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License |

Creative Commons Legal Code
Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES

INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
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License I

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this
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License Il

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce

limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
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License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d)

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the fork that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice
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terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted
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under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
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License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a.

Each time You Distribute or Publicly Perform the Work or a Collection
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.
If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

. No term or provision of this License shall be deemed waived and no

breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.
This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.
The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice
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Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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Preface
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About These Lecture Slides

B This document constitutes a detailed set of lecture slides on signals and
systems, covering both the continuous-time and discrete-time cases.

B These slides are organized in such a way as to facilitate the teaching of a
course that covers:
o only the continuous-time case, or
o only the discrete-time case, or
o both the continuous-time and discrete-time cases.

B These slides are intended to be used in conjunction with the following
textbook:

o M. D. Adams, Signals and Systems, Edition 3.0, University of Victoria,
Victoria, BC, Canada, Dec. 2020, xliv + 680 pages, ISBN
978-1-55058-673-2 (print), ISBN 978-1-55058-674-9 (PDF). Available from
Google Books, Google Play Books, University of Victoria Bookstore, and
author’'s web site http://www.ece.uvic.ca/~mdadams/sigsysbook.
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Video Lectures

B The author has prepared video lectures for some of the material covered
in this textbook.

B All of the videos are hosted by YouTube and available through the author’s
YouTube channel:

0 https://www.youtube.com/iamcanadianl867

B The most up-to-date information about this video-lecture content can be
found at:

0 https://www.ece.uvic.ca/~mdadams/sigsysbook/#video_lectures
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Typesetting Conventions

B |n a definition, the term being defined is often typeset in a font
B To emphasize particular words, the words are typeset in a font like this.
B URLs are typeset like http://www.ece.uvic.ca/~mdadams.
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Part 1

Introduction
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mA

is a function of one or more variables that conveys information

about some (usually physical) phenomenon.

B For a function f, in the expression f(t1,t,...,1,), each of the {#; } is
called an , while the function value itself is referred
toasa

B Some examples of signals include:

m]

]

o o o o

a voltage or current in an electronic circuit

the position, velocity, or acceleration of an object
a force or torque in a mechanical system

a flow rate of a liquid or gas in a chemical process
a digital image, digital video, or digital audio

a stock market index
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Classification of Signals

B Number of independent variables (i.e., dimensionality):
o A signal with one independent variable is said to be (e.g.
audio).
o A signal with more than one independent variable is said to be
(e.g., image).
B Continuous or discrete independent variables:
o A signal with continuous independent variables is said to be
(e.g., voltage waveform).
o A signal with discrete independent variables is said to be
(e.g., stock market index).
B Continuous or discrete dependent variable:
o A signal with a continuous dependent variable is said to be
(e.g., voltage waveform).
o A signal with a discrete dependent variable is said to be
(e.g., digital image).

B A continuous-valued CT signal is said to be (e.g., voltage
waveform).
B Adiscrete-valued DT signal is said to be (e.g., digital audio).
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Graphical Representation of Signals
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A is an entity that processes one or more input signals in order to
produce one or more output signals.

X0 T > Yo
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X, —— System ———
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~~ ~~
Input Signals Output Signals

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Classification of Systems

B Number of inputs:

o A system with one input is said to be

o A system with more than one input is said to be
B Number of outputs:

o A system with one output is said to be

o A system with more than one output is said to be
B Types of signals processed:

o A system can be classified in terms of the types of signals that it processes.
o Consequently, terms such as the following (which describe signals) can
also be used to describe systems:
o one-dimensional and multi-dimensional,
o continuous-time (CT) and discrete-time (DT), and
o analog and digital.

o For example, a continuous-time (CT) system processes CT signals and a
discrete-time (DT) system processes DT signals.
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Signal Processing Systems

Discrete-Time

Discrete-Time
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Communication Systems

Message
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General Structure of a Communication System
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Control Systems

Plant

Sensor

Reference
Input Error
Controller
Feedback
Signal

General Structure of a Feedback Control System
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Why Study Signals and Systems?

B Engineers build systems that process/manipulate signals.
B We need a formal mathematical framework for the study of such systems.

B Such a framework is necessary in order to ensure that a system will meet
the required specifications (e.g., performance and safety).

B [f a system fails to meet the required specifications or fails to work
altogether, negative consequences usually ensue.

B When a system fails to operate as expected, the consequences can
sometimes be catastrophic.
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System Failure Example: Tacoma Narrows Bridge

B The (original) Tacoma Narrows Bridge was a suspension bridge linking
Tacoma and Gig Harbor (WA, USA).

B This mile-long bridge, with a 2,800-foot main span, was the third largest
suspension bridge at the time of opening.

B Construction began in Nov. 1938 and took about 19 months to build at a
cost of $6,400,000.

B On July 1, 1940, the bridge opened to traffic.

B On Nov. 7, 1940 at approximately 11:00, the bridge collapsed during a
moderate (42 miles/hour) wind storm.

B The bridge was supposed to withstand winds of up to 120 miles/hour.

B The collapse was due to wind-induced vibrations and an unstable
mechanical system.

B Repair of the bridge was not possible.
B Fortunately, a dog trapped in an abandoned car was the only fatality.
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System Failure Example: Tacoma Narrows Bridge (continued)

Image of bridge collapse omitted for copyright reasons.

A video of the bridge collapse can be found at
https://youtu.be/j-zczJXSxnw.
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Part 2

Preliminaries
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Section 2.1

Functions, Sequences, System Operators, and Transforms
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mA is @ number of the form x/y, where x and y are

integers and y # O (i.e., a ratio of integers).

B For example, —%, % and 0 = % are rational numbers, whereas © and e

are irrational numbers (i.e., not rational).

B The symbols employed to denote several commonly-used sets are as

follows:
Symbol | Set
Z integers
R real numbers
(® complex numbers
Q rational numbers
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Notation for Sets of Consecutive Integers

B For two integers a and b, we define the following notation for sets of
consecutive integers:

a..
a..

(a..
(a..

IS}
S
Il
—
=
m
N

ra<x<b},
ta<x<b},
ra<x<b}, and
ra<x<b}.

Q & [
S s
N
Foalicopren
m M Mm
N N N

B |n this notation, a and b indicate the endpoints of the range for the set,
and the type of brackets used (i.e., parenthesis versus square bracket)
indicates whether each endpoint is included in the set.

B For example:

[0..4] denotes the set of integers {0,1,2,3,4};
[0..4) denotes the set of integers {0, 1,2,3}; and
[0..N—1]and [0..N) both denote the set of integers {0,1,2,...,N—1}.

m]
(m]
[m]
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Notation for Intervals on the Real Line

B For two real numbers a and b, we define the following notation for intervals
on the real line:

[a,b) ={xeR:a<x<b},
(a,b) ={xeR:a<x<b},
[a,b) ={xeR:a<x<b}, and
(a,b)={xeR:a<x<b}.

B |n this notation, a and b indicate the endpoints of the interval for the set,
and the type of brackets used (i.e., parenthesis versus square bracket)
indicate whether each endpoint is included in the set.

B For example:

o [0,100] denotes the set of all real numbers from 0 to 100, including both 0
and 100;

o (—m, 7| denotes the set of all real numbers from —x to &, excluding — but
including 7; and

o [—m,T) denotes the set of all real numbers from —7 to T, including — but
excluding .
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Mappings

mA is a relationship involving two sets that associates each
element in one set, called the , with an element from the other set,
called the
B The notation f : A — B denotes a mapping f whose domain is the set A
and whose codomain is the set B.
B Example:
Domain A Codomain B f:A—B
1 | —>e 0 A=1{1,2,3,4}
2,///1 B=1{0,1,2,3}
3 2 0 xe {1,2}
i S I

B Although many types of m

appings exist, the types of most relevance to

our study of signals and systems are: functions, sequences, system
operators, and transforms.
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Functions

A is @ mapping where the domain is a set that is confinuous in
nature, such as the real numbers or complex numbers.

B |n practice, the codomain is typically either the real numbers or complex
numbers.

B Functions are also commonly referred to as

B Example:

Let f : R — R such that f(r) = ¢* (i.e., f is the squaring function).

The function f maps each real number 7 to the real number f(z) = 1.
The domain and codomain are the real numbers.

Note that f is a function, whereas f(t) is a number (namely, the value of
the function f evaluated at ¢).

o o o a4

B Herein, we will focus almost exclusively on functions of a single
independent variable (i.e., one-dimensional functions).

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 19



Sequences

mA is a mapping where the domain is a set that is discrete in
nature, such as the integers, or a subset thereof.

B |n practice, the codomain is typically either the real numbers or complex
numbers.

B Sequences are also commonly referred to as

B Example:
o Let f:Z" — Z* such that f(n) = n?, where Z* denotes the set of
(strictly) positive integers (i.e., f is the sequence of perfect squares).
o The sequence f maps each (strictly) positive integer n to the (strictly)
positive integer f(n) = n>.
o The domain and codomain are Z* (i.e., the positive integers).
o Note that f is a sequence, whereas f(n) is a number (namely, the value of

the sequence f evaluated at n).
B As a matter of notation, the nth element of a sequence x is denoted as
either x(n) or x;,.
B Herein, we will focus almost exclusively on sequences with a single
independent variable (i.e., one-dimensional sequences).
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Remarks on Notation for Functions and Sequences

B For a real-valued function f of a real variable and an arbitrary real
number ¢, the expression f denotes the function f itself and the
expression f(¢) denotes the value of the function f evaluated at 7.

B Thatis, f is a function and f(t) is a number.

B Unfortunately, the practice of using f(¢) to denote the function f is quite
common, although strictly speaking this is an abuse of notation.

B |n contexts where imprecise notation may lead to problems, one should be
careful to clearly distinguish between a function and its value.

B For the real-valued functions f and g of a real variable and an arbitrary
real number ¢:

o The expression f -+ g denotes a function, namely, the function formed by
adding the functions f and g.

o The expression f(z) + g(¢) denotes a number, namely, the sum of: 1) the
value of the function f evaluated at ¢; and 2) the value of the function g
evaluated at 7.

B Similar comments as the ones made above for functions also hold in the
case of sequences.
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Remarks on Notation for Functions and Sequences conines

B To express that two functions f and g are equal, we can write either:
B f=g;or
f(t) =g(z) forallz.
B Of the preceding two expressions, the first (i.e., f = g) is usually
preferable, as it is less verbose.
B For the functions f and g and an operation o that is defined pointwise for
functions (such as addition, subtraction, multiplication, and division), the
following relationship holds:

(fog)t) = f(t)og(t).

B Some operations o involving functions (such as convolution, to be
discussed later) cannot be defined in a pointwise manner, in which case
(fog)(r) is a valid mathematical expression, while f(¢) o g(z) is not.

B Again, similar comments as the ones made above for functions also hold
in the case of sequences.
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System Operators

mA is @ mapping used to represent a system.

B We will focus exclusively on the case of single-input single-output
systems.

B A (single-input single-output) maps a function or
sequence representing the input of a system to a function or sequence
representing the output of the system.

B The domain and codomain of a system operator are sets of functions or
sequences, not sets of numbers.
B Example:
o Let H: F — F such that Hx(r) = 2x(¢) (for all 7 € R) and F is the set of
functions mapping R to R.
o The system J{ maps a function to a function.
o In particular, the domain and codomain are each F, which is a set of
functions.
o The system J multiplies its input function x by a factor of 2 in order to
produce its output function Hx.
o Note that Hx is a function, not a number.
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Remarks on Operator Notation for CT Systems

B For a system operator JH and a function x, Hx is the function produced as

the output of the system 3 when the input is the function x.

Brackets around the operand of an operator are often omitted when not
required for grouping.
For example, for an operator J, a function x, and a real number ¢, we
would normally prefer to write:

B JHx instead of the equivalent expression H(x); and

JHx(t) instead of the equivalent expression H (x)(r).
Also, note that Hx is a function and Hx(t) is a number (namely, the
value of the function Hx evaluated at ).

In the expression H (x| +x2), the brackets are needed for grouping, since
H(x1 +x2) #Z Hxy +x2 (Where “£” means “not equivalent”).

B When multiple operators are applied, they group from right fo left.
B For example, for the operators H; and H,, and the function x, the

expression H,Hx means H, [H; (x)].
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Remarks on Operator Notation for DT Systems

B For a system operator JH and a sequence x, Hx is the sequence

produced as the output of the system HH when the input is the sequence x.

Brackets around the operand of an operator are often omitted when not
required for grouping.
For example, for an operator H, a sequence x, and an integer n, we would
normally prefer to write:

B JHx instead of the equivalent expression H(x); and

Hx(n) instead of the equivalent expression H(x)(n).
Also, note that Hx is a sequence and Hx(n) is a number (namely, the
value of the sequence Hx evaluated at n).

In the expression H(x; +x2), the brackets are needed for grouping, since
H(x; +x2) #Z Hxy +x2 (Where “£” means “not equivalent”).

B When multiple operators are applied, they group from right fo left.

B For example, for the operators H; and H,, and the sequence x, the

expression H,Hx means H, [H; (x)].
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Transforms

B | ater, we will be introduced to several types of mappings known as
transforms.

B Transforms have a mathematical structure similar to system operators.
B That is, transforms map functions/sequences to functions/sequences.

B Due to this similar structure, many of the earlier comments about system
operators also apply to the case of transforms.

B For example, the Fourier transform (introduced later) is denoted as F and
the result of applying the Fourier transform operator to the
function/sequence x is denoted as Fx.

B Some examples of transforms of interest in the study of signals and
systems are listed on the next slide.
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Examples of Transforms

| Name | Domain | Codomain
CT Fourier Series T -periodic functions sequences
(with domain R) (with domain Z)
CT Fourier Transform | functions functions
(with domain R) (with domain R)
Laplace Transform functions functions

(with domain R)

(with domain C)

DT Fourier Series

N-periodic sequences
(with domain Z)

N-periodic sequences
(with domain Z)

(with domain Z)

DT Fourier Transform | sequences 2n-periodic functions
(with domain Z) (with domain R)
Z Transform sequences functions

(with domain C)
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Section 2.2

Properties of Signals

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 28



Even Symmetry

B A function x is said to be if it satisfies
x(t) =x(—t) forall ¢ (where t is a real number).
B A sequence x is said to be if it satisfies
x(n) =x(—n) forall n (where n is an integer).

B Geometrically, the graph of an even signal is symmetric with respect to
the vertical axis.

B Some examples of even signals are shown below.
x(1)

Afﬂﬂfdwlm
IRR EX

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 29




Odd Symmetry

B A function x is said to be if it satisfies
x(t) = —x(—t) forallt (where t is a real number).
B A sequence x is said to be if it satisfies
x(n) = —x(—n) forall n (where n is an integer).

B An odd signal x must be such that x(0) = 0.

B Geometrically, the graph of an odd signal is symmetric with respect to the
origin.

B Some examples of odd signals are shown below.
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Conjugate Symmetry

A function x is said to be if it satisfies
x(t) =x"(—t) forallt (wheret is a real number).
B A sequence x is said to be if it satisfies

x(n) =x*(—n) forall n (where n is an integer).

The real part of a conjugate symmetric function or sequence is even.

The imaginary part of a conjugate symmetric function or sequence is odd.

An example of a conjugate symmetric function is a complex sinusoid
x(t) = cos @t + jsinwt, where ® is a real constant.
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Periodicity
B A function x is said to be with T (or ) if, for
some strictly-positive real constant T', the following condition holds:

x(t)=x(t+T) forallt (wheretis areal number).

B A sequence x is said to be with N (or ) if, for
some strictly-positive integer constant N, the following condition holds:

‘ ‘

6

x(n) =x(n+N) forall n (where nis an integer).

B Some examples of periodic signals are shown below.

x(t) )

it

-4 -3 -2 -1 0 1

4
3
2
1

HJI
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Periodicity (Continued 1)

B A function/sequence that is not periodic is said to be

® A T-periodic function x is said to have + and
2n
T.
B An N-periodic sequence x is said to have % and
2n
ﬁ.
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Periodicity (Continued 2)

B The period of a periodic signal is not unique. That is, a signal that is
periodic with period T is also periodic with period kT, for every (strictly)

positive integer k.
x(1)

B AR RN
NWNINY

B The smallest period with which a signal is periodic is called the
and its corresponding frequency is called the
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Part 3

Continuous-Time (CT) Signals and Systems

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 35



Section 3.1

Independent- and Dependent-Variable Transformations
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Time Shifting (Translation)

u (also called ) maps the input function x to the
output function y as given by

y(t) =x(t—b),
where b is a real number.

B Such a transformation shifts the function (to the left or right) along the time
axis.

B If b > 0, yis shifted to the right by |b|, relative to x (i.e., delayed in time).
B If b <0, yis shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example

x(1)
3
2
1
R R R
x(t—1) x(t+1)
3 3
2 2
1 1
_‘3 _‘2 J] 0 ‘ : 4 —‘3 =2 —‘l 0 i ‘é 15 !
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Time Reversal (Reflection)

L (also known as ) maps the input function x to the
output function y as given by

¥(t) = x(~1).

B Geometrically, the output function y is a reflection of the input function x
about the (vertical) line t = 0.
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Time Compression/Expansion (Dilation)

u (also called ) maps the input
function x to the output function y as given by

y(t) = x(at),

where a is a strictly positive real number.

B Such a transformation is associated with a compression/expansion along
the time axis.

B Ifa > 1, y is compressed along the horizontal axis by a factor of a, relative
to x.

B Ifa <1, yis expanded (i.e., stretched) along the horizontal axis by a factor
of 1, relative to x.
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Time Compression/Expansion (Dilation): Example

x(1)
/\
22 A/ 0 i = !
x(2t) x(31)
| /\1 7
=2 ~1 0 i 7! I f i
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Time Scaling (Dilation/Reflection)

u maps the input function x to the output function y as given by

y(t) = x(at),
where a is a nonzero real number.

B Such a transformation is associated with a dilation (i.e.,
compression/expansion along the time axis) and/or time reversal.

B [f |a| > 1, the function is compressed along the time axis by a factor of |al.

B If |a| < 1, the function is expanded (i.e., stretched) along the time axis by
a factor of | 1.

If |a] = 1, the function is neither expanded nor compressed.
If a < 0, the function is also time reversed.

Dilation (i.e., expansion/compression) and time reversal commute.

Time reversal is a special case of time scaling with @ = —1; and time
compression/expansion is a special case of time scaling with a > 0.
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Time Scaling (Dilation/Reflection): Example

x(1) x(21)
/N ]
55 e = ag & 0 f !
x (%) x(—1)
o~ A
o 0 } % } ! 2 1 0 1 !
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Combined Time Scaling and Time Shifting

B Consider a transformation that maps the input function x to the output

function y as given by
y(1) = x(at —b),
where a and b are real numbers and a # 0.

B The above transformation can be shown to be the combination of a
time-scaling operation and time-shifting operation.

B Since time scaling and time shifting do not commute, we must be
particularly careful about the order in which these transformations are
applied.

B The above transformation has two distinct but equivalent interpretations:

H first, time shifting x by b, and then time scaling the result by a;
first, time scaling x by a, and then time shifting the result by b/a.
B Note that the time shift is not by the same amount in both cases.

B |n particular, note that when time scaling is applied first followed by time
shifting, the time shift is by b/a, not b.
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Combined Time Scaling and Time Shifting: Example

time shift by 1 and then time scale by 2

(21)
1 # T
Given x as shown — 1/\“ s /,\ bt
below, find W N/
y(t) =x(2t—1).

1
‘ JV\ P time scale by 2 and then time shift by %

! q(t) = x(2t) y)=q(t—-%
A
—}2 —i i }2 ! jz Jl i % ‘é 4

v vV
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Two Perspectives on Independent-Variable Transformations

B A transformation of the independent variable can be viewed in terms of

H the effect that the transformation has on the function; or
the effect that the transformation has on the horizontal axis.
This distinction is important because such a transformation has opposite
effects on the function and horizontal axis.
For example, the (time-shifting) transformation that replaces t by t — b
(where b is a real number) in x(¢) can be viewed as a transformation that
H shifts the function x right by b units; or
shifts the horizontal axis left by b units.
In our treatment of independent-variable transformations, we are only
interested in the effect that a transformation has on the function.

If one is not careful to consider that we are interested in the function
perspective (as opposed to the axis perspective), many aspects of
independent-variable transformations will not make sense.
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Amplitude Scaling

maps the input function x to the output function y as
given by

y(t) = ax(r),

where a is a real number.

B Geometrically, the output function y is expanded/compressed in amplitude
and/or reflected about the horizontal axis.
x(1)
2l
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Amplitude Shifting

L maps the input function x to the output function y as
given by

where b is a real number.

B Geometrically, amplitude shifting adds a vertical displacement to x.

x(1) x(t) =2
2 ) 4
/Jy\ T
R 3 5! S 4 T
—14 14+
2+ 24
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Combined Amplitude Scaling and Amplitude Shifting

B We can also combine amplitude scaling and amplitude shifting
transformations.

B Consider a transformation that maps the input function x to the output
function y, as given by

¥(t) = ax(t) +b,

where a and b are real numbers.

B Equivalently, the above transformation can be expressed as

y(t) =alx(r)+2].

B The above transformation is equivalent to:
H first amplitude scaling x by a, and then amplitude shifting the resulting
function by b; or
first amplitude shifting x by b/a, and then amplitude scaling the resulting
function by a.
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Section 3.2

Properties of Functions
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Symmetry and Addition/Multiplication

B Sums involving even and odd functions have the following properties:
o The sum of two even functions is even.
o The sum of two odd functions is odd.
o The sum of an even function and odd function is neither even nor odd,
provided that neither of the functions is identically zero.
B That is, the sum of functions with the same type of symmetry also has the
same type of symmetry.
B Products involving even and odd functions have the following properties:

o The product of two even functions is even.
o The product of two odd functions is even.
o The product of an even function and an odd function is odd.

B That is, the product of functions with the same type of symmetry is even,
while the product of functions with opposite types of symmetry is odd.
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Decomposition of a Function into Even and Odd Parts

B Every function x has a unique representation of the form

x(t) = xe(t) +xo(2),
where the functions x. and x, are even and odd, respectively.
B |n particular, the functions x. and x, are given by
Xe(t) = S[x(t) +x(—1)] and xo(t) = 1 [x(t) —x(—1)].

B The functions x. and x,, are called the and of x,
respectively.

B For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.
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Sum of Periodic Functions

B Sum of periodic functions. For two periodic functions x; and x, with
fundamental periods T1 and 75, respectively, and the sum y = x| +x3:
E The sum y is periodic if and only if the ratio 7} /T is a rational number (i.e.,
the quotient of two integers).
If y is periodic, its fundamental period is rT; (or equivalently, g7>, since
rTi = qT»), where T\ /T, = q/r and g and r are integers and coprime (i.e.,
have no common factors). (Note that r7; is simply the least common
multiple of 71 and 75.)

B Although the above theorem only directly addresses the case of the sum
of two functions, the case of N functions (where N > 2) can be handled by
applying the theorem repeatedly N — 1 times.
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Right-Sided Functions

B A function x is said to be if, for some (finite) real constant #,
the following condition holds:

x(t) =0 forallt <t

(i.e., x is only potentially nonzero to the right of ty).
B An example of a right-sided function is shown below.

x(t)

B A function x is said to be if
x(t)=0 forallt<O.

B A causal function is a special case of a right-sided function.

B A causal function is not to be confused with a causal system. In these two
contexts, the word “causal” has very different meanings.
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Left-Sided Functions

B A function x is said to be if, for some (finite) real constant ¢, the
following condition holds:

x(t)=0 forallt >ty

(i.e., x is only potentially nonzero to the left of ty).
B An example of a left-sided function is shown below.

x(r)

fo
B Similarly, a function x is said to be if
x(t)=0 foralls>0.
B An anticausal function is a special case of a left-sided function.
B An anticausal function is not to be confused with an anticausal system. In
these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Functions

B A function that is both left sided and right sided is said to be
(or ).
B An example of a finite duration function is shown below.

x(1)

t
fo 131

B A function that is neither left sided nor right sided is said to be
B An example of a two-sided function is shown below.

x(1)
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Bounded Functions

B A function x is said to be if there exists some (finite) positive
real constant A such that

|x(r)] <A forallt

(i.e., x(¢) is finite for all £).

B For example, the sine and cosine functions are bounded, since
|sinz| < 1forall and |cost| <1 forallt.

B |n contrast, the tangent function and any nonconstant polynomial
function p (e.g., p(t) = t*) are unbounded, since

lim |tanz| =c0 and lim |p(t)| = oo.
t—m/2 [t]—e0
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Energy and Power of a Function

B The E contained in the function x is given by

E— /_m x(0) 2 dr.

B A signal with finite energy is said to be an

B The P contained in the function x is given by
T/2 )
P=lim 1 x(¢)|” dt.
T—ee ™ J_T/2

B A signal with (nonzero) finite average power is said to be a
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Section 3.3

Elementary Functions
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Real Sinusoidal Functions

A is a function of the form
x(t) =Acos(wr +96),
where A, ®, and 0 are real constants.
B Such a function is periodic with fundamental period T = % and

fundamental frequency ||
B A real sinusoid has a plot resembling that shown below.

Acos(wr +8)

Acos6 /
t
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Complex Exponential Functions

A is a function of the form
x(t) = Ae,

where A and A are complex constants.

B A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of its parameters A and A.

B For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.
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Real Exponential Functions

A is a special case of a complex exponential
x(t) = AeM, where A and A are restricted to be real numbers.

B A real exponential can exhibit one of three distinct modes of behavior,
depending on the value of A, as illustrated below.

B [f A >0, x(t) increases exponentially as 7 iNCreases e. agowing exponentia.
u [f 7\. < O, x(l‘) decreases eXponentia"y as t increases (i.e., a decaying exponential).
m If L =0, x(¢) simply equals the constant A.

AcM AeM AeM
A A A
/ ' t \f
A>0 A=0 A<O0
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Complex Sinusoidal Functions

B A complex sinusoidal function is a special case of a complex exponential
x(1) = AeM, where A is complex and ) is purely imaginary (i.e.,
Re{A} = 0).

B Thatis, a is a function of the form
x(t) = Ae/™

where A is complex and o is real.

B By expressing A in polar form as A = |A|e/® (where 8 is real) and using
Euler’s relation, we can rewrite x(7) as

x(t) = |A|cos(or +8) +j]A| sin(cx + ).
Re(x(1)} Im{x(1)}

B Thus, Re{x} and Im{x} are the same except for a time shift.
B Also, x is periodic with fundamental period T = ‘ m‘ and fundamental
Jfrequency |®|.
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Complex Sinusoidal Functions (Continued)

B The graphs of Re{x} and Im{x} have the forms shown below.

|A|cos(wr +8) |A|sin(wr +6)

Al
|A|cos® /\ /_\
l’
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Plot of x(t) = ¢/ for ® € {27, —27}
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General Complex Exponential Functions

In the most general case of a complex exponential function x(r) = AeM, A
and A are both complex.

Letting A = |A|e/® and A = 6 + jo (where 6, 6, and ® are real), and
using Euler’s relation, we can rewrite x(z) as

x(t) = |A| e cos(wr +0) +j|A| e sin(wr +0).
Re{x(r)} Im{x(r)}

Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

One of three distinct modes of behavior is exhibited by x(¢), depending on
the value of ©.

If 6 = 0, Re{x} and Im{x} are real sinusoids.

B |f 6 > 0, Re{x} and Im{x} are each the product of a real sinusoid and a

growing real exponential.
If 6 < 0, Re{x} and Im{x} are each the product of a real sinusoid and a
decaying real exponential.
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General Complex Exponential Functions (Continued)

B The three modes of behavior for Re{x} and Im{x} are illustrated below.

S e e

>0 =0 c<0
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Relationship Between Complex Exponentials and Real

Sinusoids

B From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

Ae’® = Acos(wt) + jAsin(owr).
B Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

AT .
Acos(wt+6) = 5 [ j(or+8) +e—](mt+e)} and

Asin(or +0) = ;\] |:ej(0)t+9) _e—j(wt—i-e)} .

B Note that, above, we are simply restating results from the (appendix)
material on complex analysis.
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Unit-Step Function

B The (also known as the ), denoted
u, is defined as
1 t>0
u(r) = .
0 otherwise.

B Due to the manner in which u is used in practice, the actual value of 1u(0)
is unimportant. Sometimes values of 0 and % are also used for u(0).

B A plot of this function is shown below.

u(t)
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Signum Function

B The , denoted sgn, is defined as
1 >0
sgnf=<¢0 ¢t=0
-1 t<0.

B From its definition, one can see that the signum function simply computes
the sign of a number.

B A plot of this function is shown below.

sgnt
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Rectangular Function

B The (also called the unit-rectangular pulse
function), denoted rect, is given by

1 —l<i<cl
rectt = 2= . 2
0 otherwise.

B Due to the manner in which the rect function is used in practice, the actual
value of rectt at t = i% is unimportant. Sometimes different values are
used from those specified above.

B A plot of this function is shown below.

rectt

1

t
1
1 0 3
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Indicator Function

Functions and sequences that are one over some subset of their domain
and zero elsewhere appear very frequently in engineering (e.g., the
unit-step function and rectangular function).

Indicator function notation provides a concise way to denote such
functions and sequences.

The of a subset S of a set A, denoted Y, is defined as
1 ifres
)=
xs(t) {O otherwise.
A rectangular pulse (defined on R) having an amplitude of 1, a leading

edge at a, and falling edge at b is ¥4 -

B The unit-step function (defined on R) is X[0,0)-

B The unit-rectangular pulse (defined on R) is X[-1/2,1/2)-

B The unit-step sequence (defined on Z) is X[0..0)-
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Triangular Function

B The (also called the unit-triangular pulse function),
denoted tri, is defined as

) 1-2Jt t|<3
trit =
0 otherwise.

B A plot of this function is shown below.

trit
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Cardinal Sine Function

B The function, denoted sinc, is given by

B By I'Hopital’s rule, sincO = 1.

B A plot of this function for part of the real line is shown below.
[Note that the oscillations in sinc¢ do not die out for finite ¢.]

1~
0.8
0.6
0.4
0.2

0
02

-0.4 L
—10r —5m 0 5n 10w
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Floor and Ceiling Functions

The , denoted |- |, is a function that maps a real number x
to the largest integer not more than x.

In other words, the floor function rounds a real number to the nearest
integer in the direction of negative infinity.

For example,

|-1]=-1, [4]=0, and [1]=1.
The , denoted [-], is a function that maps a real number x
to the smallest integer not less than x.

In other words, the ceiling function rounds a real number to the nearest
integer in the direction of positive infinity.

For example,
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Some Properties of the Floor and Ceiling Functions

B Several useful properties of the floor and ceiling functions include:

|x+n|=|x|]+n forxeRandneZ;

[x+n]=[x]+n forxeRandneZ,
[x] =—|—x| forxeR;

x| =—[—x] forxeR;

—1 —1
{ﬂw = {m—i—n J: {m J+1 form,n € Z andn >0; and
n n

LTJ — [m_nﬂ—‘ = {m+1—‘ —1 form,n€Zandn>0.
n

n n
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Unit-Impulse Function

B The (also known as the or
), denoted 9, is defined by the following two properties:

8(t)=0 fort#0 and
/wB(t)dtzl.

B Technically, d is not a function in the ordinary sense. Rather, it is what is
known as a generalized function. Consequently, the d function
sometimes behaves in unusual ways.

B Graphically, the delta function is represented as shown below.

3(1) Kd(r—19)

1 K

0 0 1
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Unit-Impulse Function as a Limit

B Define

0 otherwise.

aoll) = {1/8 ] <e/2

B The function g¢ has a plot of the form shown below.

ge()

t

€
-2 0 3

B Clearly, for any choice of €, [~ ge(f)dt = 1.
B The function 3 can be obtained as the following limit:

8(1) = lim g (1)

B Thatis, 6 can be viewed as a limiting case of a rectangular pulse where
the pulse width becomes infinitesimally small and the pulse height
becomes infinitely large in such a way that the integral of the resulting
function remains unity.
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Properties of the Unit-Impulse Function

u For any continuous function x and any real
constant 7,

x(1)0(t —19) = x(19)d(t —19).

u For any continuous function x and any real constant 7,

L Zx(t)S(t — to)dt = x(to).
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Graphical Interpretation of Equivalence Property

() S(r—1p)
1
x(io) - T
: t
t;) ! K
. Time-Shifted Unit-Impulse
Function x i
Function
x(1)8(t —19)
x(t0)
t,
fo
Product
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Representing a Rectangular Pulse (Using Unit-Step Functions)

B For real constants a and b where a < b, consider a function x of the form

x(t)_{1 a<t<b

0 otherwise

(i.e., x is arectangular pulse of height one, with a rising edge at a and
falling edge at b).

B The function x can be equivalently written as
x(t) =u(t—a)—u(t—b)

(i.e., the difference of two time-shifted unit-step functions).

B Unlike the original expression for x, this latter expression for x does not
involve multiple cases.

B |n effect, by using unit-step functions, we have collapsed a formula
involving multiple cases into a single expression.
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Representing Functions Using Unit-Step Functions

B The idea from the previous slide can be extended to handle any function
that is defined in a piecewise manner (i.e., via an expression involving
multiple cases).

B That is, by using unit-step functions, we can always collapse a formula
involving multiple cases into a single expression.

B Often, simplifying a formula in this way can be quite beneficial.
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Section 3.4

Continuous-Time (CT) Systems
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CT Systems

B A system with input x and output y can be described by the equation
y = Hx,

where H denotes an operator (i.e., transformation).

B Note that the operator H maps a function to a function (not a number to
a number).

B Alternatively, we can express the above relationship using the notation
K
X —>

B |f clear from the context, the operator JH is often omitted, yielding the
abbreviated notation

X =y

B Note that the symbols “—” and “=" have very different meanings.
B The symbol “—” should be read as “produces” (not as “equals”).
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Block Diagram Representations

B Often, a system defined by the operator H and having the input x and
output y is represented in the form of a block diagram as shown below.

Input Output
X System Y
H
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Interconnection of Systems

B Two basic ways in which systems can be interconnected are shown below.

X j—[l y
L j—fl —»— j—fz +y
: ¥
Series
Parallel
mA (or ) connection ties the output of one system to the input
of the other.
B The overall series-connected system is described by the equation
y=TJoHx.

mA connection ties the inputs of both systems together and sums

their outputs.

B The overall parallel-connected system is described by the equation

y=Hx+ Hox.
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Section 3.5

Properties of (CT) Systems
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B A system K is said to be if, for every real constant 79, Hx(1)
does not depend on x(¢) for some ¢ # 1.

B |n other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

B A system that is not memoryless is said to have

B Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.
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Memory (Continued)

If the system J{ is memoryless,
the output Hx at £
can depend on the input x
only at 7.

l

t t —> 7

—o0 tO (o)

T

Consider the calculation of the
output Hx at .

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 89



B A system I is said to be if, for every real constant 7y, Hx(zp) does
not depend on x(¢) for some ¢ > 1.

B |n other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

B [f the independent variable ¢ represents time, a system must be causal in
order to be physically realizable.

B Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

B A memoryless system is always causal, although the converse is not
necessarily true.
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Causality (Continued)

If the system I is causal,
the output Hx at £
can depend on the input x
only at points ¢t < #.

t<t

i i — ¢

—o0 t() (e

T

Consider the calculation of the
output Hx at .

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Invertibility

B The of a system J{ (if it exists) is another system 3{~! such that,
for every function x,

H ' Hx=x
(i.e., the system formed by the cascade interconnection of HH followed by
K~ is a system whose input and output are equal).

B A system is said to be if it has a corresponding inverse system
(i.e., its inverse exists).

B Equivalently, a system is invertible if its input can always be uniquely
determined from its output.

B An invertible system will always produce distinct outputs from any two
distinct inputs (i.e., x1 # x» = Hx| # Hxp).

B To show that a system is invertible, we simply find the inverse system.

B To show that a system is not invertible, we find two distinct inputs that
result in identical outputs (i.e., x| # x, and Hx; = Hxy).

B |n practical terms, invertible systems are “nice” in the sense that their
effects can be undone.
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Invertibility (Continued)

® A system 3! being the inverse of H{ means that the following two
systems are equivalent (i.e., 1~ ' I is an identity):

X X
—— 1 —»—y —— —— #y

System 1: y = H~1Hx System 2: y =x
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Bounded-Input Bounded-Output (BIBO) Stability

B A system J{ is said to be
if, for every bounded function x, Jx is bounded (i.e.,
all t implies that |Hx()| < oo for all 7).

x(t)| < oo for

B |n other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

B To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

B To show that a system is not BIBO stable, we only need to find a single
bounded input that leads to an unbounded output.

B |n practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input is finite everywhere (in its domain), the output
will also be finite everywhere.

B Usually, a system that is not BIBO stable will have serious safety issues.

B For example, a portable music player with a battery input of 3.7 volts and
headset output of e volts would result in one vaporized human (and likely
a big lawsuit as well).
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Time Invariance (Tl)

B A system H is said to be (or ) if,
for every function x and every real constant 1, the following condition
holds:

Hax(t —19) = HX/(¢) forallz, where x'(t) =x(t —19)
(i.e., H commutes with time shifts).

B |n other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

B A system that is not time invariant is said to be

B |n simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

B Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 95



Time Invariance (Continued)

B et §,, denote an operator that applies a time shift of 1, to a function (i.e.,
Six(1) = x(t — 19)).

B A system H is time invariant if and only if the following two systems are
equivalent (i.e., I commutes with S,)):

—{a{r— o mE

System 1: y = H8;x s Cy
, ystem 2: y = 8, Hx
{ =30 } [y(r) = Hx(t —19)]
X (t) = 8,x(t) =x(t —19)

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Additivity, Homogeneity, and Linearity

B A system H is said to be if, for all functions x; and x», the
following condition holds:

H(xy +x2) = Hoxp + Hxp
(i.e., H commutes with addition).

B A system X is said to be if, for every function x and every
complex constant a, the following condition holds:
H(ax) = aHx

(i.e., H commutes with scalar multiplication).
B A system that is both additive and homogeneous is said to be
B |n other words, a system I is linear, if for all functions x; and x, and all
complex constants a; and a;, the following condition holds:
H(ayx; + axxp) = ayHxy + ayHxy
(i.e., H commutes with linear combinations).
B The linearity property is also referred to as the property.
B Practically speaking, linear systems are much easier to design and
analyze than nonlinear systems.
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Additivity, Homogeneity, and Linearity (Continued 1)

B The system I is additive if and only if the following two systems are
equivalent (i.e., I commutes with addition):

System 1: y = H(x; +x2)

System 2: y = Hx| + Hxp

B The system H is homogeneous if and only if the following two systems
are equivalent (i.e., J{ commutes with scalar multiplication):

X y X y
el e e e n El e W e

System 1: y = H(ax) System 2: y = aHx
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Additivity, Homogeneity, and Linearity (Continued 2)

B The system H is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

X

y

X1

[ g Lord 4 | )

X2

System 1: y = H(ayx; + axxy)

X2

@@\?

H as
L= e

System 2: y = a1 Hx; +arHxp
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Eigenfunctions of Systems

B A function x is said to be an of the system JH with the
A if
Hx = Ax,
where A is a complex constant.

B In other words, the system J{ acts as an ideal amplifier for each of its

eigenfunctions x, where the amplifier gain is given by the corresponding
eigenvalue A.

B Different systems have different eigenfunctions.

B Many of the mathematical tools developed for the study of CT systems
have eigenfunctions as their basis.
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Part 4

Continuous-Time Linear Time-Invariant (LTl) Systems
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Why Linear Time-Invariant (LTI) Systems?

B |n engineering, linear time-invariant (LTI) systems play a very important
role.

B Very powerful mathematical tools have been developed for analyzing LTI
systems.

B LTI systems are much easier to analyze than systems that are not LTI.

B |n practice, systems that are not LTI can be well approximated using LTI
models.

B So, even when dealing with systems that are not LTI, LTI systems still play
an important role.
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Section 4.1

Convolution
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CT Convolution

B The (CT) of the functions x and A, denoted x x h, is defined
as the function

xxh(t) = /_ Zx('c)h(t _)dr.

B The convolution result x x 4 evaluated at the point ¢ is simply a weighted
average of the function x, where the weighting is given by & time reversed
and shifted by z.

B Herein, the asterisk symbol (i.e., “x”) will always be used to denote
convolution, not multiplication.

B As we shall see, convolution is used extensively in systems theory.

B |n particular, convolution has a special significance in the context of LTI
systems.
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Practical Convolution Computation

B To compute the convolution

xxh(t) = /_ Zx(r)h(t _t)dr,

we proceed as follows:

B Plot x(t) and A(t — ) as a function of 7.

Initially, consider an arbitrarily large negative value for ¢. This will result in
h(t — ) being shifted very far to the left on the time axis.

Write the mathematical expression for x  h(t).

Increase ¢ gradually until the expression for x * h(r) changes form. Record
the interval over which the expression for x  h(r) was valid.

Repeat steps 3 and 4 until ¢ is an arbitrarily large positive value. This
corresponds to i(t — t) being shifted very far to the right on the time axis.

B The results for the various intervals can be combined in order to obtain an
expression for x x A(t) for all 7.
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Properties of Convolution

B The convolution operation is commutative. That is, for any two functions x
and A,

x*xh=hxx.

B The convolution operation is associative. That is, for any functions x, hy,
and h;,

(xxhy)xhy = x% (h;*hy).

B The convolution operation is distributive with respect to addition. That is,
for any functions x, &1, and h;,

xk (hy+hy) =xxhy +xxhy.
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Representation of Functions Using Impulses

B For any function x,
x#8(1) = / " x(0)8(t — t)dt = x(1).

B Thus, any function x can be written in terms of an expression involving 9.

B Moreover, d is the convolutional identity. That is, for any function x,

X*k0=X.
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Periodic Convolution

B The convolution of two periodic functions is usually not well defined.

B This motivates an alternative notion of convolution for periodic functions
known as periodic convolution.

B The of the T-periodic functions x and 4, denoted
X® h, is defined as

x@h(r) = /T X(0)h(t —1)dr,

where [} denotes integration over an interval of length 7.

B The periodic convolution and (linear) convolution of the T-periodic
functions x and & are related as follows:

x®h(t) =xo+h(t) where x(t)= i xo(t —kT)

k=—o0

(i.e., xo(r) equals x(¢) over a single period of x and is zero elsewhere).
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Section 4.2

Convolution and LTI Systems
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Impulse Response

The response & of a system K to the input 8 is called the
of the system (i.e., h = JJ).

For any LTI system with input x, output y, and impulse response 4, the
following relationship holds:

y=xx*h.

B In other words, a LTI system simply computes a convolution.

B Furthermore, a LTI system is completely characterized by its impulse

response.

That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.

Since the impulse response of a LTI system is an extremely useful
quantity, we often want to determine this quantity in a practical setting.
Unfortunately, in practice, the impulse response of a system cannot be
determined directly from the definition of the impulse response.
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Step Response

B The response s of a system JH to the input u is called the of
the system (i.e., s = Hu).

B The impulse response h and step response s of a LTI system are related
as

h(r) = djl(t”.

B Therefore, the impulse response of a system can be determined from its
step response by differentiation.

B The step response provides a practical means for determining the impulse
response of a system.
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Block Diagram Representation of LTI Systems

B Often, it is convenient to represent a (CT) LTI system in block diagram
form.

B Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

B That is, we represent a system with input x, output y, and impulse
response h, as shown below.

X y

——— h L,
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Interconnection of LTI Systems

B The series interconnection of the LTI systems with impulse responses
and hy is the LTI system with impulse response A * h,. That is, we have
the equivalence shown below.

x y X y

e S O Iy *ho >

!

B The parallel interconnection of the LTI systems with impulse responses
hy and h; is the LTI system with impulse response i + hy. That is, we
have the equivalence shown below.

X y
hy

!

hi +ha —

hy
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Section 4.3

Properties of LTI Systems
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B A LTI system with impulse response % is memoryless if and only if
h(t)=0 forallr#D0.

B That is, a LTI system is memoryless if and only if its impulse response # is
of the form

h(t) = Kd(t),

where K is a complex constant.

B Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form

y=x%(K3) = Kx

(i.e., the system is an ideal amplifier).

B For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).
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B A LTI system with impulse response £ is causal if and only if
h(t)=0 forallt <0

(i.e., h is a causal function).
B |t is due to the above relationship that we call a function x, satisfying

x(t)=0 forallt <0,

a causal function.
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Invertibility

B The inverse of a LTI system, if such a system exists, is a LTI system.

B |et 4 and h;,, denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h* hipy = 0.

B Consequently, a LTI system with impulse response # is invertible if and
only if there exists a function A;,, such that

h* hipy = 0.

B Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

B A LTI system with impulse response / is BIBO stable if and only if

/_w (1) dr < o

(i.e., h is absolutely integrable).
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Eigenfunctions of LTI Systems

B As it turns out, every complex exponential is an eigenfunction of all LTI
systems.

B For a LTI system 3 with impulse response h,
H{e"}t) = H(s)e",

where s is a complex constant and
H(s) = / h(r)e"dr.

B Thatis, ¢ is an eigenfunction of a LTI system and H s) is the
corresponding eigenvalue.

B We refer to H as the (or ) of the
system H.

B From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(s).

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 119



Representations of Functions Using Eigenfunctions

Consider a LTI system with input x, output y, and system function H.
Suppose that the input x can be expressed as the linear combination of
complex exponentials
x(1) =Y are™,
k

where the a; and s; are complex constants.

Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(1) =Y axH (se)e™.
%

Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as a linear
combination of the same complex exponentials.

The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Part 5

Continuous-Time Fourier Series (CTFS)
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Introduction

B The (CT) Fourier series is a representation for periodic functions.

B With a Fourier series, a function is represented as a linear combination
of complex sinusoids.

B The use of complex sinusoids is desirable due to their numerous attractive
properties.

B For example, complex sinusoids are continuous and differentiable. They
are also easy to integrate and differentiate.

B Perhaps, most importantly, complex sinusoids are eigenfunctions of LTI
systems.
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Section 5.1

Fourier Series
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Harmonically-Related Complex Sinusoids

B A set of complex sinusoids is said to be if there
exists some constant g such that the fundamental frequency of each
complex sinusoid is an integer multiple of .

B Consider the set of harmonically-related complex sinusoids given by
Ok () = e*™  for all integer k.

B The fundamental frequency of the kth complex sinusoid ¢y is k@, an
integer multiple of .

B Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of wg, a linear combination of
these complex sinusoids must be periodic.

B More specifically, a linear combination of these complex sinusoids is
periodic with period T = 2X.
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CT Fourier Series

B A periodic (complex-valued) function x with fundamental period 7' and
fundamental frequency @y = 27“ can be represented as a linear
combination of harmonically-related complex sinusoids as

B Such a representation is known as (the complex exponential form of) a
(CT) , and the ¢, are called

B The above formula for x is often referred to as the

B The terms in the summation for k = K and k = —K are called the Kth
, and have the fundamental frequency K®y.
B To denote that a function x has the Fourier series coefficient sequence cy,
we write

CTFS

x(t) ¢ ck.
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CT Fourier Series (Continued)

B The periodic function x with fundamental period 7" and fundamental
frequency mg = 27” has the Fourier series coefficients ¢, given by

1 .
k= ?/Tx(t)e Tkt gy

where [, denotes integration over an arbitrary interval of length T (i.e.,
one period of x).

B The above equation for ¢y is often referred to as the
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Section 5.2

Convergence Properties of Fourier Series
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Remarks on Equality of Functions

B The equality of functions can be defined in more than one way.
B Two functions x and y are said to be if
x(t) =y(z) for all  (i.e., x and y are equal at every point).
B Two functions x and y are said to be
if [ |x(¢) — y(¢)|*dt = 0 (i.e., the energy in x —y is zero).
B Pointwise equality is a stronger condition than MSE equality (i.e.,
pointwise equality implies MSE equality but the converse is not true).
B Consider the functions

xi(t)=1forallt, xy(t)=1forallz, and

x3(t):{2 t=0

1 otherwise.

B The functions x; and x; are equal in both the pointwise sense and MSE
sense.

B The functions x| and x3 are equal in the MSE sense, but not in the
pointwise sense.
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Convergence of Fourier Series

B Since a Fourier series can have an infinite number of (nonzero) terms,
and an infinite sum may or may not converge, we need to consider the

issue of convergence.
B That is, when we claim that a periodic function x is equal to the Fourier
series Y ., cre?* @ is this claim actually correct?
B Consider a periodic function x that we wish to represent with the Fourier
series

Z ek

k=—o0
B | et xy denote the Fourier series truncated after the Nth harmonic
components as given by

N
(i)=Y crek,
k=—N

B Here, we are interested in whether limy_,.. xy is equal (in some sense)
to x.
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Convergence of Fourier Series (Continued)

B Again, let xy denote the Fourier series for the periodic function x truncated
after the Nth harmonic components as given by

N
(i)=Y crek,
k=—N

B If limy_exy(2) = x(¢) for all 7 (i.e., limy_,xy is equal to x in the
pointwise sense), the Fourier series is said to converge to x.

B |f convergence is pointwise and the rate of convergence is the same
everywhere, the convergence is said to be

B I limy_ye 5 f7 v (2) —x(1)*dt =0 (i.e., limy_,.xy is equal to x in the
MSE sense), the Fourier series is said to converge to x in the sense.

B Pointwise convergence is a stronger condition than MSE convergence
(i.e., pointwise convergence implies MSE convergence, but the converse
is not true).
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Convergence of Fourier Series: Continuous Case

B |f a periodic function x is continuous and its Fourier series coefficients c;
are absolutely summable (i.e., Y5 _, |ck| < =), then the Fourier series
representation of x converges uniformly (i.e., pointwise at the same rate
everywhere).

B Since, in practice, we often encounter functions with discontinuities (e.g.,
a square wave), the above result is of somewhat limited value.
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Convergence of Fourier Series: Finite-Energy Case

B |f a periodic function x has finite energy in a single period (i.e.,
Ir |x(t)[* dt < o), the Fourier series converges in the MSE sense.

B Since, in situations of practice interest, the finite-energy condition in the
above theorem is typically satisfied, the theorem is usually applicable.

B |t is important to note, however, that MSE convergence (i.e., E = 0) does
not necessarily imply pointwise convergence (i.e., %(t) = x(t) for all z).

B Thus, the above convergence theorem does not provide much useful
information regarding the value of X(¢) for specific values of ¢.

B Consequently, the above theorem is typically most useful for simply
determining if the Fourier series converges.
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Dirichlet Conditions

B The for the periodic function x are as follows:

B over a single period, x is absolutely integrable (i.e., [} |x(t)|dt < oo);
over a single period, x has a finite number of maxima and minima (i.e., x is

of bounded variation); and
over any finite interval, x has a finite number of discontinuities, each of

which is finite.
B Examples of functions violating the Dirichlet conditions are shown below.

v L” L (i (s
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Convergence of Fourier Series: Dirichlet Case

B |f a periodic function x satisfies the Dirichlet conditions, then:

H the Fourier series converges pointwise everywhere to x, except at the
points of discontinuity of x; and
at each point ¢, of discontinuity of x, the Fourier series X converges to

i(ta) = 5 [x(13) + ()]
where x(7;") and x(z;”) denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.

B Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier series at every point,
this result is often very useful in practice.
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Gibbs Phenomenon

B |n practice, we frequently encounter functions with discontinuities.

B When a function x has discontinuities, the Fourier series representation of
x does not converge uniformly (i.e., at the same rate everywhere).

B The rate of convergence is much slower at points in the vicinity of a
discontinuity.

B Furthermore, in the vicinity of a discontinuity, the truncated Fourier series
xy exhibits ripples, where the peak amplitude of the ripples does not seem
to decrease with increasing N.

B As it turns out, as N increases, the ripples get compressed towards
discontinuity, but, for any finite N, the peak amplitude of the ripples
remains approximately constant.

B This behavior is known as

B The above behavior is one of the weaknesses of Fourier series (i.e.,
Fourier series converge very slowly near discontinuities).
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Gibbs Phenomenon: Periodic Square Wave Example

/ n N n N
1Y Y U v
Fourier series truncated after the Fourier series truncated after the
3rd harmonic components 7th harmonic components
f 0 7 A |
F i f
Fourier series truncated after the Fourier series truncated after the
11th harmonic components 101st harmonic components
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Section 5.3

Properties of Fourier Series
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Properties of (CT) Fourier Series

x(t) = ar and y(r) <— by

’ CTFS, CTFS, ‘

Property Time Domain  Fourier Domain
Linearity ox(t)+By(t)  oax+ Pbk
Translation x(t—19) e K2/ T)o g,
Modulation eMCT (1) ap
Reflection x(—t) a_g
Conjugation x*(1) a*,
Periodic Convolution x® y(¢) Tayby,
Multiplication x(8)y(2) oo UnDk—n
Property
Parseval’s Relation L [ |x(t) Pdt=Y7 _|al
Even Symmetry X is even < a is even
Odd Symmetry xis odd < ais odd

Real / Conjugate Symmetry x is real < a is conjugate symmetric
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B Let x and y be two periodic functions with the same period. If x(¢) <> a;

and y(t) <= by, then
oue(t) + By (r) <+ ouag + Bby,
where o and B are complex constants.

B That is, a linear combination of functions produces the same linear
combination of their Fourier series coefficients.
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Time Shifting (Translation)

B |et x denote a periodic function with period T and the corresponding
CTFS

frequency @y = 2t/ T. If x(¢) <— ¢y, then
X(l . ZO) cTFS e—jkmotock _ e—jk(ZTlt/T)tOck7

where tj is a real constant.

B |n other words, time shifting a periodic function changes the argument (but
not magnitude) of its Fourier series coefficients.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Frequency Shifting (Modulation)

B |et x denote a periodic function with period T and the corresponding

frequency wp =2t/ T. If x(t) <— ¢y, then
M) (1) = ™M (1) &% o4,

where M is an integer constant.

B |n other words, multiplying a periodic function by e/M®! shifts the
Fourier-series coefficient sequence.
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Time Reversal (Reflection)

B |et x denote a periodic function with period T and the corresponding
frequency @ = 21t/T. If x(t) <= ¢y, then

CTFS

x(—t) < c_.

B That is, time reversal of a function results in a time reversal of its Fourier
series coefficients.
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B For a T-periodic function x with Fourier series coefficient sequence c, the
following property holds:

CTFS,  x

xX'(t) «— %y

B |n other words, conjugating a function has the effect of time reversing and
conjugating the Fourier series coefficient sequence.
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Periodic Convolution

B | et x and y be two periodic functions with the same period T'. If
x(t) &5 ay and y(t) <= by, then

x@y(t) 2) Tayby.

B |n other words, periodic convolution of two functions corresponds to the
multiplication (up to a scale factor) of their Fourier-series coefficient
sequences.
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Multiplication

CTFS

B Letx and y be two periodic functions with the same period. If x(r) <— a
and y(t) <= by, then

x(O)y(t) < Y, anbin

n—=—oo

B As we shall see later, the above summation is the DT convolution of a
and b.

B |n other words, the multiplication of two periodic functions corresponds to
the DT convolution of their corresponding Fourier-series coefficient
sequences.
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Parseval’s Relation

B A function x and its Fourier series coefficient sequence a satisfy the
following relationship:

b oPar= Y lap.

k=—o0

B The above relationship is simply stating that the amount of energy in x
(e, + [r lx(¢)|* dt) and the amount of energy in the Fourier series
coefficient sequence a (i.e., Y5 _.. \ak|2) are equal.

B |n other words, the transformation between a function and its Fourier
series coefficient sequence preserves energy.
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Even and Odd Symmetry

B For a periodic function x with Fourier series coefficient sequence c, the
following properties hold:

X is even < ciseven; and
X is odd < cis odd.

B |n other words, the even/odd symmetry properties of x and ¢ always
match.
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Real Functions

B A function x is real if and only if its Fourier series coefficient sequence ¢
satisfies

cp=cry forallk

(i.e., c is conjugate symmetric).

B Thus, for a real-valued function, the negative-indexed Fourier series
coefficients are redundant, as they are completely determined by the
nonnegative-indexed coefficients.

B From properties of complex numbers, one can show that ¢y = ¢*, is
equivalent to

lck| = |c—x| and argep = —arge_j

(i.e.,

ck| is even and argcy is odd).

B Note that x being real does nof necessarily imply that c is real.
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Trigonometric Forms of a Fourier Series

B Consider the periodic function x with the Fourier series coefficients cy.

B |f x is real, then its Fourier series can be rewritten in two other forms,
known as the combined trigonometric and trigonometric forms.

H The of a Fourier series has the
appearance

x(t) =co+2 Z ’Ck| COS(k(D()t + ek),
k=1
where 0; = argcy.
B The of a Fourier series has the appearance

= Z oy cos(kwot ) + B sin(kwot )],

where oy, = 2Rec¢; and By = —2Imy.
B Note that the trigopnometric forms contain only real quantities.
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Other Properties of Fourier Series

B For a T-periodic function x with Fourier-series coefficient sequence c, the
following properties hold:
| ¢ is the average value of x over a single period T';
x is real and even < c is real and even; and
x is real and odd < ¢ is purely imaginary and odd.
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Section 5.4

Fourier Series and Frequency Spectra
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A New Perspective on Functions: The Frequency Domain

B The Fourier series provides us with an entirely new way to view functions.

B |nstead of viewing a function as having information distributed with respect

to time (i.e., a function whose domain is time), we view a function as
having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

This so called frequency-domain perspective is of fundamental
importance in engineering.

Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

The Fourier series coefficients of a function x provide a means to quantify
how much information x has at different frequencies.

The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.
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Motivating Example

B Consider the real 1-periodic function x having the Fourier series
representation

_j —jldm  2j ijOnz_ﬂ fj6nt_@ —j2mt
x(1) = —15e 10¢ 10€ 10 ¢
13 4 2j i
+ Oje]27tt+ je]61tt+ 2j ]107[1‘_'_1]708]1470‘.

B A plot of x is shown below.

/W\ I VM

T t

) M

B The terms that make the most dominant contribution to the overall sum
are the ones with the largest magnitude coefficients.

L.,

B To illustrate this, we consider the problem of determining the best
approximation of x that keeps only 4 of the 8 terms in the Fourier series.
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Motivating Example (Continued)

approximation

= —
L L
T +

e
-

Approximation using the 4 terms with the
largest magnitude coefficients

approximation

x(1)

1
1
2

A AA AE/\. AA N

Y vg/ RVARVEY

Approximation using the 4 terms with the
smallest magnitude nonzero coefficients
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Fourier Series and Frequency Spectra

B To gain further insight into the role played by the Fourier series coefficients

¢k in the context of the frequency spectrum of the function x, it is helpful to
write the Fourier series with the c; expressed in polar form as follows:

x(t) = i cpelkot — i ]ck]ej(k‘”(’”“gc").
k=—oc0 k=—o0

Clearly, the kth term in the summation corresponds to a complex sinusoid
with fundamental frequency k® that has been amplitude scaled by a
factor of |cx| and time shifted by an amount that depends on argcy.

For a given k, the larger |c;| is, the larger is the amplitude of its
corresponding complex sinusoid e/’ and therefore the larger the
contribution the kth term (which is associated with frequency k) will
make to the overall summation.

In this way, we can use |cx| as a measure of how much information a
function x has at the frequency k.
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Fourier Series and Frequency Spectra (Continued)

B The Fourier series coefficients ¢, are referred to as the

of x.

The magnitudes |ck| of the Fourier series coefficients are referred to as
the of x.

The arguments arg c; of the Fourier series coefficients are referred to as
the of x.

Normally, the spectrum of a function is plotted against frequency kwg
instead of k.

Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as
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Frequency Spectra of Real Functions

B Recall that, for a real function x, the Fourier series coefficient sequence ¢
satisfies

Ck — Cik
(i.e., c is conjugate symmetric), which is equivalent to

lck| = |c—x| and argcp = —arge_y.

B Since |cx| = |c_«|, the magnitude spectrum of a real function is always
even.

B Similarly, since argc;, = —argc—_g, the phase spectrum of a real function is
always odd.

B Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

B |n the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Section 5.5

Fourier Series and LTI Systems
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Frequency Response

B Recall that a LTI system J with impulse response / is such that
H{e"}(t) = Hi(s)e™, where Hy (s) = [, h(t)e *'dt. (That is, complex
exponentials are eigenfunctions of LTI systems.)

B Since a complex sinusoid is a special case of a complex exponential, we
can reuse the above result for the special case of complex sinusoids.

B For a LTI system JH with impulse response #,
H{/}(t) = H(w)e!,
where ® is a real constant and

H(o) = /_ Zh(t)e’j"”dt.

B Thatis, e/? is an eigenfunction of a LTI system and H(®) is the
corresponding eigenvalue.

B We refer to H as the of the system J{.
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Fourier Series and LTI Systems

Consider a LTI system with input x, output y, and frequency response H.
Suppose that the T-periodic input x is expressed as the Fourier series
x()="Y ce™™,  where =3

T -

k=—o0

Using our knowledge about the eigenfunctions of LTI systems, we can
conclude

yr)y="Y cxH (ko ) e/
k=—c

Thus, if the input x to a LTI system is a Fourier series, the output y is also
CTFS,

a Fourier series. More specifically, if x(t) < c; then y(¢) < H (kwy)cy.

The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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B |n many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

B This process of modifying the frequency spectrum of a function is called

B A system that performs a filtering operation is called a
B Many types of filters exist.
pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.
B Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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ldeal Lowpass Filter

B An eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

B Such afilter has a frequency response of the form
1 o<
Ho) = o= o
0 otherwise,

where ©. is the
B A plot of this frequency response is given below.
H(o)

1

— 0 O

Stopband Passband Stopband
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ldeal Highpass Filter

B An eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

B Such a filter has a frequency response of the form
1 o>
H)=1 =
0 otherwise,

where @, is the
B A plot of this frequency response is given below.
H(w)

1

Passband Stopband Passband

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Ideal Bandpass Filter

B An eliminates all frequency components with a
frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

B Such a filter has a frequency response of the form

1 o1<|o <o,
0 otherwise,
where the limits of the passband are ®.; and ®,,.
B A plot of this frequency response is given below.
H(w)

1

—0c2 — 0] | ©c2

Stopband  Passband Stopband Passband  Stopband
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Part 6

Continuous-Time Fourier Transform (CTFT)

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 165



Motivation for the Fourier Transform

B The (CT) Fourier series provide an extremely useful representation for
periodic functions.

B Often, however, we need to deal with functions that are not periodic.
B A more general tool than the Fourier series is needed in this case.

B The (CT) Fourier transform can be used to represent both periodic and
aperiodic functions.

B Since the Fourier transform is essentially derived from Fourier series
through a limiting process, the Fourier transform has many similarities with
Fourier series.
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Section 6.1

Fourier Transform
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Development of the Fourier Transform [Aperiodic Case]

B The (CT) Fourier series is an extremely useful function representation.

B Unfortunately, this function representation can only be used for periodic
functions, since a Fourier series is inherently periodic.

B Many functions are not periodic, however.

B Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can be
applied to aperiodic functions.

B By viewing an aperiodic function as the limiting case of a T-periodic
function where T — oo, we can use the Fourier series to develop a
function representation that can be used for aperiodic functions, known as
the Fourier transform.
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Development of the Fourier Transform [Aperiodic Case] wonines

B Recall that the Fourier series representation of a T-periodic function x is
given by

o T2 . ‘
x(1) = Z <;/ x(,t)e]k(ZN/T)‘cd,c> kT T

Ck

B |n the above representation, if we take the limit as T — oo, we obtain

x(t) = 1 /_ Z < /_ Zx(r)ejmdr> e

X ()

(i.e., as T — oo, the outer summation becomes an integral, % becomes
1 2n
5-dw, and (%) k becomes ®).
B This representation for aperiodic functions is known as the Fourier
transform representation.
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Generalized Fourier Transform

B The classical Fourier transform for aperiodic functions does not exist (i.e.,
S x(t)e /™ dt fails to converge) for some functions of great practical
interest, such as:

o a nonzero constant function;
o a periodic function (e.g., a real or complex sinusoid);
o the unit-step function (i.e., u); and
o the signum function (i.e., sgn).
B Fortunately, the Fourier transform can be extended to handle such
functions, resulting in what is known as the

B For our purposes, we can think of the classical and generalized Fourier
transforms as being defined by the same formulas.

B Therefore, in what follows, we will not typically make a distinction between
the classical and generalized Fourier transforms.
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CT Fourier Transform (CTFT)

B The (CT) of the function x, denoted Fx or X, is given
by

Fx(0) = X (0) = 1 o;x(t)e_j‘”’dt.

The preceding equation is sometimes referred to as
(or ).
B The of X, denoted 7~!X or x, is given by

FIX() = x(t) = [ " X (@) do.

The preceding equation is sometimes referred to as the
(or ).

As a matter of notation, to denote that a function x has the Fourier
transform X, we write x(¢) < X (o).

A function x and its Fourier transform X constitute what is called a
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Remarks on Operator Notation

B For a function x, the Fourier transform of x is denoted using operator
notation as Fx.

B The Fourier transform of x evaluated at ® is denoted Fx(w).
B Note that Fx is a function, whereas Fx(®) is a number.

B Similarly, for a function X, the inverse Fourier transform of X is denoted
using operator notation as F~'X.

B The inverse Fourier transform of X evaluated at  is denoted !X (1).
® Note that 5~ !X is a function, whereas X (¢) is a number.

B With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

B Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.
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Remarks on Dot Notation

Often, we would like to write an expression for the Fourier transform of a
function without explicitly naming the function.

For example, consider writing an expression for the Fourier transform of
the function v(r) = x(5¢ — 3) but without using the name “v".

It would be incorrect to write “Fx(5¢ — 3)” as this is the function Fx
evaluated at 5¢ — 3, which is not the meaning that we wish to convey.

Also, strictly speaking, it would be incorrect to write “F{x(5¢r —3)}” as the
operand of the Fourier transform operator must be a function, and
x(5t —3) is a number (i.e., the function x evaluated at 5¢ — 3).

Using dot notation, we can write the following strictly-correct expression
for the desired Fourier transform: Fx(5- —3).

In many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.
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Remarks on Notational Conventions

B Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.
B To avoid ambiguous notation, the following conventions are followed:

E in the expression for the operand of a Fourier transform operator, the
independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “¢” is treated as if it
were a ")

in the expression for the operand of the inverse Fourier transform operator,
the independent variable is assumed to be the variable named “®” unless
otherwise indicated (i.e., in terms of dot notation, each “®” is treated as if it
were a “.”).

B For example, with these conventions:

o “F{cos(t —T)}" denotes the function that is the Fourier transform of the
function v(¢) = cos(¢ — t) (not the Fourier transform of the function
v(T) = cos(t —1)).

o “F-1{8(3w—A)}” denotes the function that is the inverse Fourier transform
of the function V() = 8(3® — ) (not the inverse Fourier transform of the
function V(A) = 8(3m—1)).
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Section 6.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

B Consider an arbitrary function x.
B The function x has the Fourier transform representation x given by

o0

f() = A L X(@)e/™dw, where X ()= / x(t)e T dr.

B Now, we need to concern ourselves with the convergence properties of
this representation.
B |n other words, we want to know when X is a valid representation of x.

B Since the Fourier transform is essentially derived from Fourier series, the
convergence properties of the Fourier transform are closely related to the
convergence properties of Fourier series.
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Convergence of the Fourier Transform: Continuous Case

B If a function x is continuous and absolutely integrable (i.e.,
[ |x(t)]dr < =) and the Fourier transform X of x is absolutely integrable
(i.e., 71, |X(o)|dw < ), then the Fourier transform representation of x
converges pointwise (i.e., x(t) = 5 [=, [ [, x(t)e /¥ dt] e/ dow for all t).
B Since, in practice, we often encounter functions with discontinuities (e.g.,
a rectangular pulse), the above result is sometimes of limited value.
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Convergence of the Fourier Transform: Finite-Energy Case

If a function x is of finite energy (i.e., [~ |x(t)|>dr < ), then its Fourier
transform representation converges in the MSE sense.

In other words, if x is of finite energy, then the energy E in the difference
function X — x is zero; that is,

E/yx (1) dt =

Since, in situations of practical interest, the finite-energy condition in the
above theorem is often satisfied, the theorem is frequently applicable.

It is important to note, however, that the condition £ = 0 does not
necessarily imply x(z) = x(z) for all z.

Thus, the above convergence result does not provide much useful
information regarding the value of X(¢) at specific values of ¢.

Consequently, the above theorem is typically most useful for simply
determining if the Fourier transform representation converges.
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Dirichlet Conditions

B The for the function x are as follows:
B the function x is absolutely integrable (i.e., [~ |x(t)|dt < o);
on any finite interval, x has a finite number of maxima and minima (i.e., x is
of bounded variation); and
on any finite interval, x has a finite number of discontinuities and each
discontinuity is itself finite.

B Examples of functions violating the Dirichlet conditions are shown below.

1 u(r)

sin(2m/r)rect(1/2)

0.5 1

0.5

0.25

R .
025 05 075 1
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Convergence of the Fourier Transform: Dirichlet Case

B |f a function x satisfies the Dirichlet conditions, then:

E the Fourier transform representation X converges pointwise everywhere to
X, except at the points of discontinuity of x; and

at each point ¢, of discontinuity of x, the Fourier transform representation ¥
converges to

where x(z,") and x(z;") denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.
B Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier transform
representation at every point, this result is often very useful in practice.
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Section 6.3

Properties of the Fourier Transform
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Properties of the (CT) Fourier Transform

Property Time Domain Frequency Domain
Linearity arx1(t) +axa(t) a1 X1 (®) + a X (o)
Time-Domain Shifting x(t —to) e /O X (w)
Frequency-Domain Shifting e/ x(1) X(o— o)
Time/Frequency-Domain Scaling  x(at) ﬁX (2)
Conjugation x*(1) X*(—m)

Duality X(t) 2nx(—w)
Time-Domain Convolution x1 #x2(1) X (@) Xz (o)
Time-Domain Multiplication x1(t)xa(t) =X % X0 ()
Time-Domain Differentiation %x(r) JjoX (o)
Frequency-Domain Differentiation  £x(¢) jﬁX(w)
Time-Domain Integration [fx(t)dx 65X (0) +7X(0)3(0)
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Properties of the (CT) Fourier Transform (Continued)

Property

Parseval’s Relation [ ()2 dt = I, X (0)]*do
Even Symmetry x is even & X is even

Odd Symmetry xisodd < X is odd

Real / Conjugate Symmetry xis real < X is conjugate symmetric
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(CT) Fourier Transform Pairs

Pair  x(t) X (o)

1 o(r) 1

2 u(r) 3(®) + 75

3 1 2nd(w)

4 sgn(?) /%)

5 e/t 213 (0 — o)

6  cos(wot) T[d(w— o) + S(w+ )]
7 sin(@ot) F18(0—ag) — (0 +ay)]
8  rect(t/T) |T|sinc(Tw/2)

9 % sinc(Bt) rect (1%)

10 e “u(t), Re{a} >0 e

1 leu(r), Refa} >0 =5

12 tri(¢/T) ‘—? sinc?(Tw/4)
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CTFT CTFT

B [fx(t) < X;(®) and x2 (1) +— Xz2(®), then
aixi (l) —|-612X2(l‘) <ﬂ> a1 X, (0)) +612X2(0)),

where a; and a; are arbitrary complex constants.
B This is known as the of the Fourier transform.
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Time-Domain Shifting (Translation)

CTFT,

B [fx(t) <— X(w), then
x(t —1y) &5 e /X (),

where t; is an arbitrary real constant.

B This is known as the of
the Fourier transform.
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Frequency-Domain Shifting (Modulation)

CTFT

B If x(r) +— X (), then
e/ x (1) <5 X (0 — @),

where g is an arbitrary real constant.

B This is known as the
of the Fourier transform.
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Time- and Frequency-Domain Scaling (Dilation)

CTFT

B |fx(t) «— X(w), then

1 ()]
x(at) &5 —X (—) ,

| \a

where a is an arbitrary nonzero real constant.

B This is known as the
of the Fourier transform.
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CTFT

B If x(r) +— X (), then
x (1) &5 X (—o).

B This is known as the of the Fourier transform.
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CTFT
B If x(r) +— X (), then orer

X(t) — 2mx(—o)
B This is known as the of the Fourier transform.

B This property follows from the high degree of symmetry in the forward and
inverse Fourier transform equations, which are respectively given by

X(?\,) = /°° x(e)e*jexde and x(K) — i /oo X(e)ejm‘d&

B That is, the forward and inverse Fourier transform equations are identical
except for a factor of 21 and different sign in the parameter for the
exponential function.

B Although the relationship x(¢) < X (@) only directly provides us with the
Fourier transform of x(z), the duality property allows us to indirectly infer
the Fourier transform of X (¢). Consequently, the duality property can be
used to effectively double the number of Fourier transform pairs that we
know.
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Time-Domain Convolution

CTFT

B fxi(¢) <5 X1 (@) and x2(¢) < X»(w), then
X1 *XQ(t) ﬂ) X (OJ)XQ((D).

B This is known as the
of the Fourier transform.
B |n other words, a convolution in the time domain becomes a multiplication
in the frequency domain.
B This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.
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Time-Domain Multiplication

CTFT

If x1 (¢) <5 X1 (@) and xa() < X5 (o), then

w1 (1xa(t) €5 LX)+ Xo(w) = & [ ZXI(O)XZ((o—G)dB.

2n

This is known as the
of the Fourier transform.

In other words, multiplication in the time domain becomes convolution in

the frequency domain (up to a scale factor of 27).

Do not forget the factor of ﬁ in the above formulal

This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.
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Time-Domain Differentiation

CTFT,

B |fx(t) <— X(w), then

dx(t
);(t) &7 X ().

B This is known as the of the
Fourier transform.

B Differentiation in the time domain becomes multiplication by j in the
frequency domain.

B Of course, by repeated application of the above property, we have that
n CTFT .
(L) x(1) <= (jo)"X (o).
B The above suggests that the Fourier transform might be a useful tool
when working with differential (or integro-differential) equations.
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Frequency-Domain Differentiation

CTFT,

B If x(1) «— X (), then

B This is known as the of the
Fourier transform.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Time-Domain Integration

CTFT

B [fx(t) < X(w), then

! TFT 1
/ x(©)dt % — X (0) +7X(0)3(0).
— oo ]
B This is known as the of the Fourier
transform.

B Whereas differentiation in the time domain corresponds to multiplication
by jm in the frequency domain, integration in the time domain is
associated with division by jo in the frequency domain.

B Since integration in the time domain becomes division by j in the

frequency domain, integration can be easier to handle in the frequency
domain.

B The above property suggests that the Fourier transform might be a useful
tool when working with integral (or integro-differential) equations.
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Parseval’s Relation

B Recall that the energy of a function x is given by [ |x(r)|* dt.

CTFT

B [fx(t) «— X(w), then

/_Z ()P dr = ﬁ/w X ()| do

(i.e., the energy of x and energy of X are equal up to a factor of 27).
B This relationship is known as

B Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).
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Even/Odd Symmetry

B For a function x with Fourier transform X, the following assertions hold:

xiseven < X iseven; and
xisodd < X is odd.

B |n other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.
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Real Functions

B A function x is real if and only if its Fourier transform X satisfies
X(0) =X*(—w) forall ®

(i.e., X is conjugate symmetric).

B Thus, for a real-valued function, the portion of the graph of X (®) for ® < 0
is completely redundant, as it is determined by symmetry.

® From properties of complex numbers, one can show that X (®) = X*(—w)
is equivalent to

|X(w)|=|X(—w)| and argX(m)= —argX(—m)

(i.e., | X (o)] is even and arg X (o) is odd).
B Note that x being real does not necessarily imply that X is real.
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More Fourier Transforms

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 6.4

Fourier Transform of Periodic Functions
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Fourier Transform of Periodic Functions

B The Fourier transform can be generalized to also handle periodic
functions.
B Consider a periodic function x with period T and frequency ®wy = n

l
B Define the function xr as

” x(t) <<
X =
r 0 otherwise.

(i.e., xr(¢) is equal to x(¢) over a single period and zero elsewhere).
B | et a denote the Fourier series coefficient sequence of x.
B |et X and X7 denote the Fourier transforms of x and x7, respectively.
B The following relationships can be shown to hold:

X(w) = i 0o X7 (kog)d(® — ko),
k=—o0

ay = %XTU{O)()), and X((D)Z Z ZﬁakS((D—k(Do).
k=—o0
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Fourier Transform of Periodic Functions (Continued)

B The Fourier transform X of a periodic function is a series of impulses that
occur at integer multiples of the fundamental frequency wy (i.e.,
X(0) =Y .. 2ma;d(m— kayp)).

B Due to the preceding fact, the Fourier transform of a periodic function can
only be nonzero at integer multiples of the fundamental frequency.

B The Fourier series coefficient sequence a is produced by sampling Xr at
integer multiples of the fundamental frequency ®y and scaling the
resulting sequence by 7 (i.e., ax = +-Xr (ko).
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Section 6.5

Fourier Transform and Frequency Spectra of Functions
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The Frequency-Domain Perspective on Functions

B | ike Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on functions.

B That is, instead of viewing a function as having information distributed with
respect to time (i.e., a function whose domain is time), we view a function
as having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

B The Fourier transform of a function x provides a means to quantify how
much information x has at different frequencies.

B The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.
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Fourier Transform and Frequency Spectra

B To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X (®) expressed in polar form as
follows:

x(f) = & / X(@)e™®do = L / X ()] e/l ueX(©) gy

B |n effect, the quantity |X ()| is a weight that determines how much the
complex sinusoid at frequency ® contributes to the integration result x.

B The quantity arg X (@) determines how the complex sinusoid at frequency
 is shifted related to complex sinusoids at other frequencies.

B Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
areas of rectangles, as shown on the next slide. [Recall that

7, f(x)dx = limac—0 Yo oo Axf(kAx).]
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Fourier Transform and Frequency Spectra (Continued 1)

B Expressing the integral (from the previous slide) as the limit of a sum, we

obtain

— T 1 S jlot+arg X (o)]
x(r) = Al(xl)IBO n k;mA(o X(@)] el
where ® = kKA.

In the above equation, the kth term in the summation corresponds to a
complex sinusoid with fundamental frequency @ = kA® that has had its
amplitude scaled by a factor of |X (®)| and has been time shifted by an
amount that depends on arg X (®).

For a given ® = kA® (which is associated with the kth term in the
summation), the larger | X ()| is, the larger the amplitude of its
corresponding complex sinusoid e/® will be, and therefore the larger the
contribution the kth term will make to the overall summation.

In this way, we can use |X ()| as a measure of how much information a
function x has at the frequency .
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Fourier Transform and Frequency Spectra (Continued 2)

The Fourier transform X of the function x is referred to as the
of x.

The magnitude |X ()| of the Fourier transform X is referred to as the
of x.

The argument arg X (®) of the Fourier transform X is referred to as the
of x.

Since the Fourier transform is a function of a real variable, a function can
potentially have information at any real frequency.

Since the Fourier transform X of a periodic function x with fundamental
frequency mg and the Fourier series coefficient sequence a is given by
X(0) =Y _.2mard(w— kwy), the Fourier transform and Fourier series
give consistent results for the frequency spectrum of a periodic function.

Since the frequency spectrum is complex (in the general case), it is

usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Functions

B Recall that, for a real function x, the Fourier transform X of x satisfies
X(0)=X"(—o)
(i.e., X is conjugate symmetric), which is equivalent to
X (w)| =]X(—o)| and argX ()= —argX(—).
B Since |X ()| = |X(—m)[, the magnitude spectrum of a real function is

always even.

B Similarly, since argX () = —arg X (—), the phase spectrum of a real
function is always odd.

B Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

B |n the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.
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Bandwidth

B A function with the Fourier transform X is said to be if, for
some (finite) nonnegative real constant B, the following condition holds:
X (o) = 0 for all @ satisfying |®| > B.
B The B of a function with the Fourier transform X is defined as
B = m; — 0, where X (®) = 0 for all ® ¢ [wp, 0].
B |n the case of real-valued functions, however, this definition of bandwidth
is usually amended to consider only nonnegative frequencies.

B The real-valued function x; and complex-valued function x, with the
respective Fourier transforms X; and X, shown below each have
bandwidth B (where only nonnegative frequencies are considered in the case of x;).

X (o) X ()

1 1

[0} [0}
_B B _B B

B One can show that a function cannot be both time limited and
bandlimited.
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Energy-Density Spectra

B By Parseval’s relation, the energy E in a function x with Fourier transform

X is given by
E=5 /_oo E.(w)d,
where
Ei(0) = [X ()|
B We refer to E, as the of the function x.

B The function E, indicates how the energy in x is distributed with respect to
frequency.

B For example, the energy contributed by frequencies in the range [®;, ®;]
is given by

1 (0]
o E\(0)do.

(Y]

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Section 6.6

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

B Consider a LTI system with input x, output y, and impulse response ki, and
let X, Y, and H denote the Fourier transforms of x, y, and #, respectively.

B Since y(t) = xxh(t), we have that

B The function H is called the of the system.
B A LTI system is completely characterized by its frequency response H.

B The above equation provides an alternative way of viewing the behavior of
a LTl system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
functions.

B The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

B |n the general case, the frequency response H is a complex-valued

function.

B Often, we represent H(®) in terms of its magnitude |H(®)| and argument
arg H(®).

B The quantity |H(w)| is called the of the system.

B The quantity arg H(®) is called the of the system.

B Since Y(®) = X(w)H (), we trivially have that
Y (0)| = |X(0)||H(0)| and arg)(®)=argX(0)+argH(o).

B The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

B The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.
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Frequency Response of LTI Systems (Continued 2)

B Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

|H(w)| =|H(—w)| and argH(®w)= —argH(—®)

(i.e., the magnitude response |H ()| is even and the phase response
arg H(o) is odd).
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Unwrapped Phase

B For many types of analysis, restricting the range of a phase function to an
interval of length 27 (such as (—m, w]), often unnecessarily introduces
discontinuities into the function.

B This motivates the notion of unwrapped phase.

B The is simply the phase defined in such a way so as
not to restrict the phase to an interval of length 2w and to keep the phase
function continuous to the greatest extent possible.

® For example, the function H(®) = ¢/ has the unwrapped phase

O(m) = to.
ArgH (o) 0(0) =T
3n 3n
2n 2n
A A "
74]/7245\2]/4"’ 44‘4z‘n“z‘4°’
2 —2n
_3n —3n
Phase Unwrapped Phase
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Interpretation of Magnitude and Phase Response

B Recall that a LTI system J with frequency response H is such that
H{e/} (1) = H(w)e!™.
B Expressing H(®) in polar form, we have

H{ Y1) = [H (@) 2 S
_ ’H((D) ’ ej[wt+argH(o))]

= |H(w)| /@t +aelH (@)]/o)

B Thus, the response of the system to the function ¢/® is produced by

applying two transformations to this function:
o (amplitude) scaling by |H(®)|; and
o translating by —%m(‘”).
B Therefore, the magnitude response determines how different complex

sinusoids are scaled (in amplitude) by the system.

B Similarly, the phase response determines how different complex sinusoids
are translated (i.e., delayed/advanced) by the system.
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Magnitude Distortion

B Recall that a LTI system J with frequency response H is such that
}C{ejw’}(t) _ ’H(w)’ej(o(t+arg[H(w)]/(o).

B |f |H(w)| is a constant (for all @), every complex sinusoid is scaled by the
same amount when passing through the system.

B A system for which |H(®)| = 1 (for all @) is said to be

B |n the case of an allpass system, the magnitude spectra of the system’s
input and output are identical.

® |f |H ()| is not a constant, different complex sinusoids are scaled by
different amounts, resulting in what is known as
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Phase Distortion

B Recall that a LTI system I with frequency response H is such that
g{{ejwt}(,) _ ’H(O))|ejm(f+arg[H(w)]/(0)_
B The preceding equation can be rewritten as

FH{/} (1) = |H ()] %] where 1,(0) = —2E2@),

B The function T, is known as the of the system.

B |f T,(®) = 14 (Where 4 is a constant), the system shifts all complex
sinusoids by the same amount #4.

B Since t,(®) = 14 is equivalent to the (unwrapped) phase response being
of the form arg H(®) = —t4® (which is a linear function with a zero
constant term), a system with a constant phase delay is said to have

B In the case that T, (®) = 0, the system is said to have

® |f 7,(®) is not a constant, different complex sinusoids are shifted by
different amounts, resulting in what is known as
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Distortionless Transmission

B Consider a LTI system JH with input x and output y given by

y(1) =x(t —10),
where tq is a real constant.

B That is, the output of the system is simply the input delayed by #.

B This type of behavior is the ideal for which we strive in real-world
communication systems (i.e., the received signal y equals a delayed
version of the transmitted signal x).

B Taking the Fourier transform of the preceding equation, we have
Y(0) = e /X ().
B Thus, the system has the frequency response H given by
H(®) = e /%,

® Since the phase delay of the system is Tp(©) = — (=22 = fy, the phase
delay is constant and the system has linear phase.
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Magnitude and Phase Distortion in Audio

The relative importance of the magnitude spectrum and phase spectrum
is highly dependent on the particular application of interest.

B Consider the case of the human auditory system (i.e., human hearing).

B The human auditory system tends to be quite sensitive to changes in the

magnitude spectrum of an audio signal.

That is, a significant change in the magnitude spectrum of an audio signal
is very likely to lead to a noticeable difference in the perceived sound.

On the other hand, the human auditory system tends to be much less
sensitive to changes in the phase spectrum of an audio signal.

In other words, changes to the phase spectrum of an audio signal are
often only barely perceptible or not perceptible at all.

For the above reasons, in applications involving the human auditory

system, magnitude distortion often tends to be more of a concern than
phase distortion.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Magnitude and Phase Distortion in Images

B Consider the case of the human visual system.

B The human visual system tends to be quite sensitive to changes in the
phase spectrum of an image.

B That is, a significant change in the phase spectrum of an image is likely to
lead to a very substantial difference in how the image is perceived.

B The phase spectrum of an image tends to capture information about the
location of the edges in the image, and edges are play a crucial role in
how humans perceive images.

B On the other hand, the human visual system tends to be somewhat less
sensitive to changes in the magnitude spectrum of an image.

B For the above reasons, phase distortion is usually deemed highly
undesirable in systems that process images, when the image data is to be
consumed by humans.
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Example: Magnitude and Phase Distortion in Images (1)

4 i \ ;
Magnitude Spectrum from Image B and Magnitude Spectrum from Image A and
Phase Spectrum from Image A Phase Spectrum from Image B
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ion in Images

Image A Image B (White Noise)

Magnitude Spectrum from Image B and Magnitude Spectrum from Image A and
Phase Spectrum from Image A Phase Spectrum from Image B
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Block Diagram Representations of LTI Systems

B Consider a LTI system with input x, output y, and impulse response %, and
let X, Y, and H denote the Fourier transforms of x, y, and h, respectively.

B Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

X Y

—— H I

B Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.
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Interconnection of LTI Systems

B The series interconnection of the LTI systems with frequency responses
H;| and H; is the LTI system with frequency response H{H,. That is, we
have the equivalence shown below.

X Y X Y
SRS A T

B The parallel interconnection of the LTI systems with frequency responses
H;| and H; is the LTI system with the frequency response H; + H;. That
is, we have the equivalence shown below.
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LTI Systems and Differential Equations

B Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

B Consider a system with input x and output y that is characterized by an
equation of the form

N
Y b () Zak () x(0),
k=0

where the a; and by are complex constants and M < N.

B | et h denote the impulse response of the system, and let X, Y, and H
denote the Fourier transforms of x, y, and A, respectively.

B One can show that H is given by
Y(w) Y aj o

H(®) = X@) XY hofar

B Observe that, for a system of the form considered above, the frequency
response is a rational function.
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Section 6.7

Application: Filtering
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B |n many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

B This process of modifying the frequency spectrum of a function is called

B A system that performs a filtering operation is called a
B Many types of filters exist.

pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

B Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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ldeal Lowpass Filter

® An eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

B Such afilter has a frequency response H of the form
1 o <o
H) =] = o
0 otherwise,

where ®©. is the
B A plot of this frequency response is given below.

H(o)

1

Stopband Passband Stopband
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ldeal Highpass Filter

B An eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

B Such afilter has a frequency response H of the form

H(w) = 1 |0 > o,
o otherwise,

where @, is the .
B A plot of this frequency response is given below.

H(o)

1

— 0 @

Passband Stopband Passband
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Ideal Bandpass Filter

B An eliminates all frequency components with a
frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

B Such afilter has a frequency response H of the form
1 o4 <]|o <o
H(O)): cl_{ ’_ c2
0 otherwise,

where the limits of the passband are ®.; and ®,;.
B A plot of this frequency response is given below.

H(w)

1

—0c2 — 0] O] Oc2

Stopband  Passband Stopband Passband  Stopband
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Section 6.8

Application: Equalization
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Equalization

B Often, we find ourselves faced with a situation where we have a system
with a particular frequency response that is undesirable for the application
at hand.

B As a result, we would like to change the frequency response of the system
to be something more desirable.

B This process of modifying the frequency response in this way is referred to
as . [Essentially, equalization is just a filtering operation.]

B Equalization is used in many applications.

B In real-world communication systems, equalization is used to eliminate or

minimize the distortion introduced when a signal is sent over a (nonideal)
communication channel.

B In audio applications, equalization can be employed to emphasize or
de-emphasize certain ranges of frequencies. For example, equalization
can be used to boost the bass (i.e., emphasize the low frequencies) in the
audio output of a stereo.
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Equalization (Continued)

Input Output X y

> horig heq horig >

Original System New System with Equalization

B Let Hyrig denote the frequency response of original system (i.e., without
equalization).

B | et Hy denote the desired frequency response.

B et Heq denote the frequency response of the equalizer.

B The new system with equalization has frequency response

Hnew(w) = Heq ((’)>Horig(0))'
B By choosing Heq(®) = Hy(®)/Horig(®), the new system with equalization
will have the frequency response

Hpew(®) = [Hg(®) /Horig (0)] Horig(®) = Hy(w).

B |n effect, by using an equalizer, we can obtain a new system with the
frequency response that we desire.
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Section 6.9

Application: Circuit Analysis
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Electronic Circuits

B An is a network of one or more interconnected circuit
elements.
B The three most basic types of circuit elements are:
H resistors;

inductors; and
capacitors.

B Two fundamental quantities of interest in electronic circuits are current and
voltage.

L is the rate at which electric charge flows through some part of a
circuit, such as a circuit element, and is measured in units of amperes (A).

u is the difference in electric potential between two points in a
circuit, such as across a circuit element, and is measured in units of
volts (V).

B \oltage is essentially a force that makes electric charge (or current) flow.
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Resistors

A is a circuit element that opposes the flow of current.
B A resistor is characterized by an equation of the form

v(t) =Ri(t) (or equivalently, i(t) = £v(t)),

where R is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the resistor as a function of time.

B As a matter of terminology, the quantity R is known as the of
the resistor.

B Resistance is measured in units of ohms (Q).
B |n circuit diagrams, a resistor is denoted by the symbol shown below.
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Inductors

An is a circuit element that converts an electric current into a
magnetic field and vice versa.

An inductor uses the energy stored in a magnetic field in order to oppose
changes in current (through the inductor).

An inductor is characterized by an equation of the form
t

v(t) =L%i(t) (orequivalently, i(t) = %/ v(1)d7),

where L is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the inductor as a function of time.
As a matter of terminology, the quantity L is known as the of
the inductor.
Inductance is measured in units of henrys (H).
In circuit diagrams, an inductor is denoted by the symbol shown below.

i B

v
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A is a circuit element that stores electric charge.
A capacitor uses the energy stored in an electric field in order to oppose
changes in voltage (across the capacitor).
A capacitor is characterized by an equation of the form
v(t) = é/r i(t)dt (or equivalently, i(t) = Cdv(t)),

where C is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the capacitor as a function of time.
As a matter of terminology, the quantity C is known as the of
the capacitor.
Capacitance is measured in units of farads (F).
In circuit diagrams, a capacitor is denoted by the symbol shown below.

) C

! || =

I

\4
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Circuit Analysis with the Fourier Transform

B The Fourier transform is a very useful tool for circuit analysis.

B The utility of the Fourier transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Fourier domain than in the time domain.

B |et v and i denote the voltage across and current through a circuit
element, and let V and I denote the Fourier transforms of v and i,
respectively.

B |n the frequency domain, the equations characterizing a resistor, an
inductor, and a capacitor respectively become:
V(o) =RI(®) (or equivalently, I(®) = £V (®));
V(o) = joLI(®) (or equivalently, I(®) = -7V (®)); and

V(@) = sel(®) (or equivalently, I(®) = joCV ().

B Note the absence of differentiation and integration in the above equations
for an inductor and a capacitor.
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Section 6.10

Application: Amplitude Modulation (AM)
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Motivation for Amplitude Modulation (AM)

In communication systems, we often need to transmit a signal using a
frequency range that is different from that of the original signal.

For example, voice/audio signals typically have information in the range of
0 to 22 kHz.

Often, it is not practical to transmit such a signal using its original
frequency range.

Two potential problems with such an approach are:

H interference; and
constraints on antenna length.

Since many signals are broadcast over the airwaves, we need to ensure
that no two transmitters use the same frequency bands in order to avoid
interference.

Also, in the case of transmission via electromagnetic waves (e.g., radio
waves), the length of antenna required becomes impractically large for the
transmission of relatively low frequency signals.

For the preceding reasons, we often need to change the frequency range
associated with a signal before transmission.
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Trivial Amplitude Modulation (AM) System

ci(t) = e/ cat) = =IO
3 3
Transmitter Receiver

B The transmitter is characterized by

y(t)=e®'x(t) — Y(0)=X0-o.).
B The receiver is characterized by

(1) =e7y(1) — X(0)=Y(0+a,).

B Clearly, £(t) = e/O7e= /%! x(t) = x(t).
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Trivial Amplitude Modulation (AM) System: Example

X ()
Ci(w) G (w)
1
2n 2n
¥ t (0]
—p ©y o o
. e —0)
Transmitter Input
Y () X(o)
1 1
| /\ ® r { ®
wp O —®p O O+ —uy ©p
Transmitter Output Receiver Output
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Double-Sideband Suppressed-Carrier (DSB-SC) AM

c(t) = cos(w.t) c(t) = cos(wt) )
h(t) = 229 sinc(®cot)
X y y v by
> {(x) > h e
Transmitter Receiver

B letX =Fx, Y =Fy, and X = F%.
B Suppose that X (®) = 0 for all ® & [—wp, @]
B The transmitter is characterized by

Y(0)=1X(o+ao,)+X(0-—o)).

B The receiver is characterized by
R () = [Y (0+®) + ¥ (0 — )] rect (%) :
B f @) < O, < 20, — 0y, we have X (o) = X (®) (implying £(t) = x(1)).
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DSB-SC AM: Transmitter

c(t) = cos(m1)

y(t) = cos(®.1)x(t)
X=Fx, Y=03y

Y () = F{cos(w.t)x(t) } (w)
= {3 (/™ +¢7 1) x(1) } ()
= 3 [F{S () Hw) + Fle /(1) }(w)]
=X (0— )+ X(0+0)]
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DSB-SC AM: Receiver

c(t) = cos(wt)
h(t) = Z‘*’T‘O sinc(cot)

y v X
h ——

v(r) = cos(t)y(t), h(t) = 22 sinc(wor), £(r) =v*h(r)
Y=Fy, V=F, H=%Fh X=9%
V(o) = F{cos(ct)y(r) } ()
=F{5 (/" +e ") y(1) } (w)
L[F{ey(0)} (@) + F {y(0)} ()]
¥ (0—0)+Y(0+o)]

H(w) = 5"{2‘;;40 sinc(cocot)} (©)

= 2rect (ﬁ)
X(0) = H0)V(0)
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DSB-SC AM: Complete System

c(t) = cos(w,t) c(t) = cos(ot) o
h(t) = =22 sinc(wcot)
X y y v h £
Y(0)=1X(0-0)+X(o+o)
V(o) =3Y(0—o)+Y(0+ao)]
=3[ X ([0 -] — o) + X ([0 - o] + o) +
TX([0+ 0] — o) + X ([0+ o] + o]

= 1X(0) + IX(0-20.) + 1X (0 +20,)

=
B

o
> I— NI—
EE
&=
e
S~—
+
Bl—
—
=2
+
IS
—
=2
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DSB-SC AM: Example

X(w)
! H(o)
2
= b 10} ©
. - 0 [0) 0
Transmitter Input ‘ ‘

Y(o)

1

2

=2 —0¢ = Op—0c—0¢ T o —0 @ O -0 O O+ 20¢ o
Transmitter Output

V(o)

1

2

1-

7

—20¢ — 0} 20 20c + oy, —Oy, 9 20¢ — oy, 20¢ 200 +
X(o)
1
—20¢ —bc¢ —oy, @) ¢ 20¢ @

Receiver Output
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Single-Sideband Suppressed-Carrier (SSB-SC) AM

c(t) = cos(o1) c(t) = cos(m.t)

g(r) = 8(r) — 2 sinc(w.t) h(t) = *2 sinc(mcor)
x q y y v £
g —— h ——

Transmitter Receiver

B The basic analysis of the SSB-SC AM system is similar to the DSB-SC
AM system.

B SSB-SC AM requires half as much bandwidth for the transmitted signal as
DSB-SC AM.
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SSB-SC AM: Example

Xl(w) C(w) G(w) H(w)
_‘ 1 ’7 . 4
® ®
=t —® O 23 0 O
0(0)
1
2
—Joc ¢ 0y 0c0c T o, 0 @), Oc + 0,0c0c 0, B ©
Y (@)
1
—2®c¢ =0¢ = 0p0cOc T 0 —0p @y, 0O¢ — OB D¢ + 0 Dc ©
V(o)
1
2
1
‘ 1
—20— 0920 T o) =0y, @ 20¢ — 0D20c + oy ©
X(o)
1
—2o¢ —tc =y [0/ o B¢ ©
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Section 6.11

Application: Sampling and Interpolation
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Sampling and Interpolation

B Often, we want to be able to transform a continuous-time signal (i.e., a
function) into a discrete-time signal (i.e., a sequence) and vice versa.

B This is accomplished through processes known as sampling and

interpolation.

u , Which is performed by a

shown below, transforms a function x to a sequence y.

X
R

C/D

Converter

y

G

| , Which is performed by a

to a function x.

shown below, transforms a sequence y

D/C

Converter

B Note that, unless very special conditions are met, the sampling process
loses information (i.e., is not invertible).
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Periodic Sampling

B Although sampling can be performed in many different ways, the most
commonly used scheme is

B With this scheme, a sequence y of samples is obtained from a function x
according to the relation
y(n) =x(Tn) forall integer n,
where T is a (strictly) positive real constant.

B As a matter of terminology, we refer to T as the , and
_ 2z

®; = % as the (angular)
B An example of periodic sampling is shown below, where the function x has
been sampled with sampling period T = 10, yielding the sequence y.

x(t) y(n)

I 1L

0 10 2 30 40 50 60 70 o 1 2 3 4 5 6 7

Function to Be Sampled Sequence Produced by Sampling

n
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Invertibility of Sampling

Unless constraints are placed on the functions being sampled, the
sampling process is not invertible.
In other words, in the absence of any constraints, a function cannot be
uniquely determined from a sequence of its equally-spaced samples.
Consider, for example, the functions x; and x; given by

x1(t)=0 and x(r) = sin(2mt).
Sampling x; and x; with the sampling period T = 1 yields the respective
sequences

yi(n) =x1(Tn) =x;(n) =0 and

y2(n) =x2(Tn) = sin(2nn) = 0.

So, although x; and x, are distinct, y; and y, are identical.
Given the sequence y where y = y; = y», it is impossible to determine
which function was sampled to produce y.
Only by imposing a carefully chosen set of constraints on the functions
being sampled can we ensure that a function can be exactly recovered
from only its samples.
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Model of Sampling

® An is a function of the form v(r) = Y7 cxd(t —kT),
where ¢, and T are real constants.

B For the purposes of analysis, sampling with sampling period 7 and
frequency ®; = 2" can be modelled as shown below.

ideal C/D converter

Z 8(t—kT)

p(t)=
k=—
X 1 i s convert from : y
- {(x) impulse train  —>——>—

to sequence

B The sampling of a function x to produce a sequence y consists of the
following two steps (in order):
E Multiply the function x to be sampled by a periodic impulse train p, yielding
the impulse train s(¢) = Yo, x(nT)3(¢t —nT).
Convert the impulse train s to a sequence y by forming y from the weights of
successive impulses in s so that y(n) = x(nT).
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Model of Sampling: Various Signals

x(1)
p(t)
4
3 1 1 1 1
: ‘ ‘ ‘ B
1 t t t
0 T 2T 3T
0 T or 37 ! Periodic Impulse Train
Input Function
s(f)
y(n)
x(T)
4 A x(T)
4 R
. x(31 . .
3 v.(ZT) o ) ....... 3 .-./\(ZT) 1(31'? ......
2% 4(0) 2 (0 . -
x(0)
1
1
0 r o ' ‘ ! ! ! n
0 1 2 3

Impulse-Sampled Function

. . Discrete-Ti
(Continuous-Time) Output Sequence (Discrete-Time)
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Model of Sampling: Invertibility of Sampling Revisited

__ideal C/D converter

convert from . y
impulse train  —>——>—
to sequence :

B Since sampling is not invertible and our model of sampling consists of only
two steps, at least one of these two steps must not be invertible.
B Recall the two steps in our model of sampling are as follows (in order):

B x — s@)=x(t)p(t)= i x(nT)d(t —nT); and

n—=—oo
oo

s(t) = Z x(nT)d(t —nT) — y(n) =x(nT).

B Step 1 cannot be undone (unless we somehow restrict which functions x
can be sampled).

B Step 2 is always invertible.
B Therefore, the fact that sampling is not invertible is entirely due to step 1.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 258



Model of Sampling: Characterization

ideal C/D converter

pe)= ¥ 8—KkT)
k=—oc0
X . i s convert from . y
: (X) impulse train  ————
to sequence ‘

B |n the time domain, the impulse-sampled function s is given by

s(t) =x()p(t) where p()= Y. 8(t —KT).

k=—c0

B |n the Fourier domain, the preceding equation becomes

S()=% ) X(o—kao,) (where a,=3).
k=—o0
B Thus, the spectrum of the impulse-sampled function s is a scaled sum of
an infinite number of shifted copies of the spectrum of the original
function x.
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Sampling: Fourier Series for a Periodic Impulse Train
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Sampling: Multiplication by a Periodic Impulse Train

.. ideal C/D converter

= i 8(t —kT)

k=—c0

convert from . y
impulse train  ————
to sequence :
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Model of Sampling: Aliasing

B Consider frequency spectrum S of the impulse-sampled function s given by

S =% Y X(o— ko).
[ ——

B The function § is a scaled sum of an infinite number of shifted copies of X.
B Two distinct behaviors can result in this summation, depending on @, and
the bandwidth of x.
B |n particular, the nonzero portions of the different shifted copies of X can
either:
| overlap; or
not overlap.
B |n the case where overlap occurs, the various shifted copies of X add
together in such a way that the original shape of X is lost. This
phenomenon is known as

B When aliasing occurs, the original function x cannot be recovered from its
samples in y.
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Model of Sampling: Aliasing (Continued)

X (o)

] Spectrum of Input
Function
(Bandwidth ;)
¥ (0]

Spectrum of Impulse-

Sampled Function:
No Aliasing Case
(05 > 2m,,)
} f t Y ®

— 0 m —u) —(n + 0 (o O — @y O 5 + @

Spectrum of Impulse-
Sampled Function:
Aliasing Case

(05 < 2mp)
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Model of Interpolation

B For the purposes of analysis, interpolation can be modelled as shown

below.
ideal D/C converter

y oo convert from s CR
: impulse train 1

B The reconstruction of a function x from its sequence y of samples (i.e.,
bandlimited interpolation) consists of the following two steps (in order):

E Convert the sequence y to the impulse train s by using the samples in y as
the weights of successive impulses in s so that s(1) =Y .. y(n)d(t — Tn).
Apply the lowpass filter with impulse response £ to s to produce £ so that

£(t) =s*h(t) = Yo _..y(n)sinc [E(r — Tn)].
B The lowpass filter is used to eliminate the extra copies of the
originally-sampled function’s spectrum present in the spectrum of s.
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Sampling Theorem

B Sampling Theorem. Let x be a function with Fourier transform X, and
suppose that |X ()| = 0 for all @ satisfying |®| > wy (i.e., x is
bandlimited to frequencies [—wys, y]). Then, x is uniquely determined by
its samples y(n) = x(Tn) for all integer n, if

o, > 20y,

where m; = 27“ The preceding inequality is known as the
. If this condition is satisfied, we have that

Z y(n)sinc [% (1 —Tn)],

Nn=-—oo

or equivalently (i.e., rewritten in terms of w; instead of T),

Z y(n)sinc (%1 —7n).

Nn=—oo0

® We call % the and 20, the
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Part 7

Laplace Transform (LT)
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Motivation Behind the Laplace Transform

B Another important mathematical tool in the study of signals and systems
is known as the Laplace transform.

B The Laplace transform can be viewed as a generalization of the
(classical) Fourier transform.

B Due to its more general nature, the Laplace transform has a number of
advantages over the (classical) Fourier transform.

B First, the Laplace transform representation exists for some functions that
do not have a Fourier transform representation. So, we can handle
some functions with the Laplace transform that cannot be handled with
the Fourier transform.

B Second, since the Laplace transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the Laplace Transform (Continued)

B Earlier, we saw that complex exponentials are eigenfunctions of LTI
systems.

B |n particular, for a LTI system 3 with impulse response &, we have that
H{e"}(t) = H(s)e" where H(s)= / h(t)e *dt.

B Previously, we referred to H as the system function.
B As it turns out, H is the Laplace transform of A.

B Since the Laplace transform has already appeared earlier in the context of
LTI systems, it is clearly a useful tool.

B Furthermore, as we will see, the Laplace transform has many additional
uses.
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Section 7.1

Laplace Transform
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(Bilateral) Laplace Transform

B The (bilateral) of the function x, denoted Lx or X, is
defined as

Lx(s) = X (s) = [ Zx(t)e_s’dt.

B The of X, denoted £~'X or x, is then given
by
LX) = x(t) = —— / " X ()" ds
2nj Jo—joo ’
where Re(s) = ¢ is in the ROC of X. (Note that this is a contour
integration, since s is complex.)
B Werefertoxand X as a and denote this
relationship as

x(t) > X (s).
B |n practice, we do not usually compute the inverse Laplace transform by
directly using the formula from above. Instead, we resort to other means
(to be discussed later).
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Bilateral and Unilateral Laplace Transforms

B Two different versions of the Laplace transform are commonly used:

H the bilateral (or two-sided) Laplace transform; and
the unilateral (or one-sided) Laplace transform.

B The unilateral Laplace transform is most frequently used to solve systems
of linear differential equations with nonzero initial conditions.

B As it turns out, the only difference between the definitions of the bilateral
and unilateral Laplace transforms is in the lower limit of integration.

B |n the bilateral case, the lower limit is —oo, whereas in the unilateral case,
the lower limitis O (i.e., [~ x(t)e”*dt versus [;° x(t)e *dt).

B For the most part, we will focus our attention primarily on the bilateral
Laplace transform.

B We will, however, briefly introduce the unilateral Laplace transform as a
tool for solving differential equations.

B Unless otherwise noted, all subsequent references to the Laplace
transform should be understood to mean bilateral Laplace transform.
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Remarks on Operator Notation

B For a function x, the Laplace transform of x is denoted using operator
notation as Lx.

B The Laplace transform of x evaluated at s is denoted Lx(s).
® Note that Lx is a function, whereas Lx(s) is a number.

B Similarly, for a function X, the inverse Laplace transform of X is denoted
using operator notation as £~'X.

B The inverse Laplace transform of X evaluated at ¢ is denoted £~ !X (t).
® Note that £~ !X is a function, whereas £ !X (t) is a number.

B With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

B Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.
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Remarks on Dot Notation

B Often, we would like to write an expression for the Laplace transform of a
function without explicitly naming the function.

B For example, consider writing an expression for the Laplace transform of
the function v(r) = x(5¢ — 3) but without using the name “v".

B |t would be incorrect to write “Lx(5¢ — 3)” as this is the function Lx
evaluated at 5t — 3, which is not the meaning that we wish to convey.

B Also, strictly speaking, it would be incorrect to write “L{x(5¢ —3)}" as the
operand of the Laplace transform operator must be a function, and
x(5¢ —3) is a number (i.e., the function x evaluated at 5¢ — 3).

B Using dot notation, we can write the following strictly-correct expression
for the desired Laplace transform: £{x(5-—3)}.

B |n many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.
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Remarks on Notational Conventions

B Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.
B To avoid ambiguous notation, the following conventions are followed:

H in the expression for the operand of a Laplace transform operator, the
independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “t” is treated as if it
were a “”)

in the expression for the operand of the inverse Laplace transform operator,
the independent variable is assumed to be the variable named “s” unless
otherwise indicated (i.e., in terms of dot notation, each “s” is treated as if it
were a “”).

B For example, with these conventions:

o “L{(t —t)u(r —T)}” denotes the function that is the Laplace transform of
the function v(¢) = (+ — t)u(t — t) (not the Laplace transform of the function
v(®) = (1~ ult ~ )

o L~ '{ - }” denotes the function that is the inverse Laplace transform of
the function V' (s) = { - x} (not the inverse Laplace transform of the
function V(L) = {S2 7}
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Relationship Between Laplace and Fourier Transforms

Let X and X denote the Laplace and (CT) Fourier transforms of x,
respectively.

The function X evaluated at jo (where  is real) yields Xr(®). That is,
X(jo)=Xr(m).
Due to the preceding relationship, the Fourier transform of x is sometimes

written as X (jo).

The function X evaluated at an arbitrary complex value s = 6 + j® (where
o6 = Re(s) and ® = Im(s)) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(o+ jo) = Xp(0),

where X/ is the (CT) Fourier transform of x'(r) = e~ %x(r).

So, in general, the Laplace transform of x is the Fourier transform of an
exponentially-weighted version of x.

Due to this weighting, the Laplace transform of a function may exist when
the Fourier transform of the same function does not.
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Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 7.2

Region of Convergence (ROC)
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Left-Half Plane (LHP)

B The set R of all complex numbers s satisfying
Re(s) < a

for some real constant a is said to be a

B Some examples of LHPs are shown below.

a<0 Im{s} a>0 Im{s}

Re{s}

Re{s}
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Right-Half Plane (RHP)

B The set R of all complex numbers s satisfying
Re(s) > a

for some real constant a is said to be a

B Some examples of RHPs are shown below.

Im{s} a<0 Im{s} a>0

Re{s} Re{s}
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Intersection of Sets

B For two sets A and B, the of A and B, denoted A N B, is the
set of all points that are in both A and B.

B An illustrative example of set intersection is shown below.

Im Im Im
2 | P2 2 }
‘ ‘
1 ] 1l 1 ]
‘ ‘
Bl g I: 33 Re ) le —3 4 Re ) le I: 33 Re
-1 1 -1 -1 1
‘
-2 |2 -2
R R; RiNR,
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Adding a Scalar to a Set

B For a set S and a scalar constant a, S + a denotes the set given by
S+a={z+a:z€S}

(i.e., S+ a is the set formed by adding a to each element of §).

B Effectively, adding a scalar to a set applies a translation (i.e., shift) to the
region associated with the set.

B An illustrative example is given below.

Im Im

o
ok
|
8
|
()
|
[¥]
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Multiplying a Set by a Scalar

B For a set S and a scalar constant a, aS denotes the set given by
aS={az:z €S}

(i..e, aS is the set formed by multiplying each element of S by a).

B Multiplying z by a affects z by: scaling by |a| and rotating about the origin
by arga.

B So, effectively, multiplying a set by a scalar applies a scaling and/or
rotation to the region associated with the set.

B An illustrative example is given below.

N

R
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Region of Convergence (ROC)

B As we saw earlier, for a function x, the complete specification of its
Laplace transform X requires not only an algebraic expression for X, but
also the ROC associated with X .

B Two very different functions can have the same algebraic expressions
for X.

B On the slides that follow, we will examine a number of key properties of
the ROC of the Laplace transform.
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ROC Property 1: General Form

B The ROC of a Laplace transform consists of strips parallel to the
imaginary axis in the complex plane.

B That s, if a point s is in the ROC, then the vertical line through sy (i.e.,
Re(s) = Re(sg)) is also in the ROC.

B Some examples of sets that would be either valid or invalid as ROCs are
shown below.

Valid Invalid
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ROC Property 2: Rational Laplace Transforms

B |f a Laplace transform X is a rational function, the ROC of X does not
contain any poles and is bounded by poles or extends to infinity.

B Some examples of sets that would be either valid or invalid as ROCs of
rational Laplace transforms are shown below.

Im

X
! Re
X
I

Valid Invalid
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ROC Property 3: Finite-Duration Functions

B |f a function x is finite duration and its Laplace transform X converges for
at least one point, then X converges for all points in the complex plane
(i.e., the ROC is the entire complex plane).

B Some examples of sets that would be either valid or invalid as ROCs for
X, if x is finite duration, are shown below.

Im Im Im
Re l Re l Re

Valid Invalid Invalid
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ROC Property 4: Right-Sided Functions

B If a function x is right sided and the (vertical) line Re(s) = oy is in the
ROC of the Laplace transform X = Lx, then all values of s for which
Re(s) > 6y must also be in the ROC (i.e., the ROC includes a RHP
containing Re(s) = o).

B Thus, if x is right sided but not left sided, the ROC of X is a RHP.

B Some examples of sets that would be either valid or invalid as ROCs for
X, if x is right sided but not left sided, are shown below.

Im Im

: Re l Re

Valid Invalid Invalid
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ROC Property 5: Left-Sided Functions

B [f a function x is left sided and the (vertical) line Re(s) = o is in the ROC
of the Laplace transform X = Lx, then all values of s for which Re(s) < 69
must also be in the ROC (i.e., the ROC includes a LHP containing

Re(s) = Oyp).
B Thus, if x is left sided but not right sided, the ROC of X is a LHP.

B Some examples of sets that would be either valid or invalid as ROCs for
X, if x is left sided but not right sided, are shown below.

Im

| Re
Valid Invalid Invalid
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ROC Property 6: Two-Sided Functions

B If a function x is two sided and the (vertical) line Re(s) = o is in the ROC
of the Laplace transform X = Lx, then the ROC will consist of a strip in
the complex plane that includes the line Re(s) = op.

B Some examples of sets that would be either valid or invalid as ROCs for
X, if x is two sided, are shown below.
Im Im

l Re Re

Invalid Invalid
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ROC Property 7: More on Rational Laplace Transforms

B |f the Laplace transform X of a function x is rational (with at least one
pole), then:
B If x is right sided, the ROC of X is to the right of the rightmost pole of X
(i.e., the RHP to the right of the rightmost pole).
If x is left sided, the ROC of X is to the left of the leftmost pole of X (i.e., the
LHP to the left of the leftmost pole).
B This property is implied by properties 1, 2, 4, and 5.
B Some examples of sets that would be either valid or invalid as ROCs for
X, if X is rational and x is left/right sided, are given below.

Im Im Im Im
X X X %
x Re X Re X Re X Re

Valid Invalid Valid Invalid

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 290



General Form of the ROC

B To summarize the results of properties 3, 4, 5, and 6, if the Laplace
transform X of the function x exists, the ROC of X depends on the left-
and right-sidedness of x as follows:

X

left sided { right sided ROC of X

no no strip
no yes RHP
yes no LHP
yes yes everywhere

B Thus, we can infer that, if X exists, its ROC can only be of the form of a
LHP, a RHP, a vertical strip, or the entire complex plane.

B For example, the sets shown below would not be valid as ROCs.

Invalid Invalid
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Section 7.3

Properties of the Laplace Transform
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Properties of the Laplace Transform

Property Time Domain Laplace Domain ROC
Linearity arx1(t) +aoxa(t) arXi(s)+axXo(s) AtleastRiNR,
Time-Domain Shifting x(t —to) eX (s) R
Laplace-Domain Shifting ' x(r) X(s—s0) R+Re(so)
Time/Laplace-Domain Scaling  x(at) ‘;—‘X (%) aR
Conjugation x*(1) X*(s%) R
Time-Domain Convolution X1 xx2(t) X1(s)Xa(s) Atleast RiNR;
Time-Domain Differentiation %x(l) sX(s At least R
Laplace-Domain Differentiation  —zx(t) dx(s) R
Time-Domain Integration [ x(t)dT 1X(s) Atleast RN {Re(s) > 0}
Property

Initial Value Theorem  x(0") = le sX(s)
e

Final Value Theorem  limx(¢) = limsX(s)
t—o0 5—0
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Laplace Transform Pairs

Pair  x(t) X(s) ROC

5(t) 1 All s
2 u(t) 1 Re(s) >0
3 —u(—1) 1 Re(s) <0
4 "u(t) S,’l’il Re(s) >0
5 —t"u(—r1) 2 Re(s) <0
6 e "u(t) Hr% Re(s) > —a
7 —e u(—1) ﬁ Re(s) < —a
8 e~ u(r) (s+Z;”+1 Re(s) > —a
9 e u(—r) (s+Z;"+1 Re(s) < —a
10 cos(wor)u(t) sZim% Re(s) >0
11 sin(wo?)u(t) Szi‘;% Re(s) >0
12 e “cos(wot)u(r) mijiziwg Re(s) > —a
13 e “sin(wot)u(r) (SH“;%Q% Re(s) > —a
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B f x;(¢) +— X;(s) with ROC Ry and x»(t) +— X»(s) with ROC R, then
arx1(t) +axxa(t) < a1 Xi(s) +axXa(s) with ROC R containing Ry N Ry,

where a; and a, are arbitrary complex constants.
B This is known as the of the Laplace transform.

B The ROC R always contains Ry N R, but can be larger (in the case that
pole-zero cancellation occurs).
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Time-Domain Shifting

B [f x(¢) +— X (s) with ROC R, then
x(t —19) +— e X (s) with ROC R,

where t; is an arbitrary real constant.

B This is known as the of the Laplace
transform.
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Laplace-Domain Shifting

B f x(t) < X (s) with ROC R, then
e x(t) + X (s — so) with ROC R’ = R+ Re(sp),

where sg is an arbitrary complex constant.

B This is known as the of the Laplace
transform.
B As illustrated below, the ROC R is shifted right by Re(sp).
Im Im
Gimin ; ;Gmax Re Gm\n‘*’iRe(-\'U) Gmax‘HjRe(fn)Pe
R R'=R+Re(so)
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Time-Domain/Laplace-Domain Scaling

B fx(t) < X(s) with ROC R, then
T 1 N . /
lar) 5 1 oX (7) with ROC R’ = aR,
a a
where a is a nonzero real constant.

B This is known as the
of the Laplace transform.

B As illustrated below, the ROC R is scaled and possibly flipped left to right.

Im Im Im

R

I I \ LR \ \
j asmin doy acmak 4oy,

Sin! Gmax mir) Iomax mak 1Gmin
i ) I 1 I I

R R =aR,a>0 R =aR,a<0
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B | x(t) < X (s) with ROC R, then
x*(t) + X*(s*) with ROC R.

B This is known as the of the Laplace transform.
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Time-Domain Convolution

B I x;(¢) +— X;(s) with ROC Ry and x»(¢) +— X»(s) with ROC R, then
x1 *x2(1) <= X; (5)X2(s) with ROC R containing R; NR.

B This is known as the of the Laplace
transform.

B The ROC R always contains Ry N R, but can be larger than this
intersection (if pole-zero cancellation occurs).

B Convolution in the time domain becomes multiplication in the Laplace
domain.

B Consequently, it is often much easier to work with LTI systems in the
Laplace domain, rather than the time domain.
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Time-Domain Differentiation

If x(t) <— X (s) with ROC R, then

dx(t
);(t ) <5 sX(s) with ROC R’ containing R.

B This is known as the of the
Laplace transform.

B The ROC R’ always contains R but can be larger than R (if pole-zero
cancellation occurs).

B Differentiation in the time domain becomes multiplication by s in the
Laplace domain.

B Consequently, it can often be much easier to work with differential
equations in the Laplace domain, rather than the time domain.
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Laplace-Domain Differentiation

B f x(t) < X(s) with ROC R, then
e dX(s)

—tx(t) «— with ROC R.
S

B This is known as the of the
Laplace transform.
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Time-Domain Integration

If x(t) < X (s) with ROC R, then
! LT 1 . .
/ x(t)dt <— —X(s) with ROC R’ containing RN {Re(s) > 0}.
—0Q S

B This is known as the of the Laplace
transform.

® The ROC R’ always contains at least RN {Re(s) > 0} but can be larger (if
pole-zero cancellation occurs).

B |ntegration in the time domain becomes division by s in the Laplace
domain.

B Consequently, it is often much easier to work with integral equations in the
Laplace domain, rather than the time domain.
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Initial Value Theorem

B For a function x with Laplace transform X, if x is causal and contains no
impulses or higher order singularities at the origin, then

x(0%) = lim sX (s),

§—yoo
where x(0T) denotes the limit of x(¢) as ¢ approaches zero from positive
values of z.
B This result is known as the

B |n situations where X is known but x is not, the initial value theorem
eliminates the need to explicitly find x by an inverse Laplace transform
calculation in order to evaluate x(0™).

B |n practice, the values of functions at the origin are frequently of interest,
as such values often convey information about the initial state of systems.

B The initial value theorem can sometimes also be helpful in checking for
errors in Laplace transform calculations.
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Final Value Theorem

B For a function x with Laplace transform X, if x is causal and x(t) has a
finite limit as t — oo, then

lim x(¢) = limsX (s).

t—roo s—0

B This result is known as the

B |n situations where X is known but x is not, the final value theorem
eliminates the need to explicitly find x by an inverse Laplace transform
calculation in order to evaluate lim;_,.x(t).

B |n practice, the values of functions at infinity are frequently of interest, as
such values often convey information about the steady-state behavior of
systems.

B The final value theorem can sometimes also be helpful in checking for
errors in Laplace transform calculations.
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More Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 7.4

Determination of Inverse Laplace Transform
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Finding Inverse Laplace Transform

B Recall that the inverse Laplace transform x of X is given by
1 O+ joo
x(t) = 27tj/cjoo X(s)e"ds,
where Re(s) = ¢ is in the ROC of X.

B Unfortunately, the above contour integration can often be quite tedious to
compute.

B Consequently, we do not usually compute the inverse Laplace transform
directly using the above equation.

B For rational functions, the inverse Laplace transform can be more easily
computed using partial fraction expansions.

B Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse Laplace transforms
can typically be found in tables.
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Section 7.5

Laplace Transform and LTI Systems
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System Function of LTI Systems

B Consider a LTI system with input x, output y, and impulse response h. Let
X, Y, and H denote the Laplace transforms of x, y, and h, respectively.

B Since y(t) = xxh(t), the system is characterized in the Laplace domain by
Y(s)=X(s)H(s).

B As a matter of terminology, we refer to H as the (or
) of the system (i.e., the system function is the Laplace
transform of the impulse response).
B A LTI system is completely characterized by its system function H.
B When viewed in the Laplace domain, a LTI system forms its output by
multiplying its input with its system function.

B If the ROC of H includes the imaginary axis, then H(jo) is the frequency
response of the LTI system.
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Block Diagram Representations of LTI Systems

B Consider a LTI system with input x, output y, and impulse response %, and
let X, Y, and H denote the Laplace transforms of x, y, and A, respectively.

B Often, it is convenient to represent such a system in block diagram form in
the Laplace domain as shown below.

X Y

—— H I

B Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 311



Interconnection of LTI Systems

B The series interconnection of the LTI systems with system functions H
and H, is the LTI system with system function H;H,. That is, we have the
equivalence shown below.

X Y X Y
RN R S AT o

B The parallel interconnection of the LTI systems with system functions H;
and H, is the LTI system with the system function H| 4+ H,. That is, we
have the equivalence shown below.

X Y
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B |f a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.

B Theorem. The ROC associated with the system function of a causal LTI
system is a RHP or the entire complex plane.

B In general, the converse of the above theorem is not necessarily true.
That is, if the ROC of the system function is a RHP or the entire complex
plane, it is not necessarily true that the system is causal.

B |f the system function is rational, however, we have that the converse
does hold, as indicated by the theorem below.

B Theorem. For a LTI system with a rational system function H, causality
of the system is equivalent to the ROC of H being the RHP to the right
of the rightmost pole or, if H has no poles, the entire complex plane.
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BIBO Stability

B Whether or not a system is BIBO stable depends on the ROC of its
system function.

B Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function H contains the imaginary axis (i.e., Re(s) = 0).

B Theorem. A causal LTI system with a (proper) rational system function H
is BIBO stable if and only if all of the poles of H lie in the left half of the
plane (i.e., all of the poles have negative real parts).
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Invertibility

B A LTI system JH with system function H is invertible if and only if there
exists another LTI system with system function Hj,, such that

H(s)Hiny(s) =1,
in which case Hi,, is the system function of H-!and

1

Hinv(s) = H(S)

B Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

B |n practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).
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LTI Systems and Differential Equations

B Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

B Consider a system with input x and output y that is characterized by an
equation of the form

N
Y b (i)' Zak ) x0),
k=0

where the a; and b, are complex constants and M < N.

B | et h denote the impulse response of the system, and let X, Y, and H
denote the Laplace transforms of x, y, and A, respectively.

B One can show that H is given by

_Y(s) _ Toast

X(s) Ziv:() bysk .

B QObserve that, for a system of the form considered above, the system
function is always rational.
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Section 7.6

Application: Circuit Analysis
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Electronic Circuits

B An is a network of one or more interconnected circuit
elements.
B The three most basic types of circuit elements are:
H resistors;

inductors; and
capacitors.

B Two fundamental quantities of interest in electronic circuits are current and
voltage.

L is the rate at which electric charge flows through some part of a
circuit, such as a circuit element, and is measured in units of amperes (A).

u is the difference in electric potential between two points in a
circuit, such as across a circuit element, and is measured in units of
volts (V).

B \oltage is essentially a force that makes electric charge (or current) flow.
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Resistors

A is a circuit element that opposes the flow of current.
B A resistor is characterized by an equation of the form

v(t) =Ri(t) (or equivalently, i(t) = £v(t)),

where R is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the resistor as a function of time.

B As a matter of terminology, the quantity R is known as the of
the resistor.

B Resistance is measured in units of ohms (Q).
B |n circuit diagrams, a resistor is denoted by the symbol shown below.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 319



Inductors

An is a circuit element that converts an electric current into a
magnetic field and vice versa.

An inductor uses the energy stored in a magnetic field in order to oppose
changes in current (through the inductor).

An inductor is characterized by an equation of the form
t

v(t) =L%i(t) (orequivalently, i(t) = %/ v(1)d7),

where L is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the inductor as a function of time.
As a matter of terminology, the quantity L is known as the of
the inductor.

Inductance is measured in units of henrys (H).

In circuit diagrams, an inductor is denoted by the symbol shown below.
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A is a circuit element that stores electric charge.
B A capacitor uses the energy stored in an electric field in order to oppose
changes in voltage (across the capacitor).
B A capacitor is characterized by an equation of the form
v(t) = é/r i(t)dt (or equivalently, i(t) = Cdv(t)),
where C is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the capacitor as a function of time.
B As a matter of terminology, the quantity C is known as the of
the capacitor.
B Capacitance is measured in units of farads (F).
B |n circuit diagrams, a capacitor is denoted by the symbol shown below.
) C
! || =
I

\4
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Circuit Analysis with the Laplace Transform
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B The Laplace transform is a very useful tool for circuit analysis.

B The utility of the Laplace transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Laplace domain than in the time domain.

B |et v and i denote the voltage across and current through a circuit
element, and let V and I denote the Laplace transforms of v and i,
respectively.

B |n the Laplace domain, the equations characterizing a resistor, an
inductor, and a capacitor respectively become:
V(s)=RI(s) (orequivalently, I(s) = xV(s));
V(s)=sLI(s) (orequivalently, I(s) = -V (s)); and
V(s) = -=I(s) (or equivalently, I(s) = sCV (s)).

B Note the absence of differentiation and integration in the above equations
for an inductor and a capacitor.
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Section 7.7

Application: Design and Analysis of Control Systems
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Control Systems

A control system manages the behavior of one or more other systems with
some specific goal.

Typically, the goal is to force one or more physical quantities to assume
particular desired values, where such quantities might include: positions,
velocities, accelerations, forces, torques, temperatures, or pressures.

The desired values of the quantities being controlled are collectively
viewed as the input of the control system.

The actual values of the quantities being controlled are collectively viewed
as the output of the control system.

A control system whose behavior is not influenced by the actual values of
the quantities being controlled is called an (or )
system.

A control system whose behavior is influenced by the actual values of the
quantities being controlled is called a (or ) system.
An example of a simple control system would be a thermostat system,
which controls the temperature in a room or building.
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Feedback Control Systems

Reference

Input Error

Controller > Plant

Output

- Sensor
Feedback
Signal

: system to be controlled

plant with the goal of forcing the error to zero
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: desired value of the quantity to be controlled
: actual value of the quantity to be controlled
: difference between the desired and actual values

: device used to measure the actual output

: device that monitors the error and changes the input of the
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Stability Analysis of Feedback Systems

B Often, we want to ensure that a system is BIBO stable.

B The BIBO stability property is more easily characterized in the Laplace
domain than in the time domain.

B Therefore, the Laplace domain is extremely useful for the stability analysis
of systems.
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Stabilization Example: Unstable Plant

B causal LTI plant:

X Y
] P -
10
P(s) = ;3
B ROC of P:
Im
[ 1% Re

B system is not BIBO stable
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Stabilization Example: Using Pole-Zero Cancellation

B system formed by series interconnection of plant and causal LTI
compensator:

\
v

I w

P(s) = %, W(s) = ﬁil)

B system function H of overall system:

B ROC of H:

B overall system is BIBO stable
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Stabilization Example: Using Feedback (1)

B feedback system (with causal LTI compensator and sensor):

TH%J

P(s) = {5, () B, QO(s)=1
B system function H of feedback system:

___ClP(s) _ _ 10B
H(s) = 1+C(s)P(s)0(s) — s—(1—10B)

B ROC of H:

Im

.,

)
1—10B7 ‘
‘

® feedback system is BIBO stable if and only if 1 — 108 < 0 or equivalently
B> 1o
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Stabilization Example: Using Feedback (2)
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Stabilization Example: Using Feedback (3)
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Remarks on Stabilization Via Pole-Zero Cancellation

B Pole-zero cancellation is not achievable in practice, and therefore it cannot
be used to stabilize real-world systems.
B The theoretical models used to represent real-world systems are only
approximations due to many factors, including the following:
o Determining the system function of a system involves measurement, which
always has some error.
o A system cannot be built with such precision that it will have exactly some
prescribed system function.
o The system function of most systems will vary at least slightly with changes
in the physical environment.
o Although a LTI model is used to represent a system, the likely reality is that
the system is not exactly LTI, which introduces error.
B Due to approximation error, the effective poles and zeros of the system
function will only be approximately where they are expected to be.

B Since pole-zero cancellation requires that a pole and zero be placed at
exactly the same location, any error will prevent this cancellation from
being achieved.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 332



Section 7.8

Unilateral Laplace Transform
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Unilateral Laplace Transform

The of the function x, denoted £ x or X, is
defined as

Lox(s) = X(s) = / x(t)e "dr.
The unilateral Laplace transform is related to the bilateral Laplace

transform as follows:

Lux(s) = /iox(t)e*“dt = /w x(t)u(t)e™dt = L {xu} (s).

In other words, the unilateral Laplace transform of the function x is simply
the bilateral Laplace transform of the function xu.

Since Lyx = L{xu} and xu is always a right-sided function, the ROC
associated with £,x is always either a RHP or the entire complex plane.
For this reason, we often do not explicitly indicate the ROC when
working with the unilateral Laplace transform.
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Inversion of the Unilateral Laplace Transform

B With the unilateral Laplace transform, the same inverse transform
equation is used as in the bilateral case.

B The unilateral Laplace transform is only invertible for causal functions.
B |n particular, we have

L H{Lux} (1) = £ H{L{xu}} (1)
=L L g }(1)
= x(t)u(t)

_ {x(t) t>0

0 t<0.

B For a noncausal function x, we can only recover x(¢) for ¢ > 0.
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Unilateral Versus Bilateral Laplace Transform

B Due to the close relationship between the unilateral and bilateral Laplace
transforms, these two transforms have some similarities in their properties.

B Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.
B |n the unilateral case, we have that:
H the time-domain convolution property has the additional requirement that
the functions being convolved must be causal;
the time/Laplace-domain scaling property has the additional constraint that
the scaling factor must be positive;
the time-domain differentiation property has an extra term in the expression
for £,{Dx}(r), where D denotes the derivative operator (namely, —x(0~));
the time-domain integration property has a different lower limit in the
time-domain integral (namely, 0~ instead of —e0); and
H the time-domain shifting property does not hold (except in special
circumstances).
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Properties of the Unilateral Laplace Transform

Property Time Domain Laplace Domain
Linearity aixy (l) + azxz(t) a1 X, (A) + azXz(S)
Laplace-Domain Shifting ™' x(1) X(s—s0)
Time/Laplace-Domain Scaling  x(at),a >0 X (®)
Conjugation x*(r) X*(s%)
Time-Domain Convolution x1%x2(1), x1 and x; are causal X (s)X>(s)
Time-Domain Differentiation 2x(1) sX(s)—x(07)
Laplace-Domain Differentiation  —#x(r) 4X(s)
Time-Domain Integration Jo-x(t)dr 1X(s)

Property

Initial Value Theorem  x(0™) = lim sX (s)
s—>o0

Final Value Theorem  limx(¢) = limsX(s)
t—oo s—0
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Unilateral Laplace Transform Pairs

Pair x(z),t>0  X(s)

1 3(r) 1

2 1 1
s -

4 e S%ﬂ

6 cos(mot) m

7 sin(wot) sZTZDg

8 e “cos(wot) (s+;)+72a+mg
9 e “sin(myr) (M")’#wg
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Solving Differential Equations [using the Unilateral Laplace Transform]

B Many systems of interest in engineering applications can be characterized
by constant-coefficient linear differential equations.

B One common use of the unilateral Laplace transform is in solving
constant-coefficient linear differential equations with nonzero initial
conditions.
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Part 8

Discrete-Time (DT) Signals and Systems
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Section 8.1

Independent- and Dependent-Variable Transformations
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Time Shifting (Translation)

u (also called ) maps the input sequence x to the
output sequence y as given by

y(n) =x(n—"b),
where b is an integer.

B Such a transformation shifts the sequence (to the left or right) along the
time axis.

B If b > 0, yis shifted to the right by |b|, relative to x (i.e., delayed in time).
B If b <0, yis shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example
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Time Reversal (Reflection)

L (also known as ) maps the input sequence x to
the output sequence y as given by

y(n) = x(~n).

B Geometrically, the output sequence y is a reflection of the input sequence
x about the (vertical) line n = 0.

x(n) x(—n)
3 3
2 2
L] 1],
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Downsampling

u maps the input sequence x to the output sequence y as
given by

y(n) = (I a)x(n) = x(an),

where a is a strictly positive integer.

B The output sequence y is produced from the input sequence x by keeping
only every ath sample of x.
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Upsampling

L maps the input sequence x to the output sequence y as
given by

x(n/a) n/ais an integer

y(n) = (t a)x(n) = {

0 otherwise,

where a is a strictly positive integer.

B The output sequence y is produced from the input sequence x by inserting
a— 1 zeros between all of the samples of x.
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Combined Independent-Variable Transformations

B Consider a transformation that maps the input sequence x to the output
sequence y as given by

y(n) = x(an—b),

where a and b are integers and a # 0.

B Such a transformation is a combination of time shifting, downsampling,
and time reversal operations.

B Time reversal commutes with downsampling.

B Time shifting does not commute with time reversal or downsampling.

B The above transformation is equivalent to:
B first, time shifting x by b;

then, downsampling the result by |a| and, if a < 0, time reversing as well.

| |f 2 is an integer, the above transformation is also equivalent to:

B first, downsampling x by |a| and, if a < 0, time reversing;
then, time shifting the result by 2.

B Note that the time shift is not by the same amount in both cases.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||

347



Section 8.2

Properties of Sequences
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Symmetry and Addition/Multiplication

B Sums involving even and odd sequences have the following properties:
o The sum of two even sequences is even.
o The sum of two odd sequences is odd.
o The sum of an even sequence and odd sequence is neither even nor odd,
provided that neither of the sequences is identically zero.
B That is, the sum of sequences with the same type of symmetry also has
the same type of symmetry.
B Products involving even and odd sequences have the following
properties:
o The product of two even sequences is even.
o The product of two odd sequences is even.
o The product of an even sequence and an odd sequence is odd.
B That is, the product of sequences with the same type of symmetry is even,
while the product of sequences with opposite types of symmetry is odd.
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Decomposition of a Sequence into Even and Odd Parts

B Every sequence x has a unique representation of the form
x(n) = xe(n) +x0(n),

where the sequences x. and x, are even and odd, respectively.

B |n particular, the sequences x. and x,, are given by
Xe(n) = % [x(n)+x(—n)] and xo(n)= % [x(n) —x(—n)].

B The sequences x. and x,, are called the and of x,
respectively.

B For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.
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Sum of Periodic Sequences

B The of two (strictly positive) integers a and b,
denoted Icm(a, b), is the smallest positive integer that is divisible by both
a and b.

B The quantity lcm(a,b) can be easily determined from a prime factorization
of the integers a and b by taking the product of the highest power for each
prime factor appearing in these factorizations. Example:

lem(20,6) =lem(22-5' 21.31) =22.31.5! —60;
lem(54,24) = Iem(2'-3%,23.3!) =23%.3% = 216; and
lem(24,90) = lem(2®-3!,21.32.51) = 23.32. 5! = 360.

B Sum of periodic sequences. For any two periodic sequences x; and x;

with fundamental periods N and N,, respectively, the sum x; +x; is
periodic with period lcm(N;, N, ).
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Right-Sided Sequences

B A sequence x is said to be if, for some (finite) integer constant
no, the following condition holds:

x(n)=0 foralln<ng

(i.e., x is only potentially nonzero to the right of ny).
B An example of a right-sided sequence is shown below.

x(n)

B A sequence x is said to be if
x(n)=0 foralln<D0.

B A causal sequence is a special case of a right-sided sequence.
B A causal sequence is not to be confused with a causal system. In these
two contexts, the word “causal” has very different meanings.
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Left-Sided Sequences

B A sequence x is said to be if, for some (finite) integer constant
no, the following condition holds:

x(n)=0 foralln>ng

(i.e., x is only potentially nonzero to the left of ng).
B An example of a left-sided sequence is shown below.

e
we

e

4 3 2 -1 0
B A sequence x is said to be if
x(n)=0 foralln>0.

B An anticausal sequence is a special case of a left-sided sequence.
B An anticausal sequence is not to be confused with an anticausal system.
In these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Sequences

B A sequence that is both left sided and right sided is said to be
(or ).
B An example of a finite-duration sequence is shown below.

x(n)

n
-4 -3 -2 -1 0 1 2 3 4

B A sequence that is neither left sided nor right sided is said to be

B An example of a two-sided sequence is shown below.

RN

-2 12
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Bounded Sequences

B A sequence x is said to be if there exists some (finite) positive
real constant A such that

|x(n)| <A foralln

(i.e., x(n) is finite for all n).
B Examples of bounded sequences include any constant sequence.

B Examples of unbounded sequences include any nonconstant polynomial
sequence.
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Energy of a Sequence

B The E contained in the sequence x is given by

E= i x(k))? .

k=—c0

B A signal with finite energy is said to be an
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Section 8.3

Elementary Sequences
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Real Sinusoidal Sequences

A is a sequence of the form
x(n) =Acos(Qn+9),

where A, Q, and 0 are real constants.

B A real sinusoid is periodic if and only if % is a rational number, in which
case the fundamental period is the smallest integer of the form % where
k is a (strictly) positive integer.

B For all integer k, xx(n) = Acos(|Q + 2mk]n + 0) is the same sequence.

B An example of a periodic real sinusoid with fundamental period 12 is
shown plotted below.

I n iilk " i

x(n) = cos (En)
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Oscillation Rate of Real Sinusoidal Sequences

B Unlike their continuous-time counterparts, real sinusoidal sequences have
an upper bound on the rate at which they can oscillate.

B Since x;(n) = Acos([Q + 2mk|n + 0) is the same sequence for all integer
k, we consider only 0 < Q < 21 without loss of generality.

B Consider the set of real sinusoidal sequences of the form
x(n) =Acos(Qn+9),

where 0 < Q < 2m.

The rate of oscillation of x is least (i.e., x is constant) when Q = 0.
The rate of oscillation of x is greatest when Q = 7.

As Q increases from 0 to T, the rate of oscillation of x increases.

As Q increases from T to 27, the rate of oscillation of x decreases.
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Effect of Increasing Frequency on Oscillation Rate

cos(0n) = cos (%n) cos (5n)
1 . L.




Complex Exponential Sequences

HA is a sequence of the form

x(n) = cd",

where ¢ and a are complex constants.
B Such a sequence can also be equivalently expressed in the form

x(n) = ce™,

where b is a complex constant chosen as b = Ina. (This this form is more
similar to that presented for CT complex exponentials).

B A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of the parameters ¢ and a.

B For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.
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Real Exponential Sequences

mA is a special case of a complex exponential

x(n) =cad",

where ¢ and a are restricted to be real numbers.

B A real exponential can exhibit one of several distinct modes of behavior,
depending on the magnitude and sign of a.

B [f |a| > 1, the magnitude of x(n) increases exponentially as n increases
(i.e., a growing exponential).

B If |a] < 1, the magnitude of x(n) decreases exponentially as n increases
(i.e., a decaying exponential).

B f|a

B |f a > 0, x(n) has the same sign for all n.

= 1, the magnitude of x(n) is a constant, independent of n.
B If a <0, x(n) alternates in sign as n increases/decreases.
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Real Exponential Sequences (Continued 1)

x(n) x(n)
3 3
2 2
1] P N R
4 3 2 -1 o 1 2 3 4 4 3 2 1 o0 1 2 3 4
la| >1,a>0 @=3c=1 la] <1,a>0 @-%.c-1
x(n)
JLLLT I
4 -3 2 -1 0 4

|a| = 1, a>0 l[a=1;c=1]
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Real Exponential Sequences (Continued 2)

x(n) x(n)

3 3

2 2
3 3
la| > 1,a <0 @=-%ic=1 la| < 1,a <0 =-%c=1

11 2 31 4 "

|a\ =1,a<0 @w=-1c=1
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Complex Sinusoidal Sequences

B A complex sinusoidal sequence is a special case of a complex exponential
x(n) = ca”, where ¢ and a are complex and |a| =1 (i.e., a is of the form
e/ where Q is real).

B Thatis, a is a sequence of the form
x(n) = ce’,
where c is complex and Q is real.
B Using Euler’s relation, we can rewrite x(n) as
x(n) = |c|cos(Qn+argc) +j|c|sin(Qn+argc).
Re{x(n)} Im{x(n)}

B Thus, Re{x} and Im{x} are real sinusoids.
B A complex sinusoid is periodic if and only |f ~ is a rational number, in

which case the fundamental period is the smallest integer of the form Tg“

where k is a (strictly) positive integer.
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Complex Sinusoidal Sequences (Continued)

® For x(n) = ¢/(>™7)"_the graphs of Re{x} and Im{x} are shown below.

Re{e/®™/ 1"} = cos (%"n)

0ol
]

1+

|
|
———e

Im{e/®%/ N} = sin (%"n)
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Oscillation Rate of Complex Sinusoidal Sequences

B Unlike their continuous-time counterparts, complex sinusoidal sequences
have an upper bound on the rate at which they can oscillate.

B Since x;(n) = ce/(®+2™)" is the same sequence for all integer k, we
consider only 0 < Q < 27 without loss of generality.

B Consider the set of complex sinusoidal sequences of the form
x(n) = ce’*¥,

where 0 < Q < 2m.

The rate of oscillation of x is least (i.e., x is constant) when Q = 0.
The rate of oscillation of x is greatest when Q = 7.

As Q increases from 0 to &, the rate of oscillation of x increases.

As Q increases from T to 27, the rate of oscillation of x decreases.
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General Complex Exponential Sequences

B In the most general case of a complex exponential sequence x(n) = ca”,
¢ and a are both complex.

B Letting ¢ = |c|e/® and a = |a|e/** where 6 and Q are real, and using
Euler’s relation, we can rewrite x(n) as

x(n) = |c||al" cos(Qn+8) +j|c| |a]" sin(Qn+6).
Re{x(n)} Im{x(n)}

® Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

B One of several distinct modes of behavior is exhibited by x, depending on
the value of a.

B |f |a| = 1, Re{x} and Im{x} are real sinusoids.

B |f |a| > 1, Re{x} and Im{x} are each the product of a real sinusoid and
a growing real exponential.

B [f |a| < 1, Re{x} and Im{x} are each the product of a real sinusoid and
a decaying real exponential.
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General Complex Exponential Sequences (Continued)

B The various modes of behavior for Re{x} and Im{x} are illustrated
below.
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Relationship Between Complex Exponentials and Real

Sinusoids

B From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

ce’ = ccos(Qn) + jesin(Qn).

B Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

ccos(Qn+0) = % [ej(9n+9) +e—j(Qn+9)} and
csin(Qn+80) = < [ej(9"+9) _ e—j(£2n+e)} ‘
2j

B Note that, above, we are simply restating results from the (appendix)
material on complex analysis.
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Unit-Step Sequence

® The , denoted u, is defined as
1 >0
umy=4 ="
0 otherwise.
B A plot of this sequence is shown below.
u(n)
* L] ]
Y N o 1 2 3 n
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Unit Rectangular Pulses

mA is a sequence of the form
(n) 1 a<n<b
n)=
P 0 otherwise

where a and b are integer constants satisfying a < b.
B Such a sequence can be expressed in terms of the unit-step sequence as

p(n) =u(n—a)—u(n—>).
B The graph of a unit rectangular pulse has the general form shown below.

p(n)

U N S

a-3 a-2 a~1 a a+l at2 at3 b-1 b bil bi2

n
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Unit-Impulse Sequence

B The (also known as the ), denoted
0, is defined as
1 =0
my=4 "7
0 otherwise.

B The first-order difference of u is 8. That is,
O(n) =u(n)—u(n—1).
B The running sum of § is u. That is,

u(n) = i O(k).

k=—oc0
B A plot of & is shown below.
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Properties of the Unit-Impulse Sequence

B For any sequence x and any integer constant ng, the following identity
holds:

x(n)d(n—ng) = x(ng)d(n — ngp).

B For any sequence x and any integer constant ng, the following identity
holds:

oo

Y x(n)8(n—no) = x(no).

n=—oo

B Trivially, the sequence 9 is also even.
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Representing Rectangular Pulses (Using Unit-Step Sequences)

B For integer constants a and b where a < b, consider a sequence x of the

form
1 a<n<b
x(n) = .
0 otherwise

(i.e., x is a rectangular pulse of height one that is nonzero fromato b — 1
inclusive).

B The sequence x can be equivalently written as
x(n) =u(n—a)—u(n—>)

(i.e., the difference of two time-shifted unit-step sequences).

B Unlike the original expression for x, this latter expression for x does not
involve multiple cases.

B |n effect, by using unit-step sequences, we have collapsed a formula
involving multiple cases into a single expression.
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Representing Sequences Using Unit-Step Sequences

B The idea from the previous slide can be extended to handle any sequence
that is defined in a piecewise manner (i.e., via an expression involving
multiple cases).

B That is, by using unit-step sequences, we can always collapse a formula
involving multiple cases into a single expression.

B Often, simplifying a formula in this way can be quite beneficial.
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Section 8.4

Discrete-Time (DT) Systems
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DT Systems

B A system with input x and output y can be described by the equation
y = Hx,

where JH denotes an operator (i.e., transformation).

B Note that the operator I maps a sequence to a sequence (not a number
to a number).

B Alternatively, we can express the above relationship using the notation
K
X =

B [f clear from the context, the operator HH is often omitted, yielding the
abbreviated notation

X =y

B Note that the symbols “—” and “=" have very different meanings.
B The symbol “—” should be read as “produces” (not as “equals”).
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Block Diagram Representations

B Often, a system defined by the operator J{ and having the input x and
output y is represented in the form of a block diagram as shown below.

Input Output
X System M
H
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Interconnection of Systems

B Two basic ways in which systems can be interconnected are shown below.

x ” y
e e
Series e
Parallel
mA (or ) connection ties the output of one system to the input

of the other.
B The overall series-connected system is described by the equation
y=TJoHx.

mA connection ties the inputs of both systems together and sums
their outputs.
B The overall parallel-connected system is described by the equation

y=Hx+ Hox.
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Section 8.5

Properties of (DT) Systems
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B A system JH is said to be if, for every integer constant ny,
Hx(no) does not depend on x(n) for some n # ny.

B |n other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

B A system that is not memoryless is said to have

B Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.
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Memory (Continued)

If the system I is memoryless,
the output Hx at ng
can depend on the input x
only at ng.

l

f f f n

—00 nO [oe]

T

Consider the calculation of the
output Hx at ng.
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B A system H is said to be if, for every integer constant ng, Hx(no)
does not depend on x(n) for some n > ny.

B |n other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

B [f the independent variable n represents time, a system must be causal in
order to be physically realizable.

B Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

B A memoryless system is always causal, although the converse is not
necessarily true.
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Causality (Continued)

If the system H is causal,
the output Hx at ng
can depend on the input x
only at points n < ny.

n<ng

f f } n

—00 no [e <]

T

Consider the calculation of the
output Hx at ng.
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Invertibility

B The of a system J is another system H{~! such that, for every

sequence X,
H'Hx=x

(i.e., the system formed by the cascade interconnection of JH followed by
K~ is a system whose input and output are equal).

B A system is said to be if it has a corresponding inverse system
(i.e., its inverse exists).

B Equivalently, a system is invertible if its input x can always be uniquely
determined from its output y.

B An invertible system will always produce distinct outputs from any two
distinct inputs.

B To show that a system is invertible, we simply find the inverse system.

B To show that a system is not invertible, we find two distinct inputs that
result in identical outputs.

B |n practical terms, invertible systems are “nice” in the sense that their
effects can be undone.
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Invertibility (Continued)

m A system 3! being the inverse of J{ means that the following two
systems are equivalent (i.e., 1~ ' I is an identity):

X X
—— | .._y — — =

System 1: y = H 1 Hx System 2: y =x
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Bounded-Input Bounded-Output (BIBO) Stability

B Asystem H is if, for every bounded sequence x, Hx is
bounded (i.e., |x(n)| < oo for all n implies that |Hx(n)| < e for all n).

B |n other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

B To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

B To show that a system is not BIBO stable, we need only find a single
bounded input that leads to an unbounded output.

B |n practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input remains finite for all time, the output will also
remain finite for all time.

B Usually, a system that is not BIBO stable will have serious safety issues.

B For example, a portable music player with a battery input of 3.7 volts and
headset output of e volts would result in one vaporized human (and likely
a big lawsuit as well).
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Time Invariance (Tl)

B A system H is said to be (or ) if,
for every sequence x and every integer ny, the following condition holds:

Hx(n—no) = Hx/(n) foralln, where x'(n)=x(n—nyg)

(i.e., H commutes with time shifts).

B |n other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

B A system that is not time invariant is said to be

B In simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

B Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.
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Time Invariance (Continued)

B et §,, denote an operator that applies a time shift of n, to a sequence
(i.e., Suex(n) = x(n—np)).

B A system J{ is time invariant if and only if the following two systems are
equivalent (i.e., J{ commutes with §,,):

b 0 e R ey B s B

System 1: y = JH§,,,x

{ ¥(n) = 30X (n)
¥ (n) = 8uyx(n) = x(n — no)

System 2: y = 8,,Hx
} /() = Fx(n— )]
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Additivity, Homogeneity, and Linearity

B A system J{ is said to be if, for all sequences x; and x;, the
following condition holds:

H(xy +x2) = Hxy + Hxp

(i.e., H commutes with sums).

A system H is said to be if, for every sequence x and every
complex constant a, the following condition holds:
H(ax) = aHx

(i.e., H commutes with multiplication by a constant).

A system that is both additive and homogeneous is said to be

In other words, a system X is linear, if for all sequences x; and x, and all
complex constants a; and a, the following condition holds:

H(arx) +axxz) = ayHxy + axHx,
(i.e., H commutes with linear combinations).
The linearity property is also referred to as the property.

Practically speaking, linear systems are much easier to design and
analyze than nonlinear systems.
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Additivity, Homogeneity, and Linearity (Continued 1)

B The system I is additive if and only if the following two systems are
equivalent (i.e., I commutes with addition):

System 1: y = H(x; +x2)

System 2: y = Hx| + Hxp

B The system H is homogeneous if and only if the following two systems
are equivalent (i.e., J{ commutes with scalar multiplication):

X y X y
el e e e n El e W e

System 1: y = H(ax) System 2: y = aHx
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Additivity, Homogeneity, and Linearity (Continued 2)

B The system I is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

x|

[l A g |

y

X1

P R @D

X2

[

a

System 1: y = H(aj x| +azxy)

X2

System 2: y = a1 Hx| +ayHxp
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Eigensequences of Systems

B A sequence x is said to be an of the system I with the
A if

Hx = Ax,

where A is a complex constant.

B In other words, the system JH acts as an ideal amplifier for each of its
eigensequences x, where the amplifier gain is given by the corresponding
eigenvalue A.

B Different systems have different eigensequences.

B Many of the mathematical tools developed for the study of DT systems
have eigensequences as their basis.
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Part 9

Discrete-Time Linear Time-Invariant (LTI) Systems
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Why Linear Time-Invariant (LTI) Systems?

B |n engineering, linear time-invariant (LTI) systems play a very important
role.

B Very powerful mathematical tools have been developed for analyzing LTI
systems.

B LTI systems are much easier to analyze than systems that are not LTI.

B |n practice, systems that are not LTI can be well approximated using LTI
models.

B So, even when dealing with systems that are not LTI, LTI systems still play
an important role.
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Section 9.1

Convolution
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DT Convolution

B The (DT) of the sequences x and &, denoted x x A, is defined
as the sequence

oo

xxh(n) = Z x(k)h(n—k).

k=—oo

B The convolution x x i evaluated at the point # is simply a weighted sum of
elements of x, where the weighting is given by & time reversed and shifted
by n.

B Herein, the asterisk symbol (i.e., “x”) will always be used to denote
convolution, not multiplication.

B As we shall see, convolution is used extensively in the theory of (DT)
systems.

B |n particular, convolution has a special significance in the context of (DT)
LTI systems.
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Practical Convolution Computation

B To compute the convolution

oo

xxh(n) = Z x(k)h(n—k),

k=—c0

we proceed as follows:

B Plot x(k) and h(n — k) as a function of k.

Initially, consider an arbitrarily large negative value for n. This will result in
h(n— k) being shifted very far to the left on the time axis.

Write the mathematical expression for x * i(n).

Increase n gradually until the expression for x * i(n) changes form. Record
the interval over which the expression for x * i(n) was valid.

Repeat steps 3 and 4 until n is an arbitrarily large positive value. This
corresponds to i(n — k) being shifted very far to the right on the time axis.

B The results for the various intervals can be combined in order to obtain an
expression for x x h(n) for all n.
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Properties of Convolution

B The convolution operation is commutative. That is, for any two sequences
x and h,

x*xh=hxx.

B The convolution operation is associative. That is, for any sequences x, hj,
and ho,

(xxhy)xhy =xx(h *hy).

B The convolution operation is distributive with respect to addition. That is,
for any sequences x, h;, and hy,

x*(hl —I—/lz) =x*xh)+xxhs.
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Representation of Sequences Using Impulses

® For any sequence x,
x(n) =Y x(k)d(n—k) =xx3(n).
k=—oc0

B Thus, any sequence x can be written in terms of an expression involving 9.

B Moreover, d is the convolutional identity. That is, for any sequence x,

x*xd=x.
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Circular Convolution

B The convolution of two periodic sequences is usually not well defined.

B This motivates an alternative notion of convolution for periodic sequences
known as circular convolution.

B The (also known as the DT periodic convolution) of
the N-periodic sequences x and &, denoted x ® A, is defined as

x@h(n) =Y x(k Zx h(mod(n—k,N)),

k=(N)

where mod(a, b) is the remainder after division when a is divided by b.

B The circular convolution and (linear) convolution of the N-periodic
sequences x and h are related as follows:

X®h(n) =xoxh(n) where x(n Z xo(n—kN)
k=—oc0

(i.e., xo(n) equals x(n) over a single period of x and is zero elsewhere).
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Section 9.2

Convolution and LTI Systems

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 403



Impulse Response

B The response h of a system J to the input d is called the
of the system (i.e., h = JJ).

B For any LTI system with input x, output y, and impulse response #, the
following relationship holds:

y=xx*h.

B In other words, a LTI system simply computes a convolution.

B Furthermore, a LTI system is completely characterized by its impulse
response.

B That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.
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Step Response

B The response s of a system H to the input u is called the of
the system (i.e., s = Hu).

B The impulse response / and step response s of a system are related as
h(n) =s(n) —s(n—1).

B Therefore, the impulse response of a system can be determined from its
step response by (first-order) differencing.
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Block Diagram of LTl Systems

B Often, it is convenient to represent a (DT) LTI system in block diagram
form.

B Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

B That is, we represent a system with input x, output y, and impulse
response h, as shown below.

X y

——— h L,
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Interconnection of LTI Systems

B The series interconnection of the LTI systems with impulse responses
and hy is the LTI system with impulse response h = h; x hy. That is, we
have the equivalences shown below.

x y X y

— hl 1 h2 |- = — hl *hZ I —
X y X y
— hy | hy > = — hy | h >

B The parallel interconnection of the LTI systems with impulse responses
hy and h; is a LTI system with the impulse response h = hy + hy. That is,
we have the equivalence shown below.

x y
hy

= —— hy+hy ——

h
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Section 9.3

Properties of LTI Systems
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B A LTI system with impulse response % is memoryless if and only if
h(n) =0 foralln#0.

B That is, a LTl system is memoryless if and only if its impulse response 7 is
of the form

h(n) = Kd(n),

where K is a complex constant.
B Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form
y=x%(K3) = Kx

(i.e., the system is an ideal amplifier).

B For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).
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B A LTI system with impulse response £ is causal if and only if
h(n)=0 foralln<0

(i.e., his a causal sequence).
B |t is due to the above relationship that we call a sequence x, satisfying

x(n) =0 foralln <0,

a causal sequence.
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Invertibility

B The inverse of a LTI system, if such a system exists, is a LTI system.

B |et 4 and A;,, denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h* hiny, = 0.

B Consequently, a LTI system with impulse response # is invertible if and
only if there exists a sequence hj,, such that

h* hyny = 0.

B Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

B A LTI system with impulse response % is BIBO stable if and only if

(=)

Y |a(m)] <

n—=—oo

(i.e., h is absolutely summable).
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Eigensequences of LTI Systems

B As it turns out, every complex exponential is an eigensequence of all LTI
systems.

B For a LTI system J{ with impulse response h,
FH{"}(n) = H(2)z",

where z is a complex constant and

H(z) = i h(n)z™".

n=-—oo

B Thatis, 7" is an eigensequence of a LTI system and H(z) is the
corresponding eigenvalue.

B We refer to H as the (or ) of the
system H.

B From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(z).
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Representation of Sequences Using Eigensequences

B Consider a LTI system with input x, output y, and system function H.
B Suppose that the input x can be expressed as the linear combination of
complex exponentials
x(n) = Zakzz,
k

where the a; and z; are complex constants.

B Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(n) =Y aH (z1)7-
k

B Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as linear
combination of the same complex exponentials.

B The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Part 10

Discrete-Time Fourier Series (DTFS)
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Introduction

B The Fourier series is a representation for periodic sequences.

B With a Fourier series, a sequence is represented as a linear combination
of complex sinusoids.

B The use of complex sinusoids is desirable due to their numerous attractive
properties.

B Perhaps, most importantly, complex sinusoids are eigensequences of (DT)
LTI systems.
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Section 10.1

Fourier Series
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Harmonically-Related Complex Sinusoids

B A set of periodic complex sinusoids is said to be if
there exists some constant %" such that the fundamental frequency of
each complex sinusoid is an integer multiple of %V—”

B Consider the set of harmonically-related complex sinusoids given by
Or(n) = /PR for all integer k.
B |n the above set {{x }, only N elements are distinct, since
0 = dryy  for all integer k.

B Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of 2% 3 linear combination of
these complex sinusoids must be N-periodic.
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DT Fourier Series (DTFS)

B An N-periodic complex-valued sequence x can be represented as a linear
combination of harmonically-related complex sinusoids as

x(n): Z akej(2n/N)kn’
k=(N)

where };_ vy denotes summation over any N consecutive integers (e.g.,
[0..N —1]). (The summation can be taken over any N consecutive
integers, due to the N-periodic nature of x and e/(2V/N)kn )

B The above representation of x is known as the (DT) and
the ay are called

B The above formula for x is often called the

B To denote that the sequence x has the Fourier series coefficient sequence

a, we write

x(n) < ay.
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DT Fourier Series (DTFS) (Continued)

B A periodic sequence x with fundamental period N has the Fourier series
coefficient sequence a given by

ax :% Z x(n)e /RN,
n=(N)
(The summation can be taken over any N consecutive integers due to the
N-periodic nature of x and e~ /(2%/N)kn
B The above equation for ay is often referred to as the

B Due to the N-periodic nature of x and e /(@/N)kn the sequence a is also
N-periodic.
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Convergence of Fourier Series

B Since the analysis and synthesis equations for (DT) Fourier series involve
only finite sums (as opposed to infinite series), convergence is not a
significant issue of concern.

B |f an N-periodic sequence is bounded (i.e., is finite in value), its Fourier
series coefficient sequence will exist and be bounded and the Fourier
series analysis and synthesis equations must converge.
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Section 10.2

Properties of Fourier Series
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Properties of (DT) Fourier Series

’ DTFS, DTFS, ‘

x(n)<—ax and y(n)+— by

Property Time Domain  Fourier Domain
Linearity ox(n) +By(n)  oay + Pby
Translation x(n—ng) e Ik2n/N)no g,
Modulation eI Nkony(n) a4,
Reflection x(—n) a—g
Conjugation x*(n) a*,
Duality a %x(—k)
Periodic Convolution x® y(n) Naiby
Multiplication x(n)y(n) a® by

Property

Parseval’s Relation ¥y () = Lae iy larl”

Even Symmetry x is even < a is even

Odd Symmetry xisodd < ais odd

Real / Conjugate Symmetry x is real < a is conjugate symmetric
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DTFS

B Let x and y be N-periodic sequences. If x(1) < a; and y(n) < by,
then

DTFS

ox(n) + By (n) <— o+ Bby,

where o and B are complex constants.

B That is, a linear combination of sequences produces the same linear
combination of their Fourier series coefficients.
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Translation (Time Shifting)

B Let x denote a periodic sequence with period N. If x(n) <= ¢y, then
x(n—ng) & ¢ KR /N)no g,

where ng is an integer constant.

B |n other words, time shifting a periodic sequence changes the argument
(but not magnitude) of its Fourier series coefficients.
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Modulation (Frequency Shifting)

B Let x denote a periodic sequence with period N. If x(n) <> ¢, then
ej(ZR/N)konx(n) DTFS Chetos

where ky is an integer constant.

B That is, multiplying a sequence by a complex sinusoid whose frequency is
an integer multiple of zﬁn results in a translation of the corresponding
Fourier series coefficient sequence.
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Reflection (Time Reversal)

B Let x denote a periodic sequence with period N. If x(n) < ct, then

DTFS

x(—n) < c_y.

B That is, time reversing a sequence results in a time reversal of the
corresponding Fourier series coefficient sequence.
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B Let x denote a periodic sequence with period N. If x(n) < ct, then

DTFS. %

x"(n) «— .

B |n other words, conjugating a sequence has the effect of time reversing
and conjugating the corresponding Fourier series coefficient sequence.
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DTFS,

B Let x denote a periodic sequence with period N. If x(n) <— a(k), then

a(n) FEAN %x(—k).
B This is known as the of Fourier series.

B This property follows from the high degree of symmetry in the analysis
and synthesis Fourier-series equations, which are respectively given by

x(m) = Z a(£)e! PN gng a(m) =14 Z x(0)e~Ir/Nmt
=) =Ny

B That is, the analysis and synthesis equations are identical except for a
Jactor of N and different sign in the parameter for the exponential
function.
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Periodic Convolution

B Let x and y be N-periodic sequences. If x(1n) < a; and y(n) < by,

then

x@y(n) (E) Nakbk.

B That is, periodic convolution of two sequences multiplies their
corresponding Fourier series coefficient sequences (up to a scale factor).
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Multiplication

B Let x and y be N-periodic sequences. If x(1n) < a; and y(n) < by,

then
x(n)y(n) & a® b(k).
B That is, multiplying two sequences results in a circular convolution of their
corresponding Fourier series coefficient sequences.
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Parseval’s Relation

B A sequence x and its Fourier series coefficient sequence a satisfy the
following relationship:

¥ Y k@P= Y Jal?
k=(N)

n=(N)

B The above relationship is simply stating that the amount of energy in a
single period of x and the amount of energy in a single period of a are
equal up to a scale factor.

B |n other words, the transformation between a sequence and its Fourier
series coefficient sequence preserves energy (up to a scale factor).
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Even/Odd Symmetry

B For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

Xxiseven < aiseven;, and
xisodd < ais odd.

B |n other words, the even/odd symmetry properties of x and a always
match.
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Real Sequences

B A sequence x is real if and only if its Fourier series coefficient sequence a
satisfies

ap=a’, forallk

(i.e., a is conjugate symmetric).

® From properties of complex numbers, one can show that a; = a*, is
equivalent to

lar| = |la_x| and argay = —arga_j

(i.e.,

ai| is even and argay is odd).

B Note that x being real does nof necessarily imply that a is real.
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Trigonometric Form of a Fourier Series

B Consider the N-periodic sequence x with Fourier series coefficient
sequence a.

B [f x is real, then its Fourier series can be rewritten in trigonometric form as
shown below.

B The of a Fourier series has the appearance

( N/2—1
ag+ Y, [ocos (3) + Besin ()] +
k=1
x(n)={ Oj2cos(nn) N even
(N— 1)/2
o + Z [tk cos ( 2“"”) + Br sm(z’tk”)} N odd,

where 0, = ay, OCN/Z =4an/2s Oy = 2Reak, and Bk = 72Imak.
B Note that the above trigonometric form contains only real quantities.
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Other Properties of Fourier Series

B For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:
H q is the average value of x over a single period;
x is real and even < a is real and even; and
x is real and odd < a is purely imaginary and odd.
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Section 10.3

Discrete Fourier Transform (DFT)
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Prelude to the Discrete Fourier Transform (DFT)

B | etting a§< = Nay, we can rewrite the Fourier series synthesis and analysis
equations, respectively, as

N—1
_ 1 Z Zn/N and azz Z x(n)efj(ZTc/N)kn
n=0

B Since x and @’ are both N-periodic, each of these sequences is
completely characterized by its N samples over a single period.

B |f we only consider the behavior of x and a’ over a single period, this leads
to the equations

N—1
x(n)=%Y ape? N forne0..N—1] and
=0

Zx —JCR/Nkn - for k € [0..N —1].
B As it turns out, the above two equations define what is known as the

discrete Fourier transform (DFT).

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 438



Discrete Fourier Transform (DFT)

B The X of the N-element sequence x
is defined as

Zx —JCr/Nknfor k € [0..N —1].

B The preceding equation is known as the
B The x of the N-element sequence X is given by

NZX /PN forn e [0..N —1].

B The preceding equation is known as the

B The DFT maps a finite-length sequence of N samples to another
finite-length sequence of N samples.

B The DFT will be considered in more detail later.
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Properties of Discrete Fourier Transform (DFT)

Property Time Domain Fourier Domain
Linearity apxi (n) +axx; (n) a1 X (k) +arXp (k)
Translation x(n—ngp) e~ Km/N)mox (k)
Modulation eI 2m/Nkony () X (k— ko)
Reflection x(—n) X(—k)
Conjugation x*(n) X*(—k)
Duality X(n) Nx(—k)
Periodic Convolution  x; ® x;(n) X (k)Xa (k)
Multiplication x1(n)xa(n) X ® X, (k)
Property
Parseval's Relation I lx(n)|* = o X (k)
Even Symmetry xis even & X is even
Odd Symmetry xisodd < X is odd

Real / Conjugate Symmetry xis real < X is conjugate symmetric
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Section 10.4

Fourier Series and Frequency Spectra
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A New Perspective on Sequences: The Frequency Domain

B The Fourier series provides us with an entirely new way to view
sequences.

B |nstead of viewing a sequence as having information distributed with
respect to time (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

B This so called frequency-domain perspective is of fundamental
importance in engineering.

B Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

B The Fourier series coefficients of a sequence x provide a means to
quantify how much information x has at different frequencies.

B The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.
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Fourier Series and Frequency Spectra

B To gain further insight into the role played by the Fourier series
coefficients ay, in the context of the frequency spectrum of the N-periodic
sequence x, it is helpful to write the Fourier series with the a; expressed in
polar form as

N—
Z ael /N )kn Z |ag |eJ ([2n/Nlkn-+argay)
k=0

B Clearly, the kth term in the summation corresponds to a complex sinusoid
with fundamental frequency 2Lk that has been amplitude scaled by a
factor of |ax| and fime- chzfted by an amount that depends on arg ay.

B For a given k, the larger |a;| is, the larger is the amplitude of its
corresponding complex sinusoid ¢/ 2%/N)k and therefore the larger the
contribution the kth term (which is associated with frequency 2W’rk) will
make to the overall summation.

B |n this way, we can use |ax| as a measure of how much information a
sequence x has at the frequency zﬁ"k.
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Fourier Series and Frequency Spectra (Continued 1)

The Fourier series coefficients a; of the sequence x are referred to as the
of x.

The magnitudes |ai| of the Fourier series coefficients a; are referred to as
the of x.

The arguments arg a; of the Fourier series coefficients ay are referred to
as the of x.

The frequency spectrum a; of an N-periodic sequence is N-periodic in the
coefficient index k and 2mwt-periodic in the frequency Q = %"k.

The range of frequencies between —m and T are referred to as the

Often, the spectrum of a sequence is plotted against frequency Q = %“k
(over the single 27 period of the baseband) instead of the Fourier series
coefficient index k.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 444



Fourier Series and Frequency Spectra (Continued 2)

B Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

B Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as
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Frequency Spectra of Real Sequences

B | et x denote an N-periodic sequence with the corresponding
Fourier-series coefficient sequence c.

B As we saw earlier:
x is real & c is conjugate symmetric.
B Furthermore, if x is real, the following assertions hold for c; for
kel[0..N—1]:
Bc=cy forke[l.N-1];
of the N coefficients ¢ for k € [0..N — 1], only [%J + 1 coefficients are

independent; for example, ¢ for k € [0.. | 5 |] completely determines c for

alke[0..N—1];
co is real; and
if N'is even, ¢y, is real.
B Note that approximately half of the coefficients in a single period of ¢ are
redundant if x is real.
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Section 10.5

Fourier Series and LTI Systems
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Frequency Response

B Recall that a LTI system JH with impulse response # is such that
H{Z"}(n) = Hz(z)7", where Hz(z) = Y h(n)z~". (That is, complex
exponentials are eigensequences of LTIl systems.)

B Since a complex sinusoid is a special case of a complex exponential, we
can reuse the above result for the special case of complex sinusoids.

B For a LTI system J with impulse response 4,
H{e™} (n) = H(Q)e! ™,
where Q is real and

H(Q)= i h(n)e /"

n—=—oo

B Thatis, /¥ is an eigensequence of a LTl system and H(Q) is the
corresponding eigenvalue.

B The function H is 2n-periodic, since ¢/ is 2n-periodic.

B We refer to H as the of the system .
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Fourier Series and LTI Systems

Consider a LTI system with input x, output y, and frequency response H.
Suppose that the N-periodic input x is expressed as the Fourier series

N—1
_ JkQon _2=n
x(n) =Y are , Wwhere Qo = 3.
k=0
Using our knowledge about the eigensequences of LTI systems, we can
conclude
N—1

y(n) =Y acH (kQq) e/ .
k=0

Thus, if the input x to a LTI system is a Fourier series, the output y is also a
DTFS DTFS,

Fourier series. More specifically, if x(n) <— ai then y(n) <— H (kQ)ay.

The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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B |n many applications, we want to modify the spectrum of a sequence by
either amplifying or attenuating certain frequency components.

B This process of modifying the frequency spectrum of a sequence is called

B A system that performs a filtering operation is called a
B Many types of filters exist.
pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.
B Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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ldeal Lowpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response of the form
1 | <Q
H(Q)= 2] <
0 Q <|Q]<m,

where Q. is the
B A plot of this frequency response is given below.

Stopband " Passband Stopband
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ldeal Highpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response of the form

H(Q) = 1 Q. <|Q<mn
o @ <Q.,

where Q. is the
B A plot of this frequency response is given below.

H(Q)

I
—T Q. Q. T

Q

" Passband Stopband " Passband
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Ideal Bandpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response of the form

H( )_ 1 ch§|Q|§Qc2
0 19Q] < Qi or Qe < Q| <,

where the limits of the passband are Q.; and Q.
B A plot of this frequency response is given below.

H(Q)
1
t t Q
i _Qc2 _er ch Q(‘Z T
B SRR e GECRIREEERIIE o o SRUIILELEII NI, o (R, o SRR
Stopband Passband Stopband Passband Stopband
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Part 11

Discrete-Time Fourier Transform (DTFT)
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Motivation for the Fourier Transform

B The (DT) Fourier series provide an extremely useful representation for
periodic sequences.

B Often, however, we need to deal with sequences that are not periodic.
B A more general tool than the Fourier series is needed in this case.

B The (DT) Fourier transform can be used to represent both periodic and
aperiodic sequences.

B Since the (DT) Fourier transform is essentially derived from (DT) Fourier
series through a limiting process, the Fourier transform has many
similarities with Fourier series.
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Section 11.1

Fourier Transform
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Development of the Fourier Transform [Aperiodic Case]

B The (DT) Fourier series is an extremely useful signal representation.

B Unfortunately, this signal representation can only be used for periodic
sequences, since a Fourier series is inherently periodic.

B Many sequences are not periodic, however.

B Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can also be
applied to aperiodic sequences.

B By viewing an aperiodic sequence as the limiting case of an N-periodic
sequence where N — oo, we can use the Fourier series to develop a
signal representation that can be used for aperiodic sequences, known as
the Fourier transform.
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Development of the Fourier Transform [Aperiodic Case] wonines

B Recall that the Fourier series representation of an N-periodic sequence x
is given by

x(n): Z <11’ Z x(ﬂ)e—j(Zn/N)/%) ej(ln/N)kn'

Ck

B |n the above representation, if we take the limit as N — oo, we obtain

x(n) = ﬁ /27: (fi x(ﬁ)ejm> e dQ

~~

X(Q)

(i.e., as N — oo, the two finite summations become an integral and infinite
summation, 1, becomes 5-dQ, and (3F) k becomes Q).

B This representation for aperiodic sequences is known as the Fourier
transform representation.
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Generalized Fourier Transform

The classical Fourier transform for aperiodic sequences does not exist
(i.e., ij:,wx(n)e*]g” fails to converge) for some sequences of great
practical interest, such as:

o a nonzero constant sequence;

o a periodic sequence (e.g., a real or complex sinusoid); and

o the unit-step sequence (i.e., u).
Fortunately, the Fourier transform can be extended to handle such
sequences, resulting in what is known as the

For our purposes, we can think of the classical and generalized Fourier
transforms as being defined by the same formulas.

Therefore, in what follows, we will not typically make a distinction between
the classical and generalized Fourier transforms.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 459



DT Fourier Transform (DTFT)

B The of the sequence x, denoted Fx or X, is given by

Fx(Q)=X(Q) = i x(n)e 7,

n—=—oo

The preceding equation is sometimes referred to as
(or ).
B The of X, denoted 7~!X or x, is given by
FIX(n)=x(n) =% | X(Q)e/*dQ.
2

o

The preceding equation is sometimes referred to as the

(or ).
B As a matter of notation, to denote that a sequence x has the Fourier
transform X, we write x(n) < X (Q).

B A sequence x and its Fourier transform X constitute what is called a
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Section 11.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

B For a sequence x, the Fourier transform analysis equation (i.e.,
X(Q) =Y. x(n)e= ") converges uniformly if

Y Lk < oo

k=—c0

(i.e., x is absolutely summable).

B For a sequence x, the Fourier transform analysis equation (i.e.,
X(Q) = Y= x(n)e /¥ converges in the MSE sense if

Y k(b <o

k=—oc0

(i.e., x is square summable).

B For a bounded Fourier transform X, the Fourier transform synthesis
equation (i.e., x(n) = ﬁ Jo X (Q)e*d Q) will always converge, since the
integration interval is finite.
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Section 11.3

Properties of the Fourier Transform
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Properties of the (DT) Fourier Transform

Property Time Domain Frequency Domain
Linearity aixi(n)+axxp(n)  a1X;(Q)+aX>(Q)
Translation x(n—np) e 10X (Q)

Modulation e’y (n) X(Q—-9Q)

Conjugation x*(n) X*(—Q)

Time Reversal x(—n) X(—Q)

Upsampling (T M)x(n) (MQ)

Downsampling (1 M)x(n) LE X (252
Convolution x1 *x(n) X1 (Q)X2(Q)
Multiplication x1(n)x2(n) o o X1(8)X2(Q —0)d6
Freq.-Domain Diff. ~ nx(n) JA5X(Q)

Differencing x(n) —x(n—1) (1—e72)X(Q)
Accumulation Y x(k) S0 X(Q) + X (0) X, 8(Q — 2mk)
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Properties of the (DT) Fourier Transform (Continued)

Property

Periodicity X(Q)=X(Q+2n)

Parseval’s Relation YLk )] = L X (Q)FdQ
Even Symmetry xis even & X is even

Odd Symmetry x is odd < X is odd

Real / Conjugate Symmetry x is real < X is conjugate symmetric
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(DT) Fourier Transform Pairs

Pair x(n X(Q)
1 8(n) 1
2 1 2y 8(Q—2mk)
3 un) S I T(Q — 2mk)
4 a"u(n),la| < 1 g,‘;;:
5 —a"u(—n—1),|a| > 1 %
n 1—d®
6 a‘ " ‘a| <1 1—2acos Q+a?
7 cos(Qon) Y [8(Q — Qo — 2mk) + §(Q + Qg — 27k)]
8 sin(Qon) jn):g::_w [3(Q+ Qo — 27k) — 8(Q — Qo — 27k)]
L2900 o
9 cos(Qon)u(n) e+ IV L [3(Q — 2k — Qo) + 8(Q — 27k + Q)]
: 2% sin oo
10 sin(Qon)u(n) et + 35 Lo [8(Q — 27k — Qo) — 8(Q — 2k + Q)]
11 Bsine(Bn),0<B<m Yy rect(252%)
T ’ =—00 2B
12 u(n) —u(n—M) e IM-1)/2 (si;;lgﬁ(g;g) )
ae: Q
13 na”u(n)., \a| <1 ﬁ
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B Recall the definition of the Fourier transform X of the sequence x:

oo

X(Q)= Z x(n)e 7,

n=—oo

B For all integer k, we have that

X(Q+2mk)= ) x(n)e /(@+2mk)n
_ i x(n)efj(QnJrZTtkn)

=) x(n)e /<

n—=—oo

= X(Q).

B Thus, the Fourier transform X of the sequence x is always 2n-periodic.
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DTFT DTFT

B [fx;(n) «— X1(Q) and x2(n) <— X»(Q), then
aixi (n) +arx; (n) & a1 X (Q.) + az)(z(Q)7

where a; and a; are arbitrary complex constants.
B This is known as the of the Fourier transform.
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Translation

DTFT,

B [fx(n) +— X(Q), then
x(n—np) €= e X (Q),

where ng is an arbitrary integer.

B This is known as the of
the Fourier transform.
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Modulation

DTFT

B |f x(n) < X(Q), then
e x(n) &S X (Q—Qy),

where Qg is an arbitrary real constant.

B This is known as the
of the Fourier transform.
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DTFT,

B If x(n) <— X(Q), then
x*(n) &5 XH(—Q).

B This is known as the of the Fourier transform.
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Time Reversal

DTFT,

B If x(n) <— X(Q), then
x(—n) &5 X (-Q).

B This is known as the of the Fourier transform.
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Upsampling

DTFT,

B If x(n) <— X(Q), then

(Tt M)x(n) +— X(MQ).

B This is known as the of the Fourier transform.
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Downsampling

DTFT

B [fx(n) +— X(Q), then

M
(L M)x(n) <5 5 Y x (2.

B This is known as the of the Fourier transform.
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Convolution

DTFT, DTFT

B [fx;(n) «— X1(Q) and x2(n) <— X»(Q), then
xp*#x2(n) 55 X1 (Q)X(Q).

B This is known as the
of the Fourier transform.
B |n other words, a convolution in the time domain becomes a multiplication
in the frequency domain.
B This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.
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Multiplication

DTFT DTFT

B Ifx;(n) +— X1 (Q) and x2(n) +— X»(Q), then
x1 (m)xa(n) &5 L /2 Xi(0)Xa(2— 0)db.

B This is known as the
of the Fourier transform.

B Do not forget the factor of ﬁ in the above formulal

B This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.
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Frequency-Domain Differentiation

DTFT

B If x(n) <— X(Q), then

nx(n) <5 j-LX(Q).

B This is known as the of the
Fourier transform.
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Differencing

DTFT,

B [fx(n) +— X(Q), then
x(n) —x(n—1) <5 (1—e /) X(Q).

B This is known as the of the Fourier transform.

B Note that this property follows quite trivially from the linearity and
translation properties of the Fourier transform.
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Accumulation

DTFT,

B If x(n) <— X(Q), then

n

DTFT e/ >
k;_:wx(") &% o X(Q)+71X(0) Y 8(Q—2mk).

k=—oc0

B This is known as the of the Fourier transform.
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Parseval’s Relation

DTFT

B If x(n) +— X(Q), then

Y kP =% [ x@)Pae

n—=—oo

(i.e., the energy of x and energy of X are equal up to a factor of 2).
B This is known as

B Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).
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Even and Odd Symmetry

B For a sequence x with Fourier transform X, the following assertions hold:
H xis even & X is even; and
x is odd < X is odd.
B |n other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.
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Real Sequences

B A sequence x is real if and only if its Fourier transform X satisfies
X(Q)=X"(—Q) forall Q

(i.e., X is conjugate symmetric).

B Thus, for a real-valued sequence, the portion of the graph of a Fourier
transform for negative values of frequency Q is redundant, as it is
completely determined by symmetry.

B From properties of complex numbers, one can show that
X(Q) =X*(—Q) is equivalent to

IX(Q)=1X(—Q)| and argX(Q)=—argX(—Q)

(i.e.,

X (Q)| is even and arg X (Q) is odd).
B Note that x being real does not necessarily imply that X is real.
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Section 11.4

Fourier Transform of Periodic Sequences
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Fourier Transform of Periodic Sequences

B The Fourier transform can be generalized to also handle periodic
sequences.

B Consider an N-periodic sequence x.

B Define the sequence xy as

xy(n) =

x(n) 0<n<N
0 otherwise.

(i.e., xn(n) is equal to x(n) over a single period and zero elsewhere).
B | et a denote the Fourier series coefficient sequence of x.
B |et X and Xy denote the Fourier transforms of x and xy, respectively.
B The following relationships can be shown to hold:

X@ =% ¥ 0 (s,

oo

ar = v Xy (2£), and X(Q):2nk; ad (Q— ).

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Fourier Transform of Periodic Sequences (Continued)

B The Fourier series coefficient sequence a is produced by sampling Xy at
integer multiples of the fundamental frequency ZN’T and scaling the
resulting sequence by 1.

B The Fourier transform of a periodic sequence can only be nonzero at
integer multiples of the fundamental frequency.
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Section 11.5

Fourier Transform and Frequency Spectra of Sequences
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Frequency Spectra of Sequences

B | ike Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on sequences.

B That is, instead of viewing a sequence as having information distributed
with respect to fime (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

B The Fourier transform X of a sequence x provides a means to quantify
how much information x has at different frequencies.

B The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.
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Fourier Transform and Frequency Spectra

B To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X (Q) expressed in polar form as
follows:

21-5/ X e]QndQ 2Tl:/ ’X Qn+argX )]dQ

B |n effect, the quantity |X(Q)| is a weight that determines how much the
complex sinusoid at frequency Q contributes to the integration result x(n).

B Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
area of rectangles, as shown on the next slide. [Recall that
P f(x)dx =1im, e X7, f(x)Ax where Ax = =4 and x; = a + kAx.]
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Fourier Transform and Frequency Spectra (Continued 1)

B Expressing the integral (from the previous slide) as the limit of a sum, we
obtain

QL iAQ ‘X(Q/)‘ej[ﬂ’n-&-argX(Q’)]’

where AQ = 2“ and Q' = kAQ.

B |n the above equatlon, the kth term in the summation corresponds to a
complex sinusoid with fundamental frequency Q' = kAQ that has had its
amplitude scaled by a factor of |X(Q')| and has been time shifted by an
amount that depends on arg X (Q').

B For a given Q' = kAQ (which is associated with the kth term in the
summation), the larger |X(Q')| is, the larger the amplitude of its
corresponding complex sinusoid e/ will be, and therefore the larger the
contribution the kth term will make to the overall summation.

B |n this way, we can use |X(Q')| as a measure of how much information a
sequence x has at the frequency .
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Fourier Transform and Frequency Spectra (Continued 2)

B The Fourier transform X of the sequence x is referred to as the
of x.

B The magnitude |X (Q)| of the Fourier transform X is referred to as the
of x.
® The argument arg X () of the Fourier transform X is referred to as the
of x.

B Since the Fourier transform is a function of a real variable, a sequence
can potentially have information at any real frequency.

B Earlier, we saw that for periodic sequences, the Fourier transform can only
be nonzero at integer multiples of the fundamental frequency.

B So, the Fourier transform and Fourier series give a consistent picture in
terms of frequency spectra.

B Since the frequency spectrum is complex (in the general case), it is
usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Sequences

B Recall that, for a real sequence x, the Fourier transform X of x satisfies
X(Q)=X"(-Q)
(i.e., X is conjugate symmetric), which is equivalent to
IX(Q)=1X(—Q)| and argX(Q)= —argX(—Q).

B Since [X(Q)| = |X(—Q)
always even.

, the magnitude spectrum of a real sequence is

B Similarly, since arg X (Q) = —arg X (—Q), the phase spectrum of a real
sequence is always odd.

B Due to the symmetry in the frequency spectra of real sequences, we
typically ignore negative frequencies when dealing with such sequences.

B |n the case of sequences that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.
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Bandwidth

B A sequence x with Fourier transform X satisfying X () = 0 for all Q in
(—m, ] except for some interval [ is said to be to
frequencies in 1.

B The of a sequence x with Fourier transform X is the length of
the interval in (—m, 7t] over which X is nonzero.

B For example, the sequence x with the Fourier transform X shown below is
bandlimited to frequencies in [—B, B] and has bandwidth B — (—B) = 2B.

X(Q)
|

7 \i Q
—T -B B T

B Since x is real in the above example (as X is conjugate symmetric), we
might choose to ignore negative frequencies, in which case x would be
deemed to be bandlimited to frequencies in [0, B] and have bandwidth
B—-0=8B.
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Energy-Density Spectra

B By Parseval’s relation, the energy E in a sequence x with Fourier
transform X is given by

where

B We refer to E, as the of the sequence x.

B The function E, indicates how the energy in x is distributed with respect to
frequency.

B For example, the energy contributed by frequencies in the range [Q1, Q]
is given by

| [
L [T E(Q)de.

1
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Section 11.6

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

B Consider a LTI system with input x, output y, and impulse response ki, and
let X, Y, and H denote the Fourier transforms of x, y, and #, respectively.

B Since y(n) = xxh(n), we have that

B The function H is called the of the system.
B A LTI system is completely characterized by its frequency response H.

B The above equation provides an alternative way of viewing the behavior of
a LTl system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
signals.

B The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

B |n the general case, the frequency response H is a complex-valued

function.

® Often, we represent H (L) in terms of its magnitude |H ()| and argument
arg H(Q).

B The quantity |H(Q)| is called the of the system.

B The quantity arg H(Q) is called the of the system.

B Since Y(Q) = X (Q)H (), we trivially have that
Y(Q)|=|X(Q)||H(Q)| and argY(Q)=argX(Q)+argH(Q).

B The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

B The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.
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Frequency Response of LTI Systems (Continued 2)

B Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

H(Q)|=|H(—Q)| and argH(Q)=—argH(—Q)

(i.e., the magnitude response |H(Q)| is even and the phase response
arg H(Q) is odd).
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Unwrapped Phase

B For many types of analysis, restricting the range of a phase function to an
interval of length 27 (such as (—m, w]), often unnecessarily introduces
discontinuities into the function.

B This motivates the notion of unwrapped phase.

B The is simply the phase defined in such a way so as
not to restrict the phase to an interval of length 27 and to keep the phase
function continuous to the greatest extent possible.

B For example, the function H(Q) = ¢/*? has the unwrapped phase

0(Q) =3Q.
ArgH(Q) 0(Q) =30

3n 3n

2n 2n

" ’

-2

A, .,
V—zni Fa S ' R

—3n

Phase Unwrapped Phase
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Interpretation of Magnitude and Phase Response

B Recall that a LTI system JH with frequency response H is such that
H {ejQ”} (n) = H(Q)e/".
B Expressing H(Q) in polar form, we have
H{e/} (n) = |H(Q)| /(X S
— |H(Q)|ej[9n+argH(Q)}
= |H(Q)| e/ntarelH(Q)]/Q)

B Thus, the response of the system to the sequence ¢/ is produced by
applying two transformations to this sequence:
o (amplitude) scaling by |H (Q)|; and
o translating by —% (using bandlimited interpolation if — ““gH ) ¢ 7).
B Therefore, the magnitude response determines how different complex

sinusoids are scaled (in amplitude) by the system.

B Similarly, the phase response determines how different complex sinusoids
are translated (i.e., delayed/advanced) by the system.
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Magnitude Distortion

B Recall that a LTI system J with frequency response H is such that
H{e/¥}(n) = |H(Q)] e/rtarglH(Q)/Q)

m |f |H(Q)] is a constant (for all 2), every complex sinusoid is scaled by the
same amount when passing through the system.

B A system for which |H(Q)| =1 (for all Q) is said to be

B |n the case of an allpass system, the magnitude spectra of the system’s
input and output are identical.

m |f |[H(Q)| is not a constant, different complex sinusoids are scaled by
different amounts, resulting in what is known as
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Phase Distortion

B Recall that a LTI system I with frequency response H is such that
g_{{ejﬂn}(n) _ |H(Q)|ejQ(n—O—arg[H(Q)]/Q)'
B The preceding equation can be rewritten as

I (eI} (n) = [H(Q) |5 where 1,(Q) = —¥EH(@)

B The function T, is known as the of the system.

B |f 7,(Q) = ng (Where nq is a constant), the system shifts all complex
sinusoids by the same amount ngy.

B Since t,(Q) = nq is equivalent to the (unwrapped) phase response being
of the form arg H(Q) = —ngQ (which is a linear function with a zero
constant term), a system with a constant phase delay is said to have

B |n the case that 1,(Q) = 0, the system is said to have

m |f 7,(Q) is not a constant, different complex sinusoids are shifted by
different amounts, resulting in what is known as
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Distortionless Transmission

B Consider a LTI system J{ with input x and output y given by

y(n) = x(n—no),
where ng is an integer constant.

B That is, the output of the system is simply the input delayed by ny.

B This type of behavior is the ideal for which we strive in real-world
communication systems (i.e., the received signal y equals a delayed
version of the transmitted signal x).

B Taking the Fourier transform of the preceding equation, we have
Y(Q) = e /X (Q).
B Thus, the system has the frequency response H given by
H(Q) = e /¥,
B Since the phase delay of the system is 7,(Q) = — (%) = nyg, the

phase delay is constant and the system has linear phase.
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Block Diagram Representations of LTI Systems

B Consider a LTI system with input x, output y, and impulse response &, and
let X, Y, and H denote the Fourier transforms of x, y, and #, respectively.

B Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

X Y

| H I

B Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.
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Interconnection of LTI Systems

B The series interconnection of the LTI systems with frequency responses
H,| and H; is the LTI system with frequency response H{H,. That is, we
have the equivalences shown below.

RS R e
S 7 S 7 ST

B The parallel interconnection of the LTI systems with frequency responses
H, and H, is the LTI system with the frequency response H; + H,. That
is, we have the equivalence shown below.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 504



LTI Systems and Difference Equations

B Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

B Consider a system with input x and output y that is characterized by an
equation of the form

N M
Z bry(n—k) = Z ax(n—k).
k=0 k=0

B | et h denote the impulse response of the system, and let X, Y, and H
denote the Fourier transforms of x, y, and A, respectively.
B One can show that H(Q) is given by

Y (Q) _ Zﬁioak(efg)"‘ _ Zﬁoake_jkg

H(Q) = - = —,
(@) X(Q) o bi(e7®) 7k Y bre Ik

B Each of the numerator and denominator of H is a polynomial in e~/

B Thus, H is a rational function in the variable e~ /<.
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Section 11.7

Fourier Transform Relationships

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 506



Duality Between DTFT and CTFS

B The DTFT analysis and synthesis equations are, respectively, given by

oo

X(Q) =Y x(k)e** and x(n) = i X(Q)e Q.

=7
k=—o0

B The CTFS synthesis and analysis equations are, respectively, given by

oo

)= Y a®)e*¥T and a(n) =1 / xe(£)e= gy
k=—o0 T
which can be rewritten, respectively, as

oo

xe(t) = Z a(_k)e—jk(zn/T)t and a(—n) = %/Txc(l)é’jn(zn/”tdt.
k=—o0

B The CTFS synthesis equation with T = 271 corresponds to the DTFT
analysis equation with X = x., Q =¢, and x(n) = a(—n).

B The CTFS analysis equation with T = 27 corresponds to the DTFT
synthesis equation with X = x. and x(n) = a(—n).

B Consequently, the DTFT X of the sequence x can be viewed as a CTFS
representation of the 27-periodic spectrum X.
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Relationship Between DTFT and CTFT

B | et x be a bandlimited function and let 7 denote a sampling period for x
that satisfies the Nyquist condition.

B |et y be the function obtained by impulse sampling x with sampling period
T. That is,

oo

¥(t) = Z x(Tn)d(t — Thn).

n=—oo

B | et y denote the sequence obtaining by sampling x with sampling period
T. Thatis,

y(n) = x(Tn).

B Let ¥ denote the (CT) Fourier transform of § and let Y denote the (DT)
Fourier transform of y.

B Then, the following relationship holds:

Y(Q) =Y (%) foralQeR.
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Relationship Between DTFT and DFT

B | et x be a sequence with (DT) Fourier transform X such that
x(n)=0 forallng[0..M—1].

® Let X denote the N-point DFT of X. That is,
Zx —JCr/Nknfor k € [0..N —1].

B Suppose now that N > M.
B Then, the following relationship holds:

X (3Fk) =X (k) forke[0..N—1].

B |n other words, the elements of the sequence X correspond to
uniformly-spaced samples of the function X .
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Spectral Sampling Example

B Consider the sequence
x(n) =u(n) —u(n—4).
B The Fourier transform X of x can be shown to be

X(Q) = ¢ 1329 [S“‘(m)

B Clearly, x(n) =0foralln ¢ [0..3].

B Therefore, uniformly-spaced samples of X can be obtained from an
N-point DFT X of x, where N > 4.

B The subsequent slides show the sampled spectrum obtained by the DFT
for several values of N.
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Spectral Sampling Example: N = 4

X (k)]
3 X (Q)]
2
1
; ® ; ‘ ‘o | . Q= %k
—T 3n _2n I z 2n 3n T
4 4 4 4 4 4
Magnitude Spectrum
arg X (k)
arg X (Q) T
S T
: .2 _
L o e o ° Q=7Tk
—T 3n 2n I I 2n 3m - n
4 4 4 _1 4. 4 4
2
-7

Phase Spectrum
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Spectral Sampling Example: N = 8

X (k)|
o 3 X(@)
\ o ‘ ‘ ‘o e Q =Tk
—T7 3n 2n _T i 2n 3n b1
T 7 4 4 4 1
Magnitude Spectrum
arg X (k)
arg X (Q) T
I L
o L e w PR ° Q=1
-m  _ i _x T i’ mw Aoz N
4 4 4 _zm 3 7
2
—T

Phase Spectrum
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Spectral Sampling Example: N = 16

X ()]
4
13
2

Qe

3
_
A @
HA.
»
g —e

|
\
INEN

Magnitude Spectrum

arg X (k)

argX(Q)

oola
e

Phase Spectrum
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Spectral Sampling Example: N = 64

}

|X (k)
‘ |H X(Q)
- UL F»; : ; \jﬂ n Q=5Lk
4
Magnitude Spectrum
arg X (k)
arg X (Q) %
“x H”‘Zn %Li gm i RHI] J?m U
ry 4 _E

Phase Spectrum
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Section 11.8

Application: Filtering
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B |n many applications, we want to modify the spectrum of a signal by
either amplifying or attenuating certain frequency components.

B This process of modifying the frequency spectrum of a signal is called

B A system that performs a filtering operation is called a
B Many types of filters exist.
pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.
B Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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ldeal Lowpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response H of the form
1 |1Q<Q
H(Q) = 2 <2
0 Q <|Q]<m,

where Q. is the
B A plot of this frequency response is given below.

Stopband " Passband Stopband
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ldeal Highpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response H of the form

H(Q) = 1 Q. <|Q<mn
o @ <Q.,

where Q. is the
B A plot of this frequency response is given below.

H(Q)

I
—T Q. Q. T

Q

" Passband Stopband " Passband
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Ideal Bandpass Filter

B An eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

B Such afilter has a frequency response H of the form

H( )_ 1 ch§|Q|§Qc2
0 19Q] < Qi or Qe < Q| <,

where the limits of the passband are Q.; and Q.
B A plot of this frequency response is given below.

H(Q)
1
t t Q
i _Qc2 _er ch Q(‘Z T
B SRR e GECRIREEERIIE o o SRUIILELEII NI, o (R, o SRR
Stopband Passband Stopband Passband Stopband
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Part 12

z Transform (ZT)
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Motivation Behind the z Transform

B Another important mathematical tool in the study of signals and systems
is known as the z transform.

B The z transform can be viewed as a generalization of the (classical)
Fourier transform.

B Due to its more general nature, the z transform has a number of
advantages over the (classical) Fourier transform.

B First, the z transform representation exists for some sequences that do
not have a Fourier transform representation. So, we can handle some
sequences with the z transform that cannot be handled with the Fourier
transform.

B Second, since the z transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the z Transform (Continued)

B Earlier, we saw that complex exponentials are eigensequences of LTI
systems.

B |n particular, for a LTI system J{ with impulse response &, we have that

H{Z"}(n) = H(z)Z" where H(z)= i h(n)z™".

n—=—oo

B Previously, we referred to H as the system function.
B As it turns out, H is the z transform of A.

B Since the z transform has already appeared earlier in the context of LTI
systems, it is clearly a useful tool.

B Furthermore, as we will see, the z transform has many additional uses.
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Section 12.1

z Transform
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(Bilateral) z Transform

B The (bilateral) of the sequence x, denoted Zx or X, is
defined as

n=—oo

B The of X, denoted Z~'X or x, is then given by

271X (n) = x(n) = 2%] fi_X(Z)Zn_ldz,

where I' is a counterclockwise closed circular contour centered at the
origin and with radius r such that I" is in the ROC of X.

B Werefertoxand X as a and denote this relationship as
x(n) < X(2).

B |n practice, we do not usually compute the inverse z transform by directly
using the formula from above. Instead, we resort to other means (to be
discussed later).
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Bilateral and Unilateral z Transform

B Two different versions of the z transform are commonly used:

B the bilateral (or two-sided) z transform; and
the unilateral (or one-sided) z transform.

B The unilateral z transform is most frequently used to solve systems of
linear difference equations with nonzero initial conditions.

B As it turns out, the only difference between the definitions of the bilateral
and unilateral z transforms is in the lower limit of summation.

B |n the bilateral case, the lower limit is —oo, whereas in the unilateral case,
the lower limit is O.

B For the most part, we will focus our attention primarily on the bilateral z
transform.

B We will, however, briefly introduce the unilateral z transform as a tool for
solving difference equations.

B Unless otherwise noted, all subsequent references to the z transform
should be understood to mean bilateral z transform.
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Relationship Between Z and Fourier Transforms

Let X and X denote the z and (DT) Fourier transforms of x, respectively.

The function X (z) evaluated at z = ¢/* (where Q is real) yields X¢(Q).
That is,

X (/) = Xp(Q).
Due to the preceding relationship, the Fourier transform of x is sometimes
written as X (e/).
The function X (z) evaluated at an arbitrary complex value z = re/* (where

r = |z] and Q = argz) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(re'®) = X{(),

where X/ is the (DT) Fourier transform of x'(n) = r "x(n).
So, in general, the z transform of x is the Fourier transform of an
exponentially-weighted version of x.

Due to this weighting, the z transform of a sequence may exist when the
Fourier transform of the same sequence does not.
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z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 12.2

Region of Convergence (ROC)
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mA with center 0 and radius r is the set of all complex numbers z
satisfying

2] <,
where r is a real constant and r > 0.

Im
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Annulus

H An with center O, inner radius ry, and outer radius r is the set of
all complex numbers z satisfying

ro < |z| < ri,

where ry and r; are real constants and 0 < ry < 7.

Im
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7/ \
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N 7
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Circle Exterior

B The with center 0 and radius r is the set of all complex
numbers z satisfying

2| >,
where r is a real constant and r > 0.

Im
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Example: Set Intersection
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Example: Scalar Multiple of a Set
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Example: Reciprocal of a Set
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Region of Convergence (ROC)

B As we saw earlier, for a sequence x, the complete specification of its z
transform X requires not only an algebraic expression for X, but also the
ROC associated with X.

B Two very different sequences can have the same algebraic expressions
for X.

B Now, we examine some of the constraints on the ROC (of the z transform)
for various classes of sequences.
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Property 1: General Form

B The ROC of a z transform consists of concentric circles centered at O in
the complex plane.

B Thatis, ifa point Z0 is in the ROC, then the circle centered at 0 passing

through zg (i.e.,

= |z0]) is also in the ROC.

B Some examples of sets that would be either valid or invalid as ROCs are

shown below.

Im
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Property 2: Rational z Transforms

B |f a z transform X is a rational function, then the ROC of X does not
contain any poles and is bounded by poles or extends to infinity.

B Some examples of sets that would be either valid or invalid as ROCs of
rational z transforms are shown below.

Im Im Im
’/’_‘\\\ -~ —
// N // \\ // \\
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Property 3: Finite-Duration Sequences

B If a sequence x is finite duration and its z transform X converges for at
least one point, then X converges for all points the complex plane, except
possibly 0 and/or oo.

B Some examples of sets that would be either valid or invalid as ROCs for
X, if x is finite duration, are shown below.

Im Im Im

Valid Invalid Invalid
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Property 4: Right-Sided Sequences

B If a sequence x is right sided and the circle |z| = ry is in the ROC of
X = Zx, then all (finite) values of z for which |z| > ro will also be in the
ROC of X (i.e., the ROC contains the exterior of a circle centered at 0,
possibly including o).

B Thus, if x is right sided but not left sided, the ROC of X is the exterior of
a circle centered at 0, possibly including .

B Examples of sets that would be either valid or invalid as ROCs for X, if x is
right sided but not left sided, are shown below.

Im Im Im

Valid Invalid Invalid
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Property 5: Left-Sided Sequences

B |f a sequence x is left sided and the circle |z| = ry is in the ROC of
X = Zx, then all values of z for which 0 < |z| < ry will also be in the ROC
of X (i.e., the ROC contains a disk centered at 0, possibly excluding 0).

B Thus, if x is left sided but not right sided, the ROC of X is a disk centered

at 0, possibly excluding 0.

B Examples of sets that would be either valid or invalid as ROCs for X, if x is
left sided but not right sided, are shown below.

Im

Im

Invalid

Invalid

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Property 6: Two-Sided Sequences

B If a sequence x is two sided and the circle |z| = ry is in the ROC of
X = Zx, then the ROC of X will consist of a ring that contains this circle
(i.e., the ROC is an annulus centered at 0).

B Examples of sets that would be either valid or invalid as ROCs for X, if x is
two sided, are shown below.

Im Im Im

Valid Invalid Invalid
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Property 7: More on Rational z Transforms

B |f a sequence x has a rational z transform X (with at least one pole), then:

H If x is right sided, then the ROC of X is the region outside the circle of
radius equal to the largest magnitude of the poles of X (i.e., outside the
outermost pole), possibly including co.

If x is left sided, then the ROC of X is the region inside the circle of radius
equal to the smallest magnitude of the nonzero poles of X and extending
inward to, and possibly including, O (i.e., inside the innermost nonzero
pole).

B This property is implied by properties 1, 2, 4, and 5.
B Some examples of sets that would be either valid or invalid as ROCs for
X, if X is rational and x is left/right sided, are given below.

Im Im Im Im
X < X N
Lo~ Lo~ / \ / \
/ . Re / . Re N. \ Re N 2 \ Re
N / 1 [ \ | \ |
\\“,/ \\“// \ L / \ LX /
X _ > A 7
Q= -
Valid Invalid Valid Invalid
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General Form of the ROC

B To summarize the results of properties 3, 4, 5, and 6, if the z transform X
of the sequence x exists, the ROC of X depends on the left- and
right-sidedness of x as follows:

X
left sided \ right sided ROC of X
yes yes everywhere, except possibly 0 and/or oo
no yes exterior of circle centered at 0, possibly including co
yes no disk centered at 0, possibly excluding 0
no no annulus centered at 0

B Thus, we can infer that, if X exists, the ROC can only be of one of the
forms listed above.

B For example, the sets shown below would not be valid as ROCs.

Im Im
S 2 N
A /’///, Y
[y ) Re C ) Y  Re
L @Y NN
\\ // \\ \\\ ////,
I N e
Invalid Invalid
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Section 12.3

Properties of the z Transform
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Properties of the z Transform

Property Time Domain Z Domain ROC

Linearity arxi(n)+axxa(n)  a1X1(z) +axX2(2) Atleast RiNR;

Translation x(n — n()) 77X (Z) R except possible addition/deletion of 0

Modulation a"x(n) X(a~'z) la|R

Conjugation x*(n) X*(z) R

Time Reversal  x(—n) X(1/z) R

Upsampling (1t M)x(n) X(M) R'/M

Downsampling (] M)x(n) B TR X (e Ak /M /MY - RM

Convolution x1*xx2(n) X1(2)Xa(2) At least R{ NR,

Z-Domain Diff.  nx(n) —z4X(2) R

Differencing x(n) —x(n—1) (1-z7"X(z) AtleastRN|z| >0

Accumulation Y7 x(k) X(2) Atleast RN|z| > 1
Property

Initial Value Theorem  x(0) = ILm X(2)
femress

Final Value Theorem  lim x(n) = lim[(z — 1)X(z)]
n—oo z—1
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z Transform Pairs

Pair x(n) X(z) ROC
1 d(n) 1 All z
2 u(n) == 1711—1 2] >1
3 —u(-n—1) 1= == ol <1
z z71
4 nu(n) eyl Ty lz] > 1
_ o z — !
5 nu(—n—1) I = () lz| <1
6  d"u(n) == # |z[ > al
7 —a"u(—n—1) == _iz—l |z| <lal
az az”!
8 nau(n) Tl = ()’ 2| > |a]
7 z’]
9 (—na)”(u(—n(— 1) = (l—aail)z |z| <lal
n+1)(n+2)-(n+m—1) mo 1
N ?> o T = ey >l
n n n+m— 7"
11 - (m l) anu(_n - ]) (Z:ll)m = U_;W |Z| < |a|

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 546



z Transform Pairs (Continued)

Pair x(n) X(2) ROC

12 cos(Qon)u(n) L(z_cc((::ggll = 17(1225)?33%152 2l > 1

13 —cos(Qon)u(—n—1) Z°Z£§j§§:s§2’)+1 = 17(122220532)}‘1{2 2] <1

14 sin(Qon)un) T = > 1

15 —sin(Qon)u(-n—1) szii?&,ﬂ = 17(2(csti>:g§;zz:1+z*2 2l <1

16 a"cos(Qonu(n) et = Tl 1>l

7 asin(@euln) e e g

18 u(n)—u(n—M),M>0 U= 1 2 >0

19 a'ljal <1 (asa”): ja| <z < |a”|

(z—a)(z—a”")
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B If x;(n) <= X;(z) with ROC R and x;(n) <= X>(z) with ROC R;, then
arxi(n) +axxa(n) < a1X1(z) + a2 X>(z) with ROC R containing R; N Ry,

where a; and a; are arbitrary complex constants.
B This is known as the of the z transform.

B The ROC always contains the intersection but could be larger (in the case
that pole-zero cancellation occurs).
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Translation (Time Shifting)

B If x(n) <~ X(z) with ROC R, then
x(n—ng) < z7"™X(z) with ROC R/,

where ny is an integer constant and R’ is the same as R except for the
possible addition or deletion of zero or infinity.

B This is known as the of the z
transform.
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Z-Domain Scaling

B If x(n) 7 X(z) with ROC R, then
d"x(n) <~ X (z/a) with ROC |a|R,

where a is a nonzero constant.
B This is known as the of the z transform.
B As illustrated below, the ROC R is scaled by |al.

Im
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Time Reversal

B If x(n) = X(z) with ROC R, then

x(—n) + X(1/z) with ROC 1/R.

B This is known as the

of the z transform.

B As illustrated below, the ROC R is reciprocated.

Im

Im

Re

1/R

Re
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Upsampling

B Define (T M)x(n) as

(+ M)x(n) x(n/M) n/M is an integer
X\n)=
0 otherwise.
B If x(n) <~ X(z) with ROC R, then
(+ M)x(n) <= X(z) with ROC R'/M.

B This is known as the of the z
transform.
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Downsampling

B If x(n) < X(z) with ROC R, then
M—1 _
(L M)x(n) < LY x (e*JZ“"/le/M) with ROC RM.
k=0

B This is known as the of the z transform.
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B If x(n) < X(z) with ROC R, then
x*(n) << X*(z*) with ROC R.

B This is known as the of the z transform.
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Convolution

B f x;(n) <7 X;(z) with ROC R; and x,(n) <~ X (z) with ROC Ry, then
x1 % x2(n) <2 X (2)X2(z) with ROC containing R N R>.

B This is known that the
of the z transform.

B The ROC always contains the intersection but can be larger than the
intersection (if pole-zero cancellation occurs).

B Convolution in the time domain becomes multiplication in the z domain.

B This can make dealing with LTI systems much easier in the z domain than
in the time domain.
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Z-Domain Differentiation

® If x(n) <~ X(z) with ROC R, then
zT

nx(n) < —z4£X(z) with ROC R.

B This is known as the of the z
transform.
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Differencing

B If x(n) 7~ X(z) with ROC R, then
x(n) —x(n—1) <= (1—z"")X(z) for ROC containing RN |z| > 0.

B This is known as the of the z transform.

1

B Differencing in the time domain becomes multiplication by 1 —z7" in the z

domain.
B This can make dealing with difference equations much easier in the z
domain than in the time domain.
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Accumulation

B If x(n) <~ X(z) with ROC R, then

n
Y, x(k) <= %X(z) for ROC containing RN |z| > 1.
k=—oo0 T

B This is known as the of the z transform.
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Initial Value Theorem

B For a sequence x with z transform X, if x is causal, then

x(0) = lim X(z).

Z—o

B This result is known as the
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Final Value Theorem

B For a sequence x with z transform X, if x is causal and lim,,_,.. x(n) exists,
then

lim x(n) = lim[(z— D)X (2)].

n—oo z—1

B This result is known as the
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More z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 12.4

Determination of Inverse z Transform
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Finding the Inverse z Transform

B Recall that the inverse z transform x of X is given by

x(n) = 31 ﬁX(z)zn’ldz,

where I' is a counterclockwise closed circular contour centered at the
origin and with radius r such that I" is in the ROC of X.

B Unfortunately, the above contour integration can often be quite tedious to
compute.

B Consequently, we do not usually compute the inverse z transform directly
using the above equation.

B For rational functions, the inverse z transform can be more easily
computed using partial fraction expansions.

B Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse z transforms can
typically be found in tables.
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Section 12.5

z Transform and LTI Systems
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System Function of LTI Systems
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Consider a LTI system with input x, output y, and impulse response &, and
let X, Y, and H denote the z transforms of x, y, and A, respectively.

Since y(n) = xx h(n), the system is characterized in the z domain by
Y(2) = X(H().

As a matter of terminology, we refer to H as the (or
) of the system (i.e., the system function is the z
transform of the impulse response).

When viewed in the z domain, a LTI system forms its output by multiplying
its input with its system function.
A LTI system is completely characterized by its system function H.

If the ROC of H includes the unit circle |z| = 1, then H(e/?) is the
Jfrequency response of the LTI system.
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Block Diagram Representation of LTI Systems

B Consider a LTI system with input x, output y, and impulse response &, and
let X, Y, and H denote the z transforms of x, y, and &, respectively.

B Often, it is convenient to represent such a system in block diagram form in
the z domain as shown below.

X Y

—— H -

B Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.
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Interconnection of LTI Systems

B The series interconnection of the LTI systems with system functions H
and H, is the LTI system with system function H = HH,. That is, we
have the equivalences shown below.

S I P T B
RS IS S I T

B The parallel interconnection of the LTI systems with impulse responses
H, and H; is a LTI system with the system function H = H| + H,. That is,
we have the equivalence shown below.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



B If a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.
B Theorem. A LTI system is causal if and only if the ROC of the system
function is:
B the exterior of a circle, including o; or
the entire complex plane, including - and possibly excluding 0.
B Theorem. A LTI system with a rational system function H is causal if and
only if:
H the ROC of H is the exterior of a (possibly degenerate) circle outside the
outermost pole of H or, if H has no poles, the entire complex plane; and
H is proper (i.e., when H(z) is expressed as a ratio of polynomials in z, the
order of the numerator polynomial does not exceed the order of the
denominator polynomial).
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BIBO Stability

B Whether or not a system is BIBO stable depends on the ROC of its
system function.

B Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function contains the unit circle (i.e., |z| = 1).

B Theorem. A causal LTI system with a rational system function H is BIBO
stable if and only if all of the poles of H lie inside the unit circle (i.e., each
of the poles has a magnitude less than one).
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Invertibility

B A LTI system J{ with system function H is invertible if and only if there
exists another LTI system with system function H;,, such that

H(Z)I_Iinv(z) =1,
in which case Hi,, is the system function of H-!and

Hiu(2) = —

(7)) = ——.

nv H(Z)

B Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

B |n practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).
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LTI Systems and Difference Equations

B Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

B Consider a system with input x and output y that is characterized by an
equation of the form

N M
Z bry(n—k) = Z ax(n—k) where M <N.
k=0 k=0

B | et h denote the impulse response of the system, and let X, Y, and H
denote the z transforms of x, y, and &, respectively.
B One can show that H(z) is given by

Y(z) _ Yiloamz *
X(2) Z;(V:() bz *

B Observe that, for a system of the form considered above, the system
function is always rational.

H(z) =
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Section 12.6

Application: Analysis of Control Systems
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Feedback Control Systems

Reference

Input Error

Controller > Plant

Output

- Sensor
Feedback
Signal

: system to be controlled

plant with the goal of forcing the error to zero
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: desired value of the quantity to be controlled
: actual value of the quantity to be controlled
: difference between the desired and actual values

: device used to measure the actual output

: device that monitors the error and changes the input of the
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Stability Analysis of Feedback Control Systems

B Often, we want to ensure that a system is BIBO stable.

B The BIBO stability property is more easily characterized in the z domain
than in the time domain.

B Therefore, the z domain is extremely useful for the stability analysis of
systems.
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Section 12.7

Unilateral z Transform
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Unilateral z Transform

The of the sequence x, denoted Z,x or X, is
defined as

Zu(z) = X () = ioxm)z".

The unilateral z transform is related to the bilateral z transform as follows:

oo oo

Zux(z) =Y x(m)z" =Y x(n)u(n)z™" = Z{xu} (z).

n=0 n=—oo
In other words, the unilateral z transform of the sequence x is simply the
bilateral z transform of the sequence xu.
Since Zyx = Z{xu} and xu is always a right-sided sequence, the ROC
associated with Z,x is always the exterior of a circle.
For this reason, we often do not explicitly indicate the ROC when
working with the unilateral z transform.
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Unilateral z Transform (Continued 1)

B With the unilateral z transform, the same inverse transform equation is
used as in the bilateral case.

B The unilateral z transform is only invertible for causal sequences. In
particular, we have

Zy {Zu{x}} () = 25 {2 {au} } (n)
=27 {2 {au}}(n)

= x(n)u(n)
_ Jx(n) n>0
~]o otherwise.

® For a noncausal sequence x, we can only recover x(n) for n > 0.
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Unilateral z Transform (Continued 2)

B Due to the close relationship between the unilateral and bilateral z
transforms, these two transforms have some similarities in their properties.

B Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.
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Properties of the Unilateral z Transform

Property Time Domain Z Domain
Linearity ayx1 (n) + ayxy(n) a1X1(2) + a2X>(z)
Time Delay x(n—1) 71X (2) +x(=1)
Time Advance  x(n+1) zX (z) — zx(0)
Modulation a"x(n) X(a"'z)

ejﬂl)nx(n) X(e*onZ)
Conjugation x*(n) X*(z%)
Upsampling (1 M)x(n) X (M)
Downsampling (1 M)x(n) I X (e 2mk/M L1/
Convolution x1 xx2(n), x; and x are causal  X;(z)X2(z)
Z-Domain Diff.  nx(n) 74X (2)
Differencing x(n) —x(n—1) (1-z7HX(z) —x(-1)
Accumulation  ¥7_ x(k) —=X(2)

Property
Initial Value Theorem  x(0) = lim X (z)
7—yo0

Final Value Theorem  lim x(n) = lim[(z — 1)X (z)]
n—oo z—1
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Unilateral z Transform Pairs

cos(Qon)
sin(Qon)
|la|" cos(Qon)

|la|" sin(Qon)

z—a
az
z—a)?
2(z—c0s Q)
22—2(cosQp)z+1
ZsinQo
722—2(cosQp)z+1
z2(z—|a|cosQp)
72—-2|al(cos Qo)z+|a
z|a|sinQg
2—2a|(cos Qo) z+]al*

—

‘ 2
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Solving Difference Equations [Using the Unilateral z Transform]

B Many systems of interest in engineering applications can be characterized
by constant-coefficient linear difference equations.

B One common use of the unilateral z transform is in solving
constant-coefficient linear difference equations with nonzero initial
conditions.
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Part 13

Complex Analysis
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Complex Numbers

mA is a number of the form z = x+ jy where x and y are
real numbers and j is the constant defined by j> = —1 (i.e., j = v/—1).

B The of the complex number z expresses z in the form
=X+ )y,

where x and y are real numbers. The quantities x and y are called the
and of z, and are denoted as Rez and Imz,
respectively.

B The of the complex number z expresses z in the form
z=r(cos®+ jsin®) orequivalently z=re/®,

where r and 0 are real numbers and r > 0. The quantities » and 0 are
called the and of z, and are denoted as |z| and
arg z, respectively. [Note: e/® = cos@+ jsin6.]
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Complex Numbers (Continued)

B Since ¢/® = ¢/(%+2™) for all real 8 and all integer k, the argument of a
complex number is only uniquely determined to within an additive multiple
of 2.

B The of a complex number z, denoted Argz, is the
particular value 0 of argz that satisfies —m < 6 < .

B The principal argument of a complex number (excluding zero) is unique.
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Geometric Interpretation of Cartesian and Polar Forms

Re

Cartesian form:
z=x+]jy
where x =Rezand y =Imz

Polar form:
z=r(cos@+ jsin@) = re/®
where r = |z| and 6 = argz

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||

585



The arctan Function

B The range of the arctan function is —mt/2 (exclusive) to /2 (exclusive).

B Consequently, the arctan function always yields an angle in either the first

or fourth quadrant.

Im

1__

=1 /_\ 5 arctan( =)

Im
(L1)
1 =+
arctan( % ) 7+ arctan(
} —Re :
—1 1 -1
1+
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The atan2 Function

B The angle 6 that a vector from the origin to the point (x,y) makes with the
positive x axis is given by 8 = atan2(y,x), where

arctan(y/x) x>0
/2 x=0andy>0
atan2(y,x) £ { —m/2 x=0andy <0

arctan(y/x)+7m x<Oandy>0
arctan(y/x) —m x<Oandy <O.

B The range of the atan2 function is from —7 (exclusive) to T (inclusive).
B For the complex number z expressed in Cartesian form x + jy,
Argz = atan2(y,x).

B Although the atan2 function is quite useful for computing the principal
argument (or argument) of a complex number, it is ot advisable to
memorize the definition of this function. It is better to simply understand
what this function is doing (namely, intelligently applying the arctan
function).
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Conversion Between Cartesian and Polar Form

B | et z be a complex number with the Cartesian and polar form
representations given respectively by

z=x-+jy and z=re.
B To convert from polar to Cartesian form, we use the following identities:
x=rcos® and y=rsin0.
B To convert from Cartesian to polar form, we use the following identities:
r=+v/x2+)> and ©=atan2(y,x)+ 27k,

where k is an arbitrary integer.

B Since the atan2 function simply amounts to the intelligent application of
the arctan function, instead of memorizing the definition of the atan2
function, one should simply understand how to use the arctan function to
achieve the same result.
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Properties of Complex Numbers

B For complex numbers, addition and multiplication are commutative. That
is, for any two complex numbers z; and z»,

21+zn=z+z1 and

{122 = 2221~

B For complex numbers, addition and multiplication are associative. That is,
for any three complex numbers z;, z», and z3,

(zi+z)+n=2u+(22+23) and
(z122)73 = 21(2223)-

B For complex numbers, the distributive property holds. That is, for any
three complex numbers z1, 2>, and z3,

2(z+3) =0n22+722.
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B The of the complex number z = x + jy is denoted as z* and
defined as

7 =x—jy

B Geometrically, the conjugation operation reflects a point in the complex
plane about the real axis.

B The geometric interpretation of the conjugate is illustrated below.

Im
JSL=XF)y
Re
SI=x—)y
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Properties of Conjugation

B For every complex number z, the following identities hold:

2] = 2],
argz" = —argz,
=z,

Rez=(z+2"), and
_ 1
Imz = 3 (z—2).
B For all complex numbers z; and z;, the following identities hold:
(z1+22)" =2+ 2,

(z122)" = 7123, and

(z1/22)" =21/%.-
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B Cartesian form: Let z; = x| + jy; and zp = xp + jy»2. Then,

21+z2 = (x1+ jy1) + (2 + jy2)
= (x1+x2) + j(y1 +y2).
B That is, to add complex numbers expressed in Cartesian form, we simply
add their real parts and add their imaginary parts.
B Polar form: Let z7; = r1e/® and zo = re/®. Then,

21422 = r1e/® 4 rpe’®
= (rycos0; + jr1sin®;) + (rycos 0, + jrasin®,)
= (r1cos0; +rycos0,) + j(rsinB; +rysinHy).

B That is, to add complex numbers expressed in polar form, we first rewrite
them in Cartesian form, and then add their real parts and add their
imaginary parts.

B For the purposes of addition, it is easier to work with complex numbers
expressed in Cartesian form.
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Multiplication

B Cartesian form: Let z; = x| + jy; and zp = xp + jy»2. Then,

2122 = (%1 +jy1) (%2 + jy2)
= X1X2 + jX1y2 + jX2y1 — yiy2
= (x1x2 — y1y2) + j(x1y2 +x231).
B That is, to multiply two complex numbers expressed in Cartesian form, we
use the distributive law along with the fact that j> = —1.
B Polar form: Let z; = r1e/® and zp = re/®2. Then,

21z = (rlejel) (,.Zejez) = rirpel @162

B That is, to multiply two complex numbers expressed in polar form, we use
exponent rules.

B For the purposes of multiplication, it is easier to work with complex
numbers expressed in polar form.
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Division

B Cartesian form: Let z; = x| + jy; and zp = xp + jy»2. Then,

a_uz _uzn Ay —Jy)

n nh |22 N x3+y3
_ XX — jxiya + jxeyi +yye XX +y1y2 + j(x2y1 —x1y2)
X5+ 3 5+

B That is, to compute the quotient of two complex numbers expressed in
Cartesian form, we convert the problem into one of division by a real
number.

B Polar form: Letz; = rie/® and z, = re/®. Then,

JO1 )
a _ne Llej(elfez)'

2 ne®  n

B That is, to compute the quotient of two complex numbers expressed in
polar form, we use exponent rules.

B For the purposes of division, it is easier to work with complex numbers
expressed in polar form.
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Properties of the Magnitude and Argument

B For any complex numbers z; and z;, the following identities hold:

lz122] = |z1]|22] s
= L for zo # 0,
|22

argzizp = argz) +argzy, and

<1
22

arg <Z1> =argz —argzy forz; #0.
22

B The above properties trivially follow from the polar representation of
complex numbers.
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Euler's Relation and De Moivre’s Theorem

u For all real 9,
e/® = cosO+ jsin®.
B From Euler’s relation, we can deduce the following useful identities:

cos®=1(e/® +¢77%) and

sin@® = Zij(eje —e /9.

u For all real © and all integer n,

. . n
ejne — (eje) )

[Note: This relationship does not necessarily hold for real n.]
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Roots of Complex Numbers

B Every complex number z = re/® (where r = |z| and @ = argz) has n
distinct nth roots given by

rel O/ gork =0.1,....n—1.

B For example, 1 has the two distinct square roots 1 and —1.
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Quadratic Formula

B Consider the equation
az’ +bz+c=0,

where a, b, and c are real, z is complex, and a # 0.
B The roots of this equation are given by

—b+Vb?—4ac
= .
2a

B This formula is often useful in factoring quadratic polynomials.
B The quadratic az”> + bz + ¢ can be factored as a(z — z0)(z — z1), where
—b— /b —4ac g _ —b+Vb*—4dac

20 = an 1
2a 2a
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Complex Functions

A maps complex numbers to complex numbers. For
example, the function F(z) = z> +2z+ 1, where z is complex, is a
complex function.

B A complex is a mapping of the form

F(z) =ap+aiz+amz> +-- +ad",

where z, ag,ay,...,a, are complex.
B A complex is a mapping of the form
() = ao+arz+amz ... +ad
bo+biz+brz>+ ... +bu7"’
where ag,ay,...,a,,by,by,...,b, and z are complex.

B Observe that a polynomial function is a special case of a rational function.

B Herein, we will mostly focus our attention on polynomial and rational
functions.
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Continuity

B A function F is said to be 20 if F(z0) is defined and
given by

F(z0) = lim F(z).

220

B A function that is continuous at every point in its domain is said to be

B Polynomial functions are continuous everywhere.

B Rational functions are continuous everywhere except at points where the
denominator polynomial becomes zero.
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Differentiability

B A function F is said to be z = 79 if the limit
. F(2)—F(z
F'(z0) = lim %ZO(ZO)
exists. This limit is called the of F at the point z = zo.
B A function is said to be if it is differentiable at every point in

its domain.
B The rules for differentiating sums, products, and quotients are the same
for complex functions as for real functions. If F'(zo) and G'(zo) exist, then
B (aF)'(z0) = aF’(zo) for any complex constant a;
(F+G)'(z0) = F'(z0) + G'(20);
(FG)(z0) = F'(20)G(z0) + F (z0)G' (20);
5]

(F/G)(z0) = G(ZO)F,<28)(;()[;2(ZO)G,(ZO) -and
if z0 = G(wo) and G'(wy) exists, then the derivative of F(G(z)) at wy is
F'(z0)G'(wo) (i.e., the chain rule).

B A polynomial function is differentiable everywhere.

B A rational function is differentiable everywhere except at the points where

its denominator polynomial becomes zero.
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Open Disks

B An in the complex plane with center zo and radius r is the set of

complex numbers z satisfying
lz—z0| <r,

where r is a strictly positive real number.
B A plot of an open disk is shown below.

Im
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Analyticity

B A function is said to be 7o if it is differentiable at every
point in an open disk about z.

B A function is said to be if it is analytic at every point in its domain.
B A polynomial function is analytic everywhere.

B A rational function is analytic everywhere, except at the points where its
denominator polynomial becomes zero.

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 ||



Zeros and Singularities

If a function F is zero at the point zg (i.e., F(z9) =0), F is said to have a
at zo.

If a function F is such that F(zg) = 0,F(V(z9) =0,...,F""D(z) =0

(where F® denotes the kth order derivative of F), F is said to have an

at zo.

A point at which a function fails to be analytic is called a

Polynomials do not have singularities.

Rational functions can have a type of singularity called a pole.

If a function F is such that G(z) = 1/F(z) has an nth order zero at zo, F is
said to have an at zp.

A pole of first order is said to be , Whereas a pole of order two or
greater is said to be . A similar terminology can also be applied
to zeros (i.e., and )-
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Zeros and Poles of a Rational Function

B Given a rational function F', we can always express F’ in factored form as

K(z—a))% (z—a2)® - (z—ap )™

F(z) =
() (z—b1)P1(z—by)P2 - (z—by)P¥
where K is complex, ay,az,...,ay,b1,ba,...,by are distinct complex
numbers, and o, 0z, . .., 0 and By, B2, ..., By are strictly positive

integers.

B One can show that F has poles at by,b,,...,by and zeros at
ap,az,...,ay.

B Furthermore, the kth pole (i.e., by) is of order By, and the kth zero (i.e., a;)
is of order o.

B When plotting zeros and poles in the complex plane, the symbols “0” and
“X” are used to denote zeros and poles, respectively.
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Part 14

Partial Fraction Expansions (PFES)
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Motivation for PFEs

B Sometimes it is beneficial to be able to express a rational function as a
sum of lower-order rational functions.

B This can be accomplished using a type of decomposition known as a
partial fraction expansion.

B Partial fraction expansions are often useful in the calculation of inverse

Laplace transforms, inverse z transforms, and inverse CT/DT Fourier
transforms.
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Strictly-Proper Rational Functions

B Consider a rational function

OV Oy VT oy 0
BV + Bu v+ 4+ Biv+PBo

F(v)

B The function F is said to be if m < n (i.e., the order of the
numerator polynomial is strictly less than the order of the denominator
polynomial).

B Through polynomial long division, any rational function can be written as
the sum of a polynomial and a strictly-proper rational function.

B A strictly-proper rational function can be expressed as a sum of
lower-order rational functions, with such an expression being called a
partial fraction expansion.
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Section 14.1

PFEs for First Form of Rational Functions
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Partial Fraction Expansions (PFES) (craor conexs

B Any rational function F' can be expressed in the form of

_ AV + a1 V" 4+ ag
Vb, v+ by

F(v)

® Furthermore, the denominator polynomial D(v) = v* +b, v ! +...+ by
in the above expression for F(v) can be factored to obtain

D) = (v=p)*(v=p2)®---(v=pa)*,

where the py are distinct and the g; are integers.
B If F has only simple poles, g1 = g2 =---=¢q, = 1.
B Suppose that F' is strictly proper (i.e., m < n).

B |n the determination of a partial fraction expansion of F', there are two
cases to consider:

E F has only simple poles; and
F has at least one repeated pole.
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Simple'PO|e Case [CT and DT Contexts]

B Suppose that the (rational) function F has only simple poles.
B Then, the denominator polynomial D for F' is of the form

D(v)=(v—=p1)(v=p2)--(v—pa),
where the py are distinct.
B |n this case, I’ has a partial fraction expansion of the form

A A A, A
F(V): 1 + 2 —'—,,,—'— n 1 + n ,
V=—p1 V—p2 V="Pn-1 V—Dn

where

Ap= (V_pk)F(V)‘v:pk :

B Note that the (simple) pole py contributes a single term to the partial
fraction expansion.
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Repeated- Pole Case [CT and DT Contexts]

B Suppose that the (rational) function F has at least one repeated pole.
B |n this case, I’ has a partial fraction expansion of the form

A A A
F(v):[ _1*] + _]’2 s+ 7_1"“ q}
v—p1  (v—p1) (v—p1)n
A A
+{ 2 A ]
v—p2 (v—p2)©
A A
+...+[P’1+...+P““°],
v—pp (v—pp)or

where
e = [ =P F )]

B Note that the gith-order pole py contributes g terms to the partial fraction
expansion.

B Note thatn! = (n)(n—1)(n—2)---(1) and 0! = 1.

v=p
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Section 14.2

PFEs for Second Form of Rational Functions
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Partial Fraction Expansions (PFES) orconed

B Any rational function F' can be expressed in the form of

Fv) = AV + am_ V" . Fav+ag
bV by vl byt

B Furthermore, the denominator polynomial
D(v) = bV + b, V"' +...+ bjv+ 1 in the above expression for F(v)
can be factored to obtain

D(v) = (1—p; W) (1=p;'v) = (1= p, 'v)o,
where the py are distinct and the g; are integers.
B If F has only simple poles, g1 =g =---=¢q, = 1.

B Suppose that F is strictly proper (i.e., m < n).

B |n the determination of a partial fraction expansion of F, there are two
cases to consider:

B F has only simple poles; and
F has at least one repeated pole.
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Simple'POle Case [DT Context]

B Suppose that the (rational) function F' has only simple poles.
B Then, the denominator polynomial D for F is of the form

D)= (1=p;")(1=py'v)---(1=p,"v),
where the py are distinct.
B |n this case, F' has a partial fraction expansion of the form
Ay Ay An—1 Ap

+...+

F(v)= +
l—pl_lv l—pz_lv l—p;_llv 1—pn v

Ag=(1=pMF)|,_,,-

B Note that the (simple) pole p; contributes a single term to the partial
fraction expansion.
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Repeated-Pole Case prconen

B Suppose that the (rational) function F' has at least one repeated pole.
B |n this case, F' has a partial fraction expansion of the form

A A A
F(v):! T T ]

1—p;v  (1—p;lv)2 (1= py vy
Az A2,4
1-pylv (1—py'v)e
A A
b [ ],
I—ppv (1—pp v)er
where
1 0
Ay j— —— (_ qr—* [ d 9k 1= p V% F }
. (qk—f)!( Pi) (&) [ =p ) "F V)] —pr

B Note that the gith-order pole py contributes g terms to the partial fraction
expansion.

® Note thatn! = (n)(n—1)(n—2)---(1)and 0! = 1.
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Part 15

Miscellany
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Sum of Arithmetic and Geometric Sequences

B The sum of the arithmetic sequence a,a+d,a+2d,...,a+ (n—1)d is

given by
rf(a—l—kd) _ nl2a+d(n— 1)]
k=0 2

® The sum of the geometric sequence a,ra, r*a,...,r" 'ais given by

n—1 n

—1
Zrka:ari forr# 1.
= r—1

2

B The sum of the infinite geometric sequence a,ra,r”a, ... is given by

Zrka:L for |r| < 1.
= 1—r

Copyright © 2013-2020 Michael D. Adams || Signals and Systems || Edition 3.0 || 618



Part 16

Epilogue
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Other Courses Offered by the Author of These Lecture

Slides

B |f you did not suffer permanent emotional scarring as a result of using
these lecture slides and you happen to be a student at the University of
Victoria, you might wish to consider taking another one of the courses
developed by the author of these lecture slides:

o ECE 486: Multiresolution Signal and Geometry Processing with C++
o SENG 475: Advanced Programming Techniques for Robust Efficient
Computing
B For further information about the above courses (including the URLs for
web sites of these courses), please refer to the slides that follow.
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ECE 486/586:
Multiresolution Signal and Geometry Processing with C++

normally offered in Summer (May-August) term; only prerequisite
ECE 310
subdivision surfaces and subdivision wavelets

@ 3D computer graphics, animation, gaming (Toy Story, Blender software)

@ geometric modelling, visualization, computer-aided design
multirate signal processing and wavelet systems

@ sampling rate conversion (audio processing, video transcoding)

@ signal compression (JPEG 2000, FBI fingerprint compression)

@ communication systems (transmultiplexers for COMA, FDMA, TDMA)
C++ (classes, templates, standard library), OpenGL, GLUT, CGAL
software applications (using C++)
for more information, visit course web page:
http://www.ece.uvic.ca/~mdadams/courses/wavelets
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SENG 475:

Advanced Programming Techniques for Robust Efficient
Computing (With C++)

advanced programming techniques for robust efficient computing explored
in context of C++ programming language
topics covered may include:

O concurrency, multithreading, transactional memory, parallelism,
vectorization; cache-efficient coding; compile-time versus run-time
computation; compile-time versus run-time polymorphism; generic
programming techniques; resource/memory management; copy and move
semantics; exception-safe coding

applications areas considered may include:

0 geometry processing, computer graphics, signal processing, and numerical

analysis
open to any student with necessary prerequisites, which are:

0 SENG 265 or CENG 255 or CSC 230 or CSC 349A or ECE 255 or

permission of Department
for more information, see course web site:
http://www.ece.uvic.ca/-mdadams/courses/cpp
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