provement obtained when the 5-ft. high inverted L (IL57) is
used, compared to that when the 5-ft. whip (VW5) or even
the 8-ft. whip (VWS8) is used. Also shown is the improvement
gained when the 8-ft.-high inverted-L (IL87) is used, as com-
pared to the results when 8-ft. whip is used. Thus, for a given
height, it 1s preferable to use an inverted L rather than a whip
(for example, the IL57 gives about a 4-9-dB improvement
over the VWS5). Examination of Figure 6(b) discloses that the
CC2T condenser antenna (2-ft. height, 6-ft. diameter) gives a
field strength across almost the entire band, that is higher
than that of the 8-ft. whip (i.e., gives a height reduction of at
least 4:1). It also shows that the 7-in.-high (3-ft. diameter)
CP73 antenna’s signal level is, at most, only about 8 dB lower
than that of the 5-ft. whip (VWS5). Figure 6(c) shows that
height reductions of about 2:1, were measured for the in-
verted L compared to the corresponding whips, because the
IL.87’s field was virtually the same as that of the 15-ft. whips
and the IL27’s field was about equal to or greater than that
of the 5-ft. whip. The inverted L also produces radiation
directly above the antenna and hence both NVIS and
ground-wave jamming can occur at the same time. Such
NVIS propagation has been shown to provide jamming over
hundreds of miles where the ground wave is too weak [11].

It 1s also noted that successtul two-way communication
over the entire 1.80—-30.0-MHz bands was established over
both ground waves and sky waves (the latter including long
distances up to 5,000 miles for frequencies above about 7
MHz) with a 100-W input to all the antennas in Table 1
(except the PPC antenna, which was not tried).

During these measurements it was noted that the SGC-230
automatic coupler retunes to any frequency (when original
tuning, which takes a few seconds, is first done) in about 10
ms for all of the above antennas except the whips of heights
of about 5 ft. or less, and the condenser antennas of heights 2
ft. or less, where hovering occurs and well over 10 ms lapse
before final tuning is established. However, the U.S. Army is
now sponsoring R /D on automatic couplers that are superior
(with much faster tuning time and the capability to handle
higher-Q antennas) to those employed in these tests, to avoid
this hovering problem.

V. CONCLUSIONS
Based on the above it i1s concluded that

1. Predicted ground-wave performance based on the com-
puted current moments of (6) with measured base
currents can be used to approximately judge one an-
tenna compared to another.

2. For equal ground-wave performance, approximate
height reductions of 4:1 and 2:1 can be achieved by
using either condenser or inverted-L antennas, respec-
tively, as compared to using whip antennas.

3. The inverted L is especially attractive because it occu-
pies less space, can provide an enhanced ground wave
compared to a whip of the same height, and also
provides a degree of NVIS jamming. = --. _

4. Use of a superconducting coil in the coupler can re-
duce the heights even further [12], as can be precisely
quantified using the circuit of Figure 1(c), as is presently
being studied.
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ABSTRACT

The problem of scattering from a microsirip step discontinuity is analyzed
by an integral equation technique with the use of basis functions that
include the edge conditions. The presence of magnetic walls in the
waveguide model of the microstrip line makes it more convenient o
expand the tangential magnetic field at the interface, instead of the
tangential electric field as in the case of metallic waveguides. The
problem of relative convergence is not encountered as the modes of the
two waveguides enter only in the computation of the inner products that
are tested for convergence. Results for the reflection coefficient and the
magnetic field at the interface are presented and compared with available
data to demonstrate the accuracy and efficiency of the approach. © 1996
John Wiley & Sons, Inc.

. INTRODUCTION

Step discontinuities are frequently encountered in microstrip
line circuits. In many applications, the waveguide model,
which was originally proposed by Wolff, Kompa, and Mehran
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et al. [1] and subsequently investigated by other researchers

[2, 3], has been found useful in the determination of the

scattering at the discontinuity.

In this model, the original microstrip line is replaced by a
parallel-plate waveguide, with magnetic side walls, filled with
a fictitious material whose dielectric constant is given by the
effective dielectric constant of the original microstrip line.
The width of the waveguide is given by the so-called effective
width of the original microstrip line.

The investigation of microstrip line discontinuities within
this model has been carried out with the use of the mode-
matching technique [3]. The method is, however, known
to suffer from the phenomenon of relative convergence [3].
In addition, its slow convergence, when sharp metallic edges
are present, is attributed to its failure to include the edge
conditions. |

In this article, we propose to start from an integral-equa-
tion formulation of the microstrip discontinuity problem in
such a way that the edge condition is systematically included.
At the discontinuity, a change of basis is performed; that 1s,
instead of representing the fields as a superposition of the
normal modes of the waveguides, a different set of basis
functions is used. The efficiency of such a technique depends
on the availability of basis functions that represent the local
behavior of the electromagnetic field, and on the simplicity of
implementing such a change of basis. Because of the orthogo-
nality of the normal modes over the cross section of the
waveguide, the transformation from a representation of the
transverse magnetic field at the discontinuity, which uses
basis functions with the edge conditions, to the modal repre-
sentation of the MMT i1s diagonal. This does not hold for the
transverse electric field at the discontinuity because of the
presence of the magnetic side walls. The situation 1s dual to
that of a waveguide with metallic walls.

This article is organized as follows. The next section
presents a brief discussion of the theoretical formulation of
the problem. The choice of basis functions is presented in
Section IV and the numerical results in Section V.

II. THEORETICAL FORMULATION
The waveguide model of a microstrip line discontinuity is

shown in Figure 1. It is assumed that the walls of the

waveguides as well as the dielectrics, with dielectric constants
e; and e, respectively, are lossless. We are only interested in
the reflection and transmission properties of the structure
when the fundamental mode is incident from Waveguide 1.
Following the mode-matching technique, we expand the
transverse electromagnetic fields in terms of the normal

2b

Region 1

Magnetic walls

s 2

[

L

2a

Figure 1 Geometry of a microstrip discontinuity with the wave-
guide model

modes of the two waveguides. In Waveguide 1, there are

reflected modes in addition to the incident fundamental

mode (with amplitude equal to unity), whereas only forward-

traveling modes are present in Waveguide 2. Because of the

symmetry of the structure only TE,;, modes are present (3]
In Region 1, we have

HNx,z) = ®,(x)e 1z + Y B d, (x)elkin?, (1a)

ne=1]

E (x,2) = —Y;®(x)e ¥z + Y B Y, ®,,(x)ekinz,

n=1
(1b)
Similarly, in region 2, we have
H(x,z) = Y, E®, (x)e i (2a)
n=1
and
E}x,2) = = 1 FYp®,(x)e/i2, ()
n=1
where
: o
®,, (x) = cos|(n — 1)71';_; , A= 1, A33)
: x:
®,, (x) = cos|(n — I)WE : n=1.2,.... 3b)
f 2
(n— 1D ;
+ 1/ w% €q g — : ; propagating
k7 = < 2 mode
e
=1 — WE{€y Ly » evanescent
da
| mode
(4)
Kin o . : .
and Yy, = . Similar expressions hold for waveguide 2.
Wk

The boundary conditions of the problem are given by

Hl(x, z=0)=H (% z=0),
E}E(Jc:, z=0) = Eﬁ(.ﬁ:, = =),

0 <x <h, (>5a)
O<x<h, (5b)

and

H{(x,z=0=0, b=<sxzxa. (5¢)
Instead of using the modal expansions (1), (2) in Egs. (5), we
perform a change of basis functions such that the boundary
condition (5¢) is automatically satisfied. Let Q,(x) denote a
generic element of such a set such that

0;(x) =0, bsx<a, . Vi (6)

The magnetic field at the discontinuity is therefore expanded
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in a series of the form

M
HIE‘.EP(x) = E CEQ;(I) (?)

=1

The number of basis functions M is increased until conver-
gence 1s achieved. With the use of Eq. (7) and the modal
expansions (1), (2) in the boundary condition (5a), we can
express the modal expansion coefficients as follows:

1 M
Bﬂ = X Z = a n
YIH j =] :
1 M 2 5
B o (X))@, (x)dx (8a
Yln EEZI ﬂ(l T 5!11)'/;' Q Ly ( )
1
Fﬂ Z i QZ:(”) = 3}_
En =1 1n
M 2

X Yt )f;QI-(x)iIJE”(x)cir. (8b)
i=1 nl

To determine the expansion coefficients ¢;, we use Egs. (8) in
the boundary condition of the electric field, Eq. (5b), and
apply Galerkin’s method to obtain a set of linear equations

[Allc] = [U], )
where
= i réli'(”)-élj(”) b sz(”)ggj(ﬂ) A
[Alij = Hg Y. o Y, (10a)
and
Hlf 1
U] = —EQ ( ). (10b)
Y1

Once the expansion coefficients are determined from Eq. (9),
the reflection coefficient is given by Eq. (8a) by setting n = 1.
Note also that the modes of the two waveguides appear
only in computing the matrix elements in Eq. (9). The sums
are tested for convergence, thereby leaving only one free
parameter 1n the solution, that is, the number of basis func-
tions. The problem of relative convergence is not present.

Ill. BASIS FUNCTIONS

To guarantee numerical efficiency, a set of basis functions
that contain as much information about the behavior of the
field at the discontinuity, especially its singular nature, must
be used. In this specific situation, the nature of the singularity
of the field at the edge depends on the difference between
the dielectric constants of the two waveguides. Following the
analysis presented in [4] we determined that when €, = 2.2
and €, = 2.1, the singularity is accurately given by x?/3~1
When €, = 10.2 and e, = 2.2, the singularity is x°°*~!, For
the numerical example considered in this article (e; = 2.2,
€, = 2.1), we assume that the H, component has a singularity
of the form x*/°~! as x approaches b. We take the symme-
try of the field about the yz plane into account, and the

following basis functions are used:

A0 157 ST (11)

The spectrum of these basis functions in each of the two
waveguides can be expressed in terms of Bessel functions of
the first kind of order ¢ [5], namely

_ b
b I‘(i)r(z) f1f&[|(k = 1) + (J“I - I)Elﬂ-}
Oy (n) = — a2(1+6,) - =
[|(k - 1)+ (n — 1)E|.ﬂ-/2]
. -
Il_.fﬁ[l(k — 1) —(n — D;’fﬂ']
4 b 1/6 (12a)
’:Kk — 1) — (n — DEHT/QI
and g
) PTG [ Jy6llk +n = 2|7r]
Oy (n) = 2(1 + 8,) | [Ik + n — 2| /2]
J1sllk — nlw] |
. (12b
[M: = Hlﬂ_/zlljﬁ - ( )

IV. NUMERICAL RESULTS

The present technique is applied to determine the reflection
properties of a typical discontinuity. More specifically, we
assume that the effective dielectric constants are 2.2 and 2.1
in Regions 1 and 2, respectively, and take @ = 100 mils and
b = 26.1 mils. The operating frequency is 2 GHz.

Figure 2 is a plot of the magnetic field H, at the interface
as computed from the basis functions. That is, from

M
H;(I) = ZC;Q;'(X) (13)
i=1
Magnetic field, using three basis functions
il | ! | SRS ! ! ! ]
LT R R s
g._. ............................................................................................. =
Er ............................................................................................... =
7:. ................................................................................................. -

...............................................................................................

|Hx| (arbitrary units)
h

1
-1 08 -06 =04 -0.2 0 0.2 0.4 0.6 0.8 1
x/b

Figure 2 Magnitude of the transverse magnetic field |H}(x/a)| at
the discontinuity as obtained from three basis functions
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Figure 3 Magnitude of the transverse magnetic field |H(x/a)| at
the discontinuity as obtained from numerical summation of modal
expansion [Eq. 1(a)]. Three basis functions were used and 100 modes
were summed

when three basis functions are used. Note that in the MMT,
the field is usually computed from its modal expansion [Eq.
(2)]. For completeness, we also plotted H, as computed from
equation (2) where the modal expansion coefficients are
determined from Equation (la) (see Figure 3). It is easy to
show that in the limit of an infinite number of modes, these
two quantities are identical. Indeed, at the discontinuity,
H!(x) can be written as

o M
HQ(I) = E ( Z EEQHIE(H) CI}IH(I)' (14)

=1 =1

If we take into account the definition of Q,,(n) as given in
Eq. (8a), Eq. (14) is readily recognized as the Fourier series
of the expression in the right-hand side of Eq. (13). The
transition from Eq. (14) to (13) holds only when an infinite
number of modes are summed. Figure 3 was obtained from
summing 100 modes. Because of the discontinuity of H! at
x = b, the numerical summation of the Fourier series exhibits
the Gibbs phenomenon [6], as Figure 3 shows.

The variation of the magnitude of the reflection coeffi-
cient of the fundamental mode as the number of basis
functions is increased in shown in Table 1. The results, even
with one basis function, are in excellent agreement with those
obtained from the MMT [3]. It is evident that the numerical
solution converges with only one basis function, which
demonstrates the judicious choice of the basis functions.

V. CONCLUSIONS

An accurate and efficient solution of the microstrip line
discontinuity within the waveguide model was presented. An
integral equation for the transverse magnetic field at the

TABLE1 Magnitude of reflection coefficient |S,,| versus
number of basis functions M

M 1 2 3 +

Present Method 0.5938 0.5938 0.5938 0.5938

Ref. [3] gives a value of 0.5993

discontinuity is solved by the moment method with basis
functions that include the edge conditions. One basis func-
tion 1s found to be sufficient to obtain accurate results for the
reflection properties of the discontinuity.
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ABSTRACT

We present a modified coupled-mode formulation for an asymmetric
two-waveguide coupler in which the trial field is expressed as a linear
combination of the fundamental modes of the individual waveguides,
with an additional phase-variation term determined from the orthogonal-
ity of the normal modes. The method provides more accurate solutions

than the conventional theory, and the results satisfy power conservation.
© 1996 John Wiley & Sons, Inc.

. INTRODUCTION

The coupled-mode theory has been widely applied to numer-
ous optoelectronic components and fiber-optic devices, in-
cluding optical directional couplers since implementations of
the conventional coupled-mode theory for optical waveguides
were developed by Marcuse [1], Yariv [2], and Taylor and
Yariv [3]. Coupled-mode formulation is approximate, with
assumptions that normal modes of a composite structure can
be expressed as linear combinations of fundamental modes of
individual waveguides and the slowly varying envelope ap-
proximation (SVEA) is valid. Conventional coupled-mode
theory provides reasonably accurate propagation constants
for weakly coupled symmetric waveguides when an overlap
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