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ABSTRACT

A singular value decomposition (SVD) is used to solve the characteristic matrix equation
of 2 different field-matching analyses as applied to T-septum waveguide structures. It is
demonstrated that SVD avoids the need for complicated numerical zero-detection algo-
rithms, eliminates the major disadvantages of the classical field-matching technique, and
hence, improves the accuracy and reliability of the computed results. The values obtained
are in close agreement with available theoretical data and measurements.

I. INTRODUCTION

Numerical techniques, as applied to the 2-dimen-
sional problem of passive microwave and milli-
meter-wave structures [1, 2] require the solution
of the related homogeneous matrix equation. The
accuracy and reliability of most of the currently
used techniques suffer from the presence of poles
and extremely steep-gradient zeros in the deter-
minant function [3-5]. Problems are associated
with overlooking zeros (solutions of the charac-
teristic equation), with inaccuracy in the vicinity
of zeros, and with poles located extremely close
to zeros.

For configurations with a rectangular wave-
guide enclosure, 2 types of mode-matching ap-
proaches are commonly applied to solve for
propagation constants, cutoff frequencies, and
characteristic impedances: first, the classical for-
mulation which assumes standing wave patterns
in the cross-section’s subregions and, therefore,

introduces boundary conditions prior to subregion -

interface relations [4,6] (we will call this method
standing-wave formulation); second, a method
based on transversely propagating waves where
the boundaries are incorporated as resonance
conditions in the very last step of the formula-
tion [1,7] (transverse-resonance method). The
standing wave formulation has the advantage of
independently selecting the number of expansion
terms in the separate subregions but suffers from
poles in the determinant function [8]. Whereas,
in comparison, the transverse resonance method
has a determinant free of poles, but is restricted
to equal numbers of expansion terms in each
subregion which causes numerical instabilities [8].

Therefore, this article focuses on a singular
value decomposition technique [9] in order to
eliminate the problems related to the behavior of
the determinant function. For the above-men-
tioned mode-matching procedures, 2 methods
to numerically solve the characteristic matrix
equation are investigated: first, the conventional
method which searches for the zeros of the system
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Figure 1. T-septum waveguide: (a) geometry; (b) di-

mensions and subregions for transverse-resonance
method; (c) dimensions and subregions for standing-
wave formulation.

determinant; and second, a method looking for
the minima of the lowest singular value of the
characteristic matrix. It is found that by using the
singular value decomposition technique on the T-
septum waveguide eigenvalue problem [3,10-12],
the necessity of handling poles and extreme gra-
dients as observed in the determinant functions
can be completely avoided.

In terms of accuracy and reliability, this con-
tributes to a significant improvement of the
computer-aided analysis. Moreover, it makes the
standing-wave formulation the superior technique
of the 2 field-matching procedures. By circum-
venting the need for the detection of poles and
zeros in the determinant function, this method’s
flexibility of independently selecting the numbers
of expansion terms in different subregions of the
T-septum waveguide (cf. Fig. 1) offers a clear ad-
vantage, particularly if small gap widths are in-
volved.

Il. THEORY

The T-septum waveguide structure is shown in
Figure 1a. Without sacrificing the generality of the
singular value decomposition technique, we will
restrict the demonstration of the method to the
computation of TE mode characteristics. The
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electromagnetic field in regions i = I, II, and L1

(cf Fig. 1b and c¢)
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is derived from cross-section functions (Fig. 1b)
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‘where §,, is the Kronecker delta. Egs. (3)—(5)

correspond to the transverse resonance method in
e, direction, whereas the classical technique usmg
standmg waves in both e, and e directions is de-
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scribed by eqs. (6)—(8). It should be noted that
the transverse-resonance method cannot be ap-
plied in e, direction, since the left-hand side
boundaries of subregions I and III (Fig. 1b and ¢)
have different coordinates with respect to x. In
comparison, the standing wave formulation is ex-
tremely flexible with respect to different patterns
of subregion selection, since boundary conditions
are always immediately incorporated in the cross-
section functions [cf egs. (6)—(8) and Fig. 1¢].

By matching the tangential field components at
the subregion interfaces and, in the case of eqs.
(3)-(5), inserting the electric walls at y = 0, b as
resonance conditions [7], the characteristic equa-
tions of both formulations are of the form

(A)x = 0 9)
The zeros of the determinant of (A) specify the
TE mode cutoff frequencies. and vector x holds
elements related to the amplitude coefficients in
eqs. (3)=(3) or (6)—(8).

As will be shown in the next section, the reli-
ability of detecting a given number of successive
zeros of det{(A)}, which is absolutely required for,
e.g., bandwidth calculations and 3-dimensional
modal analysis [1,2,8], might be questionable ow-
ing to the presence of poles and extremely steep-
gradient zeros in the determinant function. In or-
der to avoid the numerical problems associated
with the detection of the zeros, the utilization
of singular value decomposition (SVD) [9] is
proposed. Matrix (A) is decomposed into three
matrices

(4) = (MS W)’ (10)

where T means transposed, (S) is a diagonal ma-
trix formed by the singular values in decreasing
order, and the columns of (W) and (V) are the
left and right singular vectors of (A). respectively

[9].
Omin = 0 if and only if det{(4)} = 0 (11)
T 18 the last element of (S), and the last column

of (V) contains the elements of the corresponding
solution vector x. It should be mentioned that this

procedure differs from matrix diagonalization

techniques, e.g., (4) = (P)" diag {\}(P), which
are commonly used to find the eigenvalues A
of a nonsingular matrix in the form det {(4) —
A(l)} = 0. In this article, we are not concerned

with eigenvalues and eigenvectors, although egs.
(3)-(5) or (6)-(8), together with the nontrivial so-
lutions of eq. (9), are often referred to as eigen-
functions of the T-septum waveguide. Rather we
solve for the singular values of a necessarily sin-
gular matrix (A) and the corresponding solution
vector x [cf. eq. (9)]. For a more detailed descrip-
tion, which includes FORTRAN source codes of
both singular value decomposition and matrix dia-
gonalization, the reader is referred to ref. 13.

The minima of o,;, versus frequency specify the
TE mode cutoff frequencies of the T-septum
waveguide. It should be noted that, due to the
limited number of bits, the computer will not be
able to locate the exact minimum. However, val-
ues between 10 to 15 orders of magnitude below
the maxima have turned out to yield sufficient
results. An additional advantage of this method
over those detecting zeros of det{(A)} is that an
increase of the minima of o, indicates a reduced
accuracy in the computation. Therefore, the de-
termination of an optimum number of expansion
terms can easily be incorporated (cf. ref. 14).

Up to now, no shortcomings of the SVD pro-
cedure have been experienced. Although the CPU
time required for one singular value decomposi-
tion is slightly higher than that of one determinant
calculation, the overall time to find a given num-
ber of successive cutoff frequencies of the T-sep-
tum waveguide [solutions of eq. (9)] is reduced
by a factor of 3 to 4 on the average. This is due
to the absence of poles and the generally moderate
shape of the singular value function, as will be
demonstrated in the next section.

lll. RESULTS

Figure 2a and b show the typical behavior of the
system determinant in eq. (9) for the transverse-
resonance method and the standing-wave for-
mulation, respectively. A logarithmic scale is cho-
sen for the ordinate, in order to account for the
many orders of magnitude in determinant value
variation. The linear-to-logarithmic conversion
used is

det(-)/log scale
= a sgn {det(-)} logy{l + | det(-)[} (12)

where a is a scaling factor, sgn is the signum func-
tion, and det(-) denotes the determinant of (A)
obtained by the corresponding numerical model.
In both cases, the zeros, which correspond to the
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Figure 2. Typical behavior of system determinant versus frequency: (a) transverse-reso-
nance method (TRM); (b) standing-wave formulation (SWF); (c) minimum singular value
for the transverse resonance method and the standing wave formulation. Dimensions (cf.

Fig. 1): a = 15.799 mm, b = g, = 0.25a, a,. = 0.45a, b, = 0.35b, b, = (.4b.

TE mode cutoff frequencies of a T-septum wave-
guide structure, are extremely difficult to detect.
This is even more true for the standing-wave for-
mulation, where poles can be extremely close to
zeros (cf. Fig. 2b at 18.8 GHz). Figure 2c dem-

‘onstrates that by applying the singular value de-
composition technique, these problems can be
completely avoided. Here, the minima of the
smallest singular value correspond to the zeros in
Figure 2a and b, and can easily be located by a
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Figure 3. Convergence analysis and comparison with ref. 3: (a) normalized cutoff wave-
length of fundamental mode; (b) normalized cutoff wavelength of first higher-order mode;
(c) characteristic impedance (identification of numerical methods as in Fig. 2).
minimum search algorithm. The method is also Figure 3 shows a convergence analysis for the
capable of detecting numerical inaccuracies, in 2 different mode-matching techniques using sin-
which cases the minima would no longer be close gular value decomposition for the computation of
to the abscissa but would move upward with in- both the cutoff wavelength and the characteristic

creasing inaccuracy.

impedance. Due to the restriction of identical




number of expansion terms in all subregions, the
transverse resonance method can only be used up
to N = 9 expansion terms per subregion [cf. egs.
(3)-(5)] for this structure. For the standing-wave
formulation, the comparable number N of expan-
sion terms is that in region II [cf. egs. (6)—(8) and
Fig. Ic]. The values for M and P in regions I and
IT, respectively, are then chosen according to the
dimensions of the subregions (cf. ref. 1, ch. 9).
Convergence of the first (Fig. 3a) and second (Fig.
3b) normalized cutoff wavelength is obtained for
more than 11 expansion terms. Fig. 3¢ shows the
related plot for the characteristic impedance as
defined in ref. 3. Excellent convergence and
agreement with data in ref. 3 is obtained with the
standing-wave formulation, whereas the trans-
verse-resonance method performs rather poorly.
This is mainly due to the different subregion di-
visions in Fig. 1b and c. As pointed out earlier,
however, the transverse-resonance method is not
applicable in e, direction. It should also be noted
that beyond 6 expansion terms, the transverse-
resonance method in Figure 3¢ requires a main-
frame extended precision compiler as opposed to
the standing-wave formulation, which is opera-
tional on modern double precision workstations.

When using the SVD algorithm for both field-
matching techniques, the main advantage of the
standing-wave formulation over the transverse
resonance method, namely, the flexibility of se-
lecting different subregion expansion term ratios,
becomes obvious, particularly for small gap width.
This is demonstrated in Figure 4. As the T-septum
width, s, is increased, the transverse resonance
method (Fig. 4a) experiences numerical problems
as a result of the many terms that have to be
considered in subregion IT (cf. Fig. 1b). Reducing
the number of expansion terms down to 4 slightly
alleviates the problem, but leads to increased de-
viations from the reference values. With the flex-
ible expansion term ratio and the singular value
decomposition technique to circumvent the poles
in the system determinant, the standing-wave for-
mulation (Fig. 4b) is found to produce results in
extremely close agreement with previously pub-
lished data and confirms measurements, as dem-
onstrated in Table I. Although the second cutoff
frequency by Mansour and MacPhie [12] is slightly
closer to the measured values, this data can nei-
ther be confirmed by this theory nor by the one
presented by Zhang and Joines [3]. Deviations in
characteristic impedance are due to measurement
procedures described in ref. 3.
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Figure 4. Normalized cutoff wavelength of T-septum
waveguide as a function of normalized septum width:
(a) transverse-resonance method; (b) standing-wave
formulation.

IV. CONCLUSION

A singular value decomposition method is applied
to improve the accuracy and reliability of T-sep-
tum waveguide field-matching analysis. It is found
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TABLE I. Comparison between Theoretical and
Measured T-Septum Waveguide Characteristics (cf.
Ref. 3 for Dimensions)

Theory Measured Theory This
Parameters [12] [3] [3] Theory
fore,/MHz 202 216 200 200.9
fere,/ MHz 1091 1092 1085 1086.4
Z.10 — 36.02 32.5 32.54

that this technique eliminates the disadvantages
of poles in the system determinant function as well
as the detection of zeros at extremely steep gra-
dients. The procedure is demonstrated and veri-
fied at the example of the T-septum waveguide.
Close agreement with theoretical data available
from literature and measurements is obtained.
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