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Abstract
This paper introduces a method for the analytical calculation of gradients of a cost functions which is an
attractive feature when optimizing microwave structures using field solvers. In contrast to utilizing finite
differencing all gradients are computed from a single analysis of the structure regardless of its
complexity. It is not even necessary to invert a large matrix; a linear system [A][x]=[b] is solved instead.
No remeshing is required in the FEM and the gradient values are exact. The basic technique used in this
new approach is applied to a moment method technique (CIET) and the finite element method (FEM).
Both methods lend itself to the appropriate matrix equation.

Introduction
Evaluating the gradient of a cost function for the optimization of  microwave circuits is usually
based on the finite difference technique and can be a time consuming task. This is especially true
when the circuit transfer function is calculated on the basis of a field-theory simulation tool since
always two computations are necessary for one gradient. If, in addition, the number of
independent variables is large, optimization can become an impossible task. In this contribution it
will be shown that, under certain circumstances, the gradient of a cost function can be calculated
analytically without using finite differences. The number of computations can be cut in half and
well known disadvantages with finite differencing like inaccuracies at singularities in highly
resonant structures are eliminated. The method has been applied successfully to the coupled
integral equation technique (CIET) and the finite element method (FEM). Analytical calculation of
the cost function is also possible with the adjoint network method (ANM) but requires a network
representation of the structure to be optimized (and its adjoint). The mode matching technique
(MMT) to calculate the fields is normally utilised  to extract the network’s representation in form of



                   IMS 2000 Workshop        3

the admittance or scattering matrix. The ANM has been successfully applied to the optimization of
filters and radiating structures.
Analytically calculating the gradient of a cost function directly in general numerical techniques
without first deriving a network representation has not been published before. The possibility of
doing so is of great interest as it offers a number of obvious advantages and also not so obvious
ones, depending on the numerical method used. The new approach can not be applied to all
numerical field computation methods since it requires a scattering problem representation of the
whole micro-wave structure of the form which results directly from applying the FEM or a moment
method (i.e. CIET), but is not necessarily limited to these methods. Here, [A] is a M x M matrix
which depends on the independent variables and represents the structure to be optimized, [b] is
the excitation and [x] is the response. For example, the vector [x] contains the expansion
coefficients in the MoM or the nodal values in FEM.
It will be shown, that as long as the partial derivatives of the matrix [A] and the excitation [b] are
known analytically, all sensitivities can be determined analytically. Up to now this approach has
been successfully tested with the MoM in the optimization of waveguide filters and was
subsequently applied to the FEM. It can be extended to other methods for which the scattering
problem can be formulated as above.
The advantages of this approach are summarized as follows:
No network representation needed; only one cost function evaluation instead of two; higher
accuracy compared to a finite difference scheme in particular in the vicinity of resonances; no
remeshing of the structure required during gradient calculations; no matrix inversion necessary;
reduced memory requirements; faster algorithms.
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INTRODUCTION

Design of Microwave Devices and Structures consists of:  

• Modelling
• Analysis
• Optimization

Optimization can be done by:  

Goal: Minimize a Cost Function of the form:
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• Stochastic Methods
• Deterministic Methods

(i.e. Gradient Methods)

K

a
n

i

nω

: constants

: parameters

: frequencies



                   IMS 2000 Workshop        6

REVIEW

The problem is the calculation of the gradients

What has been done in the past?

• in general: calculation of the gradients with finite difference

• optimization of microwave filters and radiating structures by
the Adjoint Network Method (ANM)
½ network representation of the microwave circuit (MMT)
½ analytical evaluation of network sensitivities (gradients)

NEW: Analytical calculation of gradients (due to geometric changes)  
of cost functions when using more general techniques like
Finite Element Method (FEM) or Method of Moments (MoM).
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ANALYSIS OF MICROWAVE STRUCTURES

numerical methods like:

• Finite Element Method (FEM)
• Coupled Integral Equation Technique (CIET)
• Spectral Domain Approach (SDA)
• Frequency Domain Transmission Line Matrix Method (FDTLM)
• Method of Moments (MoM)
• Method of Lines (MoL)

Å Matrix equation Z k S: ? : ?=
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OPTIMIZATION

We use: deterministic, gradient based method

minimize a cost function of the form:

F a K S a S ai n n i
opt
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with first derivatives:
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ai : variables, i.e. geometry parameters
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Characterization of the problem:

• multidimensional
• nonlinear
• function of several variables
• constraint variables

Suitable methods:

• Gauss Newton
• Levenberg–Marquardt

(Numerical recipes, NAG library, Matlab optimization toolbox)

use of first derivatives
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ANALYTIC GRADIENT EVALUATION
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Matrix equation:            Z k S: ? : ?=
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FIRST EXAMPLE: CIET
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The result is a matrix equation of the form Z k S: ? : ?=
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Basis functions:
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RESULTS
single E-plane stub in a rectangular waveguide

real part of ∂S11/∂L imaginary part of ∂S11/∂L
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RESULTS

single E-plane stub in a rectangular waveguide

real part of ∂S11/∂L imaginary part of ∂S11/∂L
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RESULTS

7 E-plane stubs in a rectangular waveguide
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RESULTS
Bandpass Filter
• Center frequency: 11 GHz
• Band width: 10%
• Minimum return loss in passband: 26 dB
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SECOND EXAMPLE: FEM

Parallel plate waveguide with dielectric insert
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Use of a triangular mesh, linear interpolation functions
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Applying Galerkin Method the result is a matrix equation of the form:
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ANALYTIC GRADIENT EVALUATION
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 linear set: K
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RESULTS

Mesh setting, triangular mesh with 1088 elements and 601 nodes

For calculation of 
�
� =h

K
ij

e

h h0  only nodes along the red edge needed.
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CONCLUSIONS

• novel technique to evaluate gradients for optimization

• general approach for problems that can be formulated in terms of

general nonhomogeneous matrix equations (e.g. FEM, MoM)

• gradients are determined analytically (exact)

• no need for network representation of the problem

• no finite differencing

• only one function evaluation needed (only one mesh setting)

• no matrix inversion

• result: fast and accurate optimization of microwave structures

• excellent agreement between present approach and finite difference


