
1

3.3 Code Coverage Model

Chap 3.Test Models and Strategies

1. Introduction
2. Control Flow Graph
3. Test Coverage Analysis

2

1. Introduction

-A code coverage model calls out the parts of an implementation that
must be exercised to satisfy an implementation-based test model.
÷Coverage, as a metric, is the percentage of these parts exercised by a test suite.

-Hundreds of coverage models have been published and used since
the late 1960s. Nearly all support implementation-based testing.
÷As such, most coverage models rely on control flow graphs, which give an
abstract representation of the code.

-Test coverage attempts to address questions about when to stop
testing, or the amount of testing that is enough for a given program?

-Ideal testing is to explore exhaustively the entire test domain,
which in general is impossible.

÷So in practice, some code may never be executed due to the possibility of
missing test cases.

÷Hence, one hardly knows how effective test suites are until one finds what
code is, or isn't executed.

3

2. Control Flow Graph

-A code segment consists of one or several contiguous statements
with no conditionally executed statements.

÷That means once a segment is entered, all the statements involved will execute.
÷The last statement in the segment must be another predicate, a method exit, a loop

control, a break, or a goto.
÷The last part of a segment includes the predicate or exit expression that selects

another segment but does not include any of subsequent segment’s code.

-A predicate expression contains one or many conditions that evaluate
to true or false. One condition corresponds to each boolean operator
in the predicate expression.
÷Predicates are used in control statements: if, case, do, while, do until, for, and so on.
÷The evaluation of a predicate results in transfer of control to one or many code segments.
÷A predicate with multiple conditions is called a compound predicate.

Code Segments

4

Examples: Code segments in Canonical loop structures

For Loop buffer= new char[nchar + 1];

for (n=0; n< nchars; ++n) {

buffer[n] = newChar;
}

A

B, D

C

While Loop buffer= new char[nchar + 1];
int n =0;

while (n< nchars) {

buffer[n] = newChar;
++n;

}

A

B

C

Until Loop
buffer= new char[nchar + 1];
int n =0;

do {
buffer[n] = newChar;
++n;

}

While (n < nchars);

A

B

C

5

-A control flow graph (CFG) describes code segments and their
sequencing in a program. It is a directed graph in which:

÷A node corresponds to a code segment; nodes are labeled using letters or numbers.
÷An edge corresponds to a conditional transfer of control between
code segments; edges are represented as arrows.
-The entry point of a method is represented by the entry node, which is a node with no inbound edges.
-The exit point of a method is represented by the exit node, which is a node with no outbound edges.

Representation

Flow graphs for canonical loop structures

For Loop buffer= new char[nchar + 1];

for (n=0; n< nchars; ++n) {

buffer[n] = newChar;
}

A

B, D

C

A

B

C

D

6

While Loop buffer= new char[nchar + 1];
int n =0;

while (n< nchars) {

buffer[n] = newChar;
++n;

}

A

B

C

A

B

C

Until Loop
buffer= new char[nchar + 1];
int n =0;

do {
buffer[n] = newChar;
++n;

}

While (n < nchars);

A

B

C

A

B

C

7

public boolean verify (String uid, String pwd) {
boolean result =false;
int i = 0;

while ((result ==false) && (i < MAX)) {

if ((userids[i]==uid) && (passwords[i] == pwd))

result=true;

++i;
}

return result;
}

Example: CFG for a method

public class Authenticator {
final int MAX = 10000;

String [] userids = new String [MAX];
String [] passwords = new String [MAX];

…

//…Other methods
} //Class end

Segments

A

B, C

D, E

F

G

H

A

B

C

F

E

D

H

G

8

Path Expressions

-A path corresponds to a sequence of segments connected by arrows.
÷A path is denoted by the nodes that comprise the path.
÷Loops are represented by segments within parentheses, followed by an

asterisk to show that this group may iterate from zero to n times.

A

B

C

F

E

D
H

G

Examples of Entry/Exit Paths:

-ABH
-ABCH
-A(BCDEFG)*BH
-A(BCDEG)*BH
-A(BCDG)*BH
-A(BCDG)*BCH

-An entry-exit path is a path starting with the entry node and ending
with the exit node

9

Compound Predicates

-Compound predicate expressions are modeled separately by specifying
a node for each individual predicate involved.
-All true-false combinations in a compound predicate should be
analyzed, and the effects of short circuit boolean evaluation should
be made explicit.
÷For instance: C++, Java, and Objective-C use C semantics- short circuit boolean
evaluation is automatically applied to all multiple-condition boolean expressions.

A

B

C

F

E

D
H

G

÷Example:
…

while ((result ==false) && (i < MAX)) {

if ((userids[i]==uid) && (passwords[i] = pwd))

result=true;

++i;
}

…

10

C o n d 1

R

D e fa u lt

C o n d 3

C o n d 2

Q

P

N ex t
se g m en t

if co n d 1 P
e lse if co n d 2 Q
e lse if co n d 3 R
e lse D e fa u lt

-Case and multiple-if statements are modeled by specifying a
separate node for each predicate, each conditional action, and
the default action.

Case and Multiple-if Statements

11

-Switch statements are modeled by specifying a node for the switch
expression, and a separate node for each action.

Computed
goto

P

Q

R

Next
segment break;

break;
break;

switch (e) {
 case 1: P;
 case 2: Q;
 case 3: R;
 }

Switch Statements

12

3. Test Coverage Analysis
-Test coverage analysis uses some adequacy criteria to guide the
testing process.
÷This increases the confidence that an implementation has been thoroughly tested.

-It is recommended not to use a code coverage model as a test model.
÷Instead, established test strategies (e.g. equivalence, domain) should be used to
devise test suites, while coverage are used at the same time to analyze generated
test suites adequacy.
÷Coverage reports can point out a grossly inadequate test suite
÷Coverage reports can help to identify implementation constructs that may require

implementation-based test design or the development of special stubs and drivers

-Common coverage criteria include:
÷Statement coverage
÷Branch coverage
÷Condition/Multiple condition coverage
÷Basis-path coverage
÷Data flow coverage

13

Common Code Coverage Criteria

Statement coverage
-Achieved when all statements in a method have been executed at
least once.
÷Statement coverage is also known as line coverage, segment coverage, or
basic block coverage.
÷Segment and basic block coverage counts segments instead of individual
statements.

÷Segment coverage ensures that all code segments defined in the CFG are
covered. For instance, if we can find one entry-exit path that includes all
segments, we can realize 100% statement coverage.

-Example:

void foo(int x) {
if (a==b) { ++x; }
else { --x;}
return x;

}

Statement coverage is achieved by having test
cases involving both:

1. a==b
2. a != b

14

÷Example:
void foo () {

char* c = NULL;
if (x == y) {

c = &aString;
}
*c = “test code”;

}

Statement coverage is achieved for foo()
by setting x equal y; however, when the
condition is false, the code generates an
incorrect pointer and crashes.

÷If a bug exists in a statement, and that statement is not executed, there is almost
no chance of revealing that bug; hence statement coverage is the minimum
coverage required by IEEE SENG standards.

÷However, it is a very weak criterion and should be viewed as the barest minimum.

15

Branch Coverage
-Achieved when every path from a node is executed at least once by
a test suite.
÷Also known as decision coverage or all-edge coverage.
÷Improve on statement coverage by requiring that each branch be taken at least once.
Hence each outcome of a predicate expression is exercised at least once (i.e., true
and false).
÷However, it is limited by the fact that it treats a compound predicate as a single
statement. Branch coverage may be achieved without exercising all of the conditions

-Example
int foo(int x) {

if (a==b || (x==y && isEmpty()) {
++x;

}
else {

--x;
}
return x;

}

÷ Branch coverage misses several of the possible entry-exit paths.

Branch coverage may be
Achieved using:
1. a ==b
2. a !=b and x !=y

Without ever exercising this.isEmpty()

16

Condition coverage/Multiple condition coverage
-Condition coverage requires that each condition be evaluated as true
and false at least once.

-Multiple-condition coverage requires that all true-false combinations
of simple conditions be exercised at least once.
÷There are at most 2n true-false combinations for a compound predicate with n
simple conditions.

÷Multiple-condition coverage ensures that all statements, branches, and conditions
are covered, but not all paths.

÷Reaching all condition combinations may be impossible due to short circuit
evaluation.

÷Mutually exclusive conditions spanning several predicate expressions may
preclude certain combinations.

17

Basis-Path Model

Cyclomatic Complexity Metric

÷Where e and n stand for the number of edges and the number of nodes in
corresponding CFG, respectively.

-The cyclomatic complexity metric C is defined as the number of
edges minus the number of nodes plus 2:

C = e – n + 2

-Also called McCabe complexity metric
÷Evaluate the complexity of algorithms involved in a method.
÷Give a count of the minimum number of test cases needed to test a method

comprehensively.
÷Low C value means reduced testing, and better understandability.

-Example:
CC= e- n + 2 = 8 – 7 + 2 = 3

18

The Basis-Path Test Model

-The basis-path test model calls for testing C distinct entry-exit paths.
÷A test suite is developed by finding C distinct entry-exit paths and producing
test cases by path sensitization.

÷Traditionally, it is suggested that the longest entry-exit path be included in the
test suite.

÷Basis-path coverage is achieved when C distinct entry-exit paths have been
exercised.

-The basis-path model is appealing because it is simple and pragmatic.

-However it is unreliable as a coverage metric, because it can be
satisfied without meeting the barest minimum generally accepted
standards of code coverage:
÷On one hand branch coverage may be achieved with less than C paths in some
methods.
÷On the other hand it is possible to select C entry-exit paths and achieve neither
statement coverage nor branch coverage.

19

Example: Binary Search Routine

Class BinSearch {
public static void search(int key, int[] elemArray, Result r) {

int bottom = 0;
int top = elemArray.length – 1;
int mid;
r.found = false; r.index=-1;
while (bottom <= top) {

mid = (top + bottom)/2;
if (elemArray [mid] == key) {

r.index = mid;
r.found = true;
return;

}
else {

if (elemArray[mid] < key) bottom = mid + 1;
else top = mid – 1;

}
}

}
}

Code

20

Class BinSearch {

public static void search(int key, int[] elemArray, Result r) {
int bottom = 0;
int top = elemArray.length – 1;
int mid;
r.found = false; r.index=-1;

while (bottom <= top) {

mid = (top + bottom)/2;

if (elemArray [mid] == key) {

r.index = mid;
r.found = true;
return;

}

else {
if (elemArray[mid] < key)

bottom = mid + 1;

else top = mid – 1;
}

}
}

}

A

B
C

D

E

F
G

H

I

21

A

C

B

G

I

H

EF

D

bottom> top

while bottom <= top

if (elemArray [mid]
== key)

if (elemArray [mid] < key)

Flow Graph

22

Independent Paths and Number of Test cases

ABI
A(BCDE)*BI
A(BCDFG)*BI
A(BCDFH)*BI

-The minimum number of test cases required to test all program
paths is equal to the cyclomatic complexity (CC).

CC = Number (edges) – Number (nodes) + 2 = 11 – 9 + 2 = 4

23

Path Sensitization

-Path sensitization is the process of determining argument and
instance variable values that will cause a particular path to be taken.

-Path sensitization is undecidable; no algorithm can solve this problem
in all cases.

-Instead it must be solved heuristically:
÷For small, well-structured methods, this task is usually not difficult.
÷It becomes increasingly more difficult as size and complexity increase.

-Using initially other test strategies (e.g., domain analysis etc.) to
select test inputs reduce the amount of work required.
÷All that remains is to find additional test values to exercise the missing paths to
meet the coverage goal. You can use existing test cases to find values for these
missing paths.

24

Test Coverage, in Practice
-In practice, the three basic criteria most commonly used are statement
coverage, branch coverage and condition coverage.
÷It has been suggested that the combination of these three criteria can

achieve 80-90 % or more coverage in most cases.

-It is important to note that test coverage is not enough by itself:
÷100% test coverage cannot guarantee achieving error-free software.
÷However, the use of test coverage in combination with appropriate test strategies
can mitigate the impact of uncovered code during software testing, and help the
tester find some rational points at which to stop testing.

-In practice, coverage data are collected by instrumenting the code.
Instrumentation is typically done on a copy of the source code,
while debugging changes are made to the un-instrumented code.
÷Manual instrumentation is error-prone and very time consuming.
÷In contrast, automatic instrumentation is easy and cost-effective. Automatic instrumentation
is performed by a coverage analyzer, which is part of typical test automation environment.

