                      (1-9)
	Fig.1-14 shows the positions of the Fermi-levels in an N-type semiconductor and in a P-type semiconductor, respectively.
	If both donors and acceptors are present in a semiconductor, the dopant in greater concentration dominates, and the one in smaller concentration becomes negligible.
	?    Semiconductors are named after the dominant carrier type
	Thus, an N-type semiconductor has more electrons than holes, while a P-type semiconductor has more holes than electrons.
	?     The dominant carrier is called the majority carrier versus the term minority carrier for the carrier in lesser quantity
	It is sometimes more convenient to express n and p in terms of the intrinsic Fermi-level Ei, i.e.
	n = NC exp(- (EC - EF)/kT)
	= NC exp(- (EC - Ei)/kT) exp((EF - Ei)/kT)
	= ni exp((EF - Ei)/kT)                                         (1-10)
	Similarly,
	p = ni exp((Ei - EF)/kT)                                        (1-11)
	Using this representation, one uses the intrinsic Fermi-level as the energy reference. This also reduces the number of unknown materials parameters for the equations of n and p from three (NC, NV, EC/EV) to two (Ei and ni).
	Example 1.6: Find EC - EF if ND = 1 x 1022 m-3 for Si at 300K.
	Solution:
	From Eqn.(1-9),  EC - EF = kT ln(NC/ND) = 0.0259 eV x ln(2.8 x 1025 m-3/(1 x 1022 m-3)) = 0.2 eV.       #
	Example 1.7:  If Si is doped with 1 x 1020 donor m-3, compute the carrier densities at 300K.
	Solution:
	n = ND = 1 x 1020 m-3 and p = ni2/ND = (1.45 x 1016 m-6)2/(1 x 1020 m-3) = 2.1 x 1012 m-3.   #
	f)      Dopant energy levels
	Table 1.1 shows the dopant energies in the common semiconductors at 300K:
	Phosphorus               Arsenic                    Boron
	Si               0.045                         0.049                       0.045
	Ge             0.012                        0.0127                     0.0104
	GaAs           0.026                              -                               -
	Table 1.1: Dopant energies in the common semiconductors (measured in eV from the energy band edges: i.e., measured from NC in the case of the donors and measured from NV in the case of the acceptors).
	The dopant energies may be compared to the therma
	Fig.1-15 shows the position of dopant energy levels in a typical energy band diagram.
	g)      Temperature dependence of the carrier densities
	?    Electron and hole densities in an extrinsic semiconductor may vary with temperature
	At low temperature, not all of the dopant is ionized and the majority carrier density is small.  Nevertheless, its value is still larger than the value of ni.
	At high temperature, the intrinsic carrier density increases rapidly, while the dopant density (ND or NA) remains unchanged. At a sufficiently high temperature, the semiconductor becomes intrinsic.
	The variation of the electron density n versus the inverse temperature in an N-type semiconductor is shown in Fig.1-16.
	Part 2:  Carrier transport
	What we need to learn in this chapter?
	Part 2:   Carrier transport
	?     Carrier transport refers to the movement of the electrons and holes in a semiconductor under an applied voltage or a concentration gradient
	The simplest types of carrier transport are drift and diffusion.
	Drift is charge flow as a consequence of the presence of an applied electric field, while diffusion is charge flow due to the presence of a carrier density gradient.
	A.      Random motion of the electrons
	?   At room temperature, electrons possess thermal energy and its value is 3kT/2 (3-dimensions)
	Equating this thermal energy to the kinetic energy of an electron give:
	me*vth2/2 = 3kT/2                                                  (2-1)
	where me* is the effective mass of the electron, and vth is the thermal velocity.
	It can be shown that at T = 300K, the thermal vel
	This suggests that electrons in a semiconductor are moving at a very high speed.
	B.     Electrons in an electric field
	An electric field E’ imposes a preferred directio
	Because of the charge, electrons move in opposite direction to the applied electric field and holes move in the same direction.
	?   The motion of the electrons and the holes will stop when they encounter a collision
	This is illustrated in Fig.2.1.
	Assuming a mean free time \(c between collisions
	- qE’ = me*vd/\(c                               
	where vd is the drift velocity of the electrons.
	This leads to:
	vd = - q\(cE’/me*                               
	By definition:  the electron mobility \(n = - vd
	We have:
	(n = q(c/me*                                                          (2-4)
	Note that: (n is positive.
	Collision of a hole may be viewed as an interrupt
	vd’ = q\(c* E’/mh*                              
	where \(c’ is the mean free time of the holes, a
	This leads to:
	(p = q(c*/mh*                                                         (2-6)
	According to Eqns.(2-5) and (2-6), the mean free times of the electrons and the holes determine their mobilities.
	Collision is also referred to as scattering.  Theoretically, it can be shown that: (c ~ T-3/2 for lattice scattering; and (c ~ T3/2 for ionized impurity scattering.
	When more than one type of scattering is present, the smallest mean free time dominates.
	This also applies to the carrier mobility since mobility is directly proportional to the mean free time.
	In general, the combined mobility (T in the presence of more than one type of scattering is given by:
	(T-1 = (i (I-1                                                          (2-7)
	where (i is the mobility of the ith scattering.
	The summation process is illustrated in Fig.2.2. From the carrier mobility, one can determine the drift velocity.
	Example 2.1:  At 300K, (n = 0.15 m2/V.s.  Determine its value at 200K if lattice scattering dominates.
	Solution:
	(n(T = 200K) =  (n(T = 300K) (300K/200K)3/2 = 0.15 m2/V.s x 1.84 = 0.275 m2/V.s.    #
	?    Current density is the charge flow through a unit area cross-section in unit time
	Consider a unit volume in a semiconductor, the amount of electrons Q inside this unit volume is given by: Q = - nq, where n is the electron density, and q is the electron charge.
	If this quantity of charge Q moves through a distance (x in time (t, the electron current density Jn (= Q (x/(t = Q vd) is given by:
	Jn = - qnvd                                                            (2-8)
	Similarly, hole current density Jp = qpvd’.
	The total current density JT is given by:
	JT = Jn + Jp = - qnvd + pqvd’                    
	Since \(n = - vd /E’ and \(p = vd’/E’,
	JT = \(nq\(n + pq\(p\) E’ = \( E’          
	where ( is the conductivity of the semiconductor.
	The inverse to conductivity is the resistivity.
	For a measurement of resistivity, a 4-point probe method is frequently used. The measurement setup is shown in Fig.2.3.
	In the measurement, a current is supplied to the semiconductor wafer through the outer probes and a voltage is measured across the inner probes.
	For a thin sample, resistivity is given by:
	\( = V/I x 4.54 t’ \(.m                       �
	where V is the measured voltage, I is the current
	Note that in obtaining Eqn.(2-11), the probe separation has been assumed to be small compared to the other dimensions.
	Example 2.2:  If \(p = 0.045 m2/V.s at 300K, com
	Solution:
	From Eqn.\(2-5\), vd’ = \(p E’ = 0.045 m2/V.s�
	Example 2.3: In a 4-point probe measurement, if V
	Solution:
	From Eqn.\(2-11\), \( = V /I x 4.54 t’ \(.m �
	C.    Diffusion current
	?   Diffusion of carriers occurs in the presence of a carrier density gradient
	For electrons, the flux (rate of electron flow per unit area) (n in 1-dimension is given by:
	(n = - Dn dn/dx                                                   (2-12)
	where Dn is the electron diffusivity.
	Electron diffusion current density is then given by:
	Jn = - q(n = qDn dn/dx                                        (2-13)
	Similarly, hole diffusion current density is given by:
	Jp = - qDp dp/dx                                                 (2-14)
	where Dp is the hole diffusivity.
	Fig.2.4 shows the relationship between the diffusion currents and the carrier density gradients.
	?    Sometimes, diffusivity is expressed in terms of a mean free path ( for the carrier
	For electrons, we can write: Dn = vth(, where vth is the thermal velocity. The mean free path may be expressed in terms of the collision time, i.e., ( = vth(c.
	a)    Einstein relation
	In 1-dimension, for a collection of electrons we have: me* vth2 /2 = kT/2, and Dn = vth( = vth2(c = kT(c/me*.
	Since (n = q(c/me*,
	Dn = (nkT/q                                                        (2-15)
	This equation is known as Einstein relation.  Einstein relation allows one to relate Dn to (n.  A similar expression exists for the holes.
	Example 2.4: If (n = 0.15 m2/V.s at 300K for a semiconductor, compute Dn.
	Solution:
	From Eqn.(2-15):  Dn = (nkT/q = 0.15 m2/V.s x 0.0259 V = 3.89 x 10-3 m2/s.    #
	b)      Drift and diffusion current densities
	?   Currents for electrons and holes are due to drift and diffusion
	In 1-dimension, the electron and hole current densities are given by:
	Jn = qn\(n E’ + qDn dn/dx
	Jp = qp\(p E’ - qDp dp/dx                       
	The total current density JT is given by:
	JT = Jn + Jp                                                         (2-17)
	D.     Carrier injection
	In thermal equilibrium, we have pn = ni2.
	?      Carrier injection in a semiconductor results in:  pn > ni2
	Assuming that the equilibrium carrier densities are given by: n0 and p0, we can define the excess carrier densities as: (n = n - n0, and (p = p - p0.
	?     The extent of charge injection depends on the amount of excess carriers
	High-injection implies that: (n >> n0 and (p >> p0, while low- injection implies either (n >> n0 and (p << p0 (in a P-type semiconductor), or (n << n0 and (p >> p0 (in an N-type semiconductor).
	Example 2.5:  If n0 = ND = 1 x 1022 m-3 for a N-type Si sample, and (n = (p = 1 x 1015 m-3, what type of injection occurs.
	Solution:
	This will be low-injection as: p0 = ni2/ND = (1.45 x 1016 m-3)2/1 x 1022 m-3 (p0 << (p).   #
	E.      Generation and recombination in semiconductors
	In addition to diffusion, other processes affecting the carrier densities are also present.
	These are: generation and recombination.
	?   Generation may be due to: i) thermal generation; ii) optical generation; or iii) other types of carrier generation such as ionization, multiplication, etc
	?   Recombination includes: i) direct recombination from band-to-band; or ii) indirect recombination via impurities
	In steady state, generation rate G equals to recombination rate R.  This is illustrated in Fig.2.5.
	a)       Band-to-band recombination
	?  Recombination depends on the densities of the recombinants
	In equilibrium, band-to-band recombination rate R is given by:
	R = (*np                                                             (2-18)
	where (* is a constant.
	Since at thermal equilibrium n = n0 and p = p0, this leads to: Rth = (*n0 p0.
	? In equilibrium, thermal generation rate equals the recombination rate, i.e., Gth = Rth
	Deviation from equilibrium results in net recombination or generation.
	For low-injection where n = n0 and p = (p + p0, the net recombination rate U is:
	U = R - Rth = (*n0 ((p + p0) - (*n0p0 = (*n0 (p     (2-19)
	If one defines U as (p/(p, where (p is the hole lifetime, then we have: (p = 1/((*n0).
	Similarly, for a p-type semiconductor, we have: (n = 1/((*p0), where (n is the electron lifetime.
	Example 2.6:  In a semiconductor if the excess hole density is 1 x 1015 m-3 and its lifetime is 100 (s, determine the net recombination rate.
	Solution:
	From Eqn.(2-19): U = (p/(p = 1 x 1015 m-3/1 x 10-4 s = 1 x 1019 m-3.s-1.   #
	?    In the steady state, the net recombination rate U is balanced by the generation rate G (assume G >> Gth)
	Since G = (p/(p, this leads to (for the case of low-injection):
	p = p0 + G(p                                                       (2-20)
	b)   Dynamic response (recombination)
	The dynamic change of hole density in a semiconductor is given by:
	dp/dt = G - R = - \(R – G\)                   �
	In the absence of external generation, G = Gth = Rth, we have: dp/dt = - U = (p - p0)/(p.
	This leads to:
	p = p0 + G(p exp(- t/(p )                                     (2-22)
	where we have assumed that the initial hole density is: p0 + G(p.
	The hole density (= p0 + G(p) at t = 0 relaxes exponentially with time towards it equilibrium value p0.  This is illustrated in Fig.2.6.
	Example 2.7:  At t = 0-, G = 1 x 1024 m-3.s-1.   Determine the hole density in a semiconductor at t = 1 ms if G = 0 when t > 0.  Neglect the value of p0 and assume (p = 0.1 ms.
	Solution:
	Based on Eqn.(2-22):  p = p0 + G(p exp(- t/(p ) = 1 x 10-4 s x 1 x 1024 m-3.s-1 exp(- 1 x 10-3 s/1 x 10-4 s) = 4.54 x 1015 /m3.       #
	Part 3:  P-N junctions
	What we need to learn in this chapter?
	Part 3:     P-N junctions
	?   P-N junctions are formed when a P-type semiconductor and an N-type semiconductor are fused together
	A typical P-N junction is depicted in Fig.3.1.
	Because of the differences in the electrical properties on the two sides of the P-N junction, physical changes will take place.  One of the results is rectification in the current-voltage characteristics.
	?   Rectification is represented by asymmetrical current flow when the polarity of the bias voltage is altered
	Fig.3.2 shows the rectification properties of a P-N junction.
	A.    Physical properties of the P-N junction
	When a P-type semiconductor is connected to an N-type semiconductor, the following results:
	?    Inter-diffusion of the majority carriers (see Fig.3.3)
	?    Creation of a region depleted of carriers (with the exposure of donor and acceptor charges) (see Fig.3.4)
	?   Creation of a high-field junction region (consequence of the exposed charges)
	?  Creation of minority carrier density gradients beyond the edges of the depletion region
	P-N junctions are best studied using an energy band diagram.
	Fig.3.5 shows the energy band diagram of a typical P-N junction.
	At equilibrium, the hole current density in 1-dimension (in the absence of generation and recombination) is given by:
	Jp = qp\(pE’ - qDpdp/dx                         
	If one replaces E’ by \(1/q\)dEi/dx, and Dp by�
	Jp = qp(p (1/q)dEi/dx - (pkTdp/dx                        (3-2)
	Furthermore, since p = ni exp((Ei - EF)/kT), dp/dx = (p/kT).(dEi/dx - dEF/dx), Eqn.(3-2) becomes:
	Jp = p(p dEF/dx                                                    (3-3)
	There is no current flowing at equilibrium and we have dEF/dx = 0.
	This implies that the Fermi-level should be flat across the entire P-N junction.  This is illustrated in Fig.3.6.
	a)     The built-in potential
	From the energy band diagram \(see Fig.3.6\), �
	This potential barrier is given by:
	qVbi = (Ei - EF)|p-side + (EF - Ei)|n-side                      (3.4)
	where Vbi˜  the built-in voltage.
	Since (Ei - EF)|p-side = kT ln(NA/ni), and (EF - Ei)|n-side = kT ln(ND/ni),
	qVbi = kT ln(NDNA/ni2)                                          (3.5)
	This equation shows that the built-in potential energy is dependent on the dopant densities.
	?    Origin of the built-in potential is linked to the charges in the depletion region
	The exposed charges generate an electric field, which opposes electrons moving from the N-side into the P-side and holes from the P-side into the N-side.
	Example 3.1: Compute Vbi  (the built-in voltage) for a Si P-N junction if NA = 1 x 1024 m-3 and ND = 1 x 1021 m-3 at 300K.
	Solution:
	From Eqn.(3-5),  the built-in voltage Vbi = (kT/q) ln(NDNA/ni2) = 0.0259 V x ln((1 x 1024 m-3 x 1 x 1021 m-3/(1.45 x 1016 m-3)2) = 0.755 V.     #
	b)   The depletion region
	?   The region at/near the interface of the P-N junction where carriers are depleted is the depletion region
	In this section, we examine the depletion layer width, the built-in electric field, and the potential profile.
	The simplest dopant profile for a P-N junction is when the dopant densities are uniform. This is called an abrupt junction.
	Within the depletion region of an abrupt junction
	Using Poisson equation, one gets:
	d2(/dx2 = qNA/(s               for the P-side
	d2(/dx2 = - qND/(s             for the N-side             (3-6)
	where ( is the electrostatic potential (in units of volts), and (s is the semiconductor permittivity.
	Fig. 3.7 shows the potential profile in the depletion region of an abrupt junction.
	In the depletion region, charge conservation requires that:
	NAxp =NDxn                                                          (3-7)
	where xp and xn are the widths of the depletion region on the 2 sides of the P-N junction.
	The depletion layer width W is given by:
	W = xp + xn.                                                         (3-8)
	Integrating the Poisson equation (Eqn.(3-6)) gives:
	E’ = - d\(/dx = - qNA\(x - xp\)/\(s       fo�
	E’ = - d\(/dx = qND\(x + xn\)/\(s      for t�
	where E’ is the electric field.
	It is obvious that the maximum electric field Em’
	Further integration of the electric field (Eqn.(3-9)) gives the electrostatic potential (.
	Assuming ( = 0 at x = xp; ( = Vbi at x = - xn, we have:
	(p = qNA/(s(x2/2 - xxp) + K1
	(n = - qND/(s(x2/2 + xxn) + K2                             (3-10)
	where (p and  (n are the electrostatic potentials on the P-side and the N-side, respectively.
	It can be shown that: K1 = K2 since (p(x) = (n(x) at x = 0.
	This gives: K1 = qNAxp2/2es and K2 = Vbi - qNDxn2/2es.
	The built-in potential is the integral of the ele
	Vbi = qNAxp2/\(2\(s\) + qNDxn2/\(2\(s\) = 
	Rearranging this equation gives:
	W = [(2(s(NA + ND)Vbi/(qNA ND))]1/2                     (3-12)
	Fig.3.8 shows the electric field distribution and the potential profile across the entire P-N junction.
	?   In the presence of an applied voltage Va, Vbi (Eqn.(3-12)) is replaced by: Vbi - Va
	Our notation is such that Va is positive when the positive potential is connected to the P-side and is negative when the positive potential is connected to the N-side.
	The former is called forward bias, while the latter reverse bias.
	?   Depletion layer widens with increasing reverse bias and narrows with increasing forward bias
	In some instances, the dopant densities across the P-N junction are not uniform and depletion is primarily onto 1 side.  This is a 1-sided step junction and is illustrated in Fig.3.9.
	In the case when NA >> ND, we have:
	W ˜ xn = [2\(sVbi/\(qND\)]1/2
	E’ = - qNDW\(1 + x/W\)/\(s
	\( = Vbi\(- 2x – x2/W\)/W                    �
	Example 3.2:  For a 1-sided step junction with NA
	Solution:
	From Eqn.(3-5),    Vbi = (kT/q) ln(NAND/ni2) = 0.0259 V x ln(1025 m-3 x 1021 m-3/(2.1 x 1032 m-6) = 0.874 V.
	From Eqn.\(3-13\),  W ˜ xn = \(2\(s Vbi/\(�
	Em’ = - qNDW/\(s = - 5.4 MV/m.      #
	c)        Depletion capacitance
	?     The donor and acceptor charge layers in the P-N junction give rise to the depletion/junction capacitance
	This is illustrated in Fig.3.11.
	The depletion capacitance per unit area Cj is given by:
	Cj = dQ/dVa = (s/W                                             (3-14)
	where Q is the charge density per unit area.
	For a 1-sided step junction:
	Cj = [q(sNB/(2(Vbi - Va))]1/2                                   (3-15)
	where NB is the substrate dopant density.
	Fig.3.12 shows a typical plot of 1/C2 versus Va.
	Example 3.4:    An abrupt P-N junction has a doping concentration of 1021 m-3 on the lightly doped N-side and of 1025 m-3 on the heavily doped P-side. From a plot of 1/C2 versus Va, comment on values of the slope and the intercept on the voltage axis.
	Solution:
	NB = ND = 1021 m-3.  The governing equation (Eqn.(3-15)) is 1/C2 = 2(Vbi - Va)/(q(sNB).  Such a plot will give a straight line with a negative slope and the interception on the voltage axis is Vbi.       #
	B.      I-V characteristics
	?    I-V characteristics of a P-N junction behave differently under forward bias versus reverse bias
	Ideal I-V characteristics are obtained under the following assumptions:
	?     Abrupt junction
	?   Carrier densities at the junction boundaries are directly related to the electrostatic potential
	?       Low-injection
	?     No generation and recombination current in the depletion region
	Without bias, the electron density in the N-side at equilibrium is given by (see Eqn.(1-10)):
	nn0 = ni exp((EF - Ein)/kT)                                    (3-16)
	where Ein is the intrinsic Fermi-level on the N-side.
	On the P-side, one has:
	np0 = ni exp((EF - Eip)/kT)                                    (3-17)
	where Eip is the intrinsic Fermi-level on the P-side.
	The subscript “0” stands for the case of equilibr
	Since Eip - Ein = qVbi, we have:
	nn0 = np0 exp(qVbi/kT)                                         (3-18)
	?   Electron density at the edge of the depletion region depends exponentially on the built-in voltage
	For an applied voltage equal to Va, the Fermi-level will split up as shown in Fig.3.13.
	Under bias, we can replace Vbi by Vbi - Va; nn0 by nn; and np0 by np to Eqn.(3-18).
	This leads to:
	nn = np exp(q(Vbi - Va)/kT)                                  (3-19)
	At low-injection, nn = nn0 and we can equate Eqns.(3-18) and (3-19).  This leads to:
	np = np0 exp(qVa/kT)                                           (3-20)
	From Eqn.(3-20), we see that across the P-N junction, the minority carrier density is increased by exp(qVa/kT).
	A similar situation exists in the N-side and we have:
	pn = pn0 exp(qVa/kT)                                           (3-21)
	To determine the diffusion currents, we combine Eqns.(3-20), (3-21) and the continuity equation (Eqn.(2-24)).  This gives (after simplification):
	Dn d2np/dx2 - (np - np0)/(n = 0
	Dp d2pn/dy2 - (pn - pn0)/(p = 0                              (3.22)
	Note that we have used the coordinate transformat
	The boundary conditions are:
	x = y = 0:   pn = pn0 exp(qVa/kT);  and  np = np0 exp(qVa/kT).
	x = y = 8:   pn = pn0; and np = np0.
	The solutions are:
	np - np0 = np0 [exp(qVa/kT) - 1] exp(- x/Ln)
	pn - pn0 = pn0 [exp(qVa/kT) - 1] exp(- y/Lp)          (3-23)
	Note that Ln = (Dn(n)1/2 and Lp = (Dp(p)1/2.  The excess carrier densities are plotted in Fig.3.14.
	The above equations also lead to:
	Jn = qDn dnp/dx = - (qDnnpo/Ln) [exp(qVa/kT) - 1]
	Jp = - qDp dpn/dy = - (qDppno/Lp) [exp(qVa/kT) - 1]
	(3-24)
	where Jn and Jp are the electron and hole current densities, respectively.
	The total current density JT is:
	JT = |Jn + Jp| = Js [exp(qVa/kT) - 1]                    (3-25)
	where Js = qDppno/Lp + qDnnpo/Ln.
	This is called the ideal diode equation and the I-V characteristics are shown in Fig.3.15.
	Example 3.5: An ideal P-N junction has ND = 1024 m-3 and NA = 10 22 m-3, (p = (n = 1 (s and a device area of 1.2 x 10-9 m2, calculate the ideal saturation current at 300K.  (It can be shown that:  Dp = 0.00116 m2/s and Dn = 0.00388 m2/s.)
	Solution:
	For an ideal device, the recombination current is assumed to be zero.   From Eqn.(3-25),  we can write: Is = Js x Acs = (qDpni2/(LpND) + qDnni2/(LnNA)) x Acs = (q x ni2 x Acs) x ((Dp/(p)1/2 ND + (Dn/(n)1/2 NA) = (1.6 x 10-19 C x 2.1 x 
	Example 3.6:  For the device in Example 3.5, compute the forward current at Va = + 0.7 V.
	Solution:
	From Eqn.(3-25),  IT = Is x exp(qVa/kT) = 2.49 x 10-16 A x exp(0.7 V/0.0259 V) = 1.36 x 10-4 A.     #
	a)      Other current contributions
	Other than the diffusion currents (which occur outside the depletion region), there are also generation current and recombination current within the depletion region.
	?    Generation current is due to thermal generation of electrons and holes in the depletion region
	The process is illustrated in Fig.3.16.  It is important during reverse bias when the depletion layer width is substantially widened.
	Assuming a thermal generation rate given by G and a generation lifetime (g, one can express G = ni/(g.
	This leads to a generation current density Jgen given by:
	Jgen = (W0 qG dW = qniW/(g                               (3-26)
	The total reverse current density in the presence of generation is:
	JR = Js + Jgen = qDppn0/Lp + qDnnp0/Ln + qniW/(g
	(3-27)
	?    Recombination current exists primarily in the depletion region
	A typical recombination process via an impurity center is shown in Fig.3.17.   It differs from the generation process in the sense that it is important under forward bias.
	Assuming a carrier recombination rate given by U 
	U = ni [exp(qVa/kT) - 1]/(r                                  (3-28)
	where (r = [nn + pn + 2ni cosh(Ei - Et)]/(ni (0vthNt),  Et is the energy of the recombination center, Nt is the density of the recombination center, vth is thermal velocity, and (0 is the capture cross-section of the recombination center.
	Note that we have assumed the carrier capture cross-sections for the electron and the hole are the same and are equal to (o.
	?    It can also be shown that the most effective recombination center is located when Et = Ei
	This statement together with the assumption pn = nn = ni exp(qVa/2kT) (a situation chosen for maximum recombination probability) gives:
	Umax ˜ \(0vthNt ni exp\(qVa/2kT\)/2          
	where we have assumed Va > 3kT/q.
	The recombination current density Jr is:
	Jr = q (W0 Umax dW = q Umax W                          (3-30)
	The total forward current density now becomes:
	JF = Js exp(qVa/kT) + qW(0vthNt ni [exp(qVa/2kT)]/2
	(3-31)
	In general, JF is proportional to exp(qVa/(kT), where ( the ideality factor varies between 1 to 2.   This is illustrated in Fig.3.18.
	?     Within the P-N junction, high-injection results in current flow different from the normal currents
	During high-injection, we have pn = nn = ni exp(qVa/2kT) and the total current density JT is given by:
	JT = J0 [exp(qVa/2kT) - 1]                                  (3-32)
	where J0 is a constant.
	Thus, the current density increases at a slower rate with increasing bias voltage at high-injection. A typical plot showing high-injection in a P-N junction is given in Fig.3.19.
	Example 3.7:   For an ideal P-N junction with NA = 1023 m-3 and ND = 1021 m-3.  Assume that it contains 1021 m-3 generation and recombination centers located 0.02 eV above the intrinsic Fermi level with (n = (p = 10-19 m2.  For vth = 1 x 105 m/s, calcu
	Solution:
	From Eqn.(3-5),   Vbi = kT/q x ln(NAND/ni2) = 0.0259 V x ln(1023 m-3 x 1021 m-3/2.1 x 1032 m-6) = 0.695 V.
	From Eqn.(3-13),  W = (2(s(Vbi + VR)/(qND))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m x (0.695 V + 0.5 V)/(1.6 x 10-19 C x 1021 m-3))1/2 = 1.25 x 10-6 m.
	From Eqn.(3-26),    Igen = Jgen x Acs = q niWAcs/(g =  1.6 x 10-19 C x 1.45 x 10-16 m-3 x 1.25 x 10-6 m x 10-8 m2/0.27 x 10-6 s = 1.1 x 10-10 A.   #
	Example 3.8:  With Example 3.7, repeat the calculations for the recombination current when Va = 0.5 V.   Assume (r (= (0vthNt/2) = 0.1 (s.
	Solution:
	From Eqn.(3-13),  W = (2(s(Vbi - Va)/(qND))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m x (0.695 V - 0.5 V)/(1.6 x 10-19 C x 1021 m-3))0.5 = 0.5 x 10-6 m.
	From Eqns.(29) and (30),  Irec = qW niAcs exp(qVa/2kT)/(g = 1.6 x 10-19 C x 0.5 x 10-6 m x 1.45 x 1016 m-3  x 10-8 m2 x exp(0.5 V/(2 x 0.0259 V))/0.1 x 10-6 s = 1.6 x 10-6 A.     #
	b)        Charge storage
	?    At forward bias, minority carriers are stored in the P-N junction
	Such charges will give rise to diffusion capacitance.
	In a forward bias P-N junction, the hole charge per unit area stored in the N-region is given by:
	Qp = q (8xn (pn - pn0) dx
	= q (8xn pn0 (exp(qVa/kT) - 1) exp(- (x - xn)/Lp) dx
	= qLp pn0 (exp(qVa/kT) - 1)                           (3-33)
	Since Jp = (qDp pno/Lp) [exp(qVa/kT) - 1],  one can write:
	Qp = Lp2Jp/Dp = (pJp                                          (3-34)
	This is illustrated in Fig.3.20.
	Similarly, Qn = (nJn.  Thus,
	QT(= Qp + Qn) =  (pJp + (nJn                             (3-35)
	If \(p = \(n, QT ˜ JT.
	The diffusion capacitance per unit area Cd is given by:
	Cd = (Qp/(Va
	= (q2Lp p˜n0/kT) exp(qVa/kT)                          (3-36)
	Note that diffusion capacitance increases with increasing forward bias.  This is illustrated in Fig.3.21.
	Fig.3.22 shows the equivalent circuit of a P-N junction including the capacitances.
	d) Junction breakdown
	?    Breakdown occurs when there is excessive current flowing through the P-N junction
	Normally, breakdown is reversible provided there is a large external resistance that limits the current.
	In a P-N junction, breakdown is normally either due to tunneling or avalanche multiplication. These processes are shown in Figs.3.23 and 3.24.
	Tunneling occurs in heavily doped P-N junctions.  At reverse bias, tunneling occurs when the filled states in the P-side is right opposite to the unfilled states in the N-side so that electrons can tunnel through without energy change.  This can result i
	Avalanche multiplication is due to impact ionization of the carriers.   Under a strong reverse bias, the electrons and holes gain enough energy before suffering a collision and upon impact with a Si atom, additional electrons and holes will be generated.
	Fig. 3.25 shows the (carrier) ionization rates during breakdown under different field intensities.
	To estimate the breakdown voltage, one needs to d
	The breakdown voltage VB is:
	VB = EC’W/2                                      
	Assuming EC’ = Em’ = qNBW/\(s as in the case of 
	VB = EC2 (s/(2qNB)                                            (3-38)
	where NB is the substrate dopant density.
	Note that the breakdown voltage is inversely proportional to the substrate dopant density.
	Fig.3.26 shows a plot of critical electric field versus the substrate dopant density.
	Example 3.9: For a 1-sided step junction, what is the critical breakdown voltage when tunneling becomes important?
	Solution:
	From Fig.3.26, tunneling becomes important when E
	Part 4:   Bipolar transistor
	What we need to learn in this chapter?
	Current components in a bipolar transistor
	Part 4:   Bipolar transistor
	?    The word transistor refers to a transfer-resistance device
	This implies that the terminal resistances at the input and the output of the transistor are different.
	Structurally, a bipolar transistor is made up of 2 back-to-back P-N junctions.  It is therefore possible to have either a NPN or a PNP transistor.
	For simplicity we shall examine a 1-dimensional PNP transistor.
	This will be a 3 terminal device as shown in Fig.4.1. We label the terminals as emitter, base and collector. The dopant densities in each of the 3 regions will be different.
	The operation of the transistor depends on the voltage bias (which characterizes the different modes of operation):
	?   For normal active operation, the emitter-base is forward biased and the collector base reverse biased
	The band diagram is shown in Fig.4.2.
	Note that the splitting of the Fermi-levels is indicative of the different biases.
	A.    Current components in the active transistor
	The following occurs during the formation of the PNP transistor:
	?     Hole current flowing from the emitter into the base
	A portion of this current reaches the base-collector junction and they are labeled as IEp and ICp.
	?    Recombination of the holes occurs in the base
	?    Electrons flow from the collector into the base due to the reverse bias and electrons flow into the emitter from the base due to the forward bias
	The currents are labeled as ICn, IEn, respectively and they are shown in Fig.4.3.
	The total emitter current IE is given by:
	IE = IEp + IEn                                                         (4-1)
	The total collector current IC is given by:
	IC = ICp + ICn                                                         (4-2)
	Since the transistor is a 3 terminal device, the base current IB is:
	IB = IE - IC = IEp + IEn - ICp - ICn                              (4-3)
	These are illustrated in Fig.4.4.
	?     The efficiency of a PNP transistor is determined by the amount of hole current reaching the collector
	This is expressed in terms of the common-base current gain (0 which is given by:
	(0 = ICp/IE = ICp/(IEp + IEn)
	= IEp/(IEp + IEn) x ICp/IEp                                    (4-4)
	The first term appearing in Eqn.(4-4) is the emitter efficiency ( and the second term is the transport factor (T.
	We can write: (o = ( (T.
	Furthermore, we have:
	IC ˜ \(0IE + ICn                               �
	The collector current in the active mode consists of:
	?     A fraction of the emitter current
	?     Generation and diffusion currents in the reverse bias base collector junction
	Since (0 is always less than 1 and ICn is small, IC < IE.
	a)    Small-signal characteristics
	The small signal characteristics are obtained under the following assumptions:
	?     Dopant densities are uniform
	?     Low-injection
	?   Absence of generation and recombination currents in the depletion regions
	?     Absence of series resistance
	Due to current injection from the emitter, the 1-dimension hole (minority carrier) density in the base is given by:
	Dp d2pn/dx2 - (pn - pn0)/(p = 0                                (4-6)
	This equation is subject to the following boundary conditions:
	pn(0) =  pn0 exp(qVEB/kT)
	pn(WB) = 0                                                            (4-7)
	where x = 0 is at the edge of the emitter-base depletion region in the base, and WB is the base width.
	The general solution is:
	pn = pn0 (exp(qVEB/kT) - 1) sinh((WB - x)/Lp)/sinh(WB/Lp) + pn0 (1
	- sinh(x/Lp)/sinh(WB/Lp))                               (4-8)
	where we have used the relationship:  Lp2 = Dp(p.
	Eqn.(4-8) gives the profile of the excess minority carrier distribution in the base which is shown in Fig.4.5.  Note that sinh(z) = (exp(z) - exp(-z))/2.
	For most P-N junctions, WB < Lp and we have:
	pn ˜ pn0 \(exp\(qVEB/kT\) - 1\) \(1 - x/WB�
	This is the excess minority carrier density distribution in the base.
	The excess minority carriers stored in the base QB is given by:
	QB ˜ qAcsWB pn0 [exp\(qVEB/kT\) - 1]/2        
	where Acs  is the area cross-section of the base.
	In a similar manner, we can obtain the minority carrier density distributions in the emitter and the collector.
	These are shown in Fig.4.6.
	The values are:
	nE = nE0 + nE0 (exp(qVEB/kT) - 1) exp((x + xE)/LE)     x > - xE
	nC = nC0 - nC0 exp\(- \(x - xC\)/LC\)      x�
	where nE is the electron density in the emitter, nE0 is the equilibrium value of nE, - xE is the edge of the depletion region in the emitter side, LE is the diffusion length for the electrons in the emitter, nC is the electron density in the collector, n
	Note that x is negative in the emitter.
	We can now compute the diffusion currents in the different region:
	IEp = Acs [- qDp dpn/dx]x=0
	= (qAcsDppn0/Lp) coth(WB/Lp) [(exp(qVEB/kT) - 1) +
	1/cosh(WB/Lp)]                                             (4-12)
	where we have the relationship: cosh(z) = (exp(z) + exp(-z))/2 and coth(z) = cosh(z)/sinh(z).
	For WB < Lp,
	IEp ˜ \(qAcs Dp pn0/WB\) \(exp\(qVEB/kT\) �
	(4-13)
	Similarly, at x = WB,
	ICp = qAcs Dp pn0/{Lpsinh(WB/Lp)} [(exp(qVEB/kT) - 1) +
	cosh(WB/Lp)]
	˜ \(qAcs Dp pn0/WB\) [exp\(qVEB/kT\) – 1]  �
	Thus, IEp ˜ ICp.
	For the electron current (assuming DE = DC = Dn),
	IEn = Acs [- qDE dnE/dx]x = - xE
	= qAcs DEnE0 (exp(qVEB/kT) - 1)/LE
	ICn = Acs [- qDC dnC/dx]x = - xc
	= qAcsDCnC0/LC                                              (4-15)
	where DE is the electron diffusivity in the emitter, and DC is the electron diffusivity in the collector.
	We can write:
	IE = a11 (exp(qVEB/kT) - 1) + a12                          (4-16)
	When WB < Lp, we have:
	a11 = qAcs [Dpni2/(NBWB) + DEnE0/LE]
	a21 = qAcs Dpni2/(NBWB)                                      (4-17)
	where NB is the dopant density in the base.
	Note that IE = a12 when VEB = 0.
	This will be the diffusion current in the base when pn(0) = pn0 and pn(WB) = 0.
	Similarly, we can write:
	IC = a21(exp(qVEB/kT) - 1) + a22
	For wB > Lp,
	a21 = qAcs Dpni2/(NBWB)
	a22 = qAcs [Dpni2/(NBWB) + DCnC0/LC]                  (4-18)
	In addition,
	IB = IE - IC                                                            (4-19)
	Since QB = qAcsWBpn0 (exp(qVEB/kT) - 1)/2, it can be shown that both IE and IC are proportional to QB, the base charge.
	It should be emphasized out that the base current actually arises from carrier recombination as the carrier transit through the base. Based on Eqn.(4-6):  Dp d2pn/dx2 - (pn - pn0)/(p = 0, Jp = - qDpdpn/dx = constant if recombination is absent.  The 
	Finally, we can evaluate the emitter efficiency and the transport factor.  They are given as:
	( = IEp/(IEp + IEn)
	= (1 + IEn/IEp)-1
	˜ [1 + \(qAcsDEnE0/LE\) \(exp\(qVEB/kT\) -�
	\(exp\(qVEB/kT\) – 1\)}]-1
	˜ \(1 + DEnE0WB/\(Dppn0LE\)\)-1            �
	Thus,
	(T = ICp/IEp
	˜ {qAcsDppn0\(exp\(qVEB/kT\) – 1\)/\(Lp si�
	Dppn0/WB) (exp(qVEB/kT) - 1)]
	˜ 1 - WB2/\(2Lp2\)                            
	?     For an efficient device, it is desirable to have both ( and (T close to 1
	Example 4.1: A silicon P+-N-P transistor has impurity densities of 5 x 1024 m-3, 1022 m-3, and 1021 m-3 in the emitter, base and collector respectively.  The base width is 1 (m and the device cross-section is 3 mm x 3 mm.   When the emitter-base junctio
	Solution:
	From Eqn.(3-5):  Vbi = kT/q x ln(NCNV/ni2) = 0.0259 V x ln(1022 m-3 x 1021 m-3/2.1 x 1026 m-3) = 0.636 V.
	The depletion layer width in the base-collector junction = (2(s(Nbase + Ncollector)(Vbi + VCB)/(qNbaseNcollector))1/2 = (2 x 11.9 x 8.86 x 10-12 F/m x (1022 m-3 + 1021 m-3 x (0.636 V +  5 V)/(1.6 x10-19 C x 1022 m-3 x 1021 m-3))1/2 = 2.85
	The depletion region on the collector side that extends into the base = WBC/(1 + Nbase/Ncollector) = 2.85 (m/(1 + 1022 m-3/1021 m-3) = 0.26 (m.
	A similar calculation for the emitter-base junction gives a depletion region in the base of 0.217 (m.
	The neutral base width = (1 - 0.26 - 0.217) (m = 0.523 (m.     #
	Example 4.2: For the transistor in Example 4.1, assume that the diffusivities of the minority carriers are 0.0002, 0.001 and 0.0035 m2/s and the corresponding lifetimes are 0.01, 0.1 and 1 (s, respectively, determine the current components: IEp, ICp and
	Solution:
	It can be shown that: LEn = 1.41 (m, LBp = 10 (m and LCn = 59.2 (m.
	From Eqn.(4-12): IEp =  (qAcsDppn0/Lp) coth(WB/Lp) [(exp(qVEB/kT) - 1) + 1/cosh(WB/Lp)]    = 1.6 x 10-19 C x (3 x 10-3 m)2 x 0.0002 m2/s x 2.1 x 1026 m-6/1022 m-3 x coth(0.523 (m/10 (m) x (exp(0.5 V/0.0259 V) - 1) + 1/(cosh(0.523 
	Similarly, it can be shown that (see Eqn.(4-13)):  ICp = 4.6650 mA.      #
	IB = IEp - ICp = 6.38 (A.      #
	Example 4.3: If NA in the emitter is 1025 m-3, ND in the base is 1023 m-3 and NA in the collector is 5 x 1021 m-3, compute (0 for  DE = 10-4 m2/V.s, Dp  = 10-3 m2/V.s, LE = 10-6 m, Lp = 10-5 m, and WB = 0.5 x 10-6 m.
	Solution:
	From Eqn.\(4-20\):  \(  ˜ 1/\(1 + DEnE0WB/\
	B.    Modes of operation
	The following are the different modes of operation for the bipolar transistor:
	?     Active mode - VEB is at forward bias while VBC is at reverse bias
	?     Saturation mode - VEB is at forward bias while VBC is also at forward bias
	?     Cutoff mode - VEB is at reverse bias while VBC is also at reverse bias
	?     Inverted mode - VEB is at reverse bias while VBC is at forward bias
	Fig. 4.7 shows the output characteristics of a typical bipolar transistor showing the active region, saturation and cutoff.
	Active mode corresponds to the case when the output behaves as a current source dependent on the value of the input voltage.
	Saturation occurs when both the input junction and output P-N junction are at forward bias and there is very little resistance across the terminals of the transistor.
	Cutoff implies that little or no current is allowed to pass through the terminals.
	D.     Equivalent circuit models for the bipolar transistor
	Eber-Moll model - This model is constructed using 2 back-to-back P-N junctions as shown in Fig.4.14.
	The governing equations are:
	IE = IF0 (exp(qVEB/kT) - 1) - (RIR0 (exp(qVCB/kT) - 1)
	IC = (F IF0 (exp(qVEB/kT) - 1) - IR0 (exp(qVCB/kT) - 1)
	(4-24)
	where IF0 is the forward saturation current of the emitter-base junction, IR0  is the reverse saturation current of the base-collector junction, (F is the forward common-base current gain, and (R is the reverse common-base current gain.
	The above equations can apply to the different modes of operation including the use of large signals.
	E.   Frequency response of the bipolar transistor
	The response of the bipolar transistor can be separated into the dc and ac components.
	The frequency response is usually included in the small-signal analysis.  In general, the currents and the terminal voltages can be expressed as (total = dc + ac (small signal)):
	iE = IE + iE’
	vEB = VEB + vEB’
	iC = IC + iC’
	vCB = VCB + vCB’
	iB = IB + iB’                                    
	where iE, iB and iC are the total currents, IE, I
	The subscripts E, B and C stand for the emitter, base and collector, respectively.  Similar notations apply to the voltages.
	For the active mode of operation, we have:
	iE = IF0 exp(qVEB/kT)
	iC = (FIF0 exp(qVEB/kT)
	iB = (1 - (F )IF0 exp(qVEB/kT)                              (4-26)
	Thus, for a small change in the emitter-base volt
	iC = IC + d\(iC\)/dVEB|VEC vEB’ = IC + iC’
	iB = IB + d\(iB\)/dVEB|VEC vEB’ = IB + iB’    �
	This leads to:  iC’ = gmvEB’ and iB’ = gEBvEB’, w
	For convenience, we define ßF = iC/iB = aF/\(1 �
	In addition,
	gm = d(iC)/dVEB|VEC = (q (F IF0/kT) exp(qVEB/kT) =  (F qIE/kT
	gEB = d(iB)/dVEB|VEC = q (1 - (F) IE/kT =  qIB/kT
	(4-28)
	From Eqn.\(4-27\),  iC’,  iB’ and vEB’ form th�
	The frequency response of the bipolar transistor can be linked to the gain parameters as shown in Fig.4.16.
	In general, the frequency-dependent common-base current gain ( is given by:
	( = (0/(1 + jf/f()                                                 (4-29)
	where  (0 is the low frequency common-base current gain, and f( is the common-base cutoff frequency.
	Similarly, the frequency-dependent common-emitter current gain ( is given by:
	( = (0/(1 + jf/f()                                                  (4-30)
	where ß0 is the low frequency common-emitter cur�
	Since ( = (/(1 - (), we have:
	f( = (1 - (0)f( and f( < f( .                                   (4-31)
	Both f( and f( are called the 3-dB frequencies meaning that at these frequencies, ( and ( both reduce to 0.707 of their initial values.
	Note that the 3 dB frequency points are the half-power points.
	The unity-gain cutoff frequency fT is often quoted in the specifications of transistors.   It occurs when ( = 1.
	Thus,
	( = (0/(1 + jfT/f()) = 1
	fT = f\( ˜ \(\(02 - 1\) ˜ \(0f\( ˜ \(0f
	This implies: fT ˜ f\(.
	The ultimate frequency limit for the operation of the bipolar transistor is given by the inverse of the time required for an injected carrier to cross the base as illustrated in Fig.4.17.  This is called the transit time (B.
	Transit time is given by:
	(B = (WB0 (1/v) dx =  (WB0 (qpnAcs/Ip) dx           (4-33)
	By setting pn = pn0 (1 - x/WB) and Ip = qAcsDppn0/WB, we have:
	(B = (WB0 [WB(1 - x/WB)/Dp] dx
	= WB2/(2Dp)                                                 (4-34)
	The base width theoretically limits the frequency response of the bipolar transistor and fmax ~ 1/(B.
	F.    Switching transients in the bipolar transistor
	In digital circuits, transistors are often required to switch from active to cutoff.  The switching response depends on the charge storage in the base region. The simplest way to model the switching bipolar transistor is to assume the existence of an OFF
	The circuit schematic is shown in Fig.4-18.
	These resistances are given by:
	Roff = VC/IC(off)
	Ron = VCE(on)/IC                                               (4-35)
	where VC is the bias voltage, VCE is the collector-emitter voltage and IC is the collector current.
	The switching time is given by the time required to switch between these 2 states.
	For a common-emitter transistor to switch from off to on, the base charge simply builds up from cutoff to saturation as shown in Fig.4-19.
	The base charge QB is given by:
	QB = qAcs (WB0 (pn - pn0) dx                             (4-36)
	The time evolution of the base charge can be obtained in the following manner:
	dpn/dt = - 1/q dJp/dx - (pn - pn0)/(p                    (4-37)
	Integrating from x = 0 to x = WB gives:
	Ip(0) - Ip(WB) = dQB/dt + QB/(p                          (4-38)
	where we have used the relationship Jp = IpAcs and QB = q(pn - pn0)Acs.  Acs is the area cross-section of the device.
	Since Ip(0) - Ip(WB) = iB,   we have:
	dQB/dt + QB/(p  = iB
	QB = iB(p (1 - exp(- t/(p))                                   (4-39)
	Thus, QB changes from 0 (OFF) to iB(p (ON).  This is reflected in the lowering of the base voltage as shown in Fig.4.20.
	Assuming that the bipolar transistor is saturated (this corresponds to the situation when the base-collector junction also becomes forward bias) at t = t1 and QB = Qsat, then
	Qsat = iB(p (1 - exp(- t1/(p))
	Or,
	t1 = (p ln(1/(1 - Qsat/(IB(p)))                            (4-40)
	In general, Qsat = VC(p/RL.
	The turn-off transient should be the reverse of the turn-on transient.
	If t = t2 is the initial turn-off time, one gets:
	QB = QB(t2) exp(- (t - t2)/ (p)                              (4-41)
	?     Turn-off comes in 2 stages
	The first stage involves charge removal while the device remains in saturation and the second stage involves a progressive decrease in the output current.  The time tsat in the first stage is the storage time.
	Since Qsat = QB(t2) exp(- (t3 - t2)/ (p),  where QB = Qsat when t = t3,  we have:
	tsat = t3 - t2 =  (p ln((QB(t3)/Qsat)                         (4-42)
	The second stage involves the reduction in the charge gradient in the base and the collector current will decrease as:
	iC = (QB(t3)/ (p) exp(- (t - t3)/ (p)                        (4-43)
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	Part 5:     MIS diode and MOS transistor
	The electrical properties of the MOS transistor are primarily determined by the properties of the MIS diode.   We first consider the ideal MIS diode and its characteristics.
	A.    MIS diode

	?   The MIS diode is a two terminal device similar to a PN junction although structurally it is no different from a capacitor
	Since there is no dc current passing through a capacitor, the parameter of interest is its capacitance, which varies with the applied voltage.
	a)   Potential distribution in the MIS diode
	The MIS diode is in a way similar to the reverse bias P-N junction.  Structurally, it consists of a metal gate, an oxide layer, and a substrate semiconductor, which we assume to be P-type.
	This is illustrated in Fig.5.1.
	Because of the different possible combination of MIS structures and the presence of non-idealities, we shall begin with the ideal initial condition that all of the energy bands are flat, i.e.
	q(ms = q(˜m - [q( + Eg/2 + q(B] = 0                 (5-1)
	where (m is the metal work function, ( is the electron affinity, and (B is the energy difference between the Fermi-level and the intrinsic Fermi-level.
	The above is the flat-band condition and it assumes the absence of space charge in the oxide.
	Fig.5.2 shows the energy band diagram for the MIS diode under flat-band condition.
	When a voltage is applied across the MIS diode, the following may result:
	?    When VG is small and positive, the substrate will be depleted; i.e., holes will be withdrawn from the interface and the acceptors are exposed
	?    When VG is large and positive, the substrate will be inverted near the interface but further into the substrate, there is a depletion region
	?     When VG is negative, holes will be attracted to the oxide-semiconductor interface and a hole accumulation layer will exist
	These are known as depletion, inversion, and accumulation, respectively.  The conditions are shown in Fig.5.3.
	Similar to a parallel-plate capacitor, charge conservation is observed in the MIS diode and we have:
	QS = Qn + QSC = - Qm                                      (5-2)
	where QS is the semiconductor charge per unit area, Qn is the inverted charge per unit area, QSC is the depletion layer charge per unit area, and Qm is the electrode charge per unit area.
	These charge layers are shown in Fig.5.4.
	In the absence of Qn, the depletion charge density QSC = - qNAW, where W is the depletion layer width.
	Inside the MIS diode, the charge states in the semiconductor are best described by the potential (.  Since the energy bands are drawn for electrons, positive potential (and () increases ownward.
	The value of ( right at the oxide-semiconductor interface is the surface potential, (s.
	With this notation, inversion occurs when (s > (B; depletion occurs when (B > (s > 0; and accumulation occurs when (s < 0.
	(B is the energy difference between the Fermi-level and the intrinsic Fermi-level.
	Note that ( is zero in the bulk and this is shown in Fig.5.4.
	The carrier densities in the P-type semiconductor can be written as:
	pp = ni exp((Ei - EF)/kT)
	np = ni exp(- (Ei - EF)/kT)                                 (5.3)
	For the P-type substrate, we have Ei = - q( and EF = - q(B.   This leads to:
	pp = ni exp(q((B - ()/kT)
	np = ni exp(- q((B - ()/kT)                               (5-4)
	We can now use the above equations to determine the carrier densities.
	At the oxide-semiconductor interface, we have ( = (s.  If (s < (B, pp > ni, we have either depletion or accumulation.
	On the other hand, if (s > (B, pp < ni, and we have inversion.
	The electrostatic potential in the semiconductor can be computed using Poisson equation, i.e.,
	d2(/dx2 = - (/(s = qNA/(s                                 (5-5)
	Assuming a depletion layer width W and boundary conditions such that ( = o and d(/dx = 0 at x = W, we have:
	( = (s (1 - x/W)2                                             (5-6)
	where (s = qNAW2/(2(s).
	Thus, the surface potential changes as W2.
	Normally, surface inversion is fully formed when 
	This is known as strong inversion.
	Once the inversion layer is fully formed, the depletion layer width reaches its maximum value and it is given by:
	Wm = (2(s(B/(qNA))1/2                                      (5-7)
	Similarly,
	QSC = - qNAWm                                               (5-8)
	Example 5.1:  For an ideal Si-SiO2 MIS diode with d = 30 nm and NA = 5 x 1021 m-3, find the applied voltage required to make the silicon surface:  i) intrinsic; and ii) in strong inversion.
	Solution:
	The oxide capacitance C0 = 3.9 x 8.86 x 10-12 F/m/(3 x 10-8 m) = 1.15 x 10-3 F/m2.
	i) For the Si surface to be intrinsic:  ( = (B = kT/q x ln(NA/ni) = 0.0259 V x ln(5 x 1021 m-3/1.56 x 1016 m-3) = 0.33 V.
	Ideal diode implies VFB = 0 and Va = (B + (2 (sqNA(B)1/2/Co = 0.33 V + (2 x 11.9 x 8.86 x 10-12 F/m x 1.6 x 10-19 C x 5 x 1021 m-3 x 0.33 V)1/2/1.15 x 10-3 F/m3 = 0.53 V.    #
	ii) For strong inversion: ( = 2(B.   This leads to:  Va = 0.95 V.   #
	b)    C-V characteristics of the MIS diode
	In the presence of an applied bias, the voltage drop across the MIS diode can be expressed as:
	Va = V0 + (s                                                    (5-9)
	where V0 is the voltage drop across the oxide and (s is the surface potential.
	In general, we see that the applied voltage is dropped across two different regions.
	One region is the oxide layer and there we have: V0= Qsd/(ox, where d/(ox = 1/C0, and C0 is the oxide capacitance per unit area.
	Another component of Va is dropped across the space charge region, and the associated capacitance per unit area CSC is given by:
	CSC = (s /W = (q(sNA/(2(s))1/2 = [q(sNA/(2(Va - V0 ))]1/2
	(5-10)
	At strong inversion, Qs = qNAWm.
	This leads to:
	Va = qNAWm/C0 + 2(B                                    (5-11)
	This is the threshold voltage VT for the MIS diode.
	Fig.5.5 shows the C-V characteristics of the MIS diode under different bias conditions and at different frequencies.
	c)    Flat-band voltage
	The flat-band condition mentioned earlier is rarely observed in nature and in general q(ms is not zero.
	Flat-band condition can be achieved by introducing a parameter called flat-band voltage VFB.
	In general, the flat-band voltage is given by:
	VFB = (ms + (Qf + Qm + Qot + Qit)/C0            (5-12)
	where (ms is the metal-semiconductor work function, Qf is the oxide fixed charge density, Qm is the oxide mobile charge density,  Qot is the oxide trap charge density, and Qit is the interface trap charge density.
	Example 5.2: For a Si-SiO2 MIS diode at 300K with d = 30 nm, NA = 5 x 1021 m-3; the metal work function is 3 eV, q( = 4.05 eV, Qf/q = 1015 m-2, Qm/q = 1014 m-2, Qot/q = 5 x 1014 m-2 and Qit = 0, determine the flat band voltage.
	Solution:
	As shown in Example 5.1: C0 = 1.15 x 10-3 F/m2.
	From Eqn.(5-12), VFB = (ms + (Qf + Qm + Qot + Qit)/C0 = 3 V - 4.05 V + 1.6 x 10-19 C x (1015 C + 1014 C + 5 x 1014 C)/(1.15 x 10-3 F/m2) = - 1.27 V.     #
	B.    MOS transistor
	?  MOS transistor is also called MOSFET (metal-oxide-semiconductor field-effect transistor)
	The device consists of a MIS diode with two PN junctions on either side.   A schematic of a MOSFET is shown in Fig.5.6.
	The input to the device is the gate (the top electrode of the MOS diode) and the output is the current passing (laterally) through the PN junctions.
	The output terminals are called the drain and the source (the source is the source of electrons, i.e., the terminal where current leaves).
	In the following, we shall examine the I-V characteristics of an N-channel device, i.e., the substrate semiconductor is P-type.  A schematic of such a device is shown in Fig.5.7.
	For any appreciate current to pass through the device, an inversion layer or channel underneath the gate must exist.   This normally requires a positive gate voltage exceeding the threshold voltage of the MIS.
	In addition, we assume that the source and the substrate are grounded and a positive voltage is applied to the drain.
	a)    I-V characteristics of the MOS transistor
	The I-V characteristics of the MOS transistor are derived with the following ideal conditions (see Fig.5.7):
	?     Flat-band condition
	?     Only drift currents are important
	?     Carrier mobilities are constant
	?     Doping in the channel is uniform
	?     Reverse leakage currents are small
	?   Transverse electric field in the channel is much smaller than the longitudinal electric field
	Semiconductor charge present in the MOS transistor can be expressed as:
	Qs = Qn + QSC                                                (5-13)
	where Qs is the semiconductor charge density; Qn is the electron density in the channel, and QSC is the space charge density present in the depletion region.
	Since Qs = - (VG  -(s )C0 and QSC = - (2(sqNA (Va + 2(B))1/2,  one gets:
	Qn = C0 (VG - Va - 2(B ) +  (2(sqNA (Va + 2(B))1/2
	(5-14)
	This equation gives the electron density in the inversion layer per unit area.
	The resistance associated with this inversion layer can be written as:
	(R= (y/(Z(nQn)                                             (5-15)
	where Z is the width of the device, (n  is the electron mobility,  and (y is incremental distance in the direction of current flow.
	Since (V = ID (R, and ID is the current in the inversion layer, one gets:
	(L0 ID dy = (VD0  Z(n Qn dV                              (5-16)
	where L is the channel length, and VD is the drain voltage.
	Combining Eqn.(5-14) and (5-16) leads to:
	ID = Z\(n\(C0/L\) [\(VG - 2\(B  - VD/2\) V
	2(B)3/2 - (2(B)3/2)]                                   (5-17)
	This equation gives the I-V characteristics of the MOS transistor.
	A graphical plot is shown in Fig.5.8.
	I-V characteristics of the MOS transistor can be subdivided into the linear region and the saturation region.
	In the linear region, VD is small and we can write:
	ID ˜ Z\(n \(C0/L\) \(VG - VT\) VD         �
	where VT = (4(sqNA(B)1/2/C0 + 2(B.
	Thus, ID is proportional to VD and we can define a channel conductance gD given by:
	gD = Z(n (Co/L) (VG - VT)                               (5-19)
	Saturation occurs when the channel pinches off and this happens when Qn = 0 as y = L.
	Eqn.(5-14) now has the form:   x2 + (2)1/2K2 x - VG = 0,  where x = (Va + 2(B)1/2 and K2 =  ((sqNA)1/2/C0.
	Solving this leads to:  x = [- (2)1/2 K2 +/- (2K22 + 4 VG)1/2]/2.
	By setting Va = VDsat, one gets:
	VDsat = VG - 2(B + K2 [1 - (1 + 2VG/K2)1/2]      (5-20)
	If we substitute Vdsat into the I-V characteristics of the MOSFET, this leads to:
	IDsat ˜ Z\(n\(ox \(VG - VT\)2/\(2dL\)    �
	where d is the oxide thickness.
	In addition, we define transconductance gm given by:
	gm = Z(n (ox(VG - VT)/(dL)                             (5-22)
	Fig.5.9 shows the equivalent circuit for the MOSFET in saturation.
	Example 5.3: Consider a long channel MOSFET with L = 3 (m, Z = 21 (m, NA = 5 x 1021 m-3, C0 = 1.5 x 10-3 F/m2 and VT = 1.5 V.  Determine VDsat when VG = 4 V.
	Solution:
	The substrate potential (B = kT/q x ln(NA/ni) = 0.0259 V x ln(5 x 1021 m-3/1.56 x 1016 m-3) = 0.33 V.
	K = ((sqNA)1/2/C0 = (11.9 x 8.86 x 10-12 F/m x 1.6 x 10-19 C x 5 x 1021 /m3)1/2/1.5 x 10-3 F/m2 = 1.93 x 10-2 V1/2.
	From Eqn.(5-20),  VDsat = VG -  2(B + K2[1 - (1 + 2VG/K2)1/2] =  4 V - 2 x 0.33 V + 3.72 x 10-4 V x (1 - (1 + 2 x 4 V/3.72 x 10-4 V)1/2) = 3.40 V.       #
	b) Frequency response
	When the output of the MOS transistor is short-circuited, the input current is given by:
	iin = j\(\(CGS + CGD\) vG ˜ j\(C0ZLvG.     �
	where vG is the ac gate voltage.
	Since the output current is iout = gmvG, unity gain occurs when (C0ZL = gm.
	The cutoff frequency is given by:
	fT = (/2( = gm/(2( C0ZL) = (nVD/(2( L2)       (5-24)
	Note that fT is inversely proportional to L2 and we have used the relationship VD = VG - VT.
	c) Subthreshold conduction
	Below threshold, the MOS channel is not fully formed and a horizontal PNP transistor is present as shown in Fig.5.10.
	The lateral current will be primarily due to diffusion and it is given by:
	ID = - qAcsDn dn/dy = qAcsDn (n(0) - n(L))/L  (5-25)
	Since n(0) = nI exp(q((s - (B)/kT),  and n(L) = nI exp(q((s - (B - VD)/kT),  it can be shown that:
	ID = qAcsDn ni exp(- q(B/kT) [1 - exp(- qVD/kT)] exp(q(s/kT)/L
	(5-26)
	Since  \(s = VG - VT’, we have for a small VD:
	ID ˜ exp\(- q\(VG - VT’\)/kT\)             �
	where VT’ is the threshold voltage of the MOS tra
	The threshold current is exponentially proportional to the gate voltage. This is similar to the case of the bipolar junction transistor where the output collector current is proportional to the emitter-base voltage.
	d)     Enhancement mode and depletion mode devices
	In addition to N-channel and P-channel MOS transistors, these devices can operate in the enhancement mode or the depletion mode.
	Enhancement mode transistors are normally OFF and a gate bias is required to form the channels (ON). The channel of a depletion mode device is formed in the absence of any bias.
	e)    Threshold voltage under non-ideal conditions
	Most MOS transistors do not exhibit flat-band condition in the absence of bias and a flat-band voltage is required to achieve flat-band condition.   In general,
	VT’ = VFB + 2\(B + \(4\(sqNA\(B\)1/2/C0    
	Normally, in a P-channel device, a negative VT’ i
	For an N-channel device, a negative VT’ implies a
	Example 5.4:   If the substrate dopant density of a MOS transistor is 1020 m-3.    Compute the threshold voltage if the substrate is:  i) P-type; and ii) N-type.   Assume an oxide thickness of 65 nm.
	Solution:
	i) For a P-type substrate: q(ms = - 0.96 eV (see Fig.E5.1).
	(B = kT/q ln(NA/ni) = 0.0259 V x ln(1020 m-3/(1.45 x 1016 m-3) = 0.229 V.   Cox = (ox/d = 3.9 x 8.86 x 10-12 F/m/(650 x 10-10 m) = 5.3 x 10-4 F/m2.     #
	VTN’ = VFB + 2\(B + \(4\(sqNA\(B\)1/2/C0 = 
	ii) For an N-type substrate, q(ms = - 0.51 eV.
	VTP’ = VFB + 2\(B + \(4\(sqND\(B\)1/2/C0 = 
	Note that as \(B increases, VTN’ increases while
	f) Substrate bias
	A reverse bias in the substrate affects the space charge in the depletion layer.  Substrate bias is normally applied at the source and this increases the depletion layer width such that:
	Wm’ = \(2\(s \(2\(B + VBS\)/qNA\)1/2      
	Similarly,
	VTN’ = VFB + 2\(B + [2\(sqNA \(2\(B + VBS\)
	\(VTN’ = \(2\(sqNA/C0\)1/2 [\(2\(B + VBS\�
	(5-30)
	Substrate bias therefore increases the threshold voltage in a N-channel device.
	g) Device scaling
	Device scaling is intended to increase the device density per unit area while not affecting substantially the transistor characteristics
	Disadvantages observed in scale-down device are:
	?     2-dimensional and high-field effects often limit the device performance.
	?    High field effects tend to cause breakdown between the drain and the source.  Mobility saturation can degrade the frequency performance.
	At very high electric field, velocity saturation 
	When vdrift = vsat, IDsat = Zqvsat ?0xi n.dx, where xi is the thickness of the depletion layer.
	Since Qn = \(xi0 n dx ˜ C0 \(VG - VT\), one g
	IDsat = ZC0 vsat (VG - VT)
	gm’ = ZC0vsat                                    
	Compare this with normal operation \(when gm = Z
	For a scaling factor of k (k >1), we have:
	L’ = L/k,
	d’ = d/k,
	Z’ = Z/k,
	Va’ = Va/k                                       
	This leads to:
	IDsat’  = \(Z/k\) kCovsat \(VG - VT\)/k  = I�
	JDsat’  = JDsat k
	Pac’ = Co’Acs’ Va’2/\(2\(RCo’Acs’\)  = Pac/k2
	Pdc’ = I’Va’ = Pdc/k2                            
	Note that in this case, only JDsat is increased.
	To avoid short-channel effect (such as velocity saturation and 2 dimensional effect), there is an empirical relationship for the minimum channel length.
	It is given by:
	Lmin = 0.4 [rjd(Ws + WD)2]1/2                          (5-34)
	where rj is the junction curvature, and Ws and WD are the depletion layer widths in the source and the drain, respectively.
	Example 5.6:  Design a sub-micron MOSFET with a gate length of 0.75 (m.  (The gate length is the channel length plus twice the junction depth.)   If the junction depth is 0.2 (m, the gate oxide thickness is 20 nm, and the maximum drain voltage is lim
	Solution:
	The channel length L = 0.75 (m - 2 x 0.2 (m = 0.35 (m.   From Eqn.(5-34),  Lmin  = 0.4 [rjd(Ws + WD)2]1/3.
	If Lmin = L, Ws + WD = (0.35 (m/0.4)3/(0.2 x 200) = 0.129 (m.
	Since WD ˜ Ws + WD and VR ˜ VR + Vbi, NB \(min�
	END

