MAGNETIC RESONANCE IN MEDICINE

Multiple Tuning of Birdcage Resonators

Smain Amari, Aziz Miifit Ulug, Jens Bornemann, Peter C. M. van Zijl, Peter B. Barker

A theoretical framework is pr ted for designing birdcage
resonators for MRI and MR spectroscopy. The analogy be-
tween the birdcage problem and the phonon problem in solid-
state physics is used to achieve multiple tuning. Allowing that
the capacitances in the columns of the cage assume unequal
values, it is possible to achieve muitiple tuning and simulta-
neously preserve the sinusoidal current distribution neces-
sary to set a homogeneous magnetic field. Given the physical
dimensions of the columns and branches of the cage as well
as the desired resonant frequencies, the corresponding val-
ues of the capacitances can be calculated exactly. Closed-
form expressions for the capacitances are given in terms of
the mutual inductances and the desired resonant frequencies.
A detailed analysis for a symmetrical low-pass birdcage is

p ted. The expressions for the resonant frequencies re-
duce to those given by other authors when only nearest-
neighbor mutual ind are included.
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INTRODUCTION

Many experiments for in vivo MR spectroscopy require
double-tuned or multituned RF coils. For example, dou-
ble-tuned resonators are preferred when studying uptake
and metabolism of '*C-glucose by proton-detected '*C
NMR (1-7) or proton-decoupled C NMR (8). In addi-
tion, recent studies have shown the importance of apply-
ing proton decoupling when using phosphorus NMR,
leading to increased interest in double-tuned coil design
(9, 10).

The original NMR birdcage resonator, introduced by
Hayes et al. (11), was single-tuned and exhibited an im-
provement in both the field homogeneity and the signal-
to-noise ratio (SNR) over the saddle coil as well as cosine
coil (12). The introduction of quadrature drive of the
volume coil resulted in a reduction of power requirement
by a factor of 2 and an increase of SNR by a factor of
/2 compared with linear coils (11, 13). A theoretical
investigation of birdcage resonators was presented by
Tropp (14), including the effect of perturbations in the
capacitances. Pascone et al. (15) used the concept of
effective inductance, which includes all mutual induc-
tances, to describe the frequency response of high- and
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low-pass resonators. Foo et al. (16) analyzed the effect of
the body as well as the shield, by solving Maxwell's
equation in a cylindrically symmetrical structure,
whereas Harpen (17, 18) described the equivalent cir-
cuits for resonators with a large number of columns as
well as the behavior near self-resonance.

The analysis and design of multituned birdcage reso-
nators has also been investigated in recent years. Rath
(19) introduced a double-tuned design based on band-
stop and band-pass filters, which can only be used at one
of its two possible frequencies at a given time. Joseph and
Lu (20) analyzed nonuniform distribution of capaci-
tances in the columns of birdcage resonators and showed
that a judicious choice of such a distribution could lead
to a double-tuned resonator, as long as the two frequen-
cies are not too different. Recently, resonators using more
than two rings were reported by Boesch et al. (21) and
Tropp et al. (22). Coaxial cavity-type volume coils were
also implemented (23-24). Double-tuned saddle resona-
tors were also reported (see Ref. 25 and references cited
within). In general, double-tuned resonators tend to be
difficult to build and may be difficult to tune to the
desired operating frequencies.

Here, we describe a novel and simple theoretical ap-
proach to analyze, design, and tune a birdcage resonator
to one or multiple frequencies. A symmetrical low-pass
birdcage, including all mutual inductances of the col-
umns as well as the ring segments, is analyzed in the next
section, Modes of Symmetrical Birdcage Coil. Expres-
sions for the resonant frequencies in terms of self- and
mutual inductances and capacitances are also given. In
the section entitled Double Tuning within Nearest-
Neighbor Approximation, the solution to the phonon
problem in solid-state physics is used to show how a
simple and well-defined distribution of capacitances in
the columns leads to a double-tuned resonator. Given the
physical dimensions of the resonators, simple expres-
sions for the two capacitances required for double tuning
to two arbitrary frequencies are given. The next section,
Beyond the Nearest-Neighbor Approximation, discusses
the effect of the mutual inductances on the capacitance
values, and is followed by a section on the problem of
multiple tuning. Finally, under Results, numerical re-
sults obtained from the present method are presented
and compared with experimental values.

MODES OF SYMMETRICAL BIRDCAGE COIL

We first consider a symmetrical low-pass bird cage with
N identical columns, as shown in Fig. 1, and assume
perfectly conducting foil segments and equal capaci-
tances in the columns. The analysis can then be extended
to high-pass coils with capacitances on the rings. The foil
segments in the birdcage are modeled as inductances, L
for the columns and I for the portions of the rings as
shown in Fig. 2. In order not to overcrowd the equations,
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FIG. 1. An eight-column low-pass birdcage resonator: / is the
self-inductance of the ring portion between two adjacent columns,
L is the self-inductance of a single column, and C is the capacitor
placed on each column.

the mutual coupling between the top and bottom rings
are neglected in the main discussion. Appendix A gives
the modified equations when all mutual inductances are
included. The mutual inductance between two consecu-
tive columns, nearest neighbors, will be denoted by M =
M,: M, denotes the mutual inductance between the sec-
ond nearest neighbors; in general, M; denotes the ith
nearest neighbors’ mutual inductance. We also neglect
the mutual inductance between consecutive ring seg-
ments. Appendix A gives the corrections relevant to
these terms.

A resonant mode, with unknown angular frequency w,
is excited in the structure. To proceed with the analysis,
a mesh current I, is assumed to flow clockwise in the
closed path consisting of columns n and n + 1 and the
ring segments connecting them. The actual current in leg
nisthen given by I, — I, — 1, whereas that flowing in the
ring segment is simply I, (Fig. 2).

The application of Kirchoff's law to mesh n leads to the
following equation:

2
2L + 2] - 2M)e® — =1,
[ -2

1
- {(L - 2M + M)t — C—][lrl + 4] [1]

—[(M—2M, + M!)mz][llﬁ»i +IL,]-...=0

where C is the common value of the capacitances. The
sum includes all the mutual inductances between the
columns; those of the ring segments are neglected as
stated above. Equation [1] can be viewed as an eigen-
value problem for the frequency w once the geometrical
and physical characteristics of the cage are specified. A
running solution to this equation can be found either by
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FIG. 2. Model of the resonator with mesh currents.

taking a discrete Fourier transform or simply by trying a
solution of the form

I, = Aglvt-Uzeniny [2]

where [ is the “wavenumber.” Because of the periodicity
of the system, i.e., I, + 5 = L, J should satisfy the
equation

gl =1 31

which implies that J should assume integer values. It is
convenient to limit the range of ] values to what is known
in solid-state physics as the first Brillouin zone (26; 27, p.
100; 28, p. 105). In this particular case, this zone limits
the values of J to

N N
—<j== 4]
2 2
It is always possible to replace a value of J that lies
outside the first zone by one inside it by adding an
appropriate multiple of the period N. Details can be
found in several textbooks on solid-state physics (26—
29).

Each value of J corresponds to one or more resonant
modes whose frequencies are simply obtained by substi-
tuting Eq. [2] in Eq. [1] and noting that the terms of the
form I, +, + I, — i are related to I,, by

J2mi
Iy + Iysi = 2@c08) '3 [5]

Carrying out the algebra and rearranging Eqgs. [1] to [3],
we get the resonant frequency of mode J:

)

e —— [6]
n=p 9 F)
e z'rr]n)
g = - |cos| ——
= (.an) ( N
n=1 !
The denominator includes P terms, where P = {N/2} if N
is even and {N—1/2} if Nis odd. Note also that we use the
index J to denote a particular mode to conform to the
notations used by Tropp (14). The constants a; are ex-
pressed in terms of the parameters of the birdcage

1

e T Y o
4 =—— E [7b]
G(L—2M + M,)
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1

a; = —_—.)
CiM;-y — 2M; + M.i+1)

s R, [7e]
Note that our result (Eq. [6]) reduces to Tropp’s (14), if
the terms in g; for i = 2 are neglected.

Among all the resulting modes, only the mode | — 1
has the sinusoidal current distribution required to estab-
lish a uniform magnetic field inside the cage (30). The
other modes do not have this important homogeneity
property and are consequently of little interest.

From the present analysis, it follows that the symmet-
rical birdcage does not allow for homogeneous multiple
tuning, because there is only one frequency for the ho-
mogeneous mode | = 1. A possible approach to double
tuning, which has been investigated in detail by Joseph
and Lu (20), consists of introducing a perturbation that
eliminates the degeneracy of the homogeneous mode,
thereby achieving double tuning. This approach is ex-
pected to work well as long as the two resonant frequen-
cies are not too different such that perturbation theory
can be fruitfully used to determine the properties of the
two perturbed modes. When the two frequencies become
widely separated, the analysis fails and the homogeneity
in the magnetic field becomes unacceptable. Further-
more, the approach cannot be used to tune the resonator
to more than two frequencies. It is also possible to use
more than two rings and tune each “subcage” to different
frequencies with appropriate consideration of the mutual
interactions between the subcages as presented by Pas-
cone et al, (15). In the next section, we show how double
tuning can be achieved by a judicious, yet systematic,
choice of the capacitances without sacrificing the homo-
geneity of the magnetic field, provided a large enough
number of columns are used. For ease of construction, we
demonstrate the principle by building a coil with eight
columns.

DOUBLE TUNING WITHIN NEAREST-NEIGHBOR
APPROXIMATION

Tuning the birdcage to two arbitrary frequencies can be
achieved if the period of the structure is enlarged to
include two original meshes. Taking the capacitances in
the columns of the cage in Fig. 1 such that C, = C, = C, =
c..=Chenand C, = C, = C; = ... = C,y4, while keeping
the locations and dimensions of the wires unchanged,
doubles the period of the structure. Other choices, such
as alternately changing the locations of the wires while
keeping all other parameters fixed, are also possible. In
this study, we consider only the former arrangement. The
analysis of the resulting asymmetrical birdcage is similar
to the symmetrical cone except for the fact that the nth
and (n + 1)th meshes should be treated differently. The
problem is analogous to the propagation of elastic waves
(phonons) in a periodic chain of atoms whose Bravais
lattice contains a basis (26-29). In fact, the qualitative
features of the modes of the present system are practi-
cally the same as those of a periodic linear chain con-
taining two different masses, M and m, which are inter-
acting through springs of identical stiffness. For the sake
of completeness, and for readers not familiar with the
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theory of lattice vibrations, we present a detailed analysis
of the asymmetrical birdcage. Also, in order not to bury
the main idea in the notations, we assume that only
nearest neighbors interact, i.e., M, = 0, i = 2. This con-
straint will be relaxed later.

The currents in mesh n are denoted by X, that in mesh
n + 1by Y, and so on (Fig. 3). The equations governing
X, and Y, follow from applying Kirchoff's law:

1 1
(2L + 21 - 2M)e® — ( —+ —)]X,,

odd Cuw:n

= Mo [X, 1 + X = [(L Myt - — —}Y,, (8]

even

1
- | {L-2Me* ——|Y,-1 =0
Coad

1 1
(2L + 21— 2M) 2-( -+—)}Y,.
[ ¢ led Cﬂwrn

= M""E[Yn—‘l it Y,,+|] RS [IL = ZM‘-"Z e ! _]Xn [9]

Bven

1
= [(L— 2M)w* — ,—]X.m =0
Codd
Separate running solutions of the following forms are
used for X, and Y,;:

X" - Ae}(ur—NZanM 11081

Y,, — Beﬂur—ﬂ‘z:m’ﬁ‘l [1[]h]

Here, A and B are the complex constants of proportion-
ality. They carry the information about phase lag of the
currents in adjacent columns through their imaginary
components or through their phases. The information
about the relative currents in adjacent columns is re-
vealed in the magnitudes of A and B. The term K, instead
of N, was purposely used to emphasize the fact that the
period is now doubled because the capacitances are not
all equal. This also means that the total number of col-
umns must be even to be able to split them into two
distinct groups. Therefore, K in Eq. [10] is equal to N/2.
From the periodicity requirement, it follows that J can
assume the values such that —K/2 < | = K/2. Using Eq.
[10] in the equations of motion, Egs. [8] and [9], a system
of two linear equations with unknowns A and B, is ob-
tained:

FIG. 3. Mesh currents with unequal capacitances for double
tuning.
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27 1 1
|:(2L +21-2M- ZMCUS(I—))«};Z = (--' + —) A
K/ Codd Cewen

[11a]

. 1
- [(ZM - Dof + e e‘““’“’((zM - Lwf + )]B =0
Ciaa

ven

1 1
[(2M - Laf +-——+e 'U‘E"“’((zM - Do/ + —)}A

even

[11b]
2 1 1
+ 2L+21—2M—2Mcos]K wf — c —'CH
“odd van

B=0

Such a system admits a nontrivial solution only if its
determinant vanishes. This last condition is satisfied for
frequencies given by the following quadratic equation in
the square of the frequency

awf + bwf +c=0 2]

where

a=a,°—2(L— zM)’(l + cos(} 2")) [13a]
! K

1 1 27
b=-2—+—]||2L+2]-L|1+cos|]— [13b]
Cota Coven K
2 2w
c=————|1—-cos|J]—
CoadCoven K

2%
a=2L+2]- ZM(l + cos(;’?))

The resonant frequencies are the positive roots of Eq. [12]
or

[13¢]

[13d]

,  —b* b -4ac

wof = ————— [14]
2a

For each value of /, there are two modes, each of which
degenerate, having different frequencies corresponding
to the = sign in Eq. [14]. The degeneracy originates from
the fact that —J and J of Eq. 4] yield the same resonant
frequency. There is also a gap in the frequencies that are
supported by this structure, in the limit of large numbers
of columns. This feature is also found in phonon spectra
and in the energy-band theory of solids (26-29). In the
limit of large numbers of columns in the birdcage, the
resonant frequencies are continuously distributed in two
branches. These two branches are named in analogy to
their use in crystal vibrations theory, i.e., the optical and
acoustic branches. The acoustic branch is characterized
by the fact that the f/ = 0 has a frequency equal to zero,
whereas the optical branch has the highest resonant fre-
quency supported by the structure. The frequencies in
the acoustic branch increase with the mode order J until
they reach a maximum at / = K/2. On the contrary, the
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frequencies in the optical branch decrease from the high-
est frequency at J = 0 to reach a minimum when J = K/2.
At the boundary of the first Brillouin zone, | = K/2, the
two branches are split by a gap whose magnitude in-
creases with the difference C_43 — C,,.n - Figure 4 shows
the qualitative features of the two branches that could be
directly compared to those of the crystal vibrations found
in Refs. 26 to 29.

The current distribution of the modes J = 1 follows
immediately from Eq. [10]. Both have the sinusoidal dis-
tribution necessary for a homogeneous magnetic field
inside the cage. There is, however, a phase difference
between the currents in even-numbered and odd-num-
bered meshes. Once the desired resonant frequencies are
known, Egs. [12] to [14] can be used to determine the
value of the capacitances C,,,,, and C,4; the values of the
mutual and self-inductances are known from the dimen-
sions and the locations the wires. Within the nearest-
neighbor-only approximation, C,,,, and C,,,are given by

2
Codd.d!w.n e e— [15]
S, * \-'8,-2 — 4P,
where
2 + 2
Sr = E 7{”’ W - [153]
2 2
2L+ 2/ - L(l + uos( ))
K
p 2 2
p=o e [16b]

E (217)
1-—cos
K

The constant a is given by Eq. [13.a], and the frequencies
w, and w, are the desired (known) frequencies of the two
modes with the sinusoidal current distribution. Note that
the two resonant frequencies are arbitrary and do not
have to be close to each other for the present analysis to
hold.

100 | e -
90 g
80 ¢t

Frequency

FIG. 4. The frequency dependence of the modes of optical and
acoustic branch for a 16-column low-pass double-tuned resona-
tor with C,,en = 0.9C,qq. The duplicity of the modes for each value
of J is evident.
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FIG. 5. Calculated field homogeneity of the eight-legged double-
tuned birdcage coil: (a) optical mode (64 MHz), (b) acoustic mode
(16 MHz).

Using Egs. [15], [14], and [11], the ratio A/B is calcu-
lated. Then, utilizing Eq. [10] and the ratio A/B, the
current in each column is computed. From these cur-
rents, the field map was calculated using the Biot-Savart
law (Fig. 5).

BEYOND THE NEAREST-NEIGHBOR
APPROXIMATION

In this section, we relax the nearest-neighbor-only ap-
proximation and investigate the problem of tuning the
birdcage, including all mutual inductances of the col-
umns. For clarity, the mutual inductances of the ring
segments are still neglected here. Formulas given in Ap-
pendix B include all the mutual inductances and should,
therefore, be used for the design and analysis of this type
of resonator.

The inclusion of all the mutual inductances between
the columns modifies Egs. [8] and [9] to:

[(MD - (L+;)]X
T \Coas Gl "

1 1
- | Lt ~ ——|Yn - | Lat = —[Yi-s
e i G
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Kiz-1
D Myal2Y+ 2Y iy = Xasic
i=0
[17]
- Xn—i - XI'HI' - |-;+Ji+|]"’z
Kz
+ 2 Myf2X,0i + 2Xn-i = Youi = Yariaa
i=1
= Ypi— Yo islo? =0

and

|:{2L+ Zsz—( ! + -1—)] Y,
codd Csuen
o e
Cuven Coaa
Kiz-1

+ E MZJ’+I[2XH-—E+I + 22X, = Yo

i=0

8]
= Yoto1 = Vst — Yauild?
Kiz
X M2V 2V = Xy = Xy
i=1
= Xosinn — Xn—l’+l]“}2 =0

As before, K = N/2, because the total number of columns
is assumed to be even to achieve double tuning. For
simplicity, it is also assumed that K is itself even or,
equivalently, that N is a multiple of 4. Notice that Egs.
[17] and [18] reduce to Eqs. [8] and [9] if the mutual
inductances beyond M, = M are neglected.

Running solutions of the form [10] are again used in
Eqs. [17] and [18] and lead to two coupled linear equa-
tions in the constants A and B. The final result can be
written as

agA+apB=0
[19]
anA+apB=0
where
2 1 1 5
3y = gy = by = Con + o [20a]
e,r_zx:m
a;; = as = —bpe’ + ( + ) [20b]
BVEn Codd
2af
by, =2L+ 21— 2M| 1 + cosl
K
=Kz
2
+ S (M- zzt«:rﬂ..)e,.:m(%J :‘) (21a]

i=1
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- 2M (2”; i+1 )
2i+1 COS K (1 )

=Kz 2m]
bpy=L-2M+ Y 2M-_,_‘cos(? 1’)(1 + g/@nIky)
i=1
[21b]
i=K/2
- z 2M2,-,,,[e"-3’*’”‘"‘-""” + c—;tzﬁ.rmrl

The linear set of Eq. [19] admits a nontrivial solution
only for frequencies o for which the determinant of the
system vanishes, a,,a,, — a,,0;, = 0. This last condition
gives the resonant frequencies of the structure for the
different values of J (resonant modes). Because we are
interested in double tuning the birdcage to two known
frequencies w, and w,, while having a sinusoidal current
distribution, we only give the expressions of the capaci-
tances C,qq and C,,,, which achieve such tuning,
namely

2

S, \S? - 4P, -
= Y t

Cudd.l:wn =

The quantity S, is related to the sum of the squares of the
two resonant frequencies through

bfl _ 2 2 2
S = (b1, — 1buaf)en® + wy) (23]

On the other hand, P, is related to the product of the
squares of the two resonant frequencies by

_ (bf: - |'f"'11|2)ﬂ'-'12¢!’22

In Egs. [23] and [24], b,, and b,, are for / = 1. Notice that
Eqg. [23] reduces to Eq. [15] if the terms in M; > 1 are
neglected. Once the two resonant frequencies are known,
the values of the capacitances are determined from Eq.
[22]. The corresponding current distribution is obtained
from Eq. [10], once the frequencies are known, and J = 1
for the sinusoidal modes. It is worth emphasizing that the
current distributions for the different modes depend only
on the fact that the structure is periodic. The values of the
resonant frequencies and the strength of the magnetic
field are determined by the physical properties of the
system. In other words, two birdcages with identical
periods have similar current distributions (they belong to
the same symmetry group) but may have different reso-
nant frequencies. For example, a low-pass birdcage has
the same current profile as a high-pass birdcage with the
same number of periods but different resonant frequen-
cies. It is also possible to exploit this property of the
symmetry group to achieve multiple tuning provided
enough columns are used.

[24]
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MULTIPLE TUNING

In this section, we briefly show how multiple tuning of a
birdcage can be achieved. We again borrow from the
results of the lattice vibration theory. It is well estab-
lished that a periodic chain having p different atoms per
unit cell (Bravais lattice) has p phonon branches, each in
turn having N modes, where N is the number of periods
in the chain (26, 28). For the birdcage problem, if there
are enough columns to allow for a reasonably homoge-
neous magnetic field, it suffices to distribute the capaci-
tances in the columns such that G, = C, = C,,,, C, = G,
+ 1= Gy, 4 1, and so on while maintaining the original
(symmetric) distribution of the wires to tune the struc-
ture to p different frequencies at the / = 1 mode. Such a
birdcage exhibits p modes, which have the sinusoidal
current distribution in p different frequencies. The deter-
mination of the values of the capacitances from the di-
mensions of the wires and their locations and the reso-
nant frequencies may be numerically demanding but is
otherwise straightforward.

RESULTS

We built a birdcage with eight columns of usable height
h = 191 cm and diameter D = 15.4 c¢m, where the
distance between consecutive columns is s = 5.9 cm.
Copper foil of width a = 1.3 cm, and negligible thickness
is used for the columns and the rings.

The self-inductance of one of the columns is given by
an expression of Grover (Eq. [9] on p.35 in Ref. 31), which
is also given in Ref. 15, namely

[ (211) 1]
L=2h|In|—]+- [25]
b 2

where L is the inductance in nanohenries, h is the height
in cm, and b is the width in centimeters of the rectangu-
lar strip. Similarly, the mutual inductance between two
parallel segments of length h and separation d is given
(Eq. [1] on p. 31 in Ref. 31} by

M= zh[ln(f—;+ \,;Jr (2)2)— \f@{} (26]

Here as well, distances are measured in centimeters and
inductances in nanchenries. By assuming no skin effect
and using the above expressions, we calculated the val-
ues of mutual inductances for our eight-legged birdcage
and tabulated them in Table 1. In these calculations,
axial filament approximation was used. The formulas
used to calculate the mutual inductances between the
ring segments are from Grover (Egs. [52] and [53] on p. 56
in Ref. 31) and also in Ref. 15. The calculated resonant
frequencies are shown in Fig. 6. The results obtained
from Eg. [6], with only the mutual inductances between
the birdecage columns included, are shown as solid lines.
The results obtained from Eq. [A.2] in Appendix A,
where the mutual inductances of the ring segments are
all included, are shown as dotted lines. The percentage
error on the frequency of the / = 1 mode varies from less
than 2% for C = 47 pF to 22% for C = 10 pF.
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Table 1
Calculated Self- and Mutual Inductances for the Eight-Legged
Birdcage Resonator
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Table 2
Measured and Calculated Capacitance Values for Eight-Legged
Double-Tuned Birdcage Resonator

L = 0.148 uH
I = 0.0324 puH
M =M, = 0.0437 uH
M, = 0.0283 pH
M, = 0.0228 uH
M, = 0.0213 uH

my = 0.00183 pH
myg = 0.00322 uH
Mag = 0.00261 uH
Myg = 0.00147 uH
myy = 0.00614 pH
My = 0.00194 uH
myy = 0.00252 uH

The discrepancy between the calculated and measured
resonant frequencies is sensitive to the presence of a
small capacitance in parallel with C. Indeed, an addi-
tional 2 pF in the gap (of width 0.13 mm) improves the
agreement to 12% when C = 10 pF without appreciably
affecting the results at larger values of C.

The same birdcage is now double tuned at 1.5 Tesla to
the proton and carbon frequencies, 64 and 16 MHz, re-
spectively. The values of the self- and mutual induc-
tances are still those given in Table 1. The values of the
capacitances necessary for double tuning, as calculated
from Eq. [15] are listed in Table 2 along with their exper-
imental values. The experimental values are the actual
manufacturer-specified capacitance values. The capaci-
tors we used are rated 1% accurate by the manufacturer
(American Technical Ceramics, Huntington Station, NY),
We used two capacitors in parallel on each leg so that the
total capacitance is: C,,, = 526 pF (526 = 470+56) and
Cyvon = 40 pF (40 = 39 + 1),

Results obtained within the nearest-neighbor approxi-
mation and those from taking into account the interac-
tion between all the columns compare favorably with the
experimental results. The inclusion of all the mutual
inductances between the columns only (Eq. [19]) agrees

£ 00O
o000
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FIG. 6. The frequency dependence of the resonant modes of an
eight-column single-tuned resonator, measured and calculated
from Eq. [6] (without the ring mutual inductances) and from Eq.
[A.2] (including all the mutual inductances).

Coaa (PF)  Caven (PF)

Experimental 526 40.0
Calculated
No mutual inductance 463 305
Nearest-neighbor columnar 454 39.9
mutual inductance included
All columnar mutual 454 39.3
inductances included
Nearest-neighbor columnar and 512 396
ring mutual inductances
included
All mutual inductances 522 39.4
included

with the experimental values within 14% (C,44) and 2%
(Cyyen)- Further inclusion of the mutual inductances be-
tween the ring segments reduces the discrepancy to less
than 1% for C = 526 pF and 2% for C = 40 pF.

In this work, we did not investigate the RF efficiency of
this type of coil. To compare the theory that predicts the
values of the capacitors and the experiment, we only
used fixed capacitors. Therefore, our coils are not finely
tuned and finely matched. Any RF efficiency measure-
ments requires complete tuning and matching as well as
experimentation with lossy samples. Here, we simply
tried to show the principle of double tuning by building
prototype coils and proving that the theory and the ex-
periment are in good agreement.

CONCLUSIONS

A theoretical approach to design birdcage resonators was
presented. The resonant frequencies of a symmetrical
birdcage calculated using all mutual inductances the col-
umns and ring segments agree well with experimental
values. By allowing the capacitances in the columns to be
distributed unequally but periodically, it is possible to
tune the birdcage to multiple frequencies. Closed-form
expressions for the two capacitances necessary to double
tune a resonator to two given frequencies were given in
terms of the frequencies and the self- and mutual induc-
tances. Calculated and measured values of the capaci-
tances of a birdcage double-tuned to proton and carbon
agree to within 1% and 2%, respectively.

APPENDIX A

In this appendix, we show how the mutual inductances of
the ring segments modify the expressions of the resonant
frequencies as well as the two capacitances necessary for
double tuning. The calculations are carried out for an eight-
column birdcage; configurations with a different number of
columns can be treated along the same lines.

The mutual inductance between a ring segment and
the one directly under (above) it in the other ring is
denoted as my,, that between two touching segments of
the same ring m,, and so on. The quantity m,; denotes
the mutual inductance between a ring segment in one
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ring and a ring segment in the other ring, one section
removed.

In our case, the quantities m,, = m,; = 0. Notice also
that the mutual inductances between the ring segments
and the columns are all zero because of the orthogonality
of their respective directions. When the capacitances are
all equal, the mesh currents I, are related by an equation
similar to Eq. [1], namely

2
KzL + 2] = 2M — 2mye’ — E FA

1
- [{L —2M=2mr— 2myg) + Mz)wz - E:]{‘rn—l + Inﬂ]

H “’z{m —2M, + Ma][fn—z ul fm 2] [All
— w¥{M, — 2M; — 2myy, + 2my M1, 5 + Ioss)
- @ [My — 2my — 2my, + 2y + Mgl 4 + [,::] =0
If the mutual inductances of the ring segments are
neglected in the above equation, Eq. [1] results. Using Eq.
[5] in Eq. [A.1], the resonant frequency of mode ] is given
by

_ i AT e Raji6)

wf = by . e
1~ X(by/b)cos(27]/8)i) (A2]
1=i
where
1
AT R TR [A3]
CiL+1-M-my)
1
b, = — e - [A4]
C(L — 2M + 2m,,, = 2m,p + M)
1
bhb————————————, i=234.
C(M;_, = 2M; — 2miB + 2m;z + M; 1)
[A5]

Notice the sign change in front of the terms in my; and
my for i = 3 because of the relative directions of the
currents in the ring segments, which are two or more
sections removed from one another. For other values of
N, this sign change occurs when i > N/4.

APPENDIX B

The contribution of the mutual inductances of the ring
segments to the two capacitances necessary for double
tuning is analyzed in this appendix. Again, the results
are valid for the case of an eight-column birdcage; larger
numbers of columns can be treated similarly.

From Kirchoff’s law, equations similar to Egs. [17] and
[18], with the terms m;, and m;; included, lead to Egs.
[22] to [24], where the constants b',, and b',, given

Amari et al.

below should be used instead of b,, and b, ,:
2
b'yy = by — 2my + 2(myp — m,,-r}cos(zg] [B1]

br‘lz =4+ 2(1’]’113 = mﬂ-)(l + eﬂZNﬂM)
+ 2(may — maﬂ)(e-pw;m_'_ c_,mznﬂ.“) [B2]

where by, and b,, are given by Eq. [21].
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