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Figure 5 Comparison of the 1-dB compression point as a function
of the frequency
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Figure 6 Comparison of the power-added efficiency, P4, as a
function of the frequency

ber of MESFETs makes this amplifier attractive to designers,
who can choose from a wider range of performance, as was
demonstrated in the presented application.
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ABSTRACT

We report that the spurious root that appears in the spectral-domain
approach solution to the shielded lossless and infinitely thin microstrip is
eliminated when enough basis functions to accurately describe the trans-
verse current density are used. A fast algorithm based on the observed
simple behavior of the minimum singular value of the characteristic
matrix as a function of B? instead of B is presented. For lossless
microstrip lines, with small values of the dielectric constant and at
relatively low frequencies, two evaluations of the characteristic matrix are
sufficient to determine its dispersion properties, when the longitudinal

current density 1s assumed Maxwellian, thus achieving a considerable
reduction of CPU time. © 1995 John Wiley & Sons, Inc.

1. INTRODUCTION

Recent years have seen an increasing interest in developing
methods to eliminate nonphysical solutions that appear in
computer simulation of physical phenomena. For the trans-
verse resonance method as applied to planar circuits, Aubert,
Souny, and Baudrand [1] showed that the choice of transverse
and longitudinal basis functions, which are not independent
of each other, eliminates the nonphysical roots, whose origin
is traced back to the inadequate treatment of the infinite-f3
solution. For the method of moments, Schroeder and Wolff
[2] examined the effect of discretization on the appearance of
nonphysical solutions of linear homogeneous eigenvalue
problems. The finite-element method also suffers from simi-
lar pathologies, and there is an extensive literature discussing
the techniques developed in recognizing and eliminating the
spurious roots [3, 4]. The spectral-domain approach (SDA),
when applied to the solution of the shielded lossless mi-
crostrip problem, has been known for some time to lead to
a nonphysical root for the effective dielectric constant at
(e. + 1)/2. This root was also reported by Daly [5] in the
finite-element solution. Krage and Haddad [6] also reported
the appearance of this root. Jansen [7] proposed a choice of
basis functions that are twice continuously differentiable in
order to avoid spurious roots such as those reported by
Farrar and Adams [8].

This short article focuses exclusively on the spurious root
in the spectral-domain approach. We show that the contribu-
tion of the transverse current density is essential to the
elimination of this root. We also present a simple and ex-
tremely fast scheme to determine the dispersion properties of
the lossless microstrip line.

2. SPURIOUS ROOT OF A SHIELDED MICROSTRIP

We consider a shielded, lossless, and infinitely thin microstrip
line as shown in the inset of Figure 1. The structure is
infinitely long in the z direction, and we assume a harmonic
fime variation e/“’ and propagation in the z direction e ~/FZ,

312 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol 9, No. 6, August 20 1995



Singular Value
o o
=) =
o] P

o
(=]
2

=}
o
—_

B
2.0} _\M AN QM%
. U, 0,0
9

7 1.8 1.9 2 2.1 2.2
(5/}{0)2

Figure 1 Minimum singular value X as a function of ( 8/k,)? for
&=265d=127 mm, w=127 mm, h = 11.43 mm, [ = 12.7 mm,
and different values of n, and n, at 1 GHz. Note the piecewise
linearity of the curve for n, = 1

Bis the unknown propagation constant of the dominant even
mode.

Following the spectral-domain approach [9, 10], the
Green’s impedance dyadics of the system are found to be

EH ‘er ZZ f
(f=(' )) (1)
E, Zp Z

zZ JZ
where E_”x,z is the Fourier transform of the tangential electric
field at the interface, and the elements Z, ; are given by

1 052 .82
Loy = ol + B2 | VIV 4 yoM + YSE  yISE | (2a)
af 1 1
Zyz =Gy = a’ + BE| VM ¢ YL5M & YSE + yL5E |’
(2b)
1 az BZ
Zy;=—3 2 LSE LSE LSM s |- (2¢)
a®+ B*| VM + ¥ YoM gl

a=Qn+ Dr/2L and y? = a® + B2 — w%,;e, 1y. The ad-
mittances ¥; and ¥, for the LSE and LSM modes are given
by [11]

jwe &
o A L S (a)
Y1
0
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W
4
yism - 2 coth(y, k), (3c)
@hLy

jwe, e
YLSE — yz 2 coth(y,h). (3d)
2

In order to understand the origin of the spurious root in the
present structure, we focus on the quantity Z,,. If the quanti-
ties y;d and v,/ are large, which occurs when « is large, we
can approximate the hyperbolic functions by unity and the
v’s by a. Carrying out the algebra, Z,  becomes

B? Kk}
TECI T

(a3

jwey( B + a?)

4)

From this last-equation it is clear that if only the longitudinal
current is taken into account, a possible spurious root in the
propagation constant at

B 2_1+.sI
(k_o) i (3

will be encountered. Note that the other terms in the Green’s
impedance dyadics do not vanish at this value of the propaga-
tion constant. Consequently, the inclusion of the transverse
current density, which gives nonzero matrix elements contain-
ing Z_, and Z,,, in the Galerkin solution will prevent this
root from occurring.

3. ROLE OF TRANSVERSE CURRENT

To obtain the propagation constant of the microstrip, the
current density is expanded in a series of functions

nz

Fle) = Y aiflx), (6a)
i=1
J.(x) = Zxd,gj(x). (6b)

i=1

When Galerkin’s method is applied, the expansion coeffi-
cients ¢; and d; are found to satisfy a set of linear equations
that can be written in a matrix form as

[K][X]=0. N

Such a linear systems admits a nontrivial solution only if its
determinant vanishes, or, equivalently, if one or more of the
singular values of the matrix [ K] vanish [12].

The current density along an infinitely thin perfect con-
ductor is singular at the edges; consequently the following
functions are used to represent the longitudinal and trans-
verse currents, respectively:

(4n7rx)
cos
fulx) = w2 =, n=0,1,..., (8a)
2o
w
(Zmrx)
sin
g, (x) = Ko aeio. .. (&)

The Fourier transforms of f, and g, are expressible in terms
of Bessel functions of order zero [13]. Figure 1 shows the
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minimum singular value 3 of the matrix [ K] for different
values of n, and n, as a function of ( 8/k,)>. It is interesting
to note that only one solution appears when n, =1 and
=0 when d =127 mm. In th1s case the lower terms
111 the inner pmduct B (ril’”)f do not have the factor
B2/(L + &) —k3/2 and are large enough to prevent the
spurious root from appearing. If, however, d is increased to 5
mm, the spurious root is found again at the same location,
because the conditions that led to Eq. (4) are better satisfied
for a thick substrate (y,d large). In other words, when the
substrate 1s thick enough, the hyperbolic functions that ap-
pear in Z,, can be approximated by unity, even for small
values of a, (or large L), thereby allowing the quantity
B?/(1 + &) — k§/2 to be factored out, If n, = 2, two roots
are found, one of them at (e, + 1)/2if n, = D, and only one
if n, = 1. The results are summarized in Table 1 for d = 1.27
mm. It is clearly seen that the spurious root is always elimi-
nated if a sufficient number of terms in the transverse cur-
rent density 18 used. The absence of the spurious root for
= 1, n, = 0, and its presence when n, = 2, n_ = 0, is due
tD the fact that the determinant is a dlfference between the
products of the diagonal and the off-diagonal elements. It is
straightforward to check that this leads to cancellation of the
dominant terms, which prevented the root from appearing in
the case of n, =1, n, = 0.

Note also the simple behavior of 3 when n, = 1. This
practically linear dependence on ( 8/k,)* means that very
few evaluations of the matrix [ K] are needed to obtain the
dispersion relation of the shielded lossless microstrip. Figure
2 shows the dispersion relation as obtained from a piecewise
linear approximation of the minimum singular value as a
function of ( 8/k,)* and not B. This simple change of vari-
able is sufficient to linearize %( ) especially at low frequen-
cies and small values of the dielectric constant. For &, = 2.65,
only two evaluations of the matrix [K] per frequency point
were needed to generate the curve up to 20 GHz. The
corresponding CPU time is 0.24 s per frequency point on a
RISC 6000/530 workstation. The crosses in Figure 2 show
that our results obtained through this simple scheme agree
well with the quoted data [14]. If the dielectric constant is
increased to 8.875, X starts to deviate from the piecewise
linearity at 15 GHz. At 40 GHz, four iterations were needed
for the scheme to converge.

4. CONCLUSIONS

The spurious root, which appears in the spectral-domain
approach’s solution to the shielded lossless microstrip line, is
shown to be eliminated by an adequate representation of the
transverse current density. The simple dependence of the
minimum singular value of the characteristic matrix on
(B/ky)* can be used to determine the dispersion of the
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Figure 2 Dispersion relation of a lossless microstrip as calculated
from at most four iterations with a Maxwellian current density. The
crosses are from Reference [14]

microstrip with very few evaluations of the characteristic
matrix, thereby considerably reducing CPU time.
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ABSTRACT

The discretization inherent in the finite-element method results in the
numerical dispersion of a propagating wave. The numerical dispersion
of a time-harmonic plane wave propagating through an infinite, two-
dimensional, finite-element mesh composed of uniform triangular edge
elements is investigated in this work. The effects on the numerical
dispersion of the propagation direction of the wave, the electrical size of
the elements, and the mesh geometry are investigated. The dispersion for
the hexagonal mesh geometry is shown to be much smaller and to
converge at a quicker rate than the other meshes. The dispersion analysis
is validated by numerical examples. © 1995 John Wiley & Sons, Inc.

I. INTRODUCTION

The finite-element method is a popular technique in compu-
tational electromagnetics. Two different approaches are com-
monly used when applying the finite-element method to solve
vector field problems. In both techniques, the domain of
interest is divided into subdomains or elements. The differ-
ence in the two approaches is in the manner in which the
field is approximated within the elements. In the nodal ele-
ment approach, each component of the field is represented
by an expansion of scalar basis functions, whereas, in the
edge-element approach, the vector field is approximated by
an expansion of vector basis functions. The latter technique
offers some significant .advantages over the former. For one,
it does not suffer from spurious or nonphysical solutions for
many types of problems, as does the nodal element approach
[1]. In addition, boundary conditions are generally easier to
impose along conductor edges and material interfaces when
the edge elements are used.

Even though the finite-element method has been exten-
sively used, the errors associated with it have not been

thoroughly investigated. A quantification of these errors is
important for one to have complete confidence in the numer-
ical solution. One of the most significant errors arises from
the inability of the polynomial basis functions to represent
the fields exactly within an element. This error is commonly
called the discretization error and is present when nodal
elements or vector elements are utilized. A wave propagating
through a mesh of finite elements will experience numerical
dispersion as a result of this error.

Most research into the numerical dispersion of plane
waves propagating through finite element meshes has concen-
trated on meshes composed of nodal elements [2-5]. The
research into the numerical dispersion of edge-element
meshes is not as extensive. The authors have investigated the
numerical dispersion for quadrilateral, edge-element meshes
[6]. Monk and Parrott have investigated the numerical dis-
persion of several types of triangular elements for a finite-
element time-domain method for Maxwell’s equations. Their
method uses a separate mesh to approximate the electric
field and the magnetic field [7].

In this work, the numerical dispersion of a time-harmonic
plane wave propagating through a number of infinite, two-
dimensional, finite-element meshes composed of triangular
edge elements is investigated. The numerical dispersion is
characterized by a cumulative phase error. The phase error is
quantified as a function of the electrical size of the elements,
the direction of propagation of the plane wave, and the
orientation of the elements. Results are given that can serve
as a guide in selecting the appropriate element size and mesh
geometry. The phase error for the hexagonal mesh is demon-
strated to be significantly smaller and to converge quicker
than the phase error for the other meshes. Finally, numerical
results that verify the analysis are given.

1. DISPERSION ANALYSIS

In order to quantify the numerical dispersion of the vec-
tor finite-element method, consider an infinite, linear, two-
dimensional, homogeneous, isotropic, and source-free region.
The field in this region is governed by the vector Helmholtz
equation: -

V X (VX E) — k2E =0, (1)

where an ¢/** time dependence is assumed and k = wy/pe is
the wave number.

It is well known that a plane wave is an exact solution to
the vector Helmholtz equation (1). For the plane-wave solu-
tion, the field at any point p is related to the field at any
other point g by a simple phase factor:

Eq — Epefjkf-Ar, (2)
where & = cos ¢d, + sin ¢d, is a unit vector pointing in the
direction of propagation and where Ar is the vector from
point p to point g.

Now consider dividing the region into an infinite, uniform
mesh. The field in this mesh will be governed by a discretized
vector Helmholtz equation. A plane wave propagating along
the mesh at an angle ¢ is a solution to the discretized vector
Helmholtz equation as well. However, the plane wave propa-
gates with a numerical wave number k that differs from the
analytical wave number k.

Consider the points p and g depicted in the mesh in
Figure 1. The relationship between the discretized field at
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