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ABSTRACT
The coupled-integral-equations technique (CIET) as
applied to arbitrary waveguide discontinuities is pre-
sented. This makes the CIET applicable to general opti-

mization algorithms which may alter the nature of

discontinuities during the optimization process. The
general procedure of arriving at coupled integral equa-
tions is highlighted, and the computational effort involv-
ing the final matrix equation is discussed. Several
analysis and design examples involving simple disconti-
nuities and entire waveguide components demonstrate
the efficiency and versatility of the CIET. Applications
in coordinate systems other than the cartesian demon-
strate the method’s flexibility. All examples are con-
firmed by results obtained from the mode-matching
technique (MMT) or by a commercial field solver. CPU-
time ratios between the CIET and MMT demonstrate
the advantages of the CIET. Particularly in narrowband

systems, this ratio increases tremendously in favour of

the CIET.

L INTRODUCTION
Waveguide discontinuities and components have been
traditionally analyzed by using the mode-matching tech-
nique (MMT) [1], [2]. For many applications, MMT
offers a reasonably fast design procedure which allows

for optimization routines to be incorporated [1]. If

boundary conditions do not fall in line with the unit vec-
tors of the respective coordinate system, however, MMT

requires staircase approximations for the geometries
which usually puts it at a disadvantage compared to
more generally oriented field solvers, e.g., [3]. In some
cases, a combination of both, e.g. [4], has been shown to
alleviate some of the problems.

All of these methods consume substantial -comput-
ing resourses when narrowband systems are to be ana-
lyzed. This is due to extremely fine mesh requirements
in field solvers and an increasing number of modes in
the MMT to obtain convergence of the scattering param-
eters. Not only in narrowband systems, but in general,
the relatively slow convergence of the MMT and the
phenomenon of relative convergence [2] have been
linked to the inappropriate modelling of field singulari-
ties at metallic edges. This has been demonstrated in,
e.g., [5], [6] where the effects of sharp me:allic edges
are taken into account in modified versions of the MMT.
However, the interactions between multiple discontinui-
ties is still determined by cascading the individual gen-
eralized scattering matrices, thereby considerably
limiting the effects of the edge conditions.

Only if all edge conditions are simultaneously taken
into account, i.e., if the interactions between closely
spaced field singularities are adequately considered,
then an accurate, reliable and fast procedure is obtained
which has recently been introduced as the coupled-inte-
gral-equations technique (CIET) [7]. Besides retaining
the salient features of the MMT, the CIET contains the
influence of modes exclusively in the sums of matrix
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element and not, as in the MMT, as separate matrix
entries. Therefore, a much smaller matrix system with
certain distinct properties, some of which will be dis-
cussed in this paper, is obtained.

The advantages of the CIET over the MMT have
emerged as a result of more precisely specifying the
structure under analysis by using a-priori information
about the edge conditions at the discontinuities
involved, e.g. [7]. This seems appropriate for the pure
analysis of components and for the design of structures
with predefined geometries such as, e.g., corrugations or
irises. In a general optimization scenario, however, the
geometry might be varied considerably, depending on
the choices of goal (error) function and optimization
procedure. For instance, an optimization routine might
change an ins to a corrugation if such a measure helps
improving the performance of the circuit.

Therefore, this paper focuses on making the CIET
adaptable to such requests. An algorithm for general dis-
continuities formed by offset-connected waveguides is
developed within the framework of the CIET. The for-
mulation is demonstrated for rectangular waveguide dis-
continuities and components but may straightforwardly
be converted to other coordinate systems, even mixed
ones, as some of the examples will show. The algorithm
1s readily applicable to any two-port optimization proce-
dure for waveguide technology and, based on the prop-
erties of the CIET, can easily be interfaced with
multiport waveguide junctions for the design of entire
waveguide systems.

II, THEORY
a) Single Discontinuity
For the derivation of the basic steps of this approach, we
first consider the rectangular waveguide discontinuity
depicted in Fig. 1. In this example, an incoming
waveguide of cross-section a;xb; (region I) is connected

to a waveguide of cross-section a,xb, (region II), and
they share the common aperture area agxbg (region 0).

We will later consider individual cases in which the
aperture area equals that of one of the two connected
waveguides.

According to [1], the potential functions in the two

waveguides 1=1, II can be written as
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where 8 is the Kronecker delta, and k_ denotes the cut-

off wavelength. Note in Fig. 1 that the origin is taken to
be the lower right corner of the incoming waveguide
and, therefore; e;=c,=0. From (1) and (2), the transverse

Figure 1: Arbitrary discontinuity formed by the connections of two waveguides; cross-sectional view (left) and

sideview introducing wave amplitudes (right),
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electromagnetic field is derived as
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where Y}, , are the admittances, k,y, . are the phase con-
stants, and F and B are the amplitudes of the forward
and backward traveling waves, respectively (Fig. 1).

The transverse electric fields at the discontinuity
(z=0) are matched by introducing a vector function
R(x, y) which i1s assumed to vanish everywhere except
in the aperture plane. Thus we get

Br(x,y) = Br(xy) = R(x,y) (5)
By using (3), (5) and multiplying with the orthogonal
mode tunctions of regions [ and II, the wave amplitude
components in both regions i=I, II are isolated.

F:]qexp{—jk;_hqz} + Bll]qexp{jk;hqz} =
YulXy
- J' J.(?T;qxéz}-x(x,y)dxdy (6)
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The integration extends over the common aperture area,
€.g., in the case of Fig. 1, x;=¢,, x,=a,, yj=¢, and y =b,.
The vector function ﬁ(x, y) 1s chosen to contain the
modal functions of the common aperture and the edge
conditions at the metallic edges [8]. For the example in

Fig. 1, we get
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By substituting (8) - (10) into (6) and (7) and solving
the integrals for combinations (q,r), (q,s), (p.r) and (p,s),
two coupling matrices similar to those in the mode-
matching technique [1] are obtained
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which represent the couplings from waveguide [ and I
to the common aperture area (region 0). Note first that
submatrices [Wj,.] do not vanish - as they would in the
MMT [1] - on account of the edge conditions in the vec-
tor basis functions; secondly, the entries of matrices [W]
are frequency independent and need to be computed
only once; thirdly, the mode spectrum is entirely deter-
mined by (1), (2), (9) and (10) and, therefore, field sym-
metries and reduced-mode sets can be considered in the
same way as in the MMT.

Depending on the individual discontinuity, which
might differ from that in Fig. 1, the positions of the edge
cenditions are decided on an individual basis. Fig. 2
shows several examples of discontinuitites in x-direc-
tion, and similar deliberations hold in y-direction. A
straight connection of two identical waveguides (Fig.
2a), of course, does not require any edge conditions as
there are no field singularities to be considered. If a dis-
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1 (no edge condition)
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Figure 2; Denominator of the x-dependence of vector basis function in (8) for several discontinuities. Analo-

gous considerations hold for the y-dependence.

continuity occurs at only one of the two walls (Fig. 2b,
¢), then the respective image is also taken into account.
Two edge conditions at the boundaries of the aperture
plane are required in all other cases (Fig. 2d, e, ), one of
which (Fig. 2¢) has been used in both directions in the
example of g, 1.

Note that all integrals in (6) and (7) can be solved
analytically by employing the following relationships
[9].

sisilfin Jy et
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Routines tor Bessel functions of tractional order are
readily available, ¢.e.on (1O

I AMultiple Discontinuitics
Matching the transverse magnetic fields (4) across the
cotioen aperture of Figo T owould result in an inteeral

equation for the expansion coefficients ¢ (¢.f. (8)) tfrom
which the generalized scattering matrix of the disconti-
nuity could be obtained, e.g. [5], [6]. However, this
would lead to a modal combination of cascaded discon-
tinuities as in the MMT, e.g. [1]. The powerful advan-
tage of the coupled-integrai-equations technique lies in
the fact that all edge conditions at all discontinuities are
taken into account simultaneously.

In order to accomplish this, we first combine TE-
and TM-mode components and rewrite (6) and (7) for
an arbitrary discontinuity i combining waveguide sec-
tions i-1 and 1 (Fig. 3)

Discontinuity i1 i it+]

1 R

Section -2 i1 i i1

T R R
= Lyy——L—

Figure 3 Discontinuity | and its neighbors in a multi-
discontinuily environment.
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and solve for the following terms needed in the match-

ing conditions for the magnetic fields.
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Indices k and b denote a mode and a basis function,
respectively. At the input (region 0) and output (region
N), the expressions change to

0 0 I l l ;
Fy - By = ZWLIEN“E*Q‘BH. (19)
b

where M and L denote the mode of excitation at the
input and output, respectively.
Matching the magnetic field components at all dis-

continuities i leads to matrix equations of the form
;
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By substitutiiig (16) - (19) into (20), multipt}mg with
the components of the vector basis functions (8) and
integrating over the aperture area, a set of coupled inte-
gral equations is obtained. This procedure is commonly
referred to as the method of moments, e.g. [11], n

29

which the testing functions are chosen such that, after
integration, the transposed of the coupling matrices [W]
appear. Finally, each equatinn can be written as

[All I]Ei +[.£1. ] +[Al]+]] |+t=£} (21)
where
(A7) = (W) Diag{D'" "} W) (22)
[&i.i] = [wl,i]TD. g{Di-—]}[wl,i]
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(A" = (W™ Diag(D jrw" "' (24)

¢' are the vectors of expansion coefficients (8) at discon-

tinuity i, T denotes transposed, Diag{} is a diagonal
matrix and
Y! i Y,

- (D}, = X (25)
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Slightly different expressions are obtained at the
input (region 0, discontinuity 1)
1,24 .2

(A" ' +[A" e = U (26)

where
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(A% = qw"

T 0
'] Diag{Y"} (29)

and at the output (region N, discontinuity N)
N-| N,N, N

AN N T A e = v (30)
where '
(A™N71) = -(w"") Diag(D” W™ ') o)

(AN = 5wt N Diag (YN[
+ (WM Diag(dY WM (32)
v = j2[W"N] Diag{Y") (33)

The final matrix equation, ¢.g. for six cascaded dis-
continuities, is given by




30

AR g ane T pakpar e
22 _'7'3 E . c - U
21 2 12
A 4 A 9 9 (_} (_:2 {_}
32 3% 3

0

g A AT A 9 9 C = |- (34)
9 9 &4.1 &44 &45 Q §4 [}
5 0
0 0 0 A5 ASS A% |c {,
6 \'4
D 0 DA AR

and exhibits the following properties:

1. The size of matrix [A] is N times the number of
basis functions, and the number of basis functions
per discontinuity need not be constant.

2. The modes enter matrix elements through sums
(matrix multiplications) which can individually be
checked for convergence. Note that this procedure
eliminates the phenomenon of relative convergence
known from mode-matching techniques [2].

3. Matrix [A] is block-diagonal and symmetric. If the
structure under investigation is symmetric in the
direction of propagation, then [A] is also symmetric
with respect to its minor diagonal. Hence only a lim-
ited number of matrix entries need to be computed.

4. An LU decomposition (under consideration of the
block structure and symmetries) needs to be per-
formed only once per frequency point.

5. For all different excitation vectors U, V, only coeffi-
cient vectors ¢, g” are required to compute the scat-
tering parameters (see below). Moreover, for
excitation at the input, V=0 and, for excitation at the
output, U=0.

6. The number of modes required in the generalized
scaftering matrix representation of the component
under investigation is usually much smaller than
those considered at the individual discontinuities
within the component. [f the component is symmet-
ric, only one excitation vector is required to obtain
the fundamental-mode scattering parameters.

The scheme of (34) is obviously not suited to treat a
single discontinuity. In such a case, the equations are
rewritten to yield

(A ]e s Uy (35)

=

]

]
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where

[a"'] = (W"'] Diag{Y’}[W" "]

+ W™ ") Diagf YNy pw' ) (36)
U = 2[W" '] Diag{Y’} (37)
v = 2(w" '] Diag{Y'} (38)

and, under consideration of above item 3, either V=0 or
U=0.

¢) Extraction of the Generalized Scattering Matrix

]l N I N :
Let ¢y, ¢\ €15 €, be the coefficient vectors at the first

(1) and last (N) discontinuity due to excitation by the
Mth mode at the input and the Lth mode at the output.
Then a column vector of the unnormalized generalized
scattering matrix is obtained through

Giom = [W" ey~ 8y (39)
Sam = WMy, (40)
Sa)y = (W Mg -5, (41)
S = [W"'1e) (42)

Once all column vectors have been computed to form
the matrix [S], the final S-matrix requires a power nor-
malization by the square roots of the frequency-depen-
dent admittances.

Bk = [Sll]kMJYE/YE-i (43)
(S5, = [SZI]RMJYIT/YﬁI (44)
[S5],, = [SEZ]RI.*\/YE/YE (45)
Sl = Bulu (46)

Note that the frequency-independent components of the
power normalization have been incorporated in the
potential functions (1), (2).

ILl. RESULTS

This section shows some results obtained by the theory
presented above. Calculations by our own MMT rou-
tines, which always use the smallest possible matrix for
matrix inversions, are mostly used as reference values.
Other comparisons are carried sut using a commercial
field solver and data from the litz ature. In order to dem-
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Figure 4: Comparison between CIET (sohd lines) and MMT (x) at an s i N-band waveguide: WaveLuide
dimensions: a=22.86mm, b=10.16mm; iris dimensions: ag=11.43mm. b,- 3.081am, L=1 0mn.
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onstrate typical performance ranges, some of the com-
ponents have been designed by linking CIET to a
MiniMax-based optimization algorithm [12].

Fig. 4 shows a comparison between CIET and MMT
at a simple resonant-iris structure with TEy-mode field

symmetry. Excellent agreement is obtained for both
magnitude and phase performance. The iris resonance at
15.5 GHz is accurately modelled by both routines.

The waveguide twist component of Fig. 5 [13] is

/17/@5

s /
/
/
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40
]
a
g |
(==
=
20
Su
10
CIET
- == MMI
ﬂ 1
13 14 15 16 17
fIGHz

Figure 3: Comparison between CIET (solid lines) and
MMT (dashed lines) at an integrated waveguide 270-
degree twist component according to [13].
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used for verification of rectangular discontinuities of the
more general kind. From input to output, the incoming
vertical polarization undergoes three 90-degree field
rotations. Excellent agreement is obtained between the
CIET (solid lines) and the MMT (dashed lines). How-
ever, with up to 86 modes in both methods and up to 16
basis functions in the CIET, the CIET is 100 times faster
than the MMT. Using 25 modes and 12 basis functions,
which gives return loss results within 2.5dB of those

shown in Fig. 5, the CIET routine is still ten times faster
than that using the MMT.

An 11-stub high-pass E-plane stub filter with match-
ing transformer sections is shown in Fig. 6. X-band per-
formance specifications include 90 dB rejection
between 8 GHz and 10.2 GHz and 33 dB return loss in
the 10.7 - 13.0 GHz band. The CIET analysis is per-
formed using 48 TE,, and 47 TM,;, modes and three

TE|,- and two TM | -mode basis function. Even though

60

CIET
= === MMT

Be i

8 9 10 11 12 13
f/GHz

Figure 6:Performance of a 11-stub E-plane high-pass
filter with two-section waveguide transformers for con-
nection to standard X-band waveguide; CIET (solid
lines), MM (dashed lines).
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the MMT is formulated with longitudinal TE|,-to-x An example for the ability of CIET to extract the
modes, the CIET routine is still 4.5 times faster than generalized scattering matrix is shown in Fig. 7. Both
MMT. If also the CIET is formulated with TE | -to-x narrowband filters in the H-plane diplexer arrangement
modes, then this factor increases to approximately 35 are analyzed by the CIET using 100 TE_,; modes and
[14]. seven basis functions. The matching input transformer

and the H-plane bifurcation are computed by the MMT.
Both methods are interfaced with the respective general-
ized S-matrices retaining 15 TE_, modes. Excellent

agreement is obtained between the combination of CIET
and MMT (solid lines) and an all-MMT computation
(dashed lines). Both calculations include a loss analysis

120

e MMT-CIET

-=== MMT 100 iy
:';'— CIET |
- ==~ peMrss) |}
S0 i
= !
~
60
i
=
40

B "'
' ' s \ JE .
bt Loy
9.45 950 955 960 9.6 . o

ﬂ - ——" X
f/GHz 10.20 10.40 10.60 10.80
f/GHz
Figure 7. Narrowband H-plane bifurcation diplexer uti-
lizing five-resonator single-sided inductive-iris filters; Figure 8; Performance of a four-pole inline dual-mode
filter analysis by CIET and power divider by MMT filter for X-band applications; this method (solid lines),

(solid lines), all-MMT (dashed lines). finite-element method (HF SS, dashed lines).
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based on the TE |j-mode resonances, the loaded Q value

of the cavities and the bandwidths of the channel filters
{15]). In several different designs of such diplexers for
terrestrial communication systems, the algorithm using
the CIET has been demonstrated to be at least 25 times
as fast as the all-MMT routine. '

The four-pole dual-mode filter structure shown in
Fig. 8 was one of the main motivations for the develop-
ment of the CIET. Owing to the inline configuration and
the two field polarizations involved, the complete set of
TE,-TM,, modes must be considered in the analysis.

With the MMT, although up to 415 modes were used, an
initial design could not be brought into a range of con-
vergence within a reasonable time frame. The filter was
then analyzed and optimized by the CIET. with up to
1740 modes and up to 23 basis functions. The final anal-
ysis was performed with up to 3900 modes and is shown
as solid lines in Fig. 8. A comparison with Hewlett

SN |

e 1o

4B

k" J .
LN N

925 10.28 11.25 12.25 13.25
1/GHz

Packard’s finite-element package HFSS (dashed lines)
shows very good agreement. HFSS went through 40
mesh refinement steps until convergence was reached
within our maximum allocated memory of 800 MB.

As mentioned earlier, the general theory of cascad-
ing discontinuities in CIET is not restricted to the carte-
sian coordinate system. Fig. 9 shows a three-resonator
circular waveguide TE,;-mode iris filter, which has

been used in an initial feed design to improve the isola-
tion of a feed chain towards a lower frequency band.

The CIET uses edge-conditioned vector basis functions
in the circular-cylindrical coordinate system [16]. The
agreement with an MMT-based routine is extremely
good. The CIET algorithm is only one order of magni-
tude faster than that using the MMT. This is largely
attributed to the fact that in the circular-cylindrical sys-

8§ 9 10 11 12 13 14 15
f/GHz

Figure 10:Rectangular-to-circular waveguide transition
according to [19]; CIET (solid lines), MMT (dashed
lines) [19].

Figure 9: Performance of thrée-resonator circular
waveguide TE,;-mode filter for X-band applications;
CIET (solid lines), MMT (dashed lines).
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tem, the entries of the coupling matrices [W] need to be
evaluated numencally whereas, in the MMT, analytic
solutions are available, e.g., [17].

As an example of a structure involving a mixed
coordinate system, Fig. 10 shows results for a rectangu-
lar-to-circular waveguide transition [18], [19]. Whereas
the resonances are excellently modelled by both the
CIET and the MMT [18], some discrepancies, the
causes of which are yet to be determined, are observed
in the return-loss behaviour towards higher frequencies.

IV. CONCLUSIONS

The coupled-integral-equations technique is a fast, pow-
erful and effective tool for the analysis of waveguide dis-
continuities. [ts most attractive features are the
simultaneous inclusion of edge conditions at all discon-
tinuities, the highly sparse system matrix and the nonex-
istence of the relative convergence phenomenon known
from mode-matching techniques. The CIET is especially
effective in narrowband systems where both the MMT
and many commercial field solvers have extremely high
demands for computing resourses.
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Fig. 8.
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