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SUMMARY

Two different formulations of the transverse resonance field-matching technique are applied to evaluate the
modal spectrum of metal-finned waveguide structures. In the theoretical treatment, Method 1 uses boundary
conditions prior to interface relations and allows the number of expansion terms to be selected according to
the dimensions of the cross-section subregions. Method 2 imposes boundary and interface conditions in
reversed order but requires the same number of expansion terms to be used in various subregions. The two
procedures are then compared with respect to their influence on the modal scattering matrix computation of
metal-finned waveguide resonators. Method 2 shows excellent agreement with measurements, but it is
restricted to configurations with relatively thin fins and moderate slot widths. Although Method 1 may be
applied to more general structures, this procedure requires a higher computational effort and leads to slightly
different results. However, it constitutes a powerful PC-operational alternative whenever an extended
precision compiler, as required for Method 2, is not available.

1. INTRODUCTION

Metal-finned and ridged waveguide structures are well known to combine the advantages of
broadband fundamental-mode operation, low characteristic impedance, and the possibility of
low-cost E-plane circuit integration utilizing metal-etching techniques and split-block housing
fabrication. While some of the papers published in the area of numerical modelling of ridged
waveguides reported cross-sectional solutions to determine the mode spectrum including the
fundamental-mode characteristic impedance,'™ others focused on the design of components,®*
and the combination of the two-dimensional data with equivalent circuit theory.”-!3

The amount of cutoff frequency reduction compared with a rectangular waveguide of the same
housing dimensions makes the ridged waveguide suitable for evanescent-mode filter applications.
The ridged resonator sections in these components may be realized by E-plane screws,'®'? thin
non-touching E-plane fins supported by a dielectric substrate,'” or by pure metal fins as will be
presented in this contribution. Compared with the non-touching fin configuration, the all-metal
fin design has the advantages of a simpler field theory treatment and lower losses because of the
absence of hybrid modes and dielectric material, respectively. The tuning screw structure'®'2 is
limited to the microwave region and cannot be applied at millimetre waves where the diameter
of the tuning device approaches the cross-section dimension of the evanescent-mode waveguide.

Various field theoretical procedures have been reported for the characterization of three-
dimensional finned waveguide discontinuities.!*'? Different two-dimensional treatments for the
evaluation of the modal spectrum of the finned waveguide have been investigated with respect to
their influence on the three-dimensional response.?” It has been shown that the method used to
incorporate boundary conditions and interface relations in the algorithm can affect the computation
of the overall response of circuits. Owing to lack of space in Reference 20, however, details about
the numerical modelling process itself could not be revealed.

Therefore, this paper focuses on a detailed presentation of different formulations of the trans-
verse resonance field-matching technique for the three-dimensional analysis of metal-finned wave-
guide resonators (see Figure 1). It is intended to not only introduce the reader to the basic steps
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of the different approaches, but also to provide the design engineer with guidelines regarding the
applicability and accuracy of the techniques. In detail, the two numerical approaches for the
evaluation of the finned waveguide mode spectrum are:

—Method 1: The classic modal analysis®2! where the boundary conditions are introduced at the
beginning of the formulation, and the interface relations are applied later to yield the character-
istic matrix equation for the condition of transverse resonance.

—>Method 2: The approach which assumes a wave propagation perpendicular to the axial
direction.”*~** Here the interface relations are imposed first while the boundary conditions are
incorporated at the end, after certain manipulations and substitutions have been made. Finally,
a resonance condition similar to the more general procedure presented in Reference 25 is
obtained.

Although the resulting eigenfunctions of the finned waveguide cross-section derived from both
methods have the same form and, theoretically, should lead to identical values, the numerical
procedures produce slightly different results because of the different manipulations of the basic
equations and their individual implementation in a software package. Instead of comparing columns
of cutoff frequencies, separation constants and eigenvectors for the two-dimensional cases, the
different transverse resonance formulations are investigated with respect to their influence on the
three-dimensional response. The advantages and disadvantages are discussed in order to help a
potential user to choose the adequate numerical modelling technique for his metal-finned wave-
guide application. The computed results are compared with measurements of a three-resonator
evanescent-mode filter structure.

2. THEORY
This chapter first presents the basic steps of the mode-matching technique in propagation direction.
It leads to the generalized (modal) scattering matrix formulation of a discontinuity and is common

to both tranverse resonance field-matching techniques which will be described in Sections 2.2 and
2.3.

2.1. Mode-matching technique in propagation direction
The rigorous field theory treatment of the discontinuity problem shown in Figure 2 requires all

field components and mode coupling effects to be considered, Hence, the electromagnetic field
in subregions i = 0, I, II (see Figure 2(a))
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Figure 1. Finned waveguide resonator within an evanescent-mode waveguide section

and Zf and Y! are the wave impedances and admittances of TE and TM modes, respectively.'®
T} . are the cross-section eigenfunctions according to the boundary conditions. For the rectangular

waveguide regions i = 0, I, they read (see Figure 2(b))
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The coefficients in the cross-section functions, e.g. A}, D/} in (6), (7), are normalized by
F!

so that the power carried by a mode through the cross-section F' is

1W for propagating modes
Bigiae= jW for evanescent TE modes (9)
—jW for evanescent TM modes

if the corresponding wave amplitude equals 1V W.
Matching the tangential field components of regions i and i + 1 at their common interface yields

the modal scattering matrix of the discontinuity
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Figure 2. Dimensions of finned waveguide resonator. (a) Sideview; (b) cross-sections and subregions for the field theory
treatment (¢.w. = electric wall, m.w. = magnetic wall)
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In (10)~(14), T means transposed, U is the unit matrix, and diag {} denotes a diagonal matrix.
The coupling matrices are given by
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It should be noted that the fourth possibility of coupling the cross-section functions results in
(Jue), = 0 since it involves integration over the vanishing tangential electric field along the
boundary of region i + 1.'® As a result, submatrix M, in (14) vanishes. For further algorithms
leading to the modal scattering matrix of discontinuities of finite lengths and cascaded structures,
the reader is referred to Reference 16.

As can be seen from (10)—(13) together with (14)—(17), the wave impedances, which are related
to the eigenmode cutoff frequencies, as well as the cross-section eigenfunctions T . directly
influence the modal scattering matrix calculation of the discontinuity rectangular to finned wavegui-
de.

2.2. Method 1

In order to determine the cross-section eigenfunctions of the finned or ridged waveguide, region
I is divided into two subregions Ila, IIb (see Figure 2(b)). As a first step of this formulation, the
given boundary conditions of subregions IIa, IIb are used to define the x,y-dependence of the
cross-section functions.
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with
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Since from (22) it follows that k, is either real or purely imaginary, a division by k, is introduced
in (18) and (21) to obtain real cross-section functions. It should also be noted that (22) is valid
only at the cutoff frequencies of the finned waveguide where the propagation constant k, vanishes.
Once a cutoff frequency is determined, the frequency dependence of the related k. is given by
(5).

In the second step, the subregion functions (18)—(21) as well as their derivatives with respect
to x are matched at the common interface at x = e (Figure 2(b)). This leads to the interface
relations which consists of two sets of two matrix equations each. In order to keep the characteristic
matrix to be derived small, e.g. N X N instead of (M + N) X (M + N), each set can be rearranged
in the following way:
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The terms in brackets in (24) and (26) represent the characteristic matrices for TE and TM
modes, respectively, which have to be solved for the zeros of the determinants by varying the
frequency f. Every zero corresponds to a cutoff frequency of the finned waveguide eigenmode
spectrum and a set of separation constants k,. Solving for the coefficients vectors A, D and
applying the condition (8) finally leads to the cross-section eigenfunction formulations of TE
modes [(18) + (19)] and TM modes [(20) + (21)] of the finned waveguide. One advantage of this
method is that the size of the characteristic matrix equals the number N of expansion terms in
the smaller subregion Ila. For a given maximum number of M the ratio N/M is usually very close
to the dimension ratio s/b. In this case, ‘the field behaves reasonably well across the junction’.?®

2.3. Method 2

Contrary to the formulation with standing waves in Section 2.2, Method 2 defines propagating
partial waves for the x-dependence of the subregion functions in cross-sections i = Ila, IIb (see
Figure 2(b)):
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Qi = Al exp(+jki,x) + B exp(—jki,x) (29)

in (18), (19) and
: 1 : ; - e
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in (20), (21). The y-dependence as well as the separation constants (22) remain the same.

By matching these partial waves and their derivatives with respect to x (P, O..; see Reference
22) at the interface at x = e, transforming them to the left (region Ila) and right (region IIb)
boundaries and, as the last step in this formulation, inserting the boundary conditions at x = 0,

-

a/2 as the transverse resonance condition®® two sets of matrix equations are obtained.
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with matrices J,, J, according to (27), (28).

After solving for the zeros of the determinants of the characteristic matrices in (32), (34),
applying (8) and expressing A/, B/, Ci/, D/ in (29), (30) as a function of P _ w2y, QhG—ay,
P2y, QUY_y), the cross-section eigenfunctions of the finned waveguide turn out to have the
same form as (18)-(21). Because of the matrix inversions in (31)-(34), however, the number of
expansion terms in subregions ITa and IIb must be equal, e.g. M = N. Especially for small slots
and/or thick fins, this tends to cause numerical instabilities as a result of extremely high numbers
to be handled by the computer. Tt is advisable, therefore, to run this version of the transverse
resonance method on extended precision compilers as opposed to a double precision accuracy
which is usually sufficient for Method 1.

The number M of expansion terms of the two field matching methods and the numbers of TE
and TM modes required for the mode-matching technique in axial direction are determined by
convergence analyses of the evanescent-mode resonator in Figure 1. Sufficient results are obtained
with M = 9 and the lowest N, = 12 (TE) and N, = 7 (TM) modes in rectangular as well as finned
waveguide sections. The numerical algorithm requires the two-dimensional problem (Section 2.2
or 2.3) to be solved first. Using the above numbers, this takes three minutes on a 20 MHz 386-
comparable computer for Method 2 and five minutes for Method 1 owing to a more complicated
search algorithm as discussed in the next section. Subsequently, the mode-matching technique in
propagation direction (Section 2.1) requires 20 seconds per frequency point for the finned wave-
guide resonator shown in Figure 1. Since this algorithm is identical for both methods, no difference
in CPU time is observed.
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3. RESULTS

The typical behaviour of the system determinants of the two methods investigated is demonstrated
in Figure 3 at the example of a W-band finned waveguide cross-section. Figure 3(a) shows the
function obtained with Method 2 using only four expansion terms because of the small slot width
of 50 pm. This algorithm combines the advantages of maintaining the size of the characteristic
matrix regardless of the number of subregions in the x-direction®*?* with the absence of poles.
Hence, a simple sign-detecting algorithm can be used to find the zeros which, in this example,
correspond to the first seven TE mode cutoff frequencies.

Figure 3(b) shows the system determinant of Method 1 using N = 2 and M = 9 expansion terms
for the same structure. The calculated cutoff frequencies (zeros) are within the plotting accuracy
of those in Figure 3(a). The function itself, however, looks completely different, owing to the
appearance of poles. This calls for a more sophisticated and time-consuming search algorithm to
detect a complete set of zeros. The problems related to the presence of the poles and possibilities
of finding zeros by locating the poles have been studied in, for example, Reference 27. However,
it is remarkable that the determinant function of Method 1 (matrix size N X N or even M X M
if N equals M) used here as well as that of a (M + N) x (M + N) matrix in Reference 3 shows
poles whereas the formulation of Method 2 using an M x M size matrix does not. Besides other,
more complicated matrix formulations based on modal analysis for the evaluation of the finned
waveguide mode spectrum,**-** Method 2 is the only one known to the author that is free of poles
in its determinant function.
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Figure 3. Typical behaviour of system determinant versus frequency demonstrated at the example of a ridged waveguide
in a W-band housing (a = 2b = 2-54 mm, ¢ = s = 50 wm). Zeros correspond to TE-mode cutoff frequencies. (a) Method
2 (four expansion terms); (b) Method 1 (2[ITa] and 9[IIb] expansion terms)
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The input return loss of a single resonator evanescent-mode filter is shown in Figure 4(a).
Although the same numbers of modes are used (N =M =9, N, = 12, N. =T), the results
obtained with the two methods for this Ka-band example differ by approximately 500 MHz (1:5
per cent) in resonant frequency. Figure 4(b) shows a convergence analysis of the resonant frequency
of the complete finned waveguide resonator in Figure 4(a) with respect to the number M of modes
and different modes ratios N/M used in Method 1. It is observed that different convergence levels
occur, for example, for M > 5 if N = 2 and for N > 4 if M = 9. This phenomenon is known as
relative convergence and has been addressed by several authors.2>30 It should be mentioned,
however, that a further increase of M and/or N does not reduce the 1-5 per cent difference
between the two methods but leads from the calculations of Figure 4(b) to seriously degraded
results which confirms a similar conclusion presented in Reference 30. For the many different
finned waveguide structures calculated throughout this investigation, resonances computed by
Method 1 were always found to be slightly lower in frequency than those obtained by Method 2
(see Figure 4(a) in Reference 20). With increasing slot width, however, they both converge to the
resonant frequency of the empty evanescent-mode waveguide (see Figure 5(a), upper right).

Figure 5 demonstrates the advantage of Method 1 when structures with extremely small slots
(Figure 5(a)) or thick ridges (Figure 5(b)) are computed. Owing to the fact that this procedure
(dashed lines) offers the possibility of choosing the expansion term ratio according to the specified
dimensions s and b (see Figure 2), the method can handle any practical ridge dimensions in
waveguide. Method 2 (solid lines), however, fails for small slot widths (s < 0-3 mm, Figure 5(a))
and thick ridges (z > 1-2 mm, Figure 5(b)), owing to numerical errors caused by the required high
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Figure 4. Finned waveguide resonator. Ka-band (7-112 mm x 3-556 mm) input-output waveguide, U-band (4:7752 mm

X 2:3876 mm) evanescent-mode waveguide, t = 0-2mm,s = 1-2mm, /, =, = [, = 0-5 mm. (a) Input return loss: Method

1 (dashed lines); Method 2 (solid lines). (b) Convergence analysis for Method 1: resonant frequency as a function of

expansion terms in subregions Ila, IIb (see equations (18)—(21)). Number of modes in axial direction kept constant at
N, = 12, N, = 7 (see equations (3), (4))
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Figure 5. Resonant frequency of finned waveguide resonator versus (a) slot width s (£ = 0-2 mm), (b) fin thickness
¢ (s = 1-0 mm). Other dimensions as in Figure 4

number of expansion terms (N = M) in subregion Ila. For given dimensions, it is therefore
advisable to verify whether or not convergence can be obtained with Method 2 without the
presence of numerical instabilities.

Figure 6 compares the results of both techniques with measured data of a three-resonator
bandpass filter prototype. Both approaches provide good agreement with the experiment. How-
ever, Method 2 (solid lines) performs somewhat better than Method 1 (dashed lines), especially
towards higher frequencies. Again, the return loss peak calculated with Method 1 is slightly lower
in frequency than that obtained by Method 2. These computations have been carried out using
20 TE, 13 TM modes, M = 9 expansion terms (Method 2) and N/M = 2/9 (Method 1). However,
the software using Method 1 was still operational on 386-comparable personal computers because
there were only two expansion terms in subregion Ila, while Method 2 required extended-precision
mainframe support in order to cope with M = 9 expansion terms in that area.

4. CONCLUSIONS

The influence of different formulations of the transverse resonance field-matching technique on
the three-dimensional computation of metal-finned evanescent-mode waveguide filters is investi-
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£ GHz

Figure 6. Comparison between theory and measurements at the example of a three-resonator evanescent-mode finned

waveguide filter. Method 1 (dashed lines), Method 2 (solid lines), measured insertion loss (+), measured return loss (O).

Dimensions: ¢, = 22-85 mm, b, = 1015 mm, ¢ = 10-66 mm, b = 4-29 mm, ¢ = 1 mm, s = 0-:98 mm, /, =/, = 0:25 mm,
L=l=1mm, =1/ =11-45mm, [, = 1.6 mm

gated. The method, which imposes interface relations prior to boundary conditions (Method 2)
shows slightly closer agreement with measured data, is less CPU-time-consuming but fails for
small slot width and/or thicker ridges. On the other hand, the procedure where the boundary
conditions are considered first (Method 1), can be applied to any practical ridged or metal-finned
waveguide structure, is operational on modern personal computers and is still in reasonable
agreement with the experiment. Together with the mode-matching technique which leads to the
modal scattering matrix computation of a structure, both transverse resonance field-matching
techniques offer attractive solutions for the reliable prediction of metal-finned waveguide circuit
responses. Based on the investigations of this paper and provided that an extended-precision
compiler is available, the use of Method 2 is recommended as long as it is applicable to the cross-
sections involved. In all other cases, Method 1 constitutes an equivalently powerful alternative.
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