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Figure 5 Measurement results of p-i-n—PD-TG optoelectronic switch. Top trace, p-i-n—PD and TG in the on states; middle trace,
p-i-n—PD in the off state and TG in the on state; bottom trace, p-i-n—PD and TG in the off states

low frequencies. Isolation levels of 70 and 55 dB are obtained
at 300 KHz and 1.0 GHz, respectively. It is demonstrated that
the frequency dependence of the p-i-n—PD isolation is com-
plemented by that of the TG.

4. CONCLUSION

In conclusion, a novel optoelectronic switch has been demon-
strated theoretically and experimentally by introducing a
GaAs MESFET TG between the switching p-i-n—PD and
load. Combining the high isolation characteristics of the TG
at low frequencies and that of p-i-n—PD switch at high
frequencies, we demonstrated an optoelectronic switch oper-
ating from dc to the microwave frequency range. Measured
isolation levels more than 70 dB at 300 KHz and 55 dB at 1.0
GHz were obtained. The p-i-n—PD-TG optoelectronic switch
has potential applications for both optical and microwave

signal processing with very high isolation and wide band-
width.
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ABSTRACT

A modified analysis of conical horns is presented that takes into account
the true phase relationships between the feeding waveguide, the conical
horn section, and the aperture phase variation. It is demonstrated that,
especially for low-gain applications, an accurate account of the aperture
phase error results in higher gains than those obtained by widely used
design methods—or that a slightly shorter horn is obtained for identical
gain specifications. Comparisons with measured data reveal the advan-
tage of this relatively simple analysis compared with techniques involving
the conical waveguide mode spectrum. © 1995 John Wiley & Sons, Inc.

. INTRODUCTION

Due to excellent earlier work, both technical and experimen-
tal, and the focus on currugated horn antennas in recent
years, the conical waveguide horn has received only moderate
attention over the past decades. An experimental investiga-
tion on the radiation characteristics of conical horns was
published as early as 1939 [1]. A theory based on the mode
spectrum of the conical waveguide [2] obtained good agree-
ment with those measurements up to total flare angles of
approximately 40 degrees. At higher flare angles, the theory
fails due to the neglect of the cos 8 variation of the aperture
field. In 1950, King [3] presented design graphs for optimum
conical horns that follow the well-known gain maxima ob-
tained for fixed horn lengths and varying aperture dimen-
sions. These graphs have been reprinted in many texts and
handbooks on antenna theory, for example, [4—6], and have
since become the standard design tools for conical horns.

However, the theory used to create the design graphs is
based on plane-wave propagation within the horn and purely
geometrical relationships for the aperture phase error. As
was pointed out earlier for E-plane sectoral horns [7] and,
more recently, for pyramidal horns [8], the neglect of disper-
sion within both the feeding waveguide and the horn section
leads to an overestimation of the aperture phase error. Be-
cause the same principles apply but obviously have not been
mvestigated with respect to the conical horn, this article
presents the analysis associated with this approach. It is
demonstrated that, especially for low-gain conical horns, the
conventional prediction of the gain is poor, so that designs
according to [3] might not be optimally compact. A modified
design graph is presented to provide the design engineer with
some guidelines regarding the validity range of the conven-
tional approach.

Il. THEORY

The calculation of the aperture phase error for the conical
horn 1s similar to that for the pyramidal horn in [8], and
therefore only the basic steps will be presented here. For
details the reader is referred to [8].

The geometry of the conical horn is depicted in Figure 1.
The phase shift between the phase center and the aperture is
given by

PO T L e
i — + Zar — :
J}Lgll 0 A.z

The first term in (1) represents the contribution- of the
fundamental TE,, mode in the feeding circular waveguide,
where

Agr1 = = , (2)

-

Figure 1 Geometry of conical waveguide horn

and pY, is the first zero of the derivative of Bessel function
Ji(x). The second term in (1) is the phase shift along the
conical horn of length 4. An integral of this type is solved
analytically in [8]. In this case, the solution can be obtained
by subsituting

A(z) = -T—(ﬂ + ztan V). (3)
P11

The variation of the phase error over the aperture is finally
given by

1
cos{arctan( p' /L)}

bap(p) = &, 1}, (4)

and 1s assumed to distort the desired TE;; mode field distri-
bution in the aperture. The electric field is oriented such that
it 18 maximum at ¢ = ¢’ = 7r/2 (the prime indicating the
aperture). Thus the far-field components can be evaluated
from

E, o sin tﬁ:(l + %EDS 9)(191 + ), (5)
B
E, o cos qb(T - CHS ﬂ)(1¢1 + 1), (6)

where the factor

BPu Kel 2_\/ P/ \*
T‘\/l_(k) i 1_( p ) o

is approximately, though not exactly, unity and reflects the
fact that the wave impedance of free space differs from that
of the TE,; mode in the circular aperture. Note that the
effect of (7) in (5) and (6) increases for decreasing aperture
dimensions, that is, for lower gain. After some manipulation,
integrals J, 4 ; 5, in (5) and (6) can be reduced to

& Sl o [ J(kp'sin ) |
Iﬁl =j;]1 = : Jﬂ(kprSiﬂ ﬁ') = 1

S R | kp' sin 6

X e _f*i"np( p') dp" : (8)
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Figure 2 Comparison of radiation characteristics with measured [1]
and calculated [2] values. (Measured data are taken from [2] as
Cartesian reproductions of polar presentations in [1].) Dimensions:
d =124 cm, d; = 54.8 cm, h = 50.0 cm. (a) E plane, (b) H plane

and are evaluated numerically by a Gauss-Legendre routine,
for example, [9]. A rule of thumb on the number of integra-
tion points required is given by 2.5 times the gain in decibels
obtained from the conventional aperture formula [4, 5].

lll. RESULTS

Figure 2 compares radiation characteristics of this analysis
with measurements in [1] and calculations in [2]). Within the
readability of the data presented in [2] (which also includes
reproductions in Cartesian coordinates of the measured polar
plots im [1]); the agreement between this method and mea-
surements is very good. Note that due to the total flare angle
of approximately 46° deg and—as mentioned earlier—the
neglect of a cos  variation in [2], the calculated characteris-
tics obtained with the conical waveguide approach of [2] show
unacceptably high discrepancies with measurements.

The influence of the diameter of the feeding circular
waveguide, which is associated with the aperture phase error
by the first term of (1), is demonstrated in Figure 3. Because
the reference values [3] are obtained under the assumption of
a plane-wave propagation in the horn, the assumed free-space
wavelength A at any location along the horn is always shorter
than the actual guide wavelength A, at that location. Conse-
quently, the phase error obtained with the present technique,
which takes the influences of the feeding waveguide and that
of the widening horn section adequately into account, pro-
duces less aperture phase error and, therefore, higher gain.
The difference between A and A, increases toward lower
frequencies (or smaller d/A), hence leading to slightly higher
gains (dashed lines in Figure 3). Note that the monomode
range of the fundamental TE,, mode in a circular waveguide
lies between 0.59 and 0.76 in terms of d/A. As pointed out
for pyramidal horns in [8], a significant influence of this effect
is only observed for short, that is, low-gain horns (L /A = 1 in
Figure 3). For longer horns and flare angles associated with
near-optimum designs, this effect is less and less pronounced
as the actual electromagnetic field within the horn more and
more resembles that of a spherical wave. Consequently, the

-T-I_'I"I‘T'I"I—I"'I_—'T_l_'-l-l
3 4 5 6
di/A

Figure 3 Influence of the feeding circular waveguide and compari-
son of gain calculations with [3]
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Figure 4 ILength and aperture dimensions of optimum conical
horns for specified gain

differences between dashed and solid lines and the reference
values [3] decrease (e.g., L /A = 6 in Figure 3).

Figure 4 displays optimum conical horn dimensions for a
specified gain. The procedure to obtain these data is identical
to that described in [3], where for a given length L /A, the
aperture diameter d;/A is optimized for maximum gain.
Good agreement is again obtained between this theory and
data of [3]. At low gains, however, the classical approach [3]
fails to reliably predict the horn length, or, in other words,
leads to longer than optimum designs.

IV. CONCLUSIONS

It is demonstrated that the accurate calculation of the aper-
ture phase error of conical horns leads to shorter designs
than previously considered optimum. However, the effect is
only visible in low-gain applications (i.e., below 15 dB), where
the commonly applied plane-wave theory is no longer a
reasonable assumption and, therefore, fails to accurately pre-
dict the antenna gain. Longer horns with near-optimum flare
angle are only marginally affected. The modified analysis
produces results that are in excellent agreement with mea-
surements.

REFERENCES

1. G. C. Southworth and A. P. King, “Metal Horns as Directive
Receivers of Ultra-Short Waves,” Proc. IRE, Vol. 27, Feb. 1939,
pp. 95-102.

2. M. G. Schorr and F. J. Beck, Jr., “Electromagnetic Field of the
Conical Horn,” J. Appl. Phys., Vol. 21, Aug. 1950, pp. 795-801.

3. A. P. King, “The Radiation Characteristics of Conical Horn
Antennas,” Proc. IRE, Vol. 38, March 1950, pp. 249-251.

4. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design,
John Wiley & Sons, New York, 1981. e

5. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley &
Sons, New York, 1982.

6. E. A. Wolff, Antenna Analysis, Artech House, Norwood, May
1988.

7. E. V. Jull and L. E. Allan, “Gain of the E-Plane Sectoral Horn—A
Failure of the Kirchhoff Theory and a New Proposal,” IEEE
Trans. Antennas Propagat., Vol. AP-22, March 1974, pp. 221-226.

8. D. C. Hawkins and F. Thompson, “Modifications to the Theory of
Waveguide Horns,” IEE Proc. Pt.-H, Vol. 140, Oct. 1993, pp.
381-386.

9. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes—The Art of Scientific Computing, Cambridge
University Press, Cambridge, 19809.

Received 5-4-95

Microwave and Optical Technology Letters, 10/2, 91-94
© 1995 John Wiley & Sons, Inc.
CCC 0895-2477 /95

FAST ITERATIVE ALGORITHM
FOR THE FINE DETAIL ANALYSIS
OF PLANAR SCATTERERS

Bezalel Finkelstein and Raphael Kastner
Department of Physical Electronics

raculty of Engineering

Tel Aviv University

Tel Aviv 69978, Israel

KEY TERMS

Method of moments, iterative techniques, conjugate gradient, high resolu-
fion

ABSTRACT

A very efficient iterative algorithin is presented for the analysis of planar
scatterers at the very fine detail regime. The mechanisms causing slow
convergence in other technigues have been identified and corrected. The
resultant algorithm converges very fast for problems with fine details

sampled faster than 0.001), where other methods fail. © 1995 John
Wiley & Sons, Inc.

1. INTRODUCTION

Iterative algorithms have been enjoying a renewed interest
recently due to the appearance of new methods such as the
fast multipole method (FMM) [1-4], multilevel computations
[5, 6] and reduced representation of matrices [7] for rapid
computation of matrix-vector multiplication. This operation is
considered the bottleneck of each iteration step; however, the
rate of convergence is also of primary importance. In this
work we are considering a method for speeding up the
convergence of iterative solutions for the class of planar and
(potentially stacked planar) structures. This problem has been
addressed in the past by such algorithms as the spectral
iterative technique (SIT) [8-12] and the conjugate gradient
method as formulated in the spectral domain (CG-FFT)
[13-23]. These methods are sensitive to the intricacy of the
structure and to the sampling interval. The finer the detail of
the structure, and the higher the resolution, the slower con-
vergence will be. The SIT tends to diverge in some extreme
cases (see an example in [10]), whereas the CG-FFT process
stagnates, and eventually, with the addition of round-off
errors and loss of orthogonality, can also diverge [19]. Con-
vergence can be enhanced for CG- and SIT-related tech-
niques by such means ‘as the following: (a) the use of a
relaxation factor [10, 11]; (b) van den Berg’s CST and CCST
[13], which, like the SIM [19], make use of the inverse
operator as in the SIT in conjunction with minimization
loops; (c) the Mackay and McCowen method [20], which
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